1
|
Moreira TS, Takakura AC, Falquetto B, Ramirez JM, Oliveira LM, Silva PE, Araujo EV. Neuroanatomical and neurochemical organization of brainstem and forebrain circuits involved in breathing regulation. J Neurophysiol 2025; 133:1116-1137. [PMID: 40059616 DOI: 10.1152/jn.00475.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Breathing regulation depends on a highly intricate and precise network within the brainstem, requiring the identification of all neuronal elements in the brainstem respiratory circuits and a comprehensive understanding of their organization into distinct functional compartments. These compartments play a pivotal role by providing essential input to three main targets: cranial motoneurons that regulate airway control, spinal motoneurons that activate the inspiratory and expiratory muscles, and higher brain structures that influence breathing behavior and integrate it with other physiological and behavioral processes. This review offers a comprehensive examination of the phenotypes, connections, and functional roles of the major compartments within the brainstem and forebrain respiratory circuits. In addition, it summarizes the diverse neurotransmitters used by neurons in these regions, highlighting their contributions to the coordination and modulation of respiratory activity.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Phelipe E Silva
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Emmanuel V Araujo
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Paton JFR, Machado BH, Moraes DJA, Zoccal DB, Abdala AP, Smith JC, Antunes VR, Murphy D, Dutschmann M, Dhingra RR, McAllen R, Pickering AE, Wilson RJA, Day TA, Barioni NO, Allen AM, Menuet C, Donnelly J, Felippe I, St-John WM. Advancing respiratory-cardiovascular physiology with the working heart-brainstem preparation over 25 years. J Physiol 2022; 600:2049-2075. [PMID: 35294064 PMCID: PMC9322470 DOI: 10.1113/jp281953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Twenty‐five years ago, a new physiological preparation called the working heart–brainstem preparation (WHBP) was introduced with the claim it would provide a new platform allowing studies not possible before in cardiovascular, neuroendocrine, autonomic and respiratory research. Herein, we review some of the progress made with the WHBP, some advantages and disadvantages along with potential future applications, and provide photographs and technical drawings of all the customised equipment used for the preparation. Using mice or rats, the WHBP is an in situ experimental model that is perfused via an extracorporeal circuit benefitting from unprecedented surgical access, mechanical stability of the brain for whole cell recording and an uncompromised use of pharmacological agents akin to in vitro approaches. The preparation has revealed novel mechanistic insights into, for example, the generation of distinct respiratory rhythms, the neurogenesis of sympathetic activity, coupling between respiration and the heart and circulation, hypothalamic and spinal control mechanisms, and peripheral and central chemoreceptor mechanisms. Insights have been gleaned into diseases such as hypertension, heart failure and sleep apnoea. Findings from the in situ preparation have been ratified in conscious in vivo animals and when tested have translated to humans. We conclude by discussing potential future applications of the WHBP including two‐photon imaging of peripheral and central nervous systems and adoption of pharmacogenetic tools that will improve our understanding of physiological mechanisms and reveal novel mechanisms that may guide new treatment strategies for cardiorespiratory diseases.
![]()
Collapse
Affiliation(s)
- Julian F R Paton
- Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Science, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Ana P Abdala
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Mathias Dutschmann
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Rishi R Dhingra
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Robin McAllen
- Florey institute of Neuroscience and Mental Health, University of Melbourne, 30, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Nicole O Barioni
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew M Allen
- Department of Anatomy & Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Clément Menuet
- Institut de Neurobiologie de la Méditerranée, INMED UMR1249, INSERM, Aix-Marseille Université, Marseille, France
| | - Joseph Donnelly
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Igor Felippe
- Manaaki Manawa - The Centre for Heart Research, Faculty of Medical & Health Science, University of Auckland, Park Road, Grafton, Auckland, 1142, New Zealand
| | - Walter M St-John
- Emeritus Professor, Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Dartmouth, New Hampshire, USA
| |
Collapse
|
3
|
Wollman LB, Streeter KA, Fusco AF, Gonzalez-Rothi EJ, Sandhu MS, Greer JJ, Fuller DD. Ampakines stimulate phrenic motor output after cervical spinal cord injury. Exp Neurol 2020; 334:113465. [PMID: 32949571 DOI: 10.1016/j.expneurol.2020.113465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
Activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors increases phrenic motor output. Ampakines are a class of drugs that are positive allosteric modulators of AMPA receptors. We hypothesized that 1) ampakines can stimulate phrenic activity after incomplete cervical spinal cord injury (SCI), and 2) pairing ampakines with brief hypoxia could enable sustained facilitation of phrenic bursting. Phrenic activity was recorded ipsilateral (IL) and contralateral (CL) to C2 spinal cord hemisection (C2Hx) in anesthetized adult rats. Two weeks after C2Hx, ampakine CX717 (15 mg/kg, i.v.) increased IL (61 ± 46% baseline, BL) and CL burst amplitude (47 ± 26%BL) in 8 of 8 rats. After 90 min, IL and CL bursting remained above baseline (BL) in 7 of 8 rats. Pairing ampakine with a single bout of acute hypoxia (5-min, arterial partial pressure of O2 ~ 50 mmHg) had a variable impact on phrenic bursting, with some rats showing a large facilitation that exceeded the response of the ampakine alone group. At 8 weeks post-C2Hx, 7 of 8 rats increased IL (115 ± 117%BL) and CL burst amplitude (45 ± 27%BL) after ampakine. The IL burst amplitude remained above BL for 90-min in 7 of 8 rats; CL bursting remained elevated in 6 of 8 rats. The sustained impact of ampakine at 8 weeks was not enhanced by hypoxia exposure. Intravenous vehicle (10% 2-Hydroxypropyl-β-cyclodextrin) did not increase phrenic bursting at either time point. We conclude that ampakines effectively stimulate neural drive to the diaphragm after cervical SCI. Pairing ampakines with a single hypoxic exposure did not consistently enhance phrenic motor facilitation.
Collapse
Affiliation(s)
- L B Wollman
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - K A Streeter
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - A F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America
| | - E J Gonzalez-Rothi
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America
| | - M S Sandhu
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America
| | - J J Greer
- Department of Physiology, University of Alberta, Edmonton, AB T6G2SE, Canada
| | - D D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States of America; Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
4
|
Ghezzi F, Corsini S, Nistri A. Electrophysiological characterization of the M-current in rat hypoglossal motoneurons. Neuroscience 2017; 340:62-75. [DOI: 10.1016/j.neuroscience.2016.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
|
5
|
Abstract
Many neurologic diseases can cause acute respiratory decompensation, therefore a familiarity with these diseases is critical for any clinician managing patients with respiratory dysfunction. In this article, we review the anatomy of the respiratory system, focusing on the neurologic control of respiration. We discuss general mechanisms by which diseases of the peripheral and central nervous systems can cause acute respiratory dysfunction, and review the neurologic diseases which can adversely affect respiration. Lastly, we discuss the diagnosis and general management of acute respiratory impairment due to neurologic disease.
Collapse
Affiliation(s)
- Rachel A. Nardin
- From the Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Frank W. Drislane
- From the Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Turner SM, ElMallah MK, Hoyt AK, Greer JJ, Fuller DD. Ampakine CX717 potentiates intermittent hypoxia-induced hypoglossal long-term facilitation. J Neurophysiol 2016; 116:1232-8. [PMID: 27306673 DOI: 10.1152/jn.00210.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/10/2016] [Indexed: 01/26/2023] Open
Abstract
Glutamatergic currents play a fundamental role in regulating respiratory motor output and are partially mediated by α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors throughout the premotor and motor respiratory circuitry. Ampakines are pharmacological compounds that enhance glutamatergic transmission by altering AMPA receptor channel kinetics. Here, we examined if ampakines alter the expression of respiratory long-term facilitation (LTF), a form of neuroplasticity manifested as a persistent increase in inspiratory activity following brief periods of reduced O2 [intermittent hypoxia (IH)]. Current synaptic models indicate enhanced effectiveness of glutamatergic synapses after IH, and we hypothesized that ampakine pretreatment would potentiate IH-induced LTF of respiratory activity. Inspiratory bursting was recorded from the hypoglossal nerve of anesthetized and mechanically ventilated mice. During baseline (BL) recording conditions, burst amplitude was stable for at least 90 min (98 ± 5% BL). Exposure to IH (3 × 1 min, 15% O2) resulted in a sustained increase in burst amplitude (218 ± 44% BL at 90 min following final bout of hypoxia). Mice given an intraperitoneal injection of ampakine CX717 (15 mg/kg) 10 min before IH showed enhanced LTF (500 ± 110% BL at 90 min). Post hoc analyses indicated that CX717 potentiated LTF only when initial baseline burst amplitude was low. We conclude that under appropriate conditions ampakine pretreatment can potentiate IH-induced respiratory LTF. These data suggest that ampakines may have therapeutic value in the context of hypoxia-based neurorehabilitation strategies, particularly in disorders with blunted respiratory motor output such as spinal cord injury.
Collapse
Affiliation(s)
- S M Turner
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida; and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| | - M K ElMallah
- Department of Pediatrics, Division of Pulmonary Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - A K Hoyt
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - J J Greer
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - D D Fuller
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida; McKnight Brain Institute, University of Florida, Gainesville, Florida; and Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Oliveira LM, Moreira TS, Kuo FS, Mulkey DK, Takakura AC. α1- and α2-adrenergic receptors in the retrotrapezoid nucleus differentially regulate breathing in anesthetized adult rats. J Neurophysiol 2016; 116:1036-48. [PMID: 27306670 DOI: 10.1152/jn.00023.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Norepinephrine (NE) is a potent modulator of breathing that can increase/decrease respiratory activity by α1-/α2-adrenergic receptor (AR) activation, respectively. The retrotrapezoid nucleus (RTN) is known to contribute to central chemoreception, inspiration, and active expiration. Here we investigate the sources of catecholaminergic inputs to the RTN and identify respiratory effects produced by activation of ARs in this region. By injecting the retrograde tracer Fluoro-Gold into the RTN, we identified back-labeled catecholaminergic neurons in the A7 region. In urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats unilateral injection of NE or moxonidine (α2-AR agonist) blunted diaphragm muscle activity (DiaEMG) frequency and amplitude, without changing abdominal muscle activity. Those inhibitory effects were reduced by preapplication of yohimbine (α2-AR antagonist) into the RTN. Conversely, unilateral RTN injection of phenylephrine (α1-AR agonist) increased DiaEMG amplitude and frequency and facilitated active expiration. This response was blocked by prior RTN injection of prazosin (α1-AR antagonist). Interestingly, RTN injection of propranolol (β-AR antagonist) had no effect on respiratory inhibition elicited by applications of NE into the RTN; however, the combined blockade of α2- and β-ARs (coapplication of propranolol and yohimbine) revealed an α1-AR-dependent excitatory response to NE that resulted in increase in DiaEMG frequency and facilitation of active expiration. However, blockade of α1-, α2-, or β-ARs in the RTN had minimal effect on baseline respiratory activity, on central or peripheral chemoreflexes. These results suggest that NE signaling can modulate RTN chemoreceptor function; however, endogenous NE signaling does not contribute to baseline breathing or the ventilatory response to central or peripheral chemoreceptor activity in urethane-anesthetized rats.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil; and
| | - Fu-Shan Kuo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil;
| |
Collapse
|
8
|
Opioid-induced Respiratory Depression Is Only Partially Mediated by the preBötzinger Complex in Young and Adult Rabbits In Vivo. Anesthesiology 2015; 122:1288-98. [PMID: 25751234 DOI: 10.1097/aln.0000000000000628] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The preBötzinger Complex (preBC) plays an important role in respiratory rhythm generation. This study was designed to determine whether the preBC mediated opioid-induced respiratory rate depression at clinically relevant opioid concentrations in vivo and whether this role was age dependent. METHODS Studies were performed in 22 young and 32 adult New Zealand White rabbits. Animals were anesthetized, mechanically ventilated, and decerebrated. The preBC was identified by the tachypneic response to injection of D,L-homocysteic acid. (1) The μ-opioid receptor agonist [D-Ala2,N-Me-Phe4,Gly-ol]-enkephalin (DAMGO, 100 μM) was microinjected into the bilateral preBC and reversed with naloxone (1 mM) injection into the preBC. (2) Respiratory depression was achieved with intravenous remifentanil (0.08 to 0.5 μg kg(-1) min(-1)). Naloxone (1 mM) was microinjected into the preBC in an attempt to reverse the respiratory depression. RESULTS (1) DAMGO injection depressed respiratory rate by 6 ± 8 breaths/min in young and adult rabbits (mean ± SD, P < 0.001). DAMGO shortened the inspiratory and lengthened the expiratory fraction of the respiratory cycle by 0.24 ± 0.2 in adult and young animals (P < 0.001). (2) During intravenous remifentanil infusion, local injection of naloxone into the preBC partially reversed the decrease in inspiratory fraction/increase in expiratory fraction in young and adult animals (0.14 ± 0.14, P < 0.001), but not the depression of respiratory rate (P = 0.19). PreBC injections did not affect respiratory drive. In adult rabbits, the contribution of non-preBC inputs to expiratory phase duration was larger than preBC inputs (3.5 [-5.2 to 1.1], median [25 to 75%], P = 0.04). CONCLUSIONS Systemic opioid effects on respiratory phase timing can be partially reversed in the preBC without reversing the depression of respiratory rate.
Collapse
|
9
|
Johnson SM, Hedrick MS, Krause BM, Nilles JP, Chapman MA. Respiratory neuron characterization reveals intrinsic bursting properties in isolated adult turtle brainstems (Trachemys scripta). Respir Physiol Neurobiol 2014; 224:52-61. [PMID: 25462012 DOI: 10.1016/j.resp.2014.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
Abstract
It is not known whether respiratory neurons with intrinsic bursting properties exist within ectothermic vertebrate respiratory control systems. Thus, isolated adult turtle brainstems spontaneously producing respiratory motor output were used to identify and classify respiratory neurons based on their firing pattern relative to hypoglossal (XII) nerve activity. Most respiratory neurons (183/212) had peak activity during the expiratory phase, while inspiratory, post-inspiratory, and novel pre-expiratory neurons were less common. During synaptic blockade conditions, ∼10% of respiratory neurons fired bursts of action potentials, with post-inspiratory cells (6/9) having the highest percentage of intrinsic burst properties. Most intrinsically bursting respiratory neurons were clustered at the level of the vagus (X) nerve root. Synaptic inhibition blockade caused seizure-like activity throughout the turtle brainstem, which shows that the turtle respiratory control system is not transformed into a network driven by intrinsically bursting respiratory neurons. We hypothesize that intrinsically bursting respiratory neurons are evolutionarily conserved and represent a potential rhythmogenic mechanism contributing to respiration in adult turtles.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States.
| | - Michael S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, United States
| | - Bryan M Krause
- Neuroscience Training Program, University of Wisconsin, Madison, WI 53706, United States
| | - Jacob P Nilles
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Mark A Chapman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
10
|
Presti MF, Schmeichel AM, Low PA, Parisi JE, Benarroch EE. Degeneration of brainstem respiratory neurons in dementia with Lewy bodies. Sleep 2014; 37:373-8. [PMID: 24501436 DOI: 10.5665/sleep.3418] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Respiratory dysfunction, including sleep disordered breathing, is characteristic of multiple system atrophy (MSA) and may reflect degeneration of brainstem respiratory nuclei involved in respiratory rhythmogenesis and chemosensitivity, including the pre-Bötzinger complex (preBötC), nucleus raphe pallidus (RPa), and nucleus raphe obscurus (ROb). However, impaired ventilatory responses to hypercapnia have also been reported in dementia with Lewy bodies (DLB), suggesting that these nuclei may also be affected in DLB. OBJECTIVES To determine whether there is involvement of the preBötC, RPa, and ROb in DLB. DESIGN We applied stereological methods to analyze sections immunostained for neurokinin-1 receptor and tryptophan hydroxylase in neuropathologically confirmed cases of DLB, MSA, and controls. RESULTS Reduction of neuronal density occurred in all three nuclei in DLB, as well as in MSA. The magnitude of neuronal depletion in ROb was similar in DLB and MSA (49% versus 56% respectively, compared to controls, P < 0.05), but neuronal loss in the preBötC and RPa was less severe in DLB than in MSA (40% loss in preBötC of DLB, P < 0.05 and 68% loss in MSA, P < 0.0001, compared to controls; 46% loss in RPa of DLB, P < 0.05 and 73% loss in MSA P < 0.0001, compared to controls). CONCLUSIONS Medullary respiratory nuclei are affected in dementia with Lewy bodies but less severely than in multiple system atrophy. This may help explain differences in the frequency of sleep disordered breathing in these two disorders.
Collapse
Affiliation(s)
| | | | | | - Joseph E Parisi
- Department of Neurology ; Division of Anatomical Pathology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
11
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Hisa Y. Activity of respiratory neurons in the rostral medulla during vocalization, swallowing, and coughing in guinea pigs. Neurosci Res 2013; 80:17-31. [PMID: 24380791 DOI: 10.1016/j.neures.2013.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
To examine the relationship between the neuronal networks underlying respiration and non-respiratory behaviors such as vocalization and airway defensive reflexes, we compared the activity of respiratory neurons in the ventrolateral medulla during breathing with that during non-respiratory behaviors including vocalization, swallowing, and coughing in guinea pigs. During fictive vocalization the activity of augmenting expiratory neurons ceased, whereas the other types of expiratory neurons did not show a consistent tendency of increasing or decreasing activity. All inspiratory neurons discharged in synchrony with the phrenic nerve activity. Most of the phase-spanning neurons were activated throughout the vocal phase. During fictive swallowing, many expiratory and inspiratory neurons were silent, whereas many phase-spanning neurons were activated. During fictive coughing, many expiratory neurons were activated during the expiratory phase of coughing. Most inspiratory neurons discharged in parallel with the phrenic nerve activity during coughing. Many phase-spanning neurons were activated during the expiratory phase of coughing. These findings indicate that the medullary respiratory neurons help shape respiratory muscle nerve activity not only during breathing but also during these non-respiratory behaviors, and thus suggest that at least some of the respiratory neurons are shared among the neuronal circuits underlying the generation of breathing and non-respiratory behaviors.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo 131-0046, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
12
|
Developmental nicotine exposure alters AMPA neurotransmission in the hypoglossal motor nucleus and pre-Botzinger complex of neonatal rats. J Neurosci 2013; 33:2616-25. [PMID: 23392689 DOI: 10.1523/jneurosci.3711-12.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Developmental nicotine exposure (DNE) impacts central respiratory control in neonates born to smoking mothers. We previously showed that DNE enhances the respiratory motor response to bath application of AMPA to the brainstem, although it was unclear which brainstem respiratory neurons mediated these effects (Pilarski and Fregosi, 2009). Here we examine how DNE influences AMPA-type glutamatergic neurotransmission in the pre-Bötzinger complex (pre-BötC) and the hypoglossal motor nucleus (XIIMN), which are neuronal populations located in the medulla that are necessary for normal breathing. Using rhythmic brainstem slices from neonatal rats, we microinjected AMPA into the pre-BötC or the XIIMN while recording from XII nerve rootlets (XIIn) as an index of respiratory motor output. DNE increased the duration of tonic activity and reduced rhythmic burst amplitude after AMPA microinjection into the XIIMN. Also, DNE led to an increase in respiratory burst frequency after AMPA injection into the pre-BötC. Whole-cell patch-clamp recordings of XII motoneurons showed that DNE increased motoneuron excitability but did not change inward currents. Immunohistochemical studies indicate that DNE reduced the expression of glutamate receptor subunits 2 and 3 (GluR2/3) in the XIIMN and the pre-BötC. Our data show that DNE alters AMPAergic synaptic transmission in both the XIIMN and pre-BötC, although the mechanism by which this occurs is unclear. We suggest that the DNE-induced reduction in GluR2/3 may represent an attempt to compensate for increased cell excitability, consistent with mechanisms underlying homeostatic plasticity.
Collapse
|
13
|
Ravindran CRM, Bayne JN, Bravo SC, Busby T, Crain CN, Escobedo JA, Gresham K, O'Grady BJ, Rios L, Roy S, Gdovin MJ. Intracellular acidosis and pH regulation in central respiratory chemoreceptors. J Health Care Poor Underserved 2011; 22:174-86. [PMID: 22102313 PMCID: PMC4372124 DOI: 10.1353/hpu.2011.0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dysfunctions of brainstem regions responsible for central CO2 chemoreception have been proposed as an underlying pathophysiology of Sudden Infant Death Syndrome (SIDS). We recorded respiratory motor output and intracellular pH (pHi) from chemosensitive neurons in an in vitro tadpole brainstem during normocapnia and hypercapnia. Flash photolysis of the H+ donor nitrobenzaldehyde was used to induce focal decreases in pHi alone. Hypercapnia and flash photolysis significantly decreased pHi from normocapnia. In addition, chemoreceptors did not regulate pHi during hypercapnia, but demonstrated significant pHi recovery when only pHi was reduced by flash photolysis. Respiration was stimulated by decreases in pHi (hypercapnia and flash photolysis) by decreases in burst cycle. These data represent our ability to load the brainstem with nitrobenzaldehyde without disrupting the respiration, to quantify changes in chemoreceptor pHi recovery, and to provide insights regarding mechanisms of human health conditions with racial/ethnic health disparities such as SIDS and Apnea of Prematurity (AOP).
Collapse
Affiliation(s)
- C R Marutha Ravindran
- Department of Biology, The University of Texas at San Antonio,1 UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Opiate-induced suppression of rat hypoglossal motoneuron activity and its reversal by ampakine therapy. PLoS One 2010; 5:e8766. [PMID: 20098731 PMCID: PMC2808240 DOI: 10.1371/journal.pone.0008766] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/23/2009] [Indexed: 11/19/2022] Open
Abstract
Background Hypoglossal (XII) motoneurons innervate tongue muscles and are vital for maintaining upper-airway patency during inspiration. Depression of XII nerve activity by opioid analgesics is a significant clinical problem, but underlying mechanisms are poorly understood. Currently there are no suitable pharmacological approaches to counter opiate-induced suppression of XII nerve activity while maintaining analgesia. Ampakines accentuate α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor responses. The AMPA family of glutamate receptors mediate excitatory transmission to XII motoneurons. Therefore the objectives were to determine whether the depressant actions of μ-opioid receptor activation on inspiratory activity includes a direct inhibitory action at the inspiratory premotoneuron to XII motoneuron synapse, and to identify underlying mechanism(s). We then examined whether ampakines counteract opioid-induced depression of XII motoneuron activity. Methodology/Principal Findings A medullary slice preparation from neonatal rat that produces inspiratory-related output in vitro was used. Measurements of inspiratory burst amplitude and frequency were made from XII nerve roots. Whole-cell patch recordings from XII motoneurons were used to measure membrane currents and synaptic events. Application of the μ-opioid receptor agonist, DAMGO, to the XII nucleus depressed the output of inspiratory XII motoneurons via presynaptic inhibition of excitatory glutamatergic transmission. Ampakines (CX614 and CX717) alleviated DAMGO-induced depression of XII MN activity through postsynaptic actions on XII motoneurons. Conclusions/Significance The inspiratory-depressant actions of opioid analgesics include presynaptic inhibition of XII motoneuron output. Ampakines counteract μ-opioid receptor-mediated depression of XII motoneuron inspiratory activity. These results suggest that ampakines may be beneficial in countering opiate-induced suppression of XII motoneuron activity and resultant impairment of airway patency.
Collapse
|
15
|
|
16
|
Engoren M, Courtney SE, Habib RH. Effect of weight and age on respiratory complexity in premature neonates. J Appl Physiol (1985) 2009; 106:766-73. [DOI: 10.1152/japplphysiol.90575.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Very low-birth-weight premature infants often suffer from a variety of respiratory problems, including respiratory distress syndrome (RDS), hypopnea and periodic breathing, and apnea. These conditions are likely related to immaturity of the respiratory centers; yet how respiratory rhythms originating from these centers, including their complexity, relate to demographic measures of prematurity remains largely unknown. In 39 neonates with mild RDS (22 males, 28 ± 2 wk gestational age, 1,036 ± 234 g body wt), we derived the univariate association between complexity of two respiratory rhythms [respiratory rate (RR) and tidal volume (Vt)] and postmenstrual age, gestational age, postnatal age, and weight at time of study. RR and Vt rhythm complexities were assessed using approximate entropy, sample entropy, base scale entropy, and forbidden words entropy estimated for 300 consecutive breaths determined from respiratory inductance plethysmography, irrespective of breathing effort rate or amplitude, collected during sleep while the neonates were exposed to nasal continuous positive airway pressure (4–6 cmH2O). RR and Vt exhibited increased complexity with increased maturity, but only in terms of base scale entropy and forbidden words entropy, which are based on pattern matching, rather than approximate entropy and sample entropy, which are based on conditional probabilities. Specifically, RR complexity as measured by forbidden word entropy increased with increasing weight ( r = 0.502), postconceptional age ( r = 0.423), and gestational age ( r = 0.493). As measured by base scale entropy, RR complexity increased with increasing weight ( r = 0.488) and postconceptional age ( r = 0.390). Vt complexity, measured by base scale entropy, was greater with increased postnatal age ( r = 0.428). Our results indicate that respiratory rhythms become more complex with increasing levels of maturity, as indicated by increased weight and several age parameters. This emphasizes the importance of the later weeks of gestation in the maturation of respiratory centers in the brain and suggests a promising use of entropy measures in exploring respiratory maturation in infants.
Collapse
|
17
|
Fluctuation-driven rhythmogenesis in an excitatory neuronal network with slow adaptation. J Comput Neurosci 2008; 25:317-33. [PMID: 18427966 DOI: 10.1007/s10827-008-0081-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 01/05/2008] [Accepted: 01/25/2008] [Indexed: 12/25/2022]
Abstract
We study an excitatory all-to-all coupled network of N spiking neurons with synaptically filtered background noise and slow activity-dependent hyperpolarization currents. Such a system exhibits noise-induced burst oscillations over a range of values of the noise strength (variance) and level of cell excitability. Since both of these quantities depend on the rate of background synaptic inputs, we show how noise can provide a mechanism for increasing the robustness of rhythmic bursting and the range of burst frequencies. By exploiting a separation of time scales we also show how the system dynamics can be reduced to low-dimensional mean field equations in the limit N --> infinity. Analysis of the bifurcation structure of the mean field equations provides insights into the dynamical mechanisms for initiating and terminating the bursts.
Collapse
|
18
|
Giraudin A, Cabirol-Pol MJ, Simmers J, Morin D. Intercostal and abdominal respiratory motoneurons in the neonatal rat spinal cord: spatiotemporal organization and responses to limb afferent stimulation. J Neurophysiol 2008; 99:2626-40. [PMID: 18337363 DOI: 10.1152/jn.01298.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Respiration requires the coordinated rhythmic contractions of diverse muscles to produce ventilatory movements adapted to organismal requirements. During fast locomotion, locomotory and respiratory movements are coordinated to reduce mechanical conflict between these functions. Using semi-isolated and isolated in vitro brain stem-spinal cord preparations from neonatal rats, we have characterized for the first time the respiratory patterns of all spinal intercostal and abdominal motoneurons and explored their functional relationship with limb sensory inputs. Neuroanatomical and electrophysiological procedures were initially used to locate intercostal and abdominal motoneurons in the cord. Intercostal motoneuron somata are distributed rostrocaudally from C(7)-T(13) segments. Abdominal motoneuron somata lie between T(8) and L(2). In accordance with their soma distributions, inspiratory intercostal motoneurons are recruited in a rostrocaudal sequence during each respiratory cycle. Abdominal motoneurons express expiratory-related discharge that alternates with inspiration. Lesioning experiments confirmed the pontine origin of this expiratory activity, which was abolished by a brain stem transection at the rostral boundary of the VII nucleus, a critical area for respiratory rhythmogenesis. Entrainment of fictive respiratory rhythmicity in intercostal and abdominal motoneurons was elicited by periodic low-threshold dorsal root stimulation at lumbar (L(2)) or cervical (C(7)) levels. These effects are mediated by direct ascending fibers to the respiratory centers and a combination of long-projection and polysynaptic descending pathways. Therefore the isolated brain stem-spinal cord in vitro generates a complex pattern of respiratory activity in which alternating inspiratory and expiratory discharge occurs in functionally identified spinal motoneuron pools that are in turn targeted by both forelimb and hindlimb somatic afferents to promote locomotor-respiratory coupling.
Collapse
Affiliation(s)
- Aurore Giraudin
- Université Victor Segalen Bordeaux 2, UMR CNRS 5227, Laboratoire Mouvement-Adaptation-Cognition, Bâtiment 2A, 146 Rue Léo Saignat, Bordeaux, France
| | | | | | | |
Collapse
|
19
|
Lorier AR, Lipski J, Housley GD, Greer JJ, Funk GD. ATP sensitivity of preBötzinger complex neurones in neonatal rat in vitro: mechanism underlying a P2 receptor-mediated increase in inspiratory frequency. J Physiol 2008; 586:1429-46. [PMID: 18174215 DOI: 10.1113/jphysiol.2007.143024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
P2 receptor (R) signalling plays an important role in the central ventilatory response to hypoxia. The frequency increase that results from activation of P2Y(1)Rs in the preBötzinger complex (preBötC; putative site of inspiratory rhythm generation) may contribute, but neither the cellular nor ionic mechanism(s) underlying these effects are known. We applied whole-cell recording to rhythmically-active medullary slices from neonatal rat to define, in preBötC neurones, the candidate cellular and ionic mechanisms through which ATP influences rhythm, and tested the hypothesis that putative rhythmogenic preBötC neurones are uniquely sensitive to ATP. ATP (1 mm) evoked inward currents in all non-respiratory neurones and the majority of respiratory neurons, which included inspiratory, expiratory and putative rhythmogenic inspiratory neurones identified by sensitivity to substance P (1 microM) and DAMGO (50 microM) or by voltage-dependent pacemaker-like activity. ATP current densities were similar in all classes of preBötC respiratory neurone. Reversal potentials and input resistance changes for ATP currents in respiratory neurones suggested they resulted from either inhibition of a K(+) channel or activation of a mixed cationic conductance. The P2YR agonist 2MeSADP (1 mm) evoked only the latter type of current in inspiratory and pacemaker-like neurones. In summary, putative rhythmogenic preBötC neurones were sensitive to ATP. However, this sensitivity was not unique; ATP evoked similar currents in all types of preBötC respiratory neurone. The P2Y(1)R-mediated frequency increase is therefore more likely to reflect activation of a mixed cationic conductance in multiple types of preBötC neurone than excitation of one, highly sensitive group.
Collapse
Affiliation(s)
- A R Lorier
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | | | | | | | | |
Collapse
|
20
|
Johnson SM, Wiegel LM, Majewski DJ. Are pacemaker properties required for respiratory rhythm generation in adult turtle brain stems in vitro? Am J Physiol Regul Integr Comp Physiol 2007; 293:R901-10. [PMID: 17522127 DOI: 10.1152/ajpregu.00912.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of pacemaker properties in vertebrate respiratory rhythm generation is not well understood. To address this question from a comparative perspective, brain stems from adult turtles were isolated in vitro, and respiratory motor bursts were recorded on hypoglossal (XII) nerve rootlets. The goal was to test whether burst frequency could be altered by conditions known to alter respiratory pacemaker neuron activity in mammals (e.g., increased bath KCl or blockade of specific inward currents). While bathed in artificial cerebrospinal fluid (aCSF), respiratory burst frequency was not correlated with changes in bath KCl (0.5-10.0 mM). Riluzole (50 microM; persistent Na(+) channel blocker) increased burst frequency by 31 +/- 5% (P < 0.05) and decreased burst amplitude by 42 +/- 4% (P < 0.05). In contrast, flufenamic acid (FFA, 20-500 microM; Ca(2+)-activated cation channel blocker) reduced and abolished burst frequency in a dose- and time-dependent manner (P < 0.05). During synaptic inhibition blockade with bicuculline (50 microM; GABA(A) channel blocker) and strychnine (50 muM; glycine receptor blocker), rhythmic motor activity persisted, and burst frequency was directly correlated with extracellular KCl (0.5-10.0 mM; P = 0.005). During synaptic inhibition blockade, riluzole (50 microM) did not alter burst frequency, whereas FFA (100 microM) abolished burst frequency (P < 0.05). These data are most consistent with the hypothesis that turtle respiratory rhythm generation requires Ca(2+)-activated cation channels but not pacemaker neurons, which thereby favors the group-pacemaker model. During synaptic inhibition blockade, however, the rhythm generator appears to be transformed into a pacemaker-driven network that requires Ca(2+)-activated cation channels.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.
| | | | | |
Collapse
|
21
|
Darnall RA, Ariagno RL, Kinney HC. The late preterm infant and the control of breathing, sleep, and brainstem development: a review. Clin Perinatol 2006; 33:883-914; abstract x. [PMID: 17148011 DOI: 10.1016/j.clp.2006.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The brainstem development of infants born between 33 and 38 weeks' gestation is less mature than that of a full-term infant. During late gestation, there are dramatic and nonlinear developmental changes in the brainstem. This translates into immaturity of upper airway and lung volume control, laryngeal reflexes, chemical control of breathing, and sleep mechanisms. Ten percent of late preterm infants have significant apnea of prematurity and they frequently have delays in establishing coordination of feeding and breathing. Unfortunately, there is a paucity of clinical, physiologic, neuroanatomic, and neurochemical data in this specific group of infants. Research focused on this group of infants will not only further our understanding of brainstem maturation during this high risk period, but will help develop focused plans for their management.
Collapse
Affiliation(s)
- Robert A Darnall
- Department of Physiology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
22
|
Wilson RJA, Vasilakos K, Remmers JE. Phylogeny of vertebrate respiratory rhythm generators: the Oscillator Homology Hypothesis. Respir Physiol Neurobiol 2006; 154:47-60. [PMID: 16750658 DOI: 10.1016/j.resp.2006.04.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/30/2022]
Abstract
A revolution is underway in our understanding of respiratory rhythm generation in mammals. Until recently, a major focus of research within the field has centered around the question of locating and elucidating the mechanism of rhythmogenesis of a single respiratory neuronal oscillator which is reiterated bilaterally within the brainstem. Now it appears that each hemisection may contain at least two oscillators that interact to generate the respiratory rhythm in mammals. Comparative studies have hinted at the existence of multiple respiratory oscillators in non-mammalian vertebrates for some time, raising the possibility of homologous oscillators. Here, we consider available tools to identify neuronal oscillators and critically review the evidence for the importance and existence of multiple respiratory oscillators in vertebrates. First focusing on a comparison between frogs and mammals, we then evaluate the hypothesis that ventilatory oscillators in extant tetrapods evolved from ancestral oscillators present in fish (the Oscillator Homology Hypothesis). While supporting data are incomplete, the Oscillator Homology Hypothesis will likely serve as a useful framework to motivate further studies of respiratory rhythm generation in lower vertebrates.
Collapse
Affiliation(s)
- Richard J A Wilson
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada.
| | | | | |
Collapse
|
23
|
Liu Q, Wong-Riley MTT. Developmental changes in the expression of GABAA receptor subunits alpha1, alpha2, and alpha3 in brain stem nuclei of rats. Brain Res 2006; 1098:129-38. [PMID: 16750519 DOI: 10.1016/j.brainres.2006.05.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/21/2006] [Accepted: 05/01/2006] [Indexed: 12/29/2022]
Abstract
Gamma-aminobutyric acid (GABA)(A) receptor subunit switching is a suggested postnatal mechanism for changes in GABA transmission from depolarization to hyperpolarization. Previously, we found an apparent switch between GABA(A) alpha3 and alpha1 subunit expression in the rat pre-Bötzinger complex (PBC) on postnatal day (P) 12, a presumed peak critical period of respiratory nuclei development. The present study aimed at determining if GABA(A) subunit switching occurred in another respiratory nucleus, the ventrolateral subnucleus of the solitary tract nucleus (NTS(VL)), and in a non-respiratory cuneate nucleus (CN) of P0 to P21 rats. In both nuclei: (1) the expression of GABA(A) alpha1 subunit was relatively low at birth but increased with development; (2) that of GABA(A) alpha3 was relatively high at birth but declined with age; and (3) GABA(A) alpha2 remained relatively low and constant throughout development. However, the specific patterns differed between the two nuclei, but were similar between the NTS(VL) and the PBC. In the NTS(VL), GABA(A) alpha1 expression gradually increased from birth and peaked at P12, whereas that in the CN sharply rose from P7 and peaked at P10. GABA(A) alpha3 expression had a prominent decrease from P11 to P12 in the NTS(VL), whereas that in the CN only gradually declined from P10 to P12. The developmental trends of alpha1 and alpha3 in the NTS(VL) intersected close to P12, whereas those in the CN intersected at P10. Despite differences in timing, GABA(A) alpha subunit switching may be a common theme in the brain stem that may mediate different functional properties of GABA transmission.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
24
|
Elsen FP, Ramirez JM. Postnatal development differentially affects voltage-activated calcium currents in respiratory rhythmic versus nonrhythmic neurons of the pre-Bötzinger complex. J Neurophysiol 2005; 94:1423-31. [PMID: 15888528 DOI: 10.1152/jn.00237.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian respiratory network reorganizes during early postnatal life. We characterized the postnatal developmental changes of calcium currents in neurons of the pre-Bötzinger complex (pBC), the presumed site for respiratory rhythm generation. The pBC contains not only respiratory rhythmic (R) but also nonrhythmic neurons (nR). Both types of neurons express low- and high-voltage-activated (LVA and HVA) calcium currents. This raises the interesting issue: do calcium currents of the two co-localized neuron types have similar developmental profiles? To address this issue, we used the whole cell patch-clamp technique to compare in transverse slices of mice LVA and HVA calcium current amplitudes of the two neuron populations (R and nR) during the first and second postnatal week (P0-P16). The amplitude of HVA currents did not significantly change in R pBC-neurons (P0-P16), but it significantly increased in nR pBC-neurons during P8-P16. The dehydropyridine (DHP)-sensitive current amplitudes did not significantly change during the early postnatal development, suggesting that the observed amplitude changes in nR pBC-neurons are caused by (DHP) insensitive calcium currents. The ratio between HVA calcium current amplitudes dramatically changed during early postnatal development: At P0-P3, current amplitudes were significantly larger in R pBC-neurons, whereas at P8-P16, current amplitudes were significantly larger in nR pBC-neurons. Our results suggest that calcium currents in pBC neurons are differentially altered during postnatal development and that R pBC-neurons have fully expressed calcium currents early during postnatal development. This may be critical for stable respiratory rhythm generation in the underlying rhythm generating network.
Collapse
Affiliation(s)
- Frank P Elsen
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
25
|
Juvin L, Morin D. Descending respiratory polysynaptic inputs to cervical and thoracic motoneurons diminish during early postnatal maturation in rat spinal cord. Eur J Neurosci 2005; 21:808-13. [PMID: 15733100 DOI: 10.1111/j.1460-9568.2005.03910.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isolated brainstem-spinal cord preparations were used to explore the coexistence of a direct and an indirect descending drive from the brainstem respiratory centre to cervical and thoracic respiratory motoneurons in the neonatal Sprague-Dawley rat. Polysynaptic spinal relay pathways from the respiratory centre were suppressed by selectively perfusing the cord with mephenesin (1 mM) or a solution enriched with Ca2+ and Mg2+. At birth, both direct and spinally relayed pathways are functional and contribute equally to the global descending respiratory drive. However, during the first postnatal week, significant maturational changes appear in the way the respiratory centre controls its target respiratory motoneurons in the cervical and thoracic spinal cord, with the direct respiratory drive becoming progressively predominant with maturation (from 50% to around 75% of the global descending command). The relative contributions of the monosynaptic and the polysynaptic spinal pathways may therefore have important implications for effective respiratory control during early postnatal development.
Collapse
Affiliation(s)
- Laurent Juvin
- Universités Bordeaux 1 & Victor Segalen Bordeaux 2, Laboratoire Physiologie et Physiopathologie de la Signalisation Cellulaire, UMR CNRS 5543, Equipe Neurobiologie Adaptative des Systèmes Moteurs, 33076 Bordeaux Cedex, France
| | | |
Collapse
|
26
|
Liu Q, Wong-Riley MTT. Postnatal developmental expressions of neurotransmitters and receptors in various brain stem nuclei of rats. J Appl Physiol (1985) 2004; 98:1442-57. [PMID: 15618314 DOI: 10.1152/japplphysiol.01301.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that the expression of cytochrome oxidase in a number of brain stem nuclei exhibited a plateau or reduction at postnatal day (P) 3-4 and a dramatic decrease at P12, against a general increase with age. The present study examined the expression of glutamate, N-methyl-D-aspartate receptor subunit 1 (NMDAR1), GABA, GABAB receptors, glycine receptors, and glutamate receptor subunit 2 (GluR2) in the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, medial accessory olivary nucleus, dorsal motor nucleus of the vagus, and cuneate nucleus, from P2 to P21 in rats. Results showed that 1) the expression of glutamate increased with age in a majority of the nuclei, whereas that of NMDAR1 showed heterogeneity among the nuclei; 2) GABA and GABAB expressions decreased with age, whereas that of glycine receptors increased with age; 3) GluR2 showed two peaks, at P3-4 and P12; and 4) glutamate and NMDAR1 showed a significant reduction, whereas GABA, GABAB receptors, glycine receptors, and GluR2 exhibited a concomitant increase at P12. These features were present but less pronounced in hypoglossal nucleus and dorsal motor nucleus of the vagus and were absent in the cuneate nucleus. These data suggest that brain stem nuclei, directly or indirectly related to respiratory control, share a common developmental trend with the pre-Botzinger complex in having a transient period of imbalance between inhibitory and excitatory drives at P12. During this critical period, the respiratory system may be more vulnerable to excessive exogenous stressors.
Collapse
Affiliation(s)
- Qiuli Liu
- Dept. of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | |
Collapse
|
27
|
Kosmidis EK, Pierrefiche O, Vibert JF. Respiratory-Like Rhythmic Activity Can Be Produced by an Excitatory Network of Non-Pacemaker Neuron Models. J Neurophysiol 2004; 92:686-99. [PMID: 15277592 DOI: 10.1152/jn.00046.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is still unclear whether the respiratory-like rhythm observed in slice preparations containing the pre-Bötzinger complex is of pacemaker or network origin. The rhythm persists in the absence of inhibition, but blocking pacemaker activity did not always result in rhythm abolition. We developed a computational model of the slice to show that respiratory-like rhythm can emerge as a network property without pacemakers or synaptic inhibition. The key currents of our model cell are the low- and high-threshold calcium currents and the calcium-dependent potassium current. Depolarization of a single unit by current steps or by raising the external potassium concentration can induce periodic bursting activity. Gaussian stimulation increased the excitability of the model without evoking oscillatory activity, as indicated by autocorrelation analysis. In response to hyperpolarizing pulses, the model produces prolonged relative refractory periods. At the network level, an increase of external potassium concentration triggers rhythmic activity that can be attributed to cellular periodic bursting, network properties, or both, depending on different parameters. Gaussian stimulation also induces rhythmic activity that depends solely on network properties. In all cases, the calcium-dependent potassium current has a central role in burst termination and interburst duration. However, when periodic inhibition is considered, the activation of this current is responsible for the characteristic amplification ramp of the emerged rhythm. Our results may explain controversial results from studies blocking pacemakers in vitro and show a shift in the role of the calcium-dependent potassium current in the presence of network inhibition.
Collapse
Affiliation(s)
- Efstratios K Kosmidis
- INSERM U-444, Faculté de Médecine Saint-Antoine, Universite Pierre et Marie Curie, 75012 Paris, France.
| | | | | |
Collapse
|
28
|
Kashiwagi M, Okada Y, Kuwana SI, Sakuraba S, Ochiai R, Takeda J. A Neuronal Mechanism of Propofol-Induced Central Respiratory Depression in Newborn Rats. Anesth Analg 2004; 99:49-55. [PMID: 15281502 DOI: 10.1213/01.ane.0000117226.45704.65] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The neural mechanisms of propofol-induced central respiratory depression remain poorly understood. In the present study, we studied these mechanisms and the involvement of gamma-aminobutyric acid (GABA)A receptors in propofol-induced central respiratory depression. The brainstem and the cervical spinal cord of 1- to 4-day-old rats were isolated, and preparations were maintained in vitro with oxygenated artificial cerebrospinal fluid. Rhythmic inspiratory burst activity was recorded from the C4 spinal ventral root. The activity of respiratory neurons in the ventrolateral medulla was recorded using a perforated patch-clamp technique. We found that bath-applied propofol decreased C4 inspiratory burst rate, which could be reversed by the administration of a GABAA antagonist, bicuculline. Propofol caused resting membrane potentials to hyperpolarize and suppressed the firing of action potentials in preinspiratory and expiratory neurons. In contrast, propofol had little effect on resting membrane potentials and action potential firing in inspiratory neurons. Our findings suggest that the depressive effects of propofol are, at least in part, mediated by the agonistic action of propofol on GABAA receptors. It is likely that the GABAA receptor-mediated hyperpolarization of preinspiratory neurons serves as the neuronal basis of propofol-induced respiratory depression in the newborn rat.
Collapse
Affiliation(s)
- Masanori Kashiwagi
- *Department of Anesthesiology, School of Medicine, Keio University; †Department of Physiology, Teikyo University School of Medicine, Tokyo; and ‡Department of Medicine, Keio University Tsukigase Rehabilitation Center, Shizuoka-ken, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Liu Q, Wong-Riley MTT. Developmental changes in the expression of GABAA receptor subunits alpha1, alpha2, and alpha3 in the rat pre-Botzinger complex. J Appl Physiol (1985) 2004; 96:1825-31. [PMID: 14729731 DOI: 10.1152/japplphysiol.01264.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that the pre-Bötzinger complex (PBC) exhibited a dramatic reduction in cytochrome oxidase activity at postnatal day (P) 12. This coincided in time with decreases in glutamate and NMDA receptor subunit 1 and increases in GABA, GABAB, glycine receptor, and glutamate receptor GluR2. To test our hypothesis that various alpha-subunits of GABAA receptors also undergo changes in their expression during postnatal development, as they do in other brain regions, we undertook an in-depth immunohistochemical study of GABAA receptor subunits alpha1, alpha2, and alpha3 in the PBC of P0 to P21 rats. We found that 1) GABAA alpha3-subunit was expressed at relatively high levels at P0, which then declined with age; 2) GABAA alpha1-subunit was expressed at relatively low levels at P0 but increased with age; 3) the developmental trends of subunits alpha1 and alpha3 intersected at P12; and 4) GABAA alpha2-subunit expression was moderate to light at P0 and remained quite constant during development, being lowest at P21. These findings suggest that the apparent switch in relative expressions of subunits alpha3 and alpha1 during development and the intersection of slopes around P12 may be associated with possible changes in GABAA receptor subtypes that would mediate different functional properties of GABA transmission, such as primarily a less efficient inhibitory transmission before P12 and a more mature inhibitory effect at P12 and thereafter, as suggested by the kinetics of distinct postsynaptic potentials. This mechanism may contribute partially to the dramatic reduction in cytochrome oxidase activity within the PBC at P12, as shown previously.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | |
Collapse
|
30
|
Abstract
Knowledge about neuronal mechanisms that control respiration is being advanced rapidly by studies that make use of both mature in vivo animals and in vitro neonates. The available data suggest that particular types of neurons within selected networks of the ventrolateral medulla are essential for respiratory rhythm generation. There are many uncertainties, however, about the correspondence between neurons identified by the above two approaches, because there are virtually no studies that have combined them. In this chapter, I propose a hypothesis that shows how neonatal respiratory neurons, with either retained or modified intrinsic cellular properties, develop into mature, well-characterized respiratory neurons located in medullary areas called the Bötzinger and pre-Bötzinger complex. Currently, the most plausible models of respiratory rhythmogenesis are hybrid ones that include both intrinsic cellular and network properties.
Collapse
Affiliation(s)
- Kazuhisa Ezure
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan.
| |
Collapse
|
31
|
Liu Q, Wong-Riley MTT. Postnatal changes in cytochrome oxidase expressions in brain stem nuclei of rats: implications for sensitive periods. J Appl Physiol (1985) 2003; 95:2285-91. [PMID: 12909612 DOI: 10.1152/japplphysiol.00638.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we reported that cytochrome oxidase (CO) activity in the rat pre-Bötzinger complex (PBC) exhibited a plateau on postnatal days (P) 3-4 and a prominent decrease on P12 (Liu and Wong-Riley, J Appl Physiol 92: 923-934, 2002). These changes were correlated with a concomitant reduction in the expression of glutamate and N-methyl-d-aspartate receptor subunit 1 and an increase in GABA, GABAB, glycine receptor, and glutamate receptor 2. To determine whether changes were limited to the PBC, the present study aimed at examining the expression of CO in a number of brain stem nuclei, with or without known respiratory functions from P0 to P21 in rats: the ventrolateral subnucleus of the solitary tract nucleus, nucleus ambiguus, hypoglossal nucleus, nucleus raphe obscurus, dorsal motor nucleus of the vagus nerve, medial accessory olivary nucleus, spinal nucleus of the trigeminal nerve, and medial vestibular nucleus (MVe). Results indicated that, in all of the brain stem nuclei examined, CO activity exhibited a general increase with age from P0 to P21, with MVe having the slowest rise. Notably, in all of the nuclei examined except for MVe, there was a plateau or decrease at P3-P4 and a prominent rise-fall-rise pattern at P11-P13, similar to that observed in the PBC. In addition, there was a fall-rise-fall pattern at P15-P17 in these nuclei, instead of a plateau pattern in the PBC. Our data suggest that the two postnatal periods with reduced CO activity, P3-P4 and especially P12, may represent common sensitive periods for most of the brain stem nuclei with known or suspected respiratory control functions.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
32
|
Liu Q, Kim J, Cinotte J, Homolka P, Wong-Riley MTT. Carotid body denervation effect on cytochrome oxidase activity in pre-Botzinger complex of developing rats. J Appl Physiol (1985) 2003; 94:1115-21. [PMID: 12571139 DOI: 10.1152/japplphysiol.00765.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, we found that the rat pre-Bötzinger complex (PBC) exhibited reduced cytochrome oxidase (CO) activity on postnatal days (P) 3-4 and especially on P12, with a concomitant decrease in glutamate and N-methyl-d-aspartate receptor subunit 1, and an increase in GABA, GABA(B), glycine receptor, and glutamate subunit 2. We hypothesized that the PBC would be more affected by carotid body denervation (CBD) during the two critical windows than at other times. Pairs of CBD and sham animals at each postnatal day from P2 to P14 and at P21 were operated on and survived for 3 days. Brain stems were processed for CO and neurokinin-1 receptor for the identification of PBC. Results indicate that CBD caused a significant loss in body weight in all animals and a reduction in PBC somal size when the surgery was between P2 and P7. CBD also induced a significant decrease in CO activity of the PBC in most animals and a distinct delay, as well as prolongation of the maturational process, especially when induced close to P3 and P11-P13.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Development of the mammalian respiratory control system begins early in gestation and does not achieve mature form until weeks or months after birth. A relatively long gestation and period of postnatal maturation allows for prolonged pre- and postnatal interactions with the environment, including experiences such as episodic or chronic hypoxia, hyperoxia, and drug or toxin exposures. Developmental plasticity occurs when such experiences, during critical periods of maturation, result in long-term alterations in the structure or function of the respiratory control neural network. A critical period is a time window during development devoted to structural and/or functional shaping of the neural systems subserving respiratory control. Experience during the critical period can disrupt and alter developmental trajectory, whereas the same experience before or after has little or no effect. One of the clearest examples to date is blunting of the adult ventilatory response to acute hypoxia challenge by early postnatal hyperoxia exposure in the newborn. Developmental plasticity in neural respiratory control development can occur at multiple sites during formation of brain stem neuronal networks and chemoafferent pathways, at multiple times during development, by multiple mechanisms. Past concepts of respiratory control system maturation as rigidly predetermined by a genetic blueprint have now yielded to a different view in which extremely complex interactions between genes, transcriptional factors, growth factors, and other gene products shape the respiratory control system, and experience plays a key role in guiding normal respiratory control development. Early-life experiences may also lead to maladaptive changes in respiratory control. Pathological conditions as well as normal phenotypic diversity in mature respiratory control may have their roots, at least in part, in developmental plasticity.
Collapse
Affiliation(s)
- John L Carroll
- Pediatric Pulmonary Medicine, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock 72202, USA.
| |
Collapse
|
34
|
Liu YY, Wong-Riley MTT, Liu JP, Jia Y, Liu HL, Fujiyama F, Ju G. Relationship between two types of vesicular glutamate transporters and neurokinin-1 receptor-immunoreactive neurons in the pre-Bötzinger complex of rats: light and electron microscopic studies. Eur J Neurosci 2003; 17:41-8. [PMID: 12534967 DOI: 10.1046/j.1460-9568.2003.02418.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our previous study demonstrated GABAergic and glycinergic synapses onto neurokinin-1 receptor (NK1R)-immunoreactive (ir) neurons in the pre-Bötzinger complex (pre-BötC), the hypothesized kernel of normal respiratory rhythmogenesis. In the present study, we aimed to identify glutamatergic synapses onto NK1R-ir pre-BötC neurons, as excitatory synaptic transmission is a prerequisite to normal respiratory rhythmogenesis. Two types of vesicular glutamate transporters (VGLUT), VGLUT1 and VGLUT2, have been recently implicated in glutamate-mediated transmission. The present study used immunofluorescence and immunogold-silver staining to determine the relationship between the transporters and NK1R-ir neurons in the pre-BötC of adult rats. Under the confocal laser-scanning microscope, VGLUT2-ir boutons were found to be widely distributed in the pre-BötC, some of which were in close apposition to NK1R-ir somas and dendrites. VGLUT1-ir boutons were relatively rare and only a few were found to be in close apposition to NK1R-ir somas and dendrites. Electron microscopic observation revealed that approximately 41% of VGLUT2-ir terminals were in close apposition to, or made asymmetric synapses with NK1R-ir somas and dendrites in the pre-BötC. On the other hand, 50.5% of NK1R-ir dendrites were closely apposed to, or synapsed with VGLUT2-ir terminals. Occasionally, VGLUT1-ir terminals were found in close apposition to NK1R-ir somas or dendrites, but we were unable to identify synapses between them. The present findings provide the morphological basis for excitatory synaptic inputs onto NK1R-ir neurons in the pre-BötC. VGLUT2 may be involved in a dominant excitatory synaptic pathway for normal respiratory rhythmogenesis.
Collapse
Affiliation(s)
- Ying-Ying Liu
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Kogo M, Yamanishi T, Koizumi H, Matsuya T. Swallowing-like activity elicited in vitro in neonatal rat organ attached brainstem block preparation. Brain Res 2002; 955:24-33. [PMID: 12419518 DOI: 10.1016/s0006-8993(02)03339-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to induce swallowing in an in vitro neonatal rat brainstem preparation and to analyze the circuit. When we applied GABA(A) receptor antagonist (bicuculine methiodide, BIC) into the the nucleus tractus solitarius (NTS) in the organ attached brainstem preparation of neonatal (0-3 days after birth) rats, jaw closing movement, palatal lifting, and tongue peristalsis-like movement were seen, subsequent to elevation of the tip of the tongue and anterior movement of the larynx (closure of the trachea). The NTS has been proposed to be a critical locus for swallowing pattern generation in mammals. Electrical stimulation into the NTS or the vagal afferent nerve (X) following an application of BIC (10 microM) to the recording chamber initiated the same organ movement. This movement caused temporary inhibition of respiratory activity that was simultaneously recorded from the fourth cervical ventral nerve (C4). We were also able to elicit this activity in a whole organ (from lip to stomach, midline intact) preparation, whose oral cavity was filled with dye (pontamine sky-blue 3 mM, 50 microl), using each of the three types of stimulation. The esophagus, which was never stained by spontaneous respiratory movements, was stained only after the experimental stimulation. We concluded that the activity elicited was swallowing-like activity and the smallest circuit for swallowing pattern generation exists in this preparation.
Collapse
Affiliation(s)
- Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Osaka University, Graduate School of Dentistry, 1-8 Yamadaoka, Suita City, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
36
|
Johnson SM, Wilkerson JER, Wenninger MR, Henderson DR, Mitchell GS. Role of synaptic inhibition in turtle respiratory rhythm generation. J Physiol 2002; 544:253-65. [PMID: 12356896 PMCID: PMC2290555 DOI: 10.1113/jphysiol.2002.019687] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In vitro brainstem and brainstem-spinal cord preparations were used to determine the role of synaptic inhibition in respiratory rhythm generation in adult turtles. Bath application of bicuculline (a GABA(A) receptor antagonist) to brainstems increased hypoglossal burst frequency and amplitude, with peak discharge shifted towards the burst onset. Strychnine (a glycine receptor antagonist) increased amplitude and frequency, and decreased burst duration, but only at relatively high concentrations (10-100 microM). Rhythmic activity persisted during combined bicuculline and strychnine application (50 microM each) with increased amplitude and frequency, decreased burst duration, and a rapid onset-decrementing burst pattern. The bicuculline-strychnine rhythm frequency decreased during mu-opioid receptor activation or decreased bath P(C)(O(2)). Synaptic inhibition blockade in the brainstem of brainstem-spinal cord preparations increased burst amplitude in spinal expiratory (pectoralis) nerves and nearly abolished spinal inspiratory activity (serratus nerves), suggesting that medullary expiratory motoneurons were mainly active. Under conditions of synaptic inhibition blockade in vitro, the turtle respiratory network was able to produce a rhythm that was sensitive to characteristic respiratory stimuli, perhaps via an expiratory (rather than inspiratory) pacemaker-driven mechanism. Thus, these data indicate that the adult turtle respiratory rhythm generator has the potential to operate in a pacemaker-driven manner.
Collapse
Affiliation(s)
- Stephen M Johnson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison 53706, USA.
| | | | | | | | | |
Collapse
|
37
|
Liu YY, Wong-Riley MTT, Liu JP, Jia Y, Liu HL, Jiao XY, Ju G. GABAergic and glycinergic synapses onto neurokinin-1 receptor-immunoreactive neurons in the pre-Bötzinger complex of rats: light and electron microscopic studies. Eur J Neurosci 2002; 16:1058-66. [PMID: 12383234 DOI: 10.1046/j.1460-9568.2002.02163.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pre-Bötzinger complex (preBötC) in the ventrolateral medulla is thought to be the kernel for respiratory rhythm generation. Neurons in the preBötC contain intense neurokinin-1 receptor (NK1R) immunoreactivity. Some of these neurons in the adult preBötC are presumed to be the pre-inspiratory interneurons that are essential for generating respiratory rhythm in the neonate. Chloride-mediated synaptic inhibition is critical for rhythmogenesis in the adult. The present study used immunofluorescence histochemistry and immunogold-silver staining to determine the inhibitory synaptic relationship between glutamic acid decarboxylase (GAD)- or glycine transporter 2 (GlyT2)-immunoreactive (ir) boutons and NK1R-ir neurons in the preBötC of adult rats. Under the confocal microscope, we found that GAD- and GlyT2-ir boutons were in close apposition to NK1R-ir somas and dendrites in the preBötC. Under the electron microscope, GAD- and GlyT2-ir terminals were in close apposition to NK1R-ir somas and dendrites. Symmetric synapses were identified between GAD- or GlyT2-ir terminals and NK1R-ir neurons. A total of 51.6% GAD-ir and 38.2% GlyT2-ir terminals were found to contact or make synapses with NK1R-ir profiles, respectively. GAD- and GlyT2-ir terminals synapsed not only upon NK1R-ir neurons but also upon NK1R immuno-negative neurons. NK1R-ir neurons received both symmetric (presumed inhibitory) and asymmetric (presumed excitatory) synapses. Thus, the present findings provide the morphological basis for inhibitory inputs to NK1R-ir neurons in the preBötC, consistent with the suggestion that chloride-mediated synaptic inhibition may contribute importantly to rhythm generation by controlling the membrane potential trajectory and resetting rhythmic bursting of the kernel neurons in the adult.
Collapse
Affiliation(s)
- Ying-Ying Liu
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Chitravanshi VC, Sapru HN. Microinjections of glycine into the pre-Bötzinger complex inhibit phrenic nerve activity in the rat. Brain Res 2002; 947:25-33. [PMID: 12144849 DOI: 10.1016/s0006-8993(02)02902-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microinjections of L-glutamate were used to identify the pre-Bötzinger complex in urethane-anesthetized, immobilized, bilaterally vagotomized, artificially ventilated, adult male Wistar rats. Unilateral microinjections (20-30 nl) of L-glutamate into the pre-Bötzinger complex on either side elicited a bilateral continuous phrenic nerve discharge superimposed on which was an increase in burst-frequency. Neurokinin-1 receptor immunoreactivity in the semi-compact region of the nucleus ambiguus and the area immediately ventral to it indicated that the site of microinjections was in the general region of pre-Bötzinger complex. Unilateral microinjections of glycine into the pre-Bötzinger complex caused an inhibition of phrenic nerve activity bilaterally in a concentration-dependent manner. At lower concentrations (1 and 3 mM) phrenic nerve burst-frequency as well as burst-amplitude were decreased. At higher concentrations (6 mM), complete bilateral cessation of phrenic nerve activity was observed. The effects of glycine were prevented by a prior microinjection of strychnine (0.5 mM) into the pre-Bötzinger complex. The specificity of strychnine as an antagonist for glycine receptors was established by its lack effect on GABA(A) receptors; muscimol was used as a GABA(A) receptor agonist. Unilateral microinjections of muscimol (0.01 and 0.1 mM) into previously identified pre-Bötzinger complex also caused a bilateral decrease in phrenic nerve burst-frequency and burst-amplitude. At higher concentrations (0.3 and 1 mM) muscimol microinjections into the pre-Bötzinger elicited a complete bilateral cessation of phrenic nerve activity. The effects of muscimol were not altered by prior microinjections of strychnine (0.5 mM) at the same site. These results demonstrate pharmacologically the presence of glycine receptors in the pre-Bötzinger complex. The role of these receptors in the regulation of respiration remains to be elucidated.
Collapse
Affiliation(s)
- V C Chitravanshi
- Department of Neurosurgery, MSB H-586, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | |
Collapse
|
39
|
Wilson RJA, Vasilakos K, Harris MB, Straus C, Remmers JE. Evidence that ventilatory rhythmogenesis in the frog involves two distinct neuronal oscillators. J Physiol 2002; 540:557-70. [PMID: 11956343 PMCID: PMC2290235 DOI: 10.1113/jphysiol.2001.013512] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In Rana catesbeiana the upper airways are used for two distinct yet highly coordinated ventilatory behaviours: buccal ventilation and lung inflation cycles. How these behaviours are generated and coordinated is unknown. The purpose of this study was to identify putative rhythmogenic brainstem loci involved in these ventilatory behaviours. We surveyed the isolated postmetamorphic brainstem to determine sites where local depolarization, produced by microinjecting the non-NMDA glutamate receptor agonist, AMPA, augmented the ventilatory motor patterns. Two sites were identified: a caudal site, at the level of cranial nerve (CN) X, where AMPA injections caused increased buccal burst frequency but abolished lung bursts, and a rostral site, between the levels of CN VIII and IX, where injections increased the frequency of both types of ventilatory bursts. These two sites were further examined using GABA microinjections to locally inhibit cells. GABA injected into the caudal site suppressed the buccal rhythm but the lung rhythm continued, albeit at a different frequency. When GABA was injected into the rostral site the lung bursts were abolished but the buccal rhythm continued. When the two sites were physically separated by transection, both rostral and caudal brainstem sections were capable of rhythmogenesis. The results suggest the respiratory network within the amphibian brainstem is composed of at least two distinct but interacting oscillators, the buccal and lung oscillators. These putative oscillators may provide a promising experimental model for studying coupled oscillators in vertebrates.
Collapse
Affiliation(s)
- R J A Wilson
- Department of Medical Physiology, University of Calgary, 330 Hospital Drive, N.W., Calgary, Alberta, Canada T2N 4N1.
| | | | | | | | | |
Collapse
|
40
|
Stornetta RL, Sevigny CP, Guyenet PG. Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J Comp Neurol 2002; 444:191-206. [PMID: 11840474 DOI: 10.1002/cne.10141] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mouse glutamate vesicular transporter VGLUT2 has recently been characterized. The rat homolog of VGLUT2, differentiation-associated Na(+)/P(i) cotransporter (DNPI), was examined using a digoxigenin-labeled DNPI/VGLUT2 cRNA probe in the present study to determine which, if any, of the various groups of pontine or medullary monoaminergic neurons express DNPI/VGLUT2 mRNA and, thus, are potentially glutamatergic. DNPI/VGLUT2 mRNA was widely distributed within the brainstem and seemed exclusively neuronal. By using a double in situ hybridization method, the presence of the mRNA for DNPI/VGLUT2 and glutamic acid decarboxylase (GAD)-67 was mutually exclusive. By combining DNPI/VGLUT2 mRNA detection and conventional immunohistochemistry, DNPI/VGLUT2 mRNA was undetectable in lower brainstem cholinergic and serotonergic cells, but it was present in several tyrosine hydroxylase-immunoreactive (TH-ir) cell groups. DNPI/VGLUT2 mRNA was detected in most of the adrenergic neurons of the C1, C2, and C3 groups (75-80% of TH-ir neurons), in the A2 noradrenergic group (80%), and in vast numbers of area postrema cells. Within the A1 region, many fewer TH-ir cells contained DNPI/VGLUT2 (16%). Finally, DNPI/VGLUT2 mRNA was undetectable in the pontine noradrenergic cell groups (A5 and A6/locus coeruleus). In conclusion, the general pattern of DNPI/VGLUT2 expression and its exclusion from GABAergic, cholinergic, and serotonergic neurons supports the notion that DNPI/VGLUT2 mRNA identifies a subset of glutamatergic neurons in the lower brainstem. Within this region several catecholaminergic cell groups appear to be glutamatergic, including but not limited to the adrenergic cell groups C1-C3. Based on the present evidence, the noradrenergic cell groups of the pons (A5 and A6) do not contain either known vesicular glutamate transporter and are most likely not glutamatergic.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908-0735, USA.
| | | | | |
Collapse
|
41
|
Liu Q, Wong-Riley MTT. Postnatal expression of neurotransmitters, receptors, and cytochrome oxidase in the rat pre-Bötzinger complex. J Appl Physiol (1985) 2002; 92:923-34. [PMID: 11842022 DOI: 10.1152/japplphysiol.00977.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pre-Bötzinger complex (PBC) is postulated as the center of respiratory rhythmogenesis. Previously, we found a reduction or plateau of cytochrome oxidase (CO) activity in the PBC and other respiratory nuclei at postnatal days 3-4, despite a general increase of CO with age, suggesting a period of synaptic readjustment. The present study examined the expression of CO and a number of neurochemicals in the PBC at closer time intervals. At postnatal days 3-4 and, more prominently, at postnatal day 12, expression of CO, glutamate, and N-methyl-D-aspartate receptor subunit 1 was reduced, whereas expression of GABA, GABA(B) receptor, glycine receptor, and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit 2 was increased. These findings are consistent with our hypothesis that decreased CO activity is associated with an increase in inhibitory drive (mediated by GABA and glycine, their receptors, and possibly blockage of Ca(2+) entry by glutamate receptor subunit 2) and a decrease in excitatory drive (mediated by glutamate and its receptors). Our findings point to two critical periods during postnatal development of the rat when their respiratory system may be more vulnerable to respiratory insults.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
42
|
Robinson DM, Peebles KC, Kwok H, Adams BM, Clarke LL, Woollard GA, Funk GD. Prenatal nicotine exposure increases apnoea and reduces nicotinic potentiation of hypoglossal inspiratory output in mice. J Physiol 2002; 538:957-73. [PMID: 11826179 PMCID: PMC2290085 DOI: 10.1113/jphysiol.2001.012705] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We examined the effects of in utero nicotine exposure on postnatal development of breathing pattern and ventilatory responses to hypoxia (7.4 % O2) using whole-body plethysmography in mice at postnatal day 0 (P0), P3, P9, P19 and P42. Nicotine delayed early postnatal changes in breathing pattern. During normoxia, control and nicotine-exposed P0 mice exhibited a high frequency of apnoea (f(A)) which declined by P3 in control animals (from 6.7 +/- 0.7 to 2.2 +/- 0.7 min(-1)) but persisted in P3 nicotine-exposed animals (5.4 +/- 1.3 min(-1)). Hypoxia induced a rapid and sustained reduction in f(A) except in P0 nicotine-exposed animals where it fell initially and then increased throughout the hypoxic period. During recovery, f(A) increased above control levels in both groups at P0. By P3 this increase was reduced in control but persisted in nicotine-exposed animals. To examine the origin of differences in respiratory behaviour, we compared the activity of hypoglossal (XII) nerves and motoneurons in medullary slice preparations. The frequency and variability of the respiratory rhythm and the envelope of inspiratory activity in XII nerves and motoneurons were indistinguishable between control and nicotine-exposed animals. Activation of postsynaptic nicotine receptors caused an inward current in XII motoneurons that potentiated XII nerve burst amplitude by 25 +/- 5 % in control but only 14 +/- 3 % in nicotine-exposed animals. Increased apnoea following nicotine exposure does not appear to reflect changes in basal activity of rhythm or pattern-generating networks, but may result, in part, from reduced nicotinic modulation of XII motoneurons.
Collapse
Affiliation(s)
- Dean M Robinson
- Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu YY, Ju G, Wong-Riley MT. Distribution and colocalization of neurotransmitters and receptors in the pre-Bötzinger complex of rats. J Appl Physiol (1985) 2001; 91:1387-95. [PMID: 11509540 DOI: 10.1152/jappl.2001.91.3.1387] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pre-Bötzinger complex (PBC), thought to be the center of respiratory rhythm generation, is a cell column ventrolateral to the nucleus ambiguus. The present study analyzed its cellular and neurochemical composition in adult rats. PBC neurons were mainly oval, fusiform, or multipolar in shape and small to medium in size. Neurokinin-1 receptor, a marker of the PBC, was present in the plasma membrane of mostly medium and small neurons and their associated processes and boutons. Among neurons immunoreactive for different neurotransmitter or receptor candidates, various numbers were colocalized with neurokinin-1 receptor. The highest ratio was with nitric oxide synthase (52.72%), and the lowest was with glycine receptors (31.93%). Glutamic acid decarboxylase- and glycine transporter 2-immunoreactive boutons, as well as GABA(A) receptor-immunoreactive plasma membrane processes and boutons, were also identified in the PBC. PBC neurons exhibited different levels of cytochrome oxidase activity, indicating their various energy demands. Our results suggest that synaptic interactions within the PBC of adult rats involve a variety of neurotransmitter and receptor types and that nitric oxide may play an important role in addition to glutamate, GABA, glycine, and neurokinin.
Collapse
Affiliation(s)
- Y Y Liu
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
44
|
Wilson RJ, Remmers JE, Paton JF. Brain stem PO(2) and pH of the working heart-brain stem preparation during vascular perfusion with aqueous medium. Am J Physiol Regul Integr Comp Physiol 2001; 281:R528-38. [PMID: 11448857 DOI: 10.1152/ajpregu.2001.281.2.r528] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat working heart-brain stem preparation (WHBP) is an in situ preparation having many of the advantages associated with in vitro preparations while retaining cardiovascular response functionality and an eupnoeic respiratory motor pattern. The preparation is perfused arterially with an aqueous medium having a much lower oxygen-carrying capacity than blood. To evaluate the efficacy of the artificial perfusion in providing adequate gas exchange within the brain stem, we used polarographic PO(2) and pH microelectrodes to determine the tissue PO(2) and pH of the medulla oblongata at various depths. When the perfusate was equilibrated with 5% CO(2) and 95% O(2), average tissue PO(2) was 294 Torr and no hypoxic areas were encountered. Tissue pH was remarkably uniform throughout the tissue, and on average was only 0.04 +/- 0.02 pH units more acidic than that of the perfusate. Increasing the PCO(2) of the perfusate increased tissue PO(2) and decreased arterial resistance. Decreasing perfusate PCO(2) (while keeping pH constant) decreased tissue PO(2) and reduced the respiratory activity. These results suggest that arterial PCO(2), independent of arterial pH, is an essential variable in determining both respiratory drive and cerebrovascular perfusion. We conclude that the medulla of the WHBP is oxygenated and within a physiological pH, which accounts for the eupneic pattern of respiratory motor activity it generates. Furthermore, this preparation may be a useful model for exploring mechanisms of central chemoreception as well as the dynamics of the cerebral vasculature responses following changes in blood gases.
Collapse
Affiliation(s)
- R J Wilson
- Department of Medical Physiology and Biophysics, Heritage Medical Research Building, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.
| | | | | |
Collapse
|
45
|
Richter DW, Spyer KM. Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci 2001; 24:464-72. [PMID: 11476886 DOI: 10.1016/s0166-2236(00)01867-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In all mammalian species, breathing is controlled by a neuronal network within the lower brainstem. A component known as the ventral respiratory group produces rhythmic activity, which is transmitted to spinal motoneurons to produce a periodic contraction of respiratory muscles. A dispute about the mechanisms of 'normal' respiratory rhythm generation arose from the differences between experimental preparations that have been used to dissect the process. It is, therefore, essential to compare the various experimental approaches and to discuss the differences between experimental data. We conclude that the various preparations all have great value, but that they define different operational conditions of the network, including maturation of neurons and synaptic processes. We have taken note of these in formulating a 'maturational network-burster model' for rhythm generation that includes most features of the existing models of respiratory rhythm generation.
Collapse
Affiliation(s)
- D W Richter
- Dept of Physiology II, Georg August Universität Göttingen, 37073, Göttingen, Germany.
| | | |
Collapse
|
46
|
Liu YY, Wong-Riley MT. Developmental study of cytochrome oxidase activity in the brain stem respiratory nuclei of postnatal rats. J Appl Physiol (1985) 2001; 90:685-94. [PMID: 11160070 DOI: 10.1152/jappl.2001.90.2.685] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized cytochrome oxidase (CO) as a marker of neuronal functional activity to examine metabolic changes in brain stem respiratory nuclei of rats from newborn to 21 day of age. The pre-Bötzinger complex (PBC), upper airway motoneurons of nucleus ambiguus (NA(UAM)), ventrolateral nucleus of solitary tract (NTS(VL)), and medial and lateral parabrachial nuclei (PB(M) and PB(L), respectively) were examined at postnatal days (P) 0, 1, 2, 3, 4, 5, 7, 14, and 21. CO histochemistry was performed, and the intensity of CO reaction product was quantitatively analyzed by optical densitometry. In addition, CO histochemistry was combined with neurokinin-1 receptor (NK1R) immunogold-silver staining to doubly label neurons of PBC in P14 animals. The results showed that levels of CO activity generally increased with age in all of the nuclei examined. However, a significant decrease was found in NA(UAM) at P3 (P < 0.01), and a distinct plateau of CO activity was noted at P3 in PBC and at P3 and P4 in NTS(VL), PB(M), and PB(L). Of the neurons examined in PBC, 83% were doubly labeled with CO and NK1R. Of these, CO activity was high in 33.9%, moderate in 27.3%, and light in 38.8% of neurons, suggesting different energy demands in these metabolic groups that may be related to their physiological or synaptic properties. The transient decrease or plateau in CO activity at P3 and P4 implies a period of synaptic adjustment or reorganization during development, when there may be decreased excitatory synaptic drive or increased inhibitory synaptic drive, or both, in these brain stem respiratory nuclei. The adjustment, in turn, may render the system less responsive to respiratory insults. This may bear some relevance to our understanding of pathological events during postnatal development, such as occurs in sudden infant death syndrome.
Collapse
Affiliation(s)
- Y Y Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
47
|
Abstract
Observing the macroscopic complexities of evolved species, the exceptional continuity that occurs among different cells, tissues and organs to respond coherently to the proper set of stimuli as a function of self/species survival is appreciable. Accordingly, it alludes to a central rhythm that resonates throughout the cell; nominated here as primary respiration (PR), which is capable of binding and synchronizing a diversity of physiological processes into a functional biological unity. Phylogenetically, it was conserved as an indispensable element in the makeup of the subkingdom Metazoa, since these species require a high degree of coordination among the different cells that form their body. However, it does not preclude the possibility of a basal rhythm to orchestrate the intricacies of cellular dynamics of both prokaryotic and eukaryotic cells. In all probability, PR emerges within the crucial organelles, with special emphasis on the DNA (5), and propagated and transduced within the infrastructure of the cytoskeleton as wave harmonics (49). Collectively, this equivalent vibration for the subphylum Vertebrata emanates as craniosacral respiration (CSR), though its expression is more elaborate depending on the development of the CNS. Furthermore, the author suggests that the phenomenon of PR or CSR be intimately associated to the basic rest/activity cycle (BRAC), generated by concentrically localized neurons that possess auto-oscillatory properties and assembled into a vital network (39). Historically, during Protochordate-Vertebrate transition, this area circumscribes an archaic region of the brain in which many vital biological rhythms have their source, called hindbrain rhombomeres. Bass and Baker (2) propose that pattern-generating circuits of more recent innovations, such as vocal, electromotor, extensor muscle tonicity, locomotion and the extraocular system, have their origin from the same Hox gene-specified compartments of the embryonic hindbrain (rhombomeres 7 and 8) that produce rhythmically active cardiac and thoracic respiratory circuits. Here, it implies that PR could have been the first essential biological cadence that arose with the earliest form of life, and has undergone a phylogenetic ascent to produce an integrated multirhythmic organism of today. Finally, in its full manifestation, the breathing DNA (1) of the zygote could project itself throughout the cytoskeleton and modify the electromechanical properties of the plasma lamella (26), establishing the primordial axial-voltage gradients for the physiological control of development (53).
Collapse
|
48
|
Núñez-Abades PA, Pattillo JM, Hodgson TM, Cameron WE. Role of synaptic inputs in determining input resistance of developing brain stem motoneurons. J Neurophysiol 2000; 84:2317-29. [PMID: 11067975 DOI: 10.1152/jn.2000.84.5.2317] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of synaptic input to input resistance was examined in 208 developing genioglossal motoneurons in 3 postnatal age groups (5-7 day, 13-16 day, and 18-24 day) using sharp electrode recording in a slice preparation of the rat brain stem. High magnesium (Mg(2+); 6 mM) media generated significant increases (21-38%) in both the input resistance (R(n)) and the first time constant (tau(0)) that were reversible. A large percent of the conductance blocked by high Mg(2+) was also sensitive to tetrodotoxin (TTX). Little increase in resistance was attained by adding blockers of specific amino acid (glutamate, glycine, and GABA) transmission over that obtained with the high Mg(2+). Comparing across age groups, there was a significantly larger percent change in R(n) with the addition of high Mg(2+) at postnatal days 13 to 15 (P13-15; 36%) than that found at P5-6 (21%). Spontaneous postsynaptic potentials were sensitive to the combined application of glycine receptor antagonist, strychnine, and the GABA(A) receptor antagonist, bicuculline. Application of either 10 microM strychnine or bicuculline separately produced a reversible increase in both R(n) and tau(0). Addition of 10 microM bicuculline to a strychnine perfusate failed to further increase either R(n) or tau(0). The strychnine/bicuculline-sensitive component of the total synaptic conductance increased with age so that this form of neurotransmission constituted the majority (>60%) of the observed percent decrease in R(n) and tau(0) in the oldest age group. The proportion of change in tau(0) relative to R(n) following strychnine or high magnesium perfusate varied widely from cell to cell and from age to age without pattern. Based on a model from the literature, this pattern indicates a nonselective distribution of the blocked synaptic conductances over the cell body and dendrites. Taken together, the fast inhibitory synapses (glycine, GABA(A)) play a greater role in determining cell excitability in developing brain stem motoneurons as postnatal development progresses. These findings suggest that synaptically mediated conductances effect the membrane behavior of developing motoneurons.
Collapse
Affiliation(s)
- P A Núñez-Abades
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
49
|
Smith JC, Butera RJ, Koshiya N, Del Negro C, Wilson CG, Johnson SM. Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. RESPIRATION PHYSIOLOGY 2000; 122:131-47. [PMID: 10967340 DOI: 10.1016/s0034-5687(00)00155-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We review a new unified model of respiratory rhythm generation - the hybrid pacemaker-network model. This model represents a comprehensive synthesis of cellular and network mechanisms that can theoretically account for rhythm generation in different functional states, from the most reduced states in the neonatal nervous system in vitro to the intact adult system in vivo. The model incorporates a critical neuronal kernel consisting of a network of excitatory neurons with state-dependent, oscillatory bursting or pacemaker properties. This kernel, located in the pre-Bötzinger complex of the ventrolateral medulla, provides a rudimentary pacemaker network mechanism for generating an inspiratory rhythm, revealed predominately in functionally reduced states in vitro. In vivo the kernel is embedded in a larger network that interacts with the kernel via inhibitory synaptic connections that provide the dynamic control required for the evolution of the complete pattern of inspiratory and expiratory network activity. The resulting hybrid of cellular pacemaker and network properties functionally endows the system with multiple mechanisms of rhythm generation. New biophysically realistic mathematical models of the hybrid pacemaker-network have been developed that illustrate these concepts and provide a computational framework for investigating interactions of cellular and network processes that must be analyzed to understand rhythm generation.
Collapse
Affiliation(s)
- J C Smith
- Cellular and Systems Neurobiology Section, Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892-4455, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Haji A, Takeda R, Okazaki M. Neuropharmacology of control of respiratory rhythm and pattern in mature mammals. Pharmacol Ther 2000; 86:277-304. [PMID: 10882812 DOI: 10.1016/s0163-7258(00)00059-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes the current understanding of the neurotransmitters and neuromodulators that are involved, firstly, in respiratory rhythm and pattern generation, where glutamate plays an essential role in the excitatory mechanisms and glycine and gamma-aminobutyric acid mediate inhibitory postsynaptic effects, and secondly, in the transmission of input signals from the central and peripheral chemoreceptors and of motor outputs to respiratory motor neurons. Finally, neuronal mechanisms underlying respiratory modulations caused by respiratory depressants and excitants, such as general anesthetics, benzodiazepines, opioids, and cholinergic agents, are described.
Collapse
Affiliation(s)
- A Haji
- Department of Pharmacology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, 930-0194, Toyama, Japan
| | | | | |
Collapse
|