1
|
Rahn JJ, Adair GM, Nairn RS. Use of gene targeting to study recombination in mammalian cell DNA repair mutants. Methods Mol Biol 2012; 920:445-470. [PMID: 22941622 DOI: 10.1007/978-1-61779-998-3_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The study of gene function has been greatly facilitated by the development of strategies to modify genomic DNA. Gene targeting is one of the most successfully applied techniques used to examine the roles of specific genes in a wide variety of model systems from yeast to mammals. Our laboratory has pioneered the use of the Chinese hamster ovary (CHO) cell culture model system to study pathways of DNA repair and recombination at the hemizygous CHO APRT locus. By using a simple and effective gene targeting method, we have generated a number of DNA repair-deficient cell lines that have been used in targeted recombination experiments to investigate pathways of recombinational repair in somatic mammalian cells. These methods can be readily customized to generate a variety of cell lines deficient in specific genes of interest and can be applied to study the roles of other DNA repair proteins in pathways of mammalian recombinational repair.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Molecular Carcinogenesis, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
2
|
Sargent RG, Kim S, Gruenert DC. Oligo/polynucleotide-based gene modification: strategies and therapeutic potential. Oligonucleotides 2011; 21:55-75. [PMID: 21417933 DOI: 10.1089/oli.2010.0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oligonucleotide- and polynucleotide-based gene modification strategies were developed as an alternative to transgene-based and classical gene targeting-based gene therapy approaches for treatment of genetic disorders. Unlike the transgene-based strategies, oligo/polynucleotide gene targeting approaches maintain gene integrity and the relationship between the protein coding and gene-specific regulatory sequences. Oligo/polynucleotide-based gene modification also has several advantages over classical vector-based homologous recombination approaches. These include essentially complete homology to the target sequence and the potential to rapidly engineer patient-specific oligo/polynucleotide gene modification reagents. Several oligo/polynucleotide-based approaches have been shown to successfully mediate sequence-specific modification of genomic DNA in mammalian cells. The strategies involve the use of polynucleotide small DNA fragments, triplex-forming oligonucleotides, and single-stranded oligodeoxynucleotides to mediate homologous exchange. The primary focus of this review will be on the mechanistic aspects of the small fragment homologous replacement, triplex-forming oligonucleotide-mediated, and single-stranded oligodeoxynucleotide-mediated gene modification strategies as it relates to their therapeutic potential.
Collapse
Affiliation(s)
- R Geoffrey Sargent
- Department of Otolaryngology-Head and Neck Surgery, University of California , San Francisco, California 94115, USA
| | | | | |
Collapse
|
3
|
Abstract
Initial events in double-strand break repair by homologous recombination in vivo involve homology searching, 3' strand invasion, and new DNA synthesis. While studies in yeast have contributed much to our knowledge of these processes, in comparison, little is known of the early events in the integrated mammalian system. In this study, a sensitive PCR procedure was developed to detect the new DNA synthesis that accompanies mammalian homologous recombination. The test system exploits a well-characterized gene targeting assay in which the transfected vector bears a gap in the region of homology to the single-copy chromosomal immunoglobulin mu heavy chain gene in mouse hybridoma cells. New DNA synthesis primed by invading 3' vector ends copies chromosomal mu-gene template sequences excluded by the vector-borne double-stranded gap. Following electroporation, specific 3' extension products from each vector end are detected with rapid kinetics: they appear after 0.5 hr, peak at 3-6 hr, and then decline, likely as a result of the combined effects of susceptibility to degradation and cell division. New DNA synthesis from each vector 3' end extends at least approximately 1000 nucleotides into the gapped region, but the efficiency declines markedly within the first approximately 200 nucleotides. Over this short distance, an average frequency of 3' extension for the two invading vector ends is approximately 0.007 events/vector backbone. DNA sequencing reveals precise copying of the cognate chromosomal mu-gene template. In unsynchronized cells, 3' extension is sensitive to aphidicolin supporting involvement of a replicative polymerase. Analysis suggests that the vast majority of 3' extensions reside on linear plasmid molecules.
Collapse
|
4
|
Construction of targeting vector for expressing human GDNF in cattle mammary gland. Appl Biochem Biotechnol 2009; 159:718-27. [PMID: 19194670 DOI: 10.1007/s12010-009-8545-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a type of neurotrophic factor with significant potential in treatment of Parkinson's disease. Combining gene targeting of animal somatic cells with nuclear transfer technique has provided a powerful method to produce transgenic animal mammary gland bioreactor. The aim of this study was to construct a gene-targeting vector for the human gdnf gene knockin at the bovine beta-casein gene locus so that human GDNF protein can be produced in the mammary gland of the gene-targeted bovine. The constructed vector contains the 2.2 kb 5' homologous arm and the 5.7 kb 3' homologous arm. The human gdnf cDNA was located at the downstream of the 5' homologous arm. The neo gene placed between the 5' and 3' homologous arms as positive selection marker gene. The HSV-tk gene and DsRed2 gene were located outside the homologous recombinant area as negative selection marker genes, respectively. The recombinant plasmids were identified by restriction fragment analysis and partial DNA sequencing. The results show that the structure of the final constructed vector accords with the designed plasmid map. In order to analyze the bioactivity of the vector, the plasmid DNA was transfected into human mammary tumor cell line Bcap-37 by lipofectamine. Reverse transcription polymerase chain reaction and Western-blotting analysis showed that the transfected cells produced human GDNF mRNA and protein. The results show that the constructed targeting vector pNRTCNbG has bioactivity to efficiently express GDNF in mammary gland cells. At the same time, it is first time to confirm that human mammary tumor cell line Bcap-37 is valid for bioactivity analysis of mammary gland specific expression vector.
Collapse
|
5
|
Knauert MP, Kalish JM, Hegan DC, Glazer PM. Triplex-stimulated intermolecular recombination at a single-copy genomic target. Mol Ther 2006; 14:392-400. [PMID: 16731047 DOI: 10.1016/j.ymthe.2006.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/23/2006] [Accepted: 03/24/2006] [Indexed: 10/24/2022] Open
Abstract
Gene targeting via homologous recombination offers a potential strategy for therapeutic correction of mutations in disease-related human genes. However, there is a need to improve the efficiency of site-specific recombination by transfected donor DNAs. Oligonucleotide-mediated triple helix formation has been shown to constitute a DNA lesion sufficient to provoke DNA repair and thereby stimulate recombination. However, the ability of triplex-forming oligonucleotides (TFOs) to induce recombination between a target locus and a donor DNA has so far been demonstrated only with multicopy episomal targets in mammalian cells. Using cell lines containing the firefly luciferase reporter gene, we have now established the ability of TFOs to induce gene correction by exogenous donor DNAs at a single-copy chromosomal locus. We find that cotransfection of TFOs and short, single-stranded DNA donor molecules into mammalian cells yields gene correction in a dose-dependent manner at frequencies up to 0.1%, which is five- to ninefold above background. We demonstrate both oligonucleotide-specific and target site-specific effects. We also find that recombination can be induced by both parallel and antiparallel triple helix formation. These results provide further support for the development of TFOs as reagents to stimulate site-specific correction of defective human genes.
Collapse
Affiliation(s)
- Melissa P Knauert
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | | | | | | |
Collapse
|
6
|
Carrington M, Cullen M. Justified chauvinism: advances in defining meiotic recombination through sperm typing. Trends Genet 2004; 20:196-205. [PMID: 15041174 DOI: 10.1016/j.tig.2004.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sperm typing offers an efficient means of studying the quantitative and qualitative aspects of meiotic recombination that are virtually unapproachable by pedigree analysis. Since the initial development of the technique >10 years ago, several salient findings based on empirically derived recombination data have been described. The precise rates and distributions of recombination have been reported for specific regions of the genome, serving as the prototype for high-resolution genome-wide recombination patterns. Identification and characterization of molecular genetic events, such as unequal crossing over, gene conversion and crossover asymmetry, are under close inspection for the first time as a result of this technology. The influence of these phenomena on the evolution of the genome is of primary interest from a scientific and medical perspective. In this article, we review the novel discoveries in mammalian meiotic recombination that have been revealed through sperm typing.
Collapse
Affiliation(s)
- Mary Carrington
- Laboratory of Genomic Diversity, National Cancer Institute-Frederick, National Institutes of Health, SAIC-Frederick, MD 21702, USA.
| | | |
Collapse
|
7
|
Mir B, Piedrahita JA. Nuclear localization signal and cell synchrony enhance gene targeting efficiency in primary fetal fibroblasts. Nucleic Acids Res 2004; 32:e25. [PMID: 14960709 PMCID: PMC373419 DOI: 10.1093/nar/gnh023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of primary somatic cells in nuclear transfer procedure has opened a new opportunity to manipulate domestic animal genomes via homologous recombination. To date, while a few loci have been targeted in somatic cells using similar enrichment strategies as those used in mouse ES cells, there have been problems of low efficiency, mixed targeted and non-targeted cells within a colony and difficulties in cloning the cell after targeting. Utilizing the hypoxanthine guanine phosphoribosyl transferase (HPRT) as a test locus, it was determined that while no targeted colonies were identified using a conventional targeting construct, an average of 1 per million targeted cells were identified when a nuclear localization signal (nls) was added to the construct. When the nls was combined with cell synchronization using a thymidine block, targeting efficiency increased 7-fold. Moreover, the number of random integrants decreased by over 54-fold resulting in a 1:3 targeted to random integration ratio. This method should facilitate the application of homologous recombination to primary somatic cells.
Collapse
Affiliation(s)
- Bashir Mir
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 620 Hutton Street, Raleigh, NC 27606, USA
| | | |
Collapse
|
8
|
Semionov A, Cournoyer D, Chow TYK. 1,5-isoquinolinediol increases the frequency of gene targeting by homologous recombination in mouse fibroblasts. Biochem Cell Biol 2003; 81:17-24. [PMID: 12683632 DOI: 10.1139/o02-172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gene targeting is a technique that allows the introduction of predefined alterations into chromosomal DNA. It involves a homologous recombination reaction between the targeted genomic sequence and an exogenous targeting vector. In theory, gene targeting constitutes the ideal method of gene therapy for single gene disorders. In practice, gene targeting remains extremely inefficient for at least two reasons: very low frequency of homologous recombination in mammalian cells and high proficiency of the mammalian cells to randomly integrate the targeting vector by illegitimate recombination. One known method to improve the efficiency of gene targeting is inhibition of poly(ADP-ribose)polymerase (PARP). It has been shown that PARP inhibitors, such as 3-methoxybenzamide, could lower illegitimate recombination, thus increasing the ratio of gene targeting to random integration. However, the above inhibitors were reported to decrease the absolute frequency of gene targeting. Here we show that treatment of mouse Ltk cells with 1,5-isoquinolinediol, a recent generation PARP inhibitor, leads to an increase up to 8-fold in the absolute frequency of gene targeting in the correction of the mutation at the stable integrated HSV tk gene.
Collapse
Affiliation(s)
- Alexandre Semionov
- Department of Oncology, Montreal General Hospital/McGill University, Oncozyme Pharma Inc., 1650 Cedar Ave., Montreal, QC H3G 1A4, Canada
| | | | | |
Collapse
|
9
|
Fu X, Wang H, Zhang X. High-frequency intermolecular homologous recombination during herpes simplex virus-mediated plasmid DNA replication. J Virol 2002; 76:5866-74. [PMID: 12021319 PMCID: PMC136225 DOI: 10.1128/jvi.76.12.5866-5874.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2001] [Accepted: 03/18/2002] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is a prominent feature of herpes simplex virus (HSV) type 1 DNA replication. This has been demonstrated and traditionally studied in experimental settings where repeated sequences are present or are being introduced into a single molecule for subsequent genome isomerization. In the present study, we have designed a pair of unique HSV amplicon plasmids to examine in detail intermolecular homologous recombination (IM-HR) between these amplicon plasmids during HSV-mediated DNA replication. Our data show that IM-HR occurred at a very high frequency: up to 60% of the amplicon concatemers retrieved from virion particles underwent intermolecular homologous recombination. Such a high frequency of IM-HR required that both plasmids be replicated by HSV-mediated replication, as IM-HR events were not detected when either one or both plasmids were replicated by simian virus 40-mediated DNA replication, even with the presence of HSV infection. In addition, the majority of the homologous recombination events resulted in sequence replacement or targeted gene repair, while the minority resulted in sequence insertion. These findings imply that frequent intermolecular homologous recombination may contribute directly to HSV genome isomerization. In addition, HSV-mediated amplicon replication may be an attractive model for studying intermolecular homologous recombination mechanisms in general in a mammalian system. In this regard, the knowledge obtained from such a study may facilitate the development of better strategies for targeted gene correction for gene therapy purposes.
Collapse
Affiliation(s)
- Xinping Fu
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
10
|
Lukacsovich T, Waldman BC, Waldman AS. Efficient recruitment of transfected DNA to a homologous chromosomal target in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1521:89-96. [PMID: 11690640 DOI: 10.1016/s0167-4781(01)00296-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A Chinese hamster ovary cell line hemizygous for a defective adenine phosphoribosyltransferase (aprt) gene was transfected with a plasmid, pAG100, capable of correcting the endogenous aprt mutation by targeted homologous recombination. In some experiments, pAG100 was transfected in combination with one of two 'competitor' plasmids. Competitor pCOMP-A was identical to pAG100 except that the aprt sequence on pCOMP-A had the same mutation as the endogenous aprt gene. Competitor pCOMP-B was identical to pAG100 except for a 763 bp deletion in the aprt sequence encompassing the site of mutation in the endogenous gene. Neither pCOMP-A nor pCOMP-B was capable of correcting the defect in the endogenous aprt gene via gene targeting. We asked whether cotransfection of a 4-fold excess of either competitor DNA molecule with pAG100 would reduce the efficiency of targeted correction of the endogenous aprt gene. We report that while plasmid pCOMP-B did not influence the efficiency of gene targeting by pAG100, plasmid pCOMP-A reduced the number of gene targeting events about 5-fold. These observations indicate that the initial homologous interaction between transfected DNA and a genomic target sequence occurs rapidly and that targeting efficiency is limited by a step subsequent to homologous pairing.
Collapse
Affiliation(s)
- T Lukacsovich
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
11
|
Ghiselli G, Eichstetter I, Iozzo RV. A role for the perlecan protein core in the activation of the keratinocyte growth factor receptor. Biochem J 2001; 359:153-63. [PMID: 11563979 PMCID: PMC1222131 DOI: 10.1042/0264-6021:3590153] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Perlecan, a widespread heparan sulphate (HS) proteoglycan, is directly involved in the storing of angiogenic growth factors, mostly members of the fibroblast growth factor (FGF) gene family. We have previously shown that antisense targeting of the perlecan gene causes a reduced growth and responsiveness to FGF7 [also known as keratinocyte growth factor (KGF)] in human cancer cells, and that the perlecan protein core interacts specifically with FGF7. In the present paper, we have investigated human colon carcinoma cells in which the perlecan gene was disrupted by targeted homologous recombination. After screening over 1000 clones, we obtained two clones heterozygous for the null mutation with no detectable perlecan, indicating that the other allele was non-functioning. The perlecan-deficient cells grew more slowly, did not respond to FGF7 with or without the addition of heparin, and were less tumorigenic than control cells. Paradoxically, the perlecan-deficient cells displayed increased FGF7 surface binding. However, the perlecan protein core was required for functional activation of the KGF receptor and downstream signalling. Because heparin could not substitute for perlecan, the HS chains are not critical for FGF7-mediated signalling in this cell system. These results provide the first genetic evidence that the perlecan protein core is a molecular entity implicated in FGF7 binding and activation of its receptor.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Cell Division/drug effects
- Colonic Neoplasms/metabolism
- DNA, Antisense/pharmacology
- Fibrinolytic Agents/pharmacology
- Fibroblast Growth Factor 1/metabolism
- Fibroblast Growth Factor 7
- Fibroblast Growth Factors/metabolism
- Gene Targeting
- Heparan Sulfate Proteoglycans/physiology
- Heparin/pharmacology
- Humans
- Mice
- Mice, Nude
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Protein Binding
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction
- Transplantation, Heterologous
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/transplantation
Collapse
Affiliation(s)
- G Ghiselli
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
12
|
Vasquez KM, Marburger K, Intody Z, Wilson JH. Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8403-10. [PMID: 11459982 PMCID: PMC37450 DOI: 10.1073/pnas.111009698] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene targeting in mammalian cells has proven invaluable in biotechnology, in studies of gene structure and function, and in understanding chromosome dynamics. It also offers a potential tool for gene-therapeutic applications. Two limitations constrain the current technology: the low rate of homologous recombination in mammalian cells and the high rate of random (nontargeted) integration of the vector DNA. Here we consider possible ways to overcome these limitations within the framework of our present understanding of recombination mechanisms and machinery. Several studies suggest that transient alteration of the levels of recombination proteins, by overexpression or interference with expression, may be able to increase homologous recombination or decrease random integration, and we present a list of candidate genes. We consider potentially beneficial modifications to the vector DNA and discuss the effects of methods of DNA delivery on targeting efficiency. Finally, we present work showing that gene-specific DNA damage can stimulate local homologous recombination, and we discuss recent results with two general methodologies--chimeric nucleases and triplex-forming oligonucleotides--for stimulating recombination in cells.
Collapse
Affiliation(s)
- K M Vasquez
- Science Park Research Division, M. D. Anderson Cancer Center, Smithville, TX 78957, USA
| | | | | | | |
Collapse
|
13
|
Li J, Read LR, Baker MD. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol Cell Biol 2001; 21:501-10. [PMID: 11134338 PMCID: PMC86609 DOI: 10.1128/mcb.21.2.501-510.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2000] [Accepted: 10/18/2000] [Indexed: 11/20/2022] Open
Abstract
In this study, the mechanism of mammalian gene replacement was investigated. The system is based on detecting homologous recombination between transferred vector DNA and the haploid, chromosomal immunoglobulin mu-delta region in a murine hybridoma cell line. The backbone of the gene replacement vector (pCmuCdeltapal) consists of pSV2neo sequences bounded on one side by homology to the mu gene constant (Cmu) region and on the other side by homology to the delta gene constant (Cdelta) region. The Cmu and Cdelta flanking arms of homology were marked by insertions of an identical 30-bp palindrome which frequently escapes mismatch repair when in heteroduplex DNA (hDNA). As a result, intermediates bearing unrepaired hDNA generate mixed (sectored) recombinants following DNA replication and cell division. To monitor the presence and position of sectored sites and, hence, hDNA formation during the recombination process, the palindrome contained a unique NotI site that replaced an endogenous restriction enzyme site at each marker position in the vector-borne Cmu and Cdelta regions. Gene replacement was studied under conditions which permitted the efficient recovery of the product(s) of individual recombination events. Analysis of marker segregation patterns in independent recombinants revealed that extensive hDNA was formed within the Cmu and Cdelta regions. In several recombinants, palindrome markers in the Cmu and Cdelta regions resided on opposite DNA strands (trans configuration). These results are consistent with the mammalian gene replacement reaction involving two crossing-over events in homologous flanking DNA.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | |
Collapse
|
14
|
Abstract
The "ends-out" or omega (Omega)-form gene replacement vector is used routinely to perform targeted genome modification in a variety of species and has the potential to be an effective vehicle for gene therapy. However, in mammalian cells, the frequency of this reaction is low and the mechanism unknown. Understanding molecular features associated with gene replacement is important and may lead to an increase in the efficiency of the process. In this study, we investigated gene replacement in mammalian cells using a powerful assay system that permits efficient recovery of the product(s) of individual recombination events at the haploid, chromosomal mu-delta locus in a murine hybridoma cell line. The results showed that (i) heteroduplex DNA (hDNA) is formed during mammalian gene replacement; (ii) mismatches in hDNA are usually efficiently repaired before DNA replication and cell division; (iii) the gene replacement reaction occurs with fidelity; (iv) the presence of multiple markers in one homologous flanking arm in the replacement vector did not affect the efficiency of gene replacement; and (v) in comparison to a genomic fragment bearing contiguous homology to the chromosomal target, gene targeting was only slightly inhibited by internal heterology (pSV2neo sequences) in the replacement vector.
Collapse
Affiliation(s)
- J Li
- Department of Molecular Biology and Genetics and Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
15
|
Polejaeva IA, Campbell KH. New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology 2000; 53:117-26. [PMID: 10735067 DOI: 10.1016/s0093-691x(99)00245-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to produce live offspring by nuclear transfer from cultured somatic cells provides a route for the precise genetic manipulation of large animal species. Such modifications include the addition, or "knock-in", and the removal or inactivation, "knock-out", of genes or their control sequences. This paper will review some of the factors which affect the development of embryos produced by nuclear transfer, the advantages of using cultured cells as donors of genetic material, and methods that have been developed to enrich gene targeting frequency. Commercial applications of this technology in biomedicine and agriculture will also be addressed.
Collapse
Affiliation(s)
- I A Polejaeva
- PPL Therapeutics Inc., Blacksburg, Virginia 24060, USA
| | | |
Collapse
|
16
|
Phelps MJ, Liu J, Benson JD, Willoughby CE, Gilmore JA, Critser JK. Effects of Percoll separation, cryoprotective agents, and temperature on plasma membrane permeability characteristics of murine spermatozoa and their relevance to cryopreservation. Biol Reprod 1999; 61:1031-41. [PMID: 10491641 DOI: 10.1095/biolreprod61.4.1031] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cryopreservation of murine spermatozoa would provide an efficient method for preserving important genotypes. However, to date such methods have resulted in low survivals with significant variability. To address this issue, a series of five experiments was performed to determine the cryobiological characteristics of murine spermatozoa. Experiments 1 and 2 investigated the effect of Percoll separation on the hydraulic conductivity (L(p)) of murine spermatozoa. Both Percoll separation and cryoprotective agents (CPAs) decreased the L(p). However, these effects were not additive. Experiment 3 was performed to determine the effect of temperature on L(p) in the presence of cryoprotectants (L(p)(CPA)), cryoprotectant permeability (P(CPA)), and the reflection coefficient (sigma) in spermatozoa from both ICR and B6C3F1 mice. Permeability parameters decreased as temperature decreased, and permeability characteristics differed between strains. In experiments 4 and 5, theoretical simulations for CPA addition and removal were developed and empirically tested. Strain-specific methods for CPA addition and removal based upon the fundamental cryobiological characteristics of murine spermatozoa resulted in higher survivals than current methods or procedures, which were used as controls.
Collapse
Affiliation(s)
- M J Phelps
- Cryobiology Research Institute, Wells Research Center, Indiana University Medical School, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Ideally, gene therapy involves the correction of genetic defects through the natural means of gene targeting. This therapy possesses a number of conceptual advantages. However, a major obstacle to successful gene therapy is the relative inefficiency of the targeting process in mammalian cells. Gene targeting may be accomplished by two different mechanisms: the homologous recombination and the mismatch correction of DNA heteroduplexes. Based on the model of homologous recombination for the well-studied prokaryotic and the less studied eukaryotic systems, three approaches have been employed to improve the efficiency and accuracy of homologous recombination events. These are: (1) artificial double-strand breaks in both the exogenous and the chromosomal DNA, (2) a contiguous long homology between the exogenous and chromosomal DNA, and (3) a transient overproduction of an active recombinase, the bacterial RecA or mammalian RecA-like proteins, in mammalian cell nuclei. Combining these approaches can result in more effective gene targeting protocols. The second mechanism has been improved based on recent observations of recombinogenic activity of oligonucleotides and, especially, specifically designed chimeric RNA/DNA oligonucleotides. The use of RecA-like proteins to stimulate searching for homology and forming stable DNA heteroduplexes between oligonucleotides and chromosomal DNA remains an attractive idea for additional improvement of gene targeting events.
Collapse
Affiliation(s)
- V A Lanzov
- Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina/St. Petersburg, 188350, Russia
| |
Collapse
|
18
|
Warner TG. Enhancing therapeutic glycoprotein production in Chinese hamster ovary cells by metabolic engineering endogenous gene control with antisense DNA and gene targeting. Glycobiology 1999; 9:841-50. [PMID: 10460826 DOI: 10.1093/glycob/9.9.841] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant glycoprotein therapeutics have proven to be invaluable pharmaceuticals for the treatment of chronic and life-threatening diseases. Although these molecules are extraordinarily efficacious, many diseases have high dosage requirements of several hundred milligrams of protein for each administration. Multiple doses at this level are often required for treatment. One of the major challenges currently facing the biotechnology industry is the development of large-scale, cost-effective production and manufacturing processes of these biologically synthesized molecules. Metabolic engineering of animal cell expression hosts promises to address this challenge by substantially enhancing recombinant protein quality, productivity, and biological activity. In this report, we describe a novel approach to metabolic engineering in Chinese hamster ovary cells by control of endogenous gene expression. Analysis of the advantages and limitations of using antisense DNA and gene targeting as a means of control are discussed and several gene candidates for regulation with these techniques are identified. Practical considerations for using these technologies to reduce the levels of the CHO cell sialidase (Warner et al., Glycobiology, 3, 455-463, 1993) as a model gene system for regulation are also presented.
Collapse
|
19
|
Abstract
A number of recent advances have significantly facilitated gene targeting in somatic cells. Gene targeting can now be performed with the same ease and efficiency in somatic cells as in murine embryonic stem cells. Rigorous genetic analyses can therefore be applied for the first time to the large number of excellent human cell culture systems. These tools will be important in areas where rodent models do not adequately represent human biology.
Collapse
Affiliation(s)
- J M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
20
|
Abstract
In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting. In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp. The hDNA was efficiently repaired prior to DNA replication. The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism.
Collapse
Affiliation(s)
- P Ng
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
21
|
Ng P, Baker MD. The molecular basis of multiple vector insertion by gene targeting in mammalian cells. Genetics 1999; 151:1143-55. [PMID: 10049930 PMCID: PMC1460523 DOI: 10.1093/genetics/151.3.1143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration.
Collapse
Affiliation(s)
- P Ng
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
22
|
Figeys D, Aebersold R. Microfabricated modules for sample handling, sample concentration and flow mixing: application to protein analysis by tandem mass spectrometry. J Biomech Eng 1999; 121:7-12. [PMID: 10080083 DOI: 10.1115/1.2798048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The comprehensive analysis of biological systems requires a combination of genomic and proteomic efforts. The large-scale application of current genomic technologies provides complete genomic DNA sequences, sequence tags for expressed genes (EST's), and quantitative profiles of expressed genes at the mRNA level. In contrast, protein analytical technology lacks the sensitivity and the sample throughput for the systematic analysis of all the proteins expressed by a tissue or cell. The sensitivity of protein analysis technology is primarily limited by the loss of analytes, due to adsorption to surfaces, and sample contamination during handling. Here we summarize our work on the development and use of microfabricated fluidic systems for the manipulation of minute amounts of peptides and delivery to an electrospray ionization tandem mass spectrometer. New data are also presented that further demonstrate the potential of these novel approaches. Specifically, we describe the use of microfabricated devices as modules to deliver femtomole amounts of protein digests to the mass spectrometer for protein identification. We also describe the use of a microfabricated module for the generation of solvent gradients at nl/min flow rates for gradient chromatography-tandem mass spectrometry. The use of microfabricated fluidic systems reduces the risk of sample contamination and sample loss due to adsorption to wetted surfaces. The ability to assemble dedicated modular systems and to operate them automatically makes the use of microfabricated systems attractive for the sensitive and large-scale analysis of proteins.
Collapse
Affiliation(s)
- D Figeys
- National Research Council Canada, Institute for Marine Biosciences, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
23
|
Gewirtz AM. The c-myb Protooncogene: A Novel Target for Human Gene Therapy. Gene Ther 1999. [DOI: 10.1007/978-3-0348-7011-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Goncz KK, Kunzelmann K, Xu Z, Gruenert DC. Targeted replacement of normal and mutant CFTR sequences in human airway epithelial cells using DNA fragments. Hum Mol Genet 1998; 7:1913-9. [PMID: 9811935 DOI: 10.1093/hmg/7.12.1913] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies have reported that mutant genomic cystic fibrosis (CF) transmembrane conductance regulator ( CFTR ) sequences can be corrected in transformed CF airway epithelial cell lines by targeted replacement with small fragments of DNA with wild-type sequence. To determine if the observed genotype modification following small fragment homologous replacement (SFHR) was limited to transformed CF cell lines, further studies were carried out in both transformed and non-transformed primary normal airway epithelial cells. The endogenous genotype of these normal cell lines was modified following liposome or dendrimer transfection using DNA fragments with DeltaF508 CFTR sequence (488 nt, complementary single strands) designed to also contain a unique restriction enzyme cleavage site (Xho I). Replacement at the appropriate genomic locus by exogenous DeltaF508 CFTR DNA and its expression as mRNA was demonstrated by PCR amplification of genomic DNA and mRNA-derived cDNA as well as Xho I digestion of the PCR products. These studies show that SFHR occurs in both transformed and non-transformed primary human airway epithelial cells and indicate that single base substitution (the silent mutation giving rise to the Xho I site) and deletion or insertion of at least three consecutive bases can be achieved in both normal and CF epithelial cells. Furthermore, these studies reiterate the potential of SFHR as a strategy for a number of gene targeting applications, such as site-specific mutagenesis, development of transgenic animals, development of isogenic cell lines and for gene therapy.
Collapse
Affiliation(s)
- K K Goncz
- Cardiovascular Research Institute, Gene Therapy Core Center and Cystic Fibrosis Research Center and Department of Laboratory Medicine and Stomatology, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
25
|
Picciotto MR, Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 1998; 78:1131-63. [PMID: 9790572 DOI: 10.1152/physrev.1998.78.4.1131] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reverse genetics, in which detailed knowledge of a gene of interest permits in vivo modification of its expression or function, provides a powerful method for examining the physiological relevance of any protein. Transgenic and knockout mouse models are particularly useful for studies of complex neurobiological problems. The primary aims of this review are to familiarize the nonspecialist with the techniques and limitations of mouse mutagenesis, to describe new technologies that may overcome these limitations, and to illustrate, using representative examples from the literature, some of the ways in which genetically altered mice have been used to analyze central nervous system function. The goal is to provide the information necessary to evaluate critically studies in which mutant mice have been used to study neurobiological problems.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
26
|
Ng P, Baker MD. High efficiency site-specific modification of the chromosomal immunoglobulin locus by gene targeting. J Immunol Methods 1998; 214:81-96. [PMID: 9692861 DOI: 10.1016/s0022-1759(98)00033-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Site-specific modification of the chromosomal immunoglobulin locus by gene targeting is a powerful tool in studying the molecular requirements for immunoglobulin gene structure and function and in the production of engineered antibodies. Here, we describe a two step- integration then excision-gene targeting procedure for introducing planned genetic alterations into the chromosomal immunoglobulin locus. The efficiency of gene targeting with an enhancer-trap vector in which an enhancerless neo and HSV-tk gene were inserted into the vector backbone was compared to that of the corresponding enhancer-positive vector. Both insertion vectors also contained homology to the chromosomal immunoglobulin target locus along with the desired genetic alteration. The first step involved insertion of the transferred vector into the target locus by homologous recombination. An approximately 15-fold enrichment in the frequency of vector insertion was obtained with the enhancer-trap compared to the enhancer-positive vector. The majority of targeted cells (75%) contained a single copy of the vector integrated into the chromosomal immunoglobulin locus. The second step involved excision of the integrated vector by intrachromosomal homologous recombination between the duplicated region of homology that removed the integrated vector, neo and tk genes along with one copy of homologous DNA. Vector excision was very efficient generating G418S, FIAU(R) secondary recombinants at the high rate of approximately 10(-3)/cell generation. In the secondary recombinants, the overall structure of the chromosomal immunoglobulin locus was restored with the desired genetic alteration being present in an expected proportion of the cells.
Collapse
Affiliation(s)
- P Ng
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|
27
|
Lezon-Geyda K, Jaime CM, Godbold JH, Savransky EF, Hope A, Kheiri SA, Dzmura ZM, Uehara H, Johnson EM, Fasy TM. Chrysotile asbestos fibers mediate homologous recombination in Rat2 lambda fibroblasts: implications for carcinogenesis. Mutat Res 1996; 361:113-20. [PMID: 8980696 DOI: 10.1016/s0165-1161(96)90245-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Asbestos fibers are widespread environmental carcinogens whose mutagenicity is now established. Nonetheless, the molecular nature of these mutations and the mechanisms by which they accelerate carcinogenesis remain poorly understood. We have assessed the ability of asbestos fibers to promote homologous recombination, a potent mechanism for generating intrachromosomal rearrangements, such as deletions, and mitotic recombination. For this, we have developed a new assay which determines the extent to which a marker gene present in DNA introduced by asbestos can recombine with homologous genes residing in a transfected cell. We have demonstrated that Calidria chrysotile fibers are mutagenic and are able to mediate transfection of molecularly marked mutant lacI genes in a manner that results in their preferential recombination with homologous wild-type genes in the transfected cell. Asbestos induced recombination events may play a significant role in asbestos mutagenesis and carcinogenesis, and promotion of recombination may underlie the well-recognized synergy of asbestos with other carcinogens.
Collapse
Affiliation(s)
- K Lezon-Geyda
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Waldman BC, O'Quinn JR, Waldman AS. Enrichment for gene targeting in mammalian cells by inhibition of poly(ADP-ribosylation). BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1308:241-50. [PMID: 8809116 DOI: 10.1016/0167-4781(96)00111-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inhibition of poly(ADP-ribosylation) reduces random genomic integration of transfected DNA and mildly stimulates intrachromosomal homologous recombination in mammalian cells. We investigated the effect of inhibition of poly(ADP-ribosylation) on the efficiency of gene targeting in Chinese hamster ovary (CHO) cell line ATS-49tg. This cell line is hemizygous for a defective adenine phosphoribosyltransferase (aprt) gene and is hypoxanthine phosphoribosyltransferase (hprt) deficient. Plasmid pAG100 contains a portion of the CHO aprt gene sufficient to correct the defect in ATS-49tg cells via gene targeting; pAG100 also contains an Escherichia coli guanine phosphoribosyltransferase (gpt) gene. Following transfection of ATS-49tg cells with pAG100, selection for gpt-positive transfectants allowed recovery of cells that had randomly integrated pAG100 while selection for aprt-positive cells allowed recovery of cells that had undergone gene targeting at the endogenous aprt locus. Treatment of cells with 3 mM 3-methoxybenzamide (3-MB), an inhibitor of poly(ADP-ribose) polymerase, decreased random integration and gene targeting of electroporated pAG100 about 5-fold. In contrast, treatment with 3 mM 3-MB during calcium phosphate transfection could reduce random integration more than 150-fold while reducing gene targeting less than two-fold. Therefore, as much as a 100-fold enrichment for gene targeting was achieved with calcium phosphate transfection.
Collapse
Affiliation(s)
- B C Waldman
- Department of Biological Sciences, University of South Carolina, Columbia 29208, USA.
| | | | | |
Collapse
|
29
|
Norman JG, Fink G, Franz M, Guffey J, Carter G, Davison B, Sexton C, Glaccum M. Active interleukin-1 receptor required for maximal progression of acute pancreatitis. Ann Surg 1996; 223:163-9. [PMID: 8597510 PMCID: PMC1235092 DOI: 10.1097/00000658-199602000-00008] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The authors' aim was to determine the requirement for an active interleukin (IL)-1 receptor during the development and progression of acute pancreatitis. SUMMARY OF BACKGROUND DATA Interleukin-1 is a pro- inflammatory cytokine that has been shown to be produced during acute pancreatitis. Earlier animal studies of moderate and severe pancreatitis have shown that blockade of this powerful mediator is associated with attenuated pancreatic destruction and dramatic increases in survival. The exact role played by IL-1 and the requirement for activation of its receptor in the initiation and progression of pancreatitis is unknown. METHODS Conventional and IL-1 receptor "knockout" animals were used in parallel experiments of acute pancreatitis induced by intraperitoneal injection of cerulean (50 microg/kg every 1 hour X 4). The conventional mouse strain had the IL-1 receptor blocked prophylactically by means of a recombinant IL-1 receptor antagonist (10 mg/kg injected intraperitoneally every 2 hours). The second mouse strain was genetically engineered by means of gene targeting in murine embryonic stem cells to be devoid of type 1 IL-1 receptor (IL-1 receptor knockout). Animals were killed at 0, 0.5, 1, 2, 4, and 8 hours, with the severity of pancreatitis determined by serum amylase, lipase, and IL-6 levels and blind histologic grading. Strain-specific controls were used for comparison. RESULTS The genetic absence of the IL-1 receptor or its pharmacologic blockade resulted in significantly attenuated pancreatic vacuolization, edema, necrosis, inflammation, and enzyme release. Serum IL-6, a marker of inflammation severity, was dramatically decreased in both groups. CONCLUSIONS Activation of the IL-1 receptor is not required for the development of pancreatitis but apparently is necessary for the maximal propagation of pancreatic injury and its associated inflammation.
Collapse
Affiliation(s)
- J G Norman
- Department of Surgery, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- A M Gewirtz
- University of Pennsylvania, School of Medicine, Department of Pathology, Philadelphia 19104-6082, USA
| |
Collapse
|
31
|
Thyagarajan B, Cruise JL, Campbell C. Elevated levels of homologous DNA recombination activity in the regenerating rat liver. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:31-9. [PMID: 8643992 DOI: 10.1007/bf02374374] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have characterized homologous DNA recombination activity in nuclear protein extracts prepared from quiescent and regenerating rat livers. Activity measured in regenerating liver extracts was elevated approximately 35-fold above control, and its appearance closely mirrored the first wave of DNA synthesis, peaking 24 hours after a regenerative stimulus, and returning fairly rapidly to basal levels. We also identified a strand-transferase protein of approximately 100 kDa whose presence in these extracts correlates with homologous recombination activity. Recent evidence suggests that mammalian somatic cells possess a recombinational DNA repair mechanism analogous to that described in the yeast Saccharomyces cerevisiae. Our results indicate that this recombinational repair process may be regulated in vivo by, or play a role in, progression through the cell division cycle.
Collapse
Affiliation(s)
- B Thyagarajan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
32
|
Brady JP, Kantorow M, Sax CM, Donovan DM, Piatigorsky J. Murine transcription factor alpha A-crystallin binding protein I. Complete sequence, gene structure, expression, and functional inhibition via antisense RNA. J Biol Chem 1995; 270:1221-9. [PMID: 7836383 DOI: 10.1074/jbc.270.3.1221] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
alpha A-crystallin binding protein I (alpha A-CRYBP1) is a ubiquitously expressed DNA binding protein that was previously identified by its ability to interact with a functionally important sequence in the mouse alpha A-crystallin gene promoter. Here, we have cloned a single copy gene with 10 exons spanning greater than 70 kb of genomic DNA that encodes alpha A-CRYBP1. The mouse alpha A-CRYBP1 gene specifies a 2,688-amino acid protein with 72% amino acid identity to its human homologue, PRDII-BF1. Both the human and the mouse proteins contain two sets of consensus C2H2 zinc fingers at each end as well a central nonconsensus zinc finger. The alpha A-CRYBP1 gene produces a 9.5-kb transcript in 11 different tissues as well as a testis-specific, 7.7-kb transcript. alpha A-CRYBP1 cDNA clones were isolated from adult mouse brain and testis as well as from cell lines derived from mouse lens (alpha TN4-1) and muscle (C2C12). A single clone isolated from the muscle C2C12 library contains an additional exon near the 5'-end that would prevent production of a functional protein if the normal translation start site were utilized; however, there is another potential initiation codon located downstream that is in frame with the rest of the coding region. In addition, we identified multiple cDNAs from the testis in which the final intron is still present. Finally, we used an antisense expression construct derived from an alpha A-CRYBP1 cDNA clone to provide the first functional evidence that alpha A-CRYBP1 regulates gene expression. When introduced into the alpha TN4-1 mouse lens cell line, the antisense construct significantly inhibited expression from a heterologous promoter that utilized the alpha A-CRYBP1 binding site as an enhancer.
Collapse
Affiliation(s)
- J P Brady
- Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
33
|
Hanson KD, Sedivy JM. Analysis of biological selections for high-efficiency gene targeting. Mol Cell Biol 1995; 15:45-51. [PMID: 7799954 PMCID: PMC231906 DOI: 10.1128/mcb.15.1.45] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A two-marker selection system that allows the efficient isolation of diploid gene knockouts by two sequential rounds of targeted homologous recombination has been developed. A systematic evaluation of the biological parameters that govern the selection process showed that a successful strategy must match the expression level of the target gene, the efficacy of the marker, and the selection stringency. An enrichment ratio of 5,000- to 10,000-fold, which resulted in a 30% targeting efficiency of the c-myc gene in a fibroblast cell line, has been achieved. Such efficiency brings the difficulty of gene targeting effectively down to the level of simple transfections, since only 10 to 20 drug-resistant clones need to be screened to recover several homologous hits. The general utility of the targeting strategy is of interest to investigators studying gene function in a large variety of mammalian tissue culture systems.
Collapse
Affiliation(s)
- K D Hanson
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
34
|
Bronson SK, Smithies O. Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46959-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
35
|
Affiliation(s)
- P Carmeliet
- Centre of Molecular and Vascular Biology, University of Leuven, Belgium
| | | | | |
Collapse
|
36
|
Waldman AS. The search for homology does not limit the rate of extrachromosomal homologous recombination in mammalian cells. Genetics 1994; 136:597-605. [PMID: 8150286 PMCID: PMC1205811 DOI: 10.1093/genetics/136.2.597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mouse LTK- cells were transfected with a pair of defective Herpes simplex virus thymidine kinase (tk) genes. One tk gene had an 8-bp insertion mutation while the second gene had a 100-bp inversion. Extrachromosomal homologous recombination leading to the reconstruction of a functional tk gene was monitored by selecting for tk positive cells using medium supplemented with hypoxanthine/aminopterin/thymidine. To assess whether the search for homology may be a rate-limiting step of recombination, we asked whether the presence of an excess number of copies of a tk gene possessing both the insertion and inversion mutations could inhibit recombination between the singly mutated tk genes. Effective competitive inhibition would require that homology searching (homologous pairing) occur rapidly and efficiently. We cotransfected plasmid constructs containing the singly mutated genes in the presence or absence of competitor sequences in various combinations of linear or circular forms. We observed effective inhibition by the competitor DNA in six of the seven combinations studied. A lack of inhibition was observed only when the insertion mutant gene was cleaved within the insertion mutation and cotransfected with the two other molecules in circular form. Additional experiments suggested that homologous interactions between two DNA sequences may compete in trans with recombination between two other sequences. We conclude that homology searching is not a rate-limiting step of extrachromosomal recombination in mammalian cells. Additionally, we speculate that a limiting factor is involved in a recombination step following homologous pairing and has a high affinity for DNA termini.
Collapse
Affiliation(s)
- A S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| |
Collapse
|
37
|
Ratajczak MZ, Gewirtz AM. Oligonucleotide-Based Therapeutics of Human Malignancies. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 1994. [DOI: 10.1007/978-3-642-78666-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
38
|
Arbonés ML, Austin HA, Capon DJ, Greenburg G. Gene targeting in normal somatic cells: inactivation of the interferon-gamma receptor in myoblasts. Nat Genet 1994; 6:90-7. [PMID: 8136841 DOI: 10.1038/ng0194-90] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gene targeting in somatic cells represents a potentially powerful method for gene therapy, yet with the exception of pluripotent mouse embryonic stem (ES) cells, homologous recombination has not been reported for a well characterized, non-transformed mammalian cell. Applying a highly efficient strategy for targeting an integral membrane protein--the interferon gamma receptor--in ES cells, we have used homologous recombination to target a non-transformed somatic cell, the mouse myoblast, and to compare targeting efficiencies in these two cell types. Gene-targeted myoblasts display the properties of normal cells including normal morphology, ability to differentiate in vitro, stable diploid karyotype, inability to form colonies in soft agar and lack of tumorigenicity in nude mice.
Collapse
Affiliation(s)
- M L Arbonés
- Cell Genesys Inc., Foster City, California 94404
| | | | | | | |
Collapse
|
39
|
Abstract
Retroviruses are known to carry specific genes that are likely to be responsible for induction of the malignant phenotype in the cells they infect. These genes, termed viral oncogenes (v-onc), have subsequently been shown to be derived from highly conserved, normal cellular genes commonly referred to as proto-oncogenes (c-onc). Proto-oncogenes are thought to be intimately involved in the processes of cell proliferation and differentiation. Therefore, any c-onc amplification, mutation, structural alteration, or change in transcriptional regulation might lead to, or be associated with, induction of a malignant phenotype. Targeted disruption of these genes may therefore be of therapeutic value. We discuss the role of antisense DNA in carrying out such therapy.
Collapse
Affiliation(s)
- N Hijiya
- Department of Pathology, University of Pennsylvania School of Medicine, Philadelphia 19104
| | | |
Collapse
|