1
|
Zhang B, Li F, Qu C, Duan H, Fu Y, Luo C. A novel domain-duplicated SlitFAR3 gene involved in sex pheromone biosynthesis in Spodoptera litura. INSECT SCIENCE 2023; 30:611-624. [PMID: 36302113 DOI: 10.1111/1744-7917.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/15/2023]
Abstract
Fatty acyl reductases (FARs) are key enzymes that participate in sex pheromone biosynthesis by reducing fatty acids to fatty alcohols. Lepidoptera typically harbor numerous FAR gene family members. Although FAR genes are involved in the biosynthesis of sex pheromones in moths, the key FAR gene of Spodoptera litura remains unclear. In this work, we predicted 30 FAR genes from the S. litura genome and identified a domain duplication within gene SlitFAR3, which exhibited high and preferential expression in the sexually mature female pheromone glands (PGs) and a rhythmic expression pattern during the scotophase of sex pheromone production. The molecular docking of SlitFAR3, as predicted using a 3D model, revealed a co-factor NADPH binding cavity and 2 substrate binding cavities. Functional expression in yeast cells combined with comprehensive gas chromatography indicated that the SlitFAR3 gene could produce fatty alcohol products. This study is the first to focus on the special phenomenon of FAR domain duplication, which will advance our understanding of biosynthesis-related genes from the perspective of evolutionary biology.
Collapse
Affiliation(s)
- Biyun Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengqi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Yao S, Zhou S, Li X, Liu X, Zhao W, Wei J, Du M, An S. Transcriptome Analysis of Ostrinia furnacalis Female Pheromone Gland: Esters Biosynthesis and Requirement for Mating Success. Front Endocrinol (Lausanne) 2021; 12:736906. [PMID: 34603212 PMCID: PMC8485726 DOI: 10.3389/fendo.2021.736906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Female moths use sex pheromones to attract males, and corresponding regulatory mechanism underlying sex pheromone biosynthesis is species-dependent. However, the detailed mechanism involved in sex pheromone biosynthesis in Ostrinia furnacalis has not yet been fully addressed. In the present study, transcriptome sequencing of O. furnacalis pheromone glands screened a serials of candidate genes involved in sex pheromone biosynthesis. Our analysis showed that sex pheromone release in O. furnacalis females arrives its peak at the 2nd scotophase, consistent with its mating behavior. Pheromone biosynthesis-activating neuropeptide (PBAN) was confirmed to regulate sex pheromone biosynthesis, and Ca2+ is the secondary messenger of PBAN signaling in O. furnacalis. The functional analysis of candidate genes demonstrated that the decreased mRNA levels or activities of calcineurin (CaN) and acetyl-CoA carboxylase (ACC) led to significant decrease in sex pheromone production and female capability to attract males, as demonstrated by RNAi-mediated knockdown and pharmacological inhibitor assay. Most importantly, the activities of CaN and ACC depend on the activation of PBAN/PBANR/Ca2+. Furthermore, fatty-acyl reductase 14 was involved in PBAN-mediated sex pheromone biosynthesis. Altogether, our results demonstrated that PBAN regulates sex pheromone biosynthesis through PBANR/Ca2+/CaN/ACC pathway to promote sex pheromone biosynthesis in O. furnacalis and provided a reference for non-model organism to study neuropeptide signal transduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhen Wei
- *Correspondence: Jizhen Wei, ; Shiheng An,
| | | | - Shiheng An
- *Correspondence: Jizhen Wei, ; Shiheng An,
| |
Collapse
|
3
|
iTRAQ-Based Quantitative Proteomic Analysis of Digestive Juice across the First 48 Hours of the Fifth Instar in Silkworm Larvae. Int J Mol Sci 2019; 20:ijms20246113. [PMID: 31817210 PMCID: PMC6940845 DOI: 10.3390/ijms20246113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023] Open
Abstract
The silkworm is an oligophagous insect for which mulberry leaves are the sole diet. The nutrients needed for vital activities of the egg, pupal, and adult stages, and the proteins formed in the cocoon, are all derived from the larval stages. The silkworm feeds and grows quickly during the larval stages. In particular, the amount of leaf ingested and digested quickly increases from the ecdysis to the gluttonous stage in the fifth instar period. In this study, we used the iTRAQ proteomic technique to identify and analyze silkworm larval digestive juice proteins during this period. A total of 227 proteins were successfully identified. These were primarily serine protease activity, esterase activity, binding, and serine protease inhibitors, which were mainly involved in the digestion and overcoming the detrimental effects of mulberry leaves. Moreover, 30 genes of the identified proteins were expressed specifically in the midgut. Temporal proteomic analysis of digestive juice revealed developmental dynamic features related to molecular mechanisms of the principal functions of digesting, resisting pathogens, and overruling the inhibitory effects of mulberry leaves protease inhibitors (PIs) with a dynamic strategy, although overruling the inhibitory effects has not yet been confirmed by previous study. These findings will help address the potential functions of digestive juice in silkworm larvae.
Collapse
|
4
|
Cheng T, Fu B, Wu Y, Long R, Liu C, Xia Q. Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina. PLoS One 2015; 10:e0122837. [PMID: 25806526 PMCID: PMC4373670 DOI: 10.1371/journal.pone.0122837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/15/2015] [Indexed: 11/18/2022] Open
Abstract
The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG) and posterior silk gland (PSG). Three sericin genes (sericin 1, sericin 2, and sericin 3) were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25) were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs) and 361 insertion-deletions (INDELs) were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research.
Collapse
Affiliation(s)
- Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bohua Fu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
5
|
Fónagy A, Moto K, Ohnishi A, Kurihara M, Kis J, Matsumoto S. Studies of sex pheromone production under neuroendocrine control by analytical and morphological means in the oriental armyworm, Pseudaletia separata, Walker (Lepidoptera: Noctuidae). Gen Comp Endocrinol 2011; 172:62-76. [PMID: 21354157 DOI: 10.1016/j.ygcen.2011.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 02/04/2011] [Accepted: 02/20/2011] [Indexed: 11/25/2022]
Abstract
Most female moths produce species-specific sex pheromone blends in the modified epidermal pheromone gland (PG) cells generally located between the 8 and 9th abdominal segments. The biosynthesis is often regulated by pheromone biosynthesis activating neuropeptide (PBAN) either in or prior to de novo fatty acid synthesis or at the formation of oxygenated functional group. In Pseudaletia separata, information about life span, calling, PG morphology, daily fluctuation of pheromone production and its hormonal regulation is limited. We measured pheromone titer daily (16:8; L:D) at 2h intervals in scotophase. Blend ratio stabilized during the 2nd day (till 4-5th) at 6th hour of scotophase, with the ratio of 27.5:12.8:44.4:15.3 for Z-11-16OH:16OH:Z-11-16Ac:16Ac, respectively. Females showed calling behavior from this time. We found with light and fluorescence microscopy that PG consisted of intersegmental membrane (A part), and dorso-lateral region of 9th abdominal segment (B part), encountering for ∼ 35% of total production revealed by gas chromatography. Ratios did not reveal difference. We did not find precursor (triacylglycerols) accumulation in form of lipid droplets, implying that PBAN stimulates de novo biosynthesis of 16:acyl precursors. In vivoHez-PBAN injections (1-3 × 5 pmol, 2h intervals) into 3 days old 16-18 h decapitated females stimulated pheromone production, both in A and B parts. Blend analyses including ratios suggest stimulation of the initial phase of synthesis, but desaturation of fatty acyl intermediates do not follow proportionally. More saturated fatty acid is converted from the available pool to the final OH and Ac, compared to females kept intact in scotophase. In vitro studies (PGs incubated 4-6h in the presence of 0.25 or 0.5 μM Hez-PBAN, especially with surplus 2mM malonyl-CoA) revealed higher saturated component ratio than the unsaturated, compared to natural blend or in vivo injections.
Collapse
Affiliation(s)
- Adrien Fónagy
- Ecotoxicology and Environmental Analysis Department, Plant Protection Institute of Hungarian Academy of Sciences, Budapest, Herman Ottó u. 15, H-1022, Hungary.
| | | | | | | | | | | |
Collapse
|
6
|
Ohnishi A, Hull JJ, Kaji M, Hashimoto K, Lee JM, Tsuneizumi K, Suzuki T, Dohmae N, Matsumoto S. Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1 (BmLsd1). J Biol Chem 2011; 286:24101-12. [PMID: 21572162 DOI: 10.1074/jbc.m111.250555] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via the fatty acid biosynthetic pathway. This pathway is regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-amino acid peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets, which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells. PBAN stimulates lipolysis of the stored lipid droplet triacylglycerols (TAGs) and releases the precursor for final modification. PBAN exerts its physiological function via the PG cell-surface PBAN receptor, a G protein-coupled receptor that belongs to the neuromedin U receptor family. The PBAN receptor-mediated signal is transmitted via a canonical store-operated channel activation pathway utilizing Gq-mediated phospholipase C activation (Hull, J. J., Kajigaya, R., Imai, K., and Matsumoto, S. (2007) Biosci. Biotechnol. Biochem. 71, 1993-2001; Hull, J. J., Lee, J. M., Kajigaya, R., and Matsumoto, S. (2009) J. Biol. Chem. 284, 31200-31213; Hull, J. J., Lee, J. M., and Matsumoto, S. (2010) Insect Mol. Biol. 19, 553-566). Little, however, is known about the molecular components regulating TAG lipolysis in PG cells. In the current study we found that PBAN signaling involves phosphorylation of an insect PAT family protein named B. mori lipid storage droplet protein-1 (BmLsd1) and that BmLsd1 plays an essential role in the TAG lipolysis associated with bombykol production. Unlike mammalian PAT family perilipins, however, BmLsd1 activation is dependent on phosphorylation by B. mori Ca(2+)/calmodulin-dependent protein kinase II rather than protein kinase A.
Collapse
Affiliation(s)
- Atsushi Ohnishi
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ohnishi A, Kaji M, Hashimoto K, Matsumoto S. Screening for the Genes Involved in Bombykol Biosynthesis: Identification and Functional Characterization of Bombyx mori Acyl Carrier Protein. Front Endocrinol (Lausanne) 2011; 2:92. [PMID: 22649392 PMCID: PMC3355880 DOI: 10.3389/fendo.2011.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/18/2011] [Indexed: 11/23/2022] Open
Abstract
Species-specific sex pheromones released by female moths to attract conspecific male moths are synthesized de novo in the pheromone gland (PG) via fatty acid synthesis (FAS). Biosynthesis of moth sex pheromones is usually regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN), a 33-aa peptide that originates in the subesophageal ganglion. In the silkmoth, Bombyx mori, cytoplasmic lipid droplets (LDs), which store the sex pheromone (bombykol) precursor fatty acid, accumulate in PG cells prior to eclosion. PBAN activation of the PBAN receptor stimulates lipolysis of the stored LD triacylglycerols (TAGs) resulting in release of the bombykol precursor for final modification. While we have previously characterized a number of molecules involved in bombykol biosynthesis, little is known about the mechanisms of PBAN signaling that regulate the TAG lipolysis in PG cells. In the current study, we sought to further identify genes involved in bombykol biosynthesis as well as PBAN signaling, by using a subset of 312 expressed-sequence tag (EST) clones that are in either our B. mori PG cDNA library or the public B. mori EST databases, SilkBase and CYBERGATE, and which are preferentially expressed in the PG. Using RT-PCR expression analysis and an RNAi screening approach, we have identified another eight EST clones involved in bombykol biosynthesis. Furthermore, we have determined the functional role of a clone designated BmACP that encodes B. mori acyl carrier protein (ACP). Our results indicate that BmACP plays an essential role in the biosynthesis of the bombykol precursor fatty acid via the canonical FAS pathway during pheromonogenesis.
Collapse
Affiliation(s)
- Atsushi Ohnishi
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
- *Correspondence: Atsushi Ohnishi and Shogo Matsumoto, Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan. e-mail: ;
| | - Misato Kaji
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Kana Hashimoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN Advanced Science InstituteWako, Japan
- *Correspondence: Atsushi Ohnishi and Shogo Matsumoto, Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako, Saitama 351-0198, Japan. e-mail: ;
| |
Collapse
|
8
|
Hull JJ, Lee JM, Matsumoto S. Gqalpha-linked phospholipase Cbeta1 and phospholipase Cgamma are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade. INSECT MOLECULAR BIOLOGY 2010; 19:553-566. [PMID: 20546038 DOI: 10.1111/j.1365-2583.2010.01013.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca(2+) channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that PLC inhibitors U73122 and compound 48/80 reduced sex pheromone production and that intracellular levels of (3)H-inositol phosphate species increased following PBAN stimulation. In addition, we amplified cDNAs from pheromone glands corresponding to PLCbeta1, PLCbeta4, PLCgamma and two G protein alpha subunits, Go and Gq. In vivo RNA interference-mediated knockdown analyses revealed that BmPLCbeta1, BmGq1, and unexpectedly, BmPLCgamma, are part of the PBAN signal transduction cascade.
Collapse
Affiliation(s)
- J J Hull
- Molecular Entomology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, Japan.
| | | | | |
Collapse
|
9
|
Unraveling the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade that regulates sex pheromone production in moths. VITAMINS AND HORMONES 2010; 83:425-45. [PMID: 20831957 DOI: 10.1016/s0083-6729(10)83018-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Studies over the past three decades have demonstrated that female moths usually produce sex pheromones as multicomponent blends in which the ratios of the individual components are precisely controlled, making it possible to generate species-specific pheromone blends. Most moth pheromone components are de novo synthesized from acetyl-CoA in the pheromone gland (PG) through modifications of fatty acid biosynthetic pathways. Pheromone biosynthesis activating neuropeptide (PBAN), a neurohormone produced by a cephalic organ (subesophageal ganglion) stimulates sex pheromone biosynthesis in the PG via an influx of extracellular Ca(2+). In recent years, we have expanded our knowledge of the precise mechanisms underlying silkmoth (Bombyx mori) sex pheromone production by characterizing a number of key molecules. In this review, we want to highlight our efforts in elucidating these mechanisms in B. mori and to understand how they relate more broadly to lepidopteran sex pheromone production in general.
Collapse
|
10
|
Hull JJ, Lee JM, Kajigaya R, Matsumoto S. Bombyx mori homologs of STIM1 and Orai1 are essential components of the signal transduction cascade that regulates sex pheromone production. J Biol Chem 2009; 284:31200-13. [PMID: 19740753 DOI: 10.1074/jbc.m109.044198] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sex pheromone production in the pheromone gland (PG) of the silkmoth, Bombyx mori, is mediated by store-operated channels (SOCs) acting downstream of pheromone biosynthesis activating neuropeptide (PBAN) binding. Although recent studies have implicated STIM1 and Orai1 as essential components of SOCs, little is known about the molecular nature of the SOCs involved in sex pheromone production. In this study we cloned silkmoth homologs of STIM1 and Orai1 and sought to determine whether they comprise the PG SOC pathway. BmSTIM1 is expressed in multiple tissues and, in the PG, is encoded by two transcripts of differing size. BmOrai1A and BmOrai1B, which are identical except for a 37-residue N-terminal truncation in BmOrai1B, arise from alternative splicing of the bmorai1 locus and are expressed as independent transcripts in various tissues. In the PG, only BmOrai1B is actively transcribed. Fluorescent chimeras demonstrated that BmSTIM1 expression is restricted to the endoplasmic reticulum, whereas both BmOrai1A and BmOrai1B localize to the cell surface. In Ca(2+)-free medium, thapsigargin-mediated depletion of endoplasmic reticulum Ca(2+) stores resulted in redistribution of BmSTIM1 to the plasma membrane, but only when the BmOrai1 homologs were also overexpressed. Translocation was dependent on the BmSTIM1 C terminus "CRAC activation domain." Ala mutation of Lys(380), Lys(383), Lys(384), Arg(382), and Arg(385) suggests that translocation involves electrostatic interactions. Translocation was also seen following PBAN stimulation in cells co-expressing BmSTIM1, BmOrai1B, and the PBAN receptor. In vivo RNA interference-mediated knockdown of BmSTIM1 and BmOrai1 significantly reduced sex pheromone production without affecting cell viability.
Collapse
Affiliation(s)
- J Joe Hull
- Molecular Entomology Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
11
|
Ohnishi A, Hashimoto K, Imai K, Matsumoto S. Functional characterization of the Bombyx mori fatty acid transport protein (BmFATP) within the silkmoth pheromone gland. J Biol Chem 2008; 284:5128-36. [PMID: 19112106 DOI: 10.1074/jbc.m806072200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid transport protein (FATP) is an evolutionarily conserved membrane-bound protein that facilitates the uptake of extracellular long chain fatty acids. In humans and mice, six FATP isoforms have been identified and their tissue-specific distributions suggest that each plays a discrete role in lipid metabolism in association with fatty acid uptake. While the presence of FATP homologs in insects has been demonstrated, their functional role remains to be characterized. Pheromonogenesis is defined as the dynamic period in which all machinery required for sex pheromone biosynthesis is generated and organized within the pheromone gland (PG) cells. By exploiting this unique system in the PG of the silkmoth, Bombyx mori, we found that BmFATP is predominantly expressed in the PG and undergoes up-regulation 1 day prior to eclosion. Before eclosion, B. mori PG cells accumulate cytoplasmic lipid droplets (LDs), which play a role in storing the pheromone (bombykol) precursor fatty acid in the form of triacylglycerol. RNAi-mediated gene silencing of BmFATP in vivo significantly suppressed LD accumulation by preventing the synthesis of triacylglycerols and resulted in a significant reduction in bombykol production. These results, in conjunction with the findings that BmFATP stimulates the uptake of extracellular long-chain fatty acids and BmFATP knockdown reduces cellular long-chain acyl-CoA synthetase activity, suggest that BmFATP plays an essential role in bombykol biosynthesis by stimulating both LD accumulation and triacylglycerol synthesis via a process called vectorial acylation that couples the uptake of extracellular fatty acids with activation to CoA thioesters during pheromonogenesis.
Collapse
Affiliation(s)
- Atsushi Ohnishi
- Molecular Entomology Laboratory, Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
12
|
Hull JJ, Kajigaya R, Imai K, Matsumoto S. The Bombyx mori sex pheromone biosynthetic pathway is not mediated by cAMP. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:782-93. [PMID: 17449058 DOI: 10.1016/j.jinsphys.2007.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 02/17/2007] [Accepted: 02/19/2007] [Indexed: 05/15/2023]
Abstract
In most moths, sex pheromone production is regulated by pheromone biosynthesis-activating neuropeptide (PBAN). How the extracellular PBAN signal is turned into a biological response has been the focus of numerous studies. In the classical scheme of signal transduction, activated G proteins relay the extracellular signal to downstream effector molecules such as calcium channels and adenylyl cyclase. The role of calcium in PBAN signaling has been clearly demonstrated, but the possible involvement of cAMP is not as straightforward. While cAMP has been shown to be necessary for PBAN signaling in most heliothine species, there has been no definitive demonstration of its role in Bombyx mori. To address this question, we used degenerate RT-PCR to clone two Gs subunits, designated P50Gs1 and P50Gs2, from B. mori pheromone gland (PG) cDNAs. The two Gs proteins were expressed in all tissues examined and were not up-regulated in accordance with adult eclosion. Even though two bands corresponding to the approximate molecular weights of P50Gs1 and P50Gs2 were detected in PG homogenates, the Gs antagonist, NF449, had no effect on sex pheromone production. Furthermore, no changes in the intracellular cAMP levels were detected following PBAN stimulation.
Collapse
Affiliation(s)
- J Joe Hull
- Molecular Entomology Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
13
|
Matsumoto S, Hull JJ, Ohnishi A, Moto K, Fónagy A. Molecular mechanisms underlying sex pheromone production in the silkmoth, Bombyx mori: characterization of the molecular components involved in bombykol biosynthesis. JOURNAL OF INSECT PHYSIOLOGY 2007; 53:752-9. [PMID: 17448494 DOI: 10.1016/j.jinsphys.2007.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 02/17/2007] [Accepted: 02/19/2007] [Indexed: 05/15/2023]
Abstract
Many species of female moths produce sex pheromones to attract conspecific males. To date, sex pheromones from more than 570 moth species have been chemically identified. Most moth species utilize Type I pheromones that consist of straight-chain compounds 10-18 carbons in length with a functional group of a primary alcohol, aldehyde, or acetate ester and usually with several double bonds. In contrast, some moth species use unsaturated hydrocarbons or hydrocarbon epoxides, classified as Type II lepidopteran pheromones, as sex pheromones. Studies over the past three decades have demonstrated that female moths usually produce sex pheromones as multi-component blends where the ratio of the individual components is precisely controlled, thus making it possible to generate species-specific pheromone blends. As for the biosynthesis of Type I pheromones, it is well established that they are de novo synthesized in the pheromone gland (PG) through modifications of fatty acid biosynthetic pathways. However, as many of the molecular components within the PG cells (i.e., enzymes, proteins, and small regulatory molecules) have not been functionally characterized, the molecular mechanisms underlying sex pheromone production in PG cells remain poorly understood. To address this, we have recently characterized some of the molecules involved in the biosynthesis of the sex pheromone bombykol in the silkmoth, Bombyx mori. Characterization of these, and other, key molecules will facilitate our understanding of the precise mechanisms underlying lepidopteran sex pheromone production.
Collapse
Affiliation(s)
- Shogo Matsumoto
- Molecular Entomology Laboratory, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
14
|
Eltahlawy HS, Buckner JS, Foster SP. Regulation of pheromone biosynthesis in the "Z strain" of the European corn borer, Ostrinia nubilalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 65:29-38. [PMID: 17427934 DOI: 10.1002/arch.20175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The regulation of pheromone biosynthesis by the neuropeptide PBAN in the Z strain of the European corn borer, Ostrinia nubilalis, was investigated using labeled intermediates. Injection of radiolabeled acetate showed PBAN did not influence the de novo synthesis of saturated fatty acids in the gland. When deuterium-labeled myristic acid was topically applied to the gland, females injected with PBAN produced more labeled pheromone than did control females, indicating that PBAN controls one of the later steps of pheromone biosynthesis. Although more myristic acid was Delta11-desaturated in the gland in the presence of PBAN, this was counterbalanced by less Delta11-desaturation of palmitic acid, indicating that desaturase activity did not change overall. This change in flux of myristic acid through to pheromone was shown to be caused by increased reduction of fatty acid pheromone precursors occurring in the presence of PBAN.
Collapse
Affiliation(s)
- H S Eltahlawy
- Department of Entomology, North Dakota State University, Fargo, ND 58105-5346, USA
| | | | | |
Collapse
|
15
|
Takahashi S, Hasumi K, Ohnishi A, Koshino H, Matsumoto S. Synthesis and biological activities of analogs of D-glucosyl-l-tyrosine, a humoral factor that stimulates transcription of the acyl-CoA binding protein in the pheromone gland of the Silkmoth, Bombyx mori. Bioorg Med Chem 2007; 15:97-103. [PMID: 17064908 DOI: 10.1016/j.bmc.2006.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/04/2006] [Accepted: 10/06/2006] [Indexed: 11/26/2022]
Abstract
beta-d-Glucosyl-O-l-tyrosine (1) is a humoral factor that stimulates transcription of the acyl-CoA binding protein (ACBP) in the pheromone gland of the Silkmoth, Bombyx mori. This paper describes stereoselective synthesis of five analogs that changed the sugar and/or amino acid part in 1 and their stimulatory activities on the ACBP transcription in the pheromone gland of B. mori. Among the analogs tested, beta-d-galactosyl-O-l-tyrosine showed a 1/5 potency compared to the activity of 1.
Collapse
Affiliation(s)
- Shunya Takahashi
- RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
16
|
Ohnishi A, Hull JJ, Matsumoto S. Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc Natl Acad Sci U S A 2006; 103:4398-403. [PMID: 16537410 PMCID: PMC1450183 DOI: 10.1073/pnas.0511270103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sex pheromone biosynthetic pathways of lepidopterans require the concerted actions of multiple gene products. A number of pheromone gland (PG)-specific genes have been cloned in recent years and, whereas in vitro characterizations have indicated functions consistent with roles in pheromone production, there have been no clear demonstrations in vivo. Using an RNA interference-mediated loss-of-function approach, we injected newly formed Bombyx mori pupae with dsRNAs corresponding to genes of interest [i.e., PG fatty acyl reductase (pgFAR), B. mori PG Z11/Delta10,12 desaturase (Bmpgdesat1), PG acyl-CoA-binding protein (pgACBP), midgut ACBP, and pheromone biosynthesis activating neuropeptide receptor (PBANR)] to assess their specific roles during pheromonogenesis. In all cases, the introduced dsRNAs induced a dose-dependent reduction in sex pheromone production with the corresponding decrease in transcript levels. No effects on pupal development or adult emergence were observed. Disrupting the PBANR gene resulted in a loss of the lipase activity that liberates pheromone precursors, whereas knockout of the pgACBP gene prevented the daily accumulation and fluctuation of the triacylglycerols that function as the cellular deposits for the pheromone precursors. Taken together, our results provide unequivocal evidence that the pgACBP, Bmpgdesat1, pgFAR, and PBANR gene products are essential during pheromonogenesis and demonstrate the power of this methodology for dissecting the molecular interactions that comprise biosynthetic pathways.
Collapse
Affiliation(s)
- Atsushi Ohnishi
- Molecular Entomology Laboratory, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - J. Joe Hull
- Molecular Entomology Laboratory, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Shogo Matsumoto
- Molecular Entomology Laboratory, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Ohnishi A, Koshino H, Takahashi S, Esumi Y, Matsumoto S. Isolation and characterization of a humoral factor that stimulates transcription of the acyl-CoA-binding protein in the pheromone gland of the silkmoth, Bombyx mori. J Biol Chem 2004; 280:4111-6. [PMID: 15590686 DOI: 10.1074/jbc.m413429200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl-CoA binding protein (ACBP) is a highly conserved 10-kDa intracellular lipid-binding protein that binds straight-chain (C14-C22) acyl-CoA esters with high affinity and is expressed in a wide variety of species ranging from yeast to mammals. Functionally, ACBP can act as an acyl-CoA carrier or as an acyl-CoA pool maker within the cell. Much work on the biochemical properties regarding the ACBP has been performed using various vertebrate and plant tissues, as well as different types of cells in culture, the regulatory mechanisms underlying ACBP gene expression have remained poorly understood. By exploiting the unique sex pheromone production system in the moth pheromone gland (PG), we report that transcription of a specific ACBP termed pheromone gland ACBP is triggered by a hemolymph-based humoral factor. Following purification and structure elucidation by means of high resolution electrospray ionization mass spectrometry and NMR analyses, in conjunction with stereochemical analyses using acid hydrolysates, the humoral factor was identified to be beta-D-glucosyl-O-L-tyrosine. Examination of the hemolymph titers during development revealed that the amount of beta-D-glucosyl-O-L-tyrosine dramatically rose prior to eclosion and reached a maximum of 5 mg/ml (about 1 mg/pupa) on the day preceding eclosion, which was consistent with the effective dose of beta-D-glucosyl-O-L-tyrosine in stimulating pheromone gland ACBP transcription in vivo. Furthermore, in vitro assays using trimmed PG indicated that beta-D-glucosyl-O-L-tyrosine acts directly on the PG. These results provide the first evidence that transcription of some ACBPs can be triggered by specific humoral factors.
Collapse
Affiliation(s)
- Atsushi Ohnishi
- RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
18
|
Tabata J, Takanashi T, Ishikawa Y. Pheromone analysis of wild female moths with a PBAN C-terminal peptide injection for an estimation of assortative mating in adzuki bean borer, Ostrinia scapulalis. J Chem Ecol 2004; 29:2749-59. [PMID: 14969361 DOI: 10.1023/b:joec.0000008018.52213.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The adzuki bean borer, Ostrinia scapulalis, has distinct genetic variation in the blend of two sex pheromone components, (E)- and (Z)-11-tetradecenyl acetates. This variation is largely controlled by a single autosomal locus with two alleles, E and Z. E-type (EE) females produce a pheromone with a mean E:Z ratio at 99:1 whereas Z-type (ZZ) and I-type (ZE) produce pheromones with mean of 3:97 and 64:36, respectively. Interestingly, in many natural populations of O. scapulalis in Japan, this pheromone polymorphism appears to be stably maintained. We tried to predict the changes in relative abundance of each pheromone type by estimating the pheromone production genotype of wild females and their male mates. The pheromone titer in the wild, mated females was increased without changing the blend ratio by an injection of a peptide with pheromone biosynthesis activating activity (TKYFSPRL-NH2). The frequencies of E-, I-, and Z-types at Matsudo were 15, 52, and 33%, respectively, and did not deviate from the Hardy-Weinberg expectations. The estimated mating patterns were concordant with the assumption that no assortative mating was occurring in this population, and this is suggested as a cause of sustained polymorphism at Matsudo.
Collapse
Affiliation(s)
- Jun Tabata
- Laboratory of Applied Entomology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
19
|
Moto K, Yoshiga T, Yamamoto M, Takahashi S, Okano K, Ando T, Nakata T, Matsumoto S. Pheromone gland-specific fatty-acyl reductase of the silkmoth, Bombyx mori. Proc Natl Acad Sci U S A 2003; 100:9156-61. [PMID: 12871998 PMCID: PMC170888 DOI: 10.1073/pnas.1531993100] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C10-C18 unsaturated, acyclic, aliphatic compounds that contain an oxygenated functional group (alcohol, aldehyde, or acetate ester) are a major class of sex pheromones produced by female moths. In the biosynthesis of these pheromone components, the key enzyme required to produce the oxygenated functional groups is fatty-acyl reductase (FAR). This enzyme converts fatty-acyl pheromone precursors to their corresponding alcohols, which, depending on the moth species, can then be acetylated or oxidized to the corresponding aldehydes. Despite the significant role this enzyme has in generating the species-specific oxygenated constituents of lepidopteran sex pheromones, the enzyme has yet to be fully characterized and identified. In experiments designed to characterize a pheromone-gland-specific FAR in the silkmoth, Bombyx mori, we have isolated a cDNA clone encoding a protein homologous to a FAR from the desert shrub, Simmondsia chinensis, commonly known as jojoba. The deduced amino acid sequence of this clone predicts a 460-aa protein with a consensus NAD(P)H binding motif within the amino terminus. Northern blot analysis indicated that 2-kb transcripts of this gene were specifically expressed in the pheromone gland at 1 day before adult eclosion. Functional expression of this gene in the yeast Saccharomyces cerevisiae not only confirmed the long-chain FAR activity, but also indicated a distinct substrate specificity. Finally, the transformed yeast cells evoked typical mating behavior in male moths when cultured with the pheromone precursor fatty acid, (E,Z)-10,12-hexadecadienoic acid.
Collapse
|
20
|
Matsumoto S, Fónagy A, Yamamoto M, Wang F, Yokoyama N, Esumi Y, Suzuki Y. Chemical characterization of cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1447-1455. [PMID: 12530212 DOI: 10.1016/s0965-1748(02)00065-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Accumulation of lipid droplets within the cytoplasm is a common feature of the pheromone gland cells of many lepidopteran species. The cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori, were effectively extracted by dipping the trimmed glands in acetone for 10 min. In order to analyze the components originating from the lipid droplets, we separated the acetone extracts prepared before and after adult eclosion using HPLC, and specified the peaks showing a similar pattern of stage-dependence to that in the morphological change of the lipid droplets previously reported by Fónagy et al. (Arthropod Struct. Dev. 30 (2001) 113). Finally, we specified the peaks #1-5 and #1a-4a separated by reversed-phase HPLC as lipid droplet contents. Structure elucidation using FAB-MS and MS-MS analyses confirmed that they were triacylglycerols (TGs), and 12 species of TGs were identified as lipid droplet contents. Fatty acyl groups contained in these TGs were limited to five unsaturated C16 and C18 fatty acyl groups (delta 11-hexadecenoate, delta 10,12-hexadecadienoate, delta 9-octadecenoate, delta 9,12-ocatadecadienoate, and delta 9,12,15-ocatadecatrienoate), including the pheromone precursor delta 10,12-hexadecadienoate as a major component. Digestion with porcine pancreatic lipase confirmed that three major TGs eluted in the peaks #3-5 all contained C18 fatty acyl groups at the sn-2 position, indicating that the pheromone precursor is sequestered preferentially at the sn-1 and/or sn-3 position. Present results combined with the fact that the morphological change of the lipid droplets is under the control of PBAN indicate that the role of the cytoplasmic lipid droplets in the pheromone-producing cells is to store the pheromone precursor in the form of TGs and to provide it for pheromone production in response to the external signal of PBAN.
Collapse
Affiliation(s)
- S Matsumoto
- RIKEN (Institute of Physical and Chemical Research), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Yoshiga T, Yokoyama N, Imai N, Ohnishi A, Moto K, Matsumoto S. cDNA cloning of calcineurin heterosubunits from the pheromone gland of the silkmoth, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:477-486. [PMID: 11886782 DOI: 10.1016/s0965-1748(01)00125-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pheromone biosynthesis activating neuropeptide (PBAN) stimulates the step of fatty acyl reduction in the pheromone biosynthetic pathway of the silkmoth, Bombyx mori. It has been suggested that the intracellular signal transduction of PBAN in B. mori involves Ca(2+), calmodulin, and calcineurin (also known as protein phosphatase 2B). We have cloned two cDNAs encoding calcineurin heterosubunits from a pheromone gland cDNA library of B. mori. The 2,996-bp clone predicts a 495-amino acid protein homologous to the catalytic subunit calcineurin A (CnA) with a molecular mass of 55,968. The deduced amino acid sequence well conserves the calcineurin B (CnB)-binding domain and two subdomains, a calmodulin-binding and an autoinhibitory domain, showing 77-85% and 82% identities to the isoforms of Drosophila melanogaster CnA and human CnA, respectively. On the other hand, the 820-bp clone predicts a 170-amino acid protein homologous to the regulatory subunit CnB with a molecular mass of 19,357. The deduced amino acid sequence well conserves four EF-hand type calcium-binding structures, showing 95% and about 85% identities to D. melanogaster CnB and mammalian CnBs, respectively. A yeast two-hybrid system has demonstrated the molecular interaction between B. mori CnA and CnB. Northern blot analyses revealed that both CnA and CnB genes were expressed in various larval and adult tissues of B. mori. Both transcripts detected in the pheromone gland three days before adult eclosion increased by the day before eclosion and the mRNA levels were found to be high even two days after adult eclosion. Immunohistochemical analysis has revealed that B. mori calcineurin is localized in the cytoplasm of the pheromone-producing cells.
Collapse
Affiliation(s)
- T Yoshiga
- Laboratory of Molecular Entomology and Baculovirology, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, 351-0198, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Fónagy A, Yokoyama N, Matsumoto S. Physiological status and change of cytoplasmic lipid droplets in the pheromone-producing cells of the silkmoth, Bombyx mori (Lepidoptera, Bombycidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2001; 30:113-123. [PMID: 18088949 DOI: 10.1016/s1467-8039(01)00027-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2001] [Accepted: 07/22/2001] [Indexed: 05/25/2023]
Abstract
Changes in size and number of cytoplasmic lipid droplets were quantified in the pheromone gland (PG) of Bombyx mori before and after adult eclosion. Two days before eclosion, size and number of droplets are small (diameter is 2-7 microm) and few. The formation and significant proliferation of larger droplets (5-12 microm) take place between 2 days and 1 day before eclosion. From the day of emergence until day 3 a fluctuation in size and number of lipid droplets during the photophase (4h intervals) is observed. The changes are more characteristic and dramatic on the day of emergence and first day, while attenuation of these changes can be observed from the second day and seems to disappear by day 4. Bombykol content, at each respective time, is in good correlation with the observed fluctuation in lipid droplet parameters. Highest bombykol production daily is observed towards the early evening, when lipid droplets are the smallest (2-4 microm) and most numerous. By day 4, however, this regularity also ceases. In 24h old mated females PG cell structure is quite similar to newly emerged ones. In glands of 72 h old decapitated females the formation of 'extra' large lipid droplets is remarkable. In vivo pheromone biosynthesis activating neuropeptide (PBAN) treatment, however, induced the formation of many small droplets, although numerous larger ones also remained. The morphological changes in lipid droplets and cellular dynamics associated with the external signal of PBAN in the PG suggest a storage-pool function of the lipid droplets.
Collapse
Affiliation(s)
- A Fónagy
- Laboratory of Molecular Entomology and Baculovirology, Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan
| | | | | |
Collapse
|
23
|
Matsumoto S, Yoshiga T, Yokoyama N, Iwanaga M, Koshiba S, Kigawa T, Hirota H, Yokoyama S, Okano K, Mita K, Shimada T, Tatsuki S. Characterization of acyl-CoA-binding protein (ACBP) in the pheromone gland of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:603-609. [PMID: 11267899 DOI: 10.1016/s0965-1748(00)00165-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Various fatty acyl-CoAs are involved as intermediates or precursors of sex pheromone components in the biosynthetic pathway of the pheromones in many lepidopteran insects. We have purified a 10-kDa protein from the cytosolic fraction of Bombyx mori pheromone glands by using affinity chromatography with a palmitoyl-CoA-agarose column and reversed-phase HPLC. Amino acid sequence analysis of the fragment peptides obtained from the purified protein, and a homology search, revealed that this protein was a member of acyl-CoA-binding proteins (ACBPs). MALDI-TOF mass spectral analysis of the purified protein and cloning of the gene from a pheromone gland cDNA library confirmed B. mori ACBP to be a 90 amino acid protein with 78.9% identity to that of Manduca sexta ACBP. The secondary structure of the recombinant B. mori ACBP was determined by NMR spectroscopy. Northern blot analysis demonstrated that B. mori ACBP was predominantly expressed in the pheromone gland and the corresponding transcript was expressed from the day before adult eclosion. Present results suggest that ACBP plays a significant role in the production of sex pheromones regulated by the neurohormone, pheromone biosynthesis activating neuropeptide (PBAN).
Collapse
Affiliation(s)
- S Matsumoto
- The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fónagy A, Yokoyama N, Okano K, Tatsuki S, Maeda S, Matsumoto S. Pheromone-producing cells in the silkmoth, Bombyx mori: identification and their morphological changes in response to pheromonotropic stimuli. JOURNAL OF INSECT PHYSIOLOGY 2000; 46:735-744. [PMID: 10742522 DOI: 10.1016/s0022-1910(99)00162-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A method to isolate functional clusters of viable pheromone gland cells of Bombyx mori was developed. The 8th-9th intersegmental invaginated membrane corresponding to the pheromone gland was dissected, trimmed and separated into two distinct layers, the outer and inner layers, by enzymatic digestion with papain. The outer layer mainly consists of cuticle, while the inner layer consists of homogeneous cells with many refractile granules. The solubilized microsome fraction prepared from the inner layer retained the ability to produce bombykol in vitro, whereas the outer layer fraction did not produce bombykol. Moreover, in tissue incubations, the inner layer - but not the outer layer - produced bombykol in response to the pheromonotropic peptide TKYFSPRLamide, ionomycin and calcium ionophore A23187. These results indicate that the inner-layer cells are indeed the pheromone-producing cells, which retain their functional integrity after separation with papain. These cells could be cultured successfully in Grace's medium for at least 5days.The presence or absence of pheromonotropic stimuli prior to dissection greatly influenced the size, number and distribution of refractile granules in the cytoplasm of the pheromone-producing cells. Staining with Nile Red proved that these refractile granules were lipid droplets. When pheromone production was studied under normal conditions or stimulated in decapitated females with pheromone-biosynthesis-activating neuorpeptide (PBAN) charge, the size of lipid droplets observed in the pheromone-producing cells reduced prominently and their number increased dramatically with time. By contrast, when pheromone production was suppressed by decapitation, the size and number of the lipid droplets remained constant. Lipid droplets observed in the pheromone-producing cells could be carriers of pheromone precursors and/or the pheromone bombykol. The present results suggest that the isolated cell preparation can be used for quantitative visualization of the cellular dynamics during pheromone production in B. mori.
Collapse
Affiliation(s)
- A Fónagy
- Molecular Entomology and Baculovirology, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Yoshiga T, Okano K, Mita K, Shimada T, Matsumoto S. cDNA cloning of acyl-CoA desaturase homologs in the silkworm, Bombyx mori. Gene 2000; 246:339-45. [PMID: 10767556 DOI: 10.1016/s0378-1119(00)00047-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We have isolated two acyl-CoA desaturase clones from a pheromone gland cDNA library by using the EST (expressed sequence tag) database of Bombyx mori. The putative acyl-CoA desaturases encoded by the clones desat 1 (2029bp) and desat 2 (2341bp) have 98% identity, and both proteins show 61% identities to Trichoplusia ni acyl-CoA Delta(11) desaturase. The deduced amino acid sequences conserve well the histidine clusters that are catalytically essential for acyl-CoA desaturase activity. Northern blot and RT-PCR analyses revealed that both transcripts of desat 1 and desat 2 were expressed predominantly in the pheromone gland. Both transcripts detected 3days before adult eclosion dramatically increased a day before adult eclosion, keeping the mRNA levels high even after eclosion. These results, combined with the fact that Delta(11) and Delta(10, 12) desaturation of palmitate is a key step to synthesize pheromone in B. mori, suggest that the desaturases encoded by desat 1 and desat 2 are involved in either or both of the desaturation steps in the pheromone biosynthetic pathway of B. mori. The mRNA levels of desat 1 and desat 2 were not affected by decapitation or injection of the pheromone biosynthesis activating neuropeptide (PBAN) into the adult female moth, suggesting that the transcription of desat 1 and desat 2 is not regulated by PBAN. In addition to the clones in the pheromone gland, eight other clones encoding the same Delta(9) desaturase homolog were found in an embryonic cDNA library by searching from the EST database of B. mori. The deduced amino acid sequence from one of the clones (desat 3) shows 79% identity to T. ni Delta(9) desaturase but only 52% identity to the desaturases in the pheromone gland of B. mori. Northern blot analysis showed that the mRNA corresponding to the desat 3 was detected in the ovary and fat body, but not in the pheromone gland. Abundance of the Delta(9) desaturase clones (eight out of the 762 randomly sequenced clones) in the library prepared from diapause-destined embryos (40h after oviposition) suggests that the Delta(9) desaturase encoded by desat 3 plays an important role in embryonic development in B. mori.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Bombyx/enzymology
- Bombyx/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Drosophila Proteins
- Embryo, Nonmammalian/enzymology
- Fatty Acid Desaturases/genetics
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Isoenzymes/genetics
- Male
- Molecular Sequence Data
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Sex Attractants/metabolism
- Stearoyl-CoA Desaturase
Collapse
Affiliation(s)
- T Yoshiga
- Laboratory of Molecular Entomology and Baculovirology, RIKEN, Hirosawa 2-1, Wako, Saitama, Japan
| | | | | | | | | |
Collapse
|
26
|
Fónagy A, Yokoyama N, Ozawa R, Okano K, Tatsuki S, Maeda S, Matsumoto S. Involvement of calcineurin in the signal transduction of PBAN in the silkworm, Bombyx mori (Lepidoptera). Comp Biochem Physiol B Biochem Mol Biol 1999; 124:51-60. [PMID: 10582320 DOI: 10.1016/s0305-0491(99)00096-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In several moth species sex pheromone production in the pheromone gland is regulated by a neurohormone, pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori it is suggested that PBAN, after binding to the cell-surface receptor, primarily activates a plasma membrane receptor-activated Ca2+ channel to increase cytosolic levels of Ca2+, and Ca2+/calmodulin complex directly or indirectly activates a phosphoprotein phosphatase, which in turn elicits activation of acyl CoA reductase (the key enzyme under PBAN control) through dephosphorylation, resulting in pheromone (bombykol) production. The effect of cyclosporin A (CsA) and FK 506, specific inhibitors of calcineurin (phosphoprotein phosphatase 2B) was studied on the sex pheromone production, in B. mori. The in vitro experiments showed that both chemicals exerted a dose-dependent inhibitory action when they were co-incubated with TKYFSPRL amide (Hez-PBAN fragment peptide). Practically, no difference was detected between the two chemicals in the tested doses (0.025-1250 microM). When effects of CsA or FK 506 were studied on cell-free production of bombykol by using microsomal fraction no inhibition was detected. Since microsomal fraction contains the acyl CoA synthetase, the rate-limiting acyl CoA reductase and the precursor, bombykol is produced if supplied with CoA, ATP and NADPH. Thus, the inhibitory action of CsA and FK506 under in vitro conditions should occur before the step of acyl group reduction and the effect is likely to be attributable to the inhibition of calcineurin in the signal transduction cascade mechanism of PBAN, in B. mori. The existence of calcineurin in the pheromone gland by using Western blot analysis is also demonstrated.
Collapse
Affiliation(s)
- A Fónagy
- Plant Protection Institute of the Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
27
|
Iwanaga M, Dohmae N, Fonagy A, Takio K, Kawasaki H, Maeda S, Matsumoto S. Isolation and characterization of calmodulin in the pheromone gland of the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 1998; 120:761-7. [PMID: 9854822 DOI: 10.1016/s0305-0491(98)10076-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Production of the sex pheromone bombykol in the silkworm, Bombyx mori, is regulated by a neurohormone termed pheromone biosynthesis activating neuropeptide (PBAN). It has been suggested that the external signal of PBAN in this species is transmitted to the intracellular cascade reactions consisting of Ca2+/calmodulin (CaM) complex and phosphoprotein phosphatase. To demonstrate the molecular mechanisms regulated by PBAN, we attempted to characterize CaM in the pheromone gland of B. mori. By using ion-exchange and RP-HPLC, B. mori CaM was purified from the cytosolic fraction of the pheromone gland. The primary structure was deduced by composition/sequence analysis and mass spectrometric analysis of the fragment peptides obtained from enzymatic and chemical fragmentations. The amino acid sequence of B. mori CaM was identical with Drosophila CaM deduced from the CaM gene of D. melanogaster, suggesting that insects have well conserved the molecule of CaM.
Collapse
Affiliation(s)
- M Iwanaga
- Molecular Entomology and Baculovirology, The Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Neuroendocrine control of pheromone production in moths. INVERTEBRATE NEUROSCIENCE 1997. [DOI: 10.1007/bf02480378] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|