1
|
Menezes Pinto N, das Chagas Mendonça MR, da Silva Santos J, Dos Santos Ferraz CM, Santos Oliveira D, Dos Santos LVB, de Souza Araújo AA, José Quintans Júnior L, Lyra Júnior DP, de Oliveira Filho AD, Lira AAM, Russo Serafini M, de Souza Nunes R. Lessons learned from the COVID-19 pandemic: the intranasal administration as a route for treatment - a patent review. Pharm Dev Technol 2025:1-17. [PMID: 40186505 DOI: 10.1080/10837450.2025.2487575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 pandemic exposed the fragility of today's marketed treatments for respiratory infections. As a primary site of infection, the upper airways may represent a key access route for the control and treatment for these conditions. The present study aims to explore and identify, through a patent review, the novelty of therapies for COVID-19 that use the intranasal route for drug administration. A search was carried out in Wipo and Espacenet, using the descriptors 'COVID-19 OR SARS-CoV 2' AND 'treatment OR therapy' AND NOT 'vaccine OR immunizing' and the classification 'A61K9/0043'. Of the 151 patents identified, we excluded 73 duplicates, and 36 documents that meet the criteria adopted for exclusion (not nasally administered formulations, vaccines, post COVID-19 treatments, uncertain route of administration or form). We identified 78 unique patents on patent databases, of which 42 were selected for this review. The documents revealed the use of the intranasal pathway not only for drug repositioning but also for using plant-derived and biological molecules. Overall, the new formulations explore a variety of known drugs and natural products incorporated in drug carrier systems and devices for drug delivery and administration. Thus, the intranasal route remains a promising strategy for drug delivery, offering direct access to the primary infection site and warranting further exploration.
Collapse
|
2
|
Ressnerova A, Heger Z, Pumera M. Translational nanorobotics breaking through biological membranes. Chem Soc Rev 2025; 54:1924-1956. [PMID: 39807638 DOI: 10.1039/d4cs00483c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In the dynamic realm of translational nanorobotics, the endeavor to develop nanorobots carrying therapeutics in rational in vivo applications necessitates a profound understanding of the biological landscape of the human body and its complexity. Within this landscape, biological membranes stand as critical barriers to the successful delivery of therapeutic cargo to the target site. Their crossing is not only a challenge for nanorobotics but also a pivotal criterion for the clinical success of therapeutic-carrying nanorobots. Nevertheless, despite their urgency, strategies for membrane crossing in translational nanorobotics remain relatively underrepresented in the scientific literature, signaling an opportunity for further research and innovation. This review focuses on nanorobots with various propulsion mechanisms from chemical and physical to hybrid mechanisms, and it identifies and describes four essential biological membranes that represent the barriers needed to be crossed in the therapeutic journey of nanorobots in in vivo applications. First is the entry point into the blood stream, which is the skin or mucosa or intravenous injection; next is the exit from the bloodstream across the endothelium to the target site; further is the entry to the cell through the plasma membrane and, finally, the escape from the lysosome, which otherwise destroys the cargo. The review also discusses design challenges inherent in translating nanorobot technologies to real-world applications and provides a critical overview of documented membrane crossings. The aim is to underscore the need for further interdisciplinary collaborations between chemists, materials scientists and chemical biologists in this vital domain of translational nanorobotics that has the potential to revolutionize the field of precision medicine.
Collapse
Affiliation(s)
- Alzbeta Ressnerova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Zbynek Heger
- Research Group for Molecular Biology and Nanomedicine, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800 Ostrava, Czech Republic
| | - Martin Pumera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic.
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
3
|
Gu W, Zhang H, Zhang Z, Xu M, Li X, Han Z, Fu X, Li X, Wang X, Zhang C. Continuous Oral Administration of the Superantigen Staphylococcal Enterotoxin C2 Activates Intestinal Immunity and Modulates the Gut Microbiota in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405039. [PMID: 39248343 PMCID: PMC11538665 DOI: 10.1002/advs.202405039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Staphylococcal Enterotoxin C2 (SEC2), a classical superantigen, is an antitumor immunotherapy agent. However, the injectable formulation of SEC2 limits its clinical application. Here, it is reported that oral administration of SEC2 activates the intestinal immune system and benefits intestinal health in a mouse model. These results indicate that intact SEC2 is detected in the stomach, intestine, and serum after oral administration. Continuous oral administration of SEC2 activates immune cells in gut-associated lymphoid tissues, promoting extensive differentiation and proliferation of CD4+ and CD8+ T cells and CD19+ B cells, leading to increased production of cytokines and secretory immunoglobulin A. SEC2 also enhances intestinal barrier function, as demonstrated by an increased villus length/crypt depth ratio and elevated expression of mucins and tight junction proteins. Additionally, SEC2 indirectly influenced gut microbiota, reinforcing potential probiotics and short-chain fatty acid synthesis. Enhanced differentiation of T and B cells in the spleen, coupled with elevated serum interleukin-2 levels, suggests systemic immune enhancement following oral administration of SEC2. These findings provide a scientific basis for the development of SEC2 as an oral immunostimulant for immune enhancement and anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wu Gu
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Huiwen Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Best Health (Guangdong) Bio‐Technology Co., Ltd.Center Building, Minke Park, Xinhui Economic Development ZoneJiangmen529100P. R. China
| | - Zhichun Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Mingkai Xu
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Xiang Li
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Zhiyang Han
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Xuanhe Fu
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
- Department of ImmunologyShenyang Medical CollegeNo. 146 Huanghe North StreetShenyang110034P. R. China
| | - Xu Li
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Xiujuan Wang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Chenggang Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| |
Collapse
|
4
|
Colaço M, Cruz MT, de Almeida LP, Borges O. Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors. Pharmaceutics 2024; 16:1308. [PMID: 39458637 PMCID: PMC11510408 DOI: 10.3390/pharmaceutics16101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. METHODS This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. RESULTS While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. CONCLUSIONS With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health.
Collapse
Affiliation(s)
- Mariana Colaço
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria T. Cruz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Valiveti CK, Rajput M, Thakur N, Momin T, Bhowmik M, Tummala H. A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine. Vaccines (Basel) 2024; 12:1121. [PMID: 39460287 PMCID: PMC11511251 DOI: 10.3390/vaccines12101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Influenza virus enters the host body through the mucosal surface of the respiratory tract. An efficient immune response at the mucosal site can interfere with virus entry and prevent infection. However, formulating oral vaccines and eliciting an effective mucosal immune response including at respiratory mucosa presents numerous challenges including the potential degradation of antigens by acidic gastric fluids and the risk of antigen dilution and dispersion over a large surface area of the gut, resulting in minimal antigen uptake by the immune cells. Additionally, oral mucosal vaccines have to overcome immune tolerance in the gut. To address the above challenges, in the current study, we evaluated inulin acetate (InAc) nanoparticles (NPs) as a vaccine adjuvant and antigen delivery system for oral influenza vaccines. InAc was developed as the first polysaccharide polymer-based TLR4 agonist; when tailored as a nanoparticulate vaccine delivery system, it enhanced antigen delivery to dendritic cells and induced a strong cellular and humoral immune response. This study compared the efficacy of InAc-NPs as a delivery system for oral vaccines with Poly (lactic-co-glycolic acid) (PLGA) NPs, utilizing influenza A nucleoprotein (Inf-A) as an antigen. InAc-NPs effectively protected the encapsulated antigen in both simulated gastric (pH 1.1) and intestinal fluids (pH 6.8). Moreover, InAc-NPs facilitated enhanced antigen delivery to macrophages, compared to PLGA-NPs. Oral vaccination studies in Balb/c mice revealed that InAc-Inf-A NPs significantly boosted the levels of Influenza virus-specific IgG and IgA in serum, as well as total and virus-specific IgA in the intestines and lungs. Furthermore, mice vaccinated with InAc-Inf-A-NPs exhibited notably higher hemagglutination inhibition (HI) titers at mucosal sites compared to those receiving the antigen alone. Overall, our study underscores the efficacy of InAc-NPs in safeguarding vaccine antigens post-oral administration, enhancing antigen delivery to antigen-presenting cells, and eliciting higher virus-neutralizing antibodies at mucosal sites following vaccination.
Collapse
Affiliation(s)
- Chaitanya K. Valiveti
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| | - Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Neelu Thakur
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Malabika Bhowmik
- Department of Biology, University of Dayton, Dayton, OH 45469, USA; (N.T.); (T.M.); (M.B.)
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA; (C.K.V.); (H.T.)
| |
Collapse
|
6
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
- Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
7
|
Gao Y, Yang J, Zhang Y, Zhao Y, Zhao X, Zhang X, Zhang J, Mao L, Wang H, Wang H, Wang L. In vitro and in vivo evaluation of immune response of poly(lactic acid) nanoparticles with different end groups. Int J Biol Macromol 2023; 253:126593. [PMID: 37659499 DOI: 10.1016/j.ijbiomac.2023.126593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
Poly(lactic acid) (PLA) has excellent properties of biodegradability and biocompatibility, which is a US Food and Drug Administration (FDA) approved biopolymer for the preparation of safe and effective vaccines, drugs, and gene delivery systems. However, there still exists a great problem whether and how the end group affects the immune response of PLA vaccines. Therefore, the aim of this study was to evaluate the in vitro and in vivo of immune response of PLA nanoparticles (NPs) with carboxyl (COOH) and ester (COOR) end groups. In vitro experiments suggested COOH NPs could promote the higher phagocytosis and activation of bone marrow dendritic cells (BMDCs) with a lower cytotoxicity. In vivo experiments showed that COOR NPs and COOH NPs could strongly elicit IgG, IgG1, and IgG2a responses both in the short and long-terms. However, the highest T cell and B cell activation, and central memory T cells response was induced by COOH NPs. In addition, the COOH NPs could significantly enhance splenocytes proliferation and cytokines secretion. Thus, the PLA with the COOH end group shows greater potential as efficient carrier materials of NPs for enhancing cellular and humoral immune responses.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China; Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jun Yang
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Econnomi Technological Development Area (BDA), Beijing 100176, China
| | - Yaru Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemistry Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xin Zhao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Xining Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Mao
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Econnomi Technological Development Area (BDA), Beijing 100176, China.
| | - Hongjun Wang
- Beijing Tide Pharmaceutical Co., Ltd, No.8 East Rongjing Street, Beijing Econnomi Technological Development Area (BDA), Beijing 100176, China.
| | - Huimei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Silveira F, Rivera-Patron M, Deshpande N, Sienra S, Checa J, Moreno M, Chabalgoity JA, Cibulski SP, Baz M. Quillaja brasiliensis nanoparticle adjuvant formulation improves the efficacy of an inactivated trivalent influenza vaccine in mice. Front Immunol 2023; 14:1163858. [PMID: 37197659 PMCID: PMC10183569 DOI: 10.3389/fimmu.2023.1163858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023] Open
Abstract
The threat of viral influenza infections has sparked research efforts to develop vaccines that can induce broadly protective immunity with safe adjuvants that trigger robust immune responses. Here, we demonstrate that subcutaneous or intranasal delivery of a seasonal trivalent influenza vaccine (TIV) adjuvanted with the Quillaja brasiliensis saponin-based nanoparticle (IMXQB) increases the potency of TIV. The adjuvanted vaccine (TIV-IMXQB) elicited high levels of IgG2a and IgG1 antibodies with virus-neutralizing capacity and improved serum hemagglutination inhibition titers. The cellular immune response induced by TIV-IMXQB suggests the presence of a mixed Th1/Th2 cytokine profile, antibody-secreting cells (ASCs) skewed toward an IgG2a phenotype, a positive delayed-type hypersensitivity (DTH) response, and effector CD4+ and CD8+ T cells. After challenge, viral titers in the lungs were significantly lower in animals receiving TIV-IMXQB than in those inoculated with TIV alone. Most notably, mice vaccinated intranasally with TIV-IMXQB and challenged with a lethal dose of influenza virus were fully protected against weight loss and lung virus replication, with no mortality, whereas, among animals vaccinated with TIV alone, the mortality rate was 75%. These findings demonstrate that TIV-IMXQB improved the immune responses to TIV, and, unlike the commercial vaccine, conferred full protection against influenza challenge.
Collapse
Affiliation(s)
- Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Fernando Silveira, ; Mariana Baz,
| | - Mariana Rivera-Patron
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Nikita Deshpande
- World Health Organization Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Soledad Sienra
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jackeline Checa
- Unidad de Biología Parasitaria, Facultad de Ciencias, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jose A. Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Samuel P. Cibulski
- Centro de Biotecnologia – CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Mariana Baz
- World Health Organization Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Fernando Silveira, ; Mariana Baz,
| |
Collapse
|
9
|
Lee J, Khang D. Mucosal delivery of nanovaccine strategy against COVID-19 and its variants. Acta Pharm Sin B 2022; 13:S2211-3835(22)00489-0. [PMID: 36438851 PMCID: PMC9676163 DOI: 10.1016/j.apsb.2022.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the global administration of approved COVID-19 vaccines (e.g., ChAdOx1 nCoV-19®, mRNA-1273®, BNT162b2®), the number of infections and fatalities continue to rise at an alarming rate because of the new variants such as Omicron and its subvariants. Including COVID-19 vaccines that are licensed for human use, most of the vaccines that are currently in clinical trials are administered via parenteral route. However, it has been proven that the parenteral vaccines do not induce localized immunity in the upper respiratory mucosal surface, and administration of the currently approved vaccines does not necessarily lead to sterilizing immunity. This further supports the necessity of a mucosal vaccine that blocks the main entrance route of COVID-19: nasal and oral mucosal surfaces. Understanding the mechanism of immune regulation of M cells and dendritic cells and targeting them can be another promising approach for the successful stimulation of the mucosal immune system. This paper reviews the basic mechanisms of the mucosal immunity elicited by mucosal vaccines and summarizes the practical aspects and challenges of nanotechnology-based vaccine platform development, as well as ligand hybrid nanoparticles as potentially effective target delivery agents for mucosal vaccines.
Collapse
Affiliation(s)
- Junwoo Lee
- College of Medicine, Gachon University, Incheon 21999, South Korea
| | - Dongwoo Khang
- College of Medicine, Gachon University, Incheon 21999, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, South Korea
- Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, South Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon 21999, South Korea
| |
Collapse
|
10
|
Nguyen TT, Nguyen TTD, Tran NMA, Van Vo G. Lipid-Based Nanocarriers via Nose-to-Brain Pathway for Central Nervous System Disorders. Neurochem Res 2022; 47:552-573. [PMID: 34800247 DOI: 10.1007/s11064-021-03488-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Neurodegenerative disorders are distinguished by the gradual deterioration of the nervous system's structure and function due to oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity, and neuroinflammation. Among these NDs, Alzheimer's disease, Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis characterized an increasing dysfunction and loss of neuronal structure leading to neuronal cell death. Although there is currently no drug to totally reverse the effects of NDs, such novel formulations and administration routes are developed for better management and nose-to-brain delivery is one of delivery for treating NDs. This review aimed to highlight advances in research on various lipid based nanocarriers such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and cubosomes which are reported to treat and alleviate the symptoms of NDs via nose-to-brain route. The challenges during clinical translation of lipid nanocarriers from bench to bed side is also discussed.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, 700000, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
11
|
Masjedi M, Montahaei T, Sharafi Z, Jalali A. Pulmonary vaccine delivery: An emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Iyer S, Yadav R, Agarwal S, Tripathi S, Agarwal R. Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases. Clin Microbiol Rev 2022; 35:e0012321. [PMID: 34788128 PMCID: PMC8597982 DOI: 10.1128/cmr.00123-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral pathogens like influenza and coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused outbreaks leading to millions of deaths. Vaccinations are, to date, the best and most economical way to control such outbreaks and have been highly successful for several pathogens. Currently used vaccines for respiratory viral pathogens are primarily live attenuated or inactivated and can risk reversion to virulence or confer inadequate immunity. The recent trend of using potent biomolecules like DNA, RNA, and protein antigenic components to synthesize vaccines for diseases has shown promising results. Still, it remains challenging to translate due to their high susceptibility to degradation during storage and after delivery. Advances in bioengineering technology for vaccine design have made it possible to control the physicochemical properties of the vaccines for rapid synthesis, heightened antigen presentation, safer formulations, and more robust immunogenicity. Bioengineering techniques and materials have been used to synthesize several potent vaccines, approved or in trials, against coronavirus disease 2019 (COVID-19) and are being explored for influenza, SARS, and Middle East respiratory syndrome (MERS) vaccines as well. Here, we review bioengineering strategies such as the use of polymeric particles, liposomes, and virus-like particles in vaccine development against influenza and coronaviruses and the feasibility of adopting these technologies for clinical use.
Collapse
Affiliation(s)
- Shalini Iyer
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rajesh Yadav
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Smriti Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology and Cell Biology, Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
13
|
Kaplonek P, Yao L, Reppe K, Voß F, Kohler T, Ebner F, Schäfer A, Blohm U, Priegue P, Bräutigam M, Pereira CL, Parameswarappa SG, Emmadi M, Ménová P, Witzenrath M, Hammerschmidt S, Hartmann S, Sander LE, Seeberger PH. A semisynthetic glycoconjugate provides expanded cross-serotype protection against Streptococcus pneumoniae. Vaccine 2022; 40:1038-1046. [PMID: 35033388 DOI: 10.1016/j.vaccine.2021.12.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
Streptococcus pneumoniae (S. pneumoniae)infections are the leading cause of child mortality globally. Currentvaccines fail to induceaprotective immune response towards a conserved part of the pathogen,resulting in newserotypescausing disease. Therefore, new vaccinestrategies are urgently needed.Described is atwo-pronged approach combiningS. pneumoniaeproteins, pneumolysin (Ply) and pneumococcal surface protein A (PspA),with aprecisely defined synthetic oligosaccharide,wherebythe carrier protein actsas a serotype-independent antigen to provideadditional protection. Proof of concept in mice and swine modelsrevealed thatthe conjugatesinhibited colonization of the nasopharynx, decreased the bacterial load and reduced disease severity in the bacteria challenge model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model.Acombination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective ("universal") pneumococcal vaccines.
Collapse
Affiliation(s)
- Paulina Kaplonek
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
| | - Ling Yao
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany; Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Thomas Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Friederike Ebner
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Patricia Priegue
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Maria Bräutigam
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Claney L Pereira
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sharavathi G Parameswarappa
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Madhu Emmadi
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Petra Ménová
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitaetsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany.
| | - Peter H Seeberger
- Max-Planck-Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Mühlenberg 1, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
14
|
Mangla B, Javed S, Sultan MH, Ahsan W, Aggarwal G, Kohli K. Nanocarriers-Assisted Needle-Free Vaccine Delivery Through Oral and Intranasal Transmucosal Routes: A Novel Therapeutic Conduit. Front Pharmacol 2022; 12:757761. [PMID: 35087403 PMCID: PMC8787087 DOI: 10.3389/fphar.2021.757761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/21/2021] [Indexed: 01/01/2023] Open
Abstract
Drug delivery using oral route is the most popular, convenient, safest and least expensive approach. It includes oral transmucosal delivery of bioactive compounds as the mucosal cavity offers an intriguing approach for systemic drug distribution. Owing to the dense vascular architecture and high blood flow, oral mucosal layers are easily permeable and can be an ideal site for drug administration. Recently, the transmucosal route is being investigated for other therapeutic candidates such as vaccines for their efficient delivery. Vaccines have the potential to trigger immune reactions and can act as both prophylactic and therapeutic conduit to a variety of diseases. Administration of vaccines using transmucosal route offers multiple advantages, the most important one being the needle-free (non-invasive) delivery. Development of needle-free devices are the most recent and pioneering breakthrough in the delivery of drugs and vaccines, enabling patients to avoid needles, reducing anxiety, pain and fear as well as improving compliance. Oral, nasal and aerosol vaccination is a novel immunization approach that utilizes a nanocarrier to administer the vaccine. Nanocarriers improve the bioavailability and serve as adjuvants to elicit a stronger immune response, resulting in increased effectiveness of vaccination. Drugs and vaccines with lower penetration abilities can also be delivered transmucosally while maintaining their biological function. The development of micro/nanocarriers for transmucosal delivery of macromolecules, vaccines and other substances is currently drawing much attention and a number of studies were performed recently. This comprehensive review is aimed to summarize the most recent investigations on needle-free and non-invasive approaches for the delivery of vaccines using oral transmucosal route, their strengths and associated challenges. The oral transmucosal vaccine delivery by nanocarriers is the most upcoming advancement in efficient vaccine delivery and this review would help further research and trials in this field.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kanchan Kohli
- Director Research and Publication, Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| |
Collapse
|
15
|
Tang W, Zhang Y, Zhu G. Pulmonary delivery of mucosal nanovaccines. NANOSCALE 2022; 14:263-276. [PMID: 34918733 PMCID: PMC8734613 DOI: 10.1039/d1nr06512b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Mucosal vaccination can elicit both systemic and mucosal immunity, and therefore has the potential to not only treat mucosal immune diseases, prevent the pathogen infection at the mucosal entry sites, but also treat distant or systemic immune disorders. However, only a few mucosal vaccines have been approved for human use in the clinic. Effective mucosal immunization requires the delivery of immunogenic agents to appropriate mucosal surfaces, which remains significantly challenging due to the essential biological barriers presenting at mucosal tissues. In the past decade, remarkable progress has been made in the development of pulmonary mucosal nanovaccines. The nanovaccines leverage advanced nanoparticle-based pulmonary delivery technologies on the characteristics of large surface area and rich antigen presentation cell environment of the lungs for triggering robust immune protection against various mucosal diseases. Herein, we review current methods and formulations of pulmonary delivery, discuss the design strategies of mucosal nanovaccines for potent and long-lasting immune responses, and highlight recent advances in the application of lipid-based pulmonary nanovaccines against mucosal diseases. These advances promise to accelerate the development of novel mucosal nanovaccines for the prophylaxis and therapy of infectious diseases, and cancer, as well as autoimmune disorders at mucosal tissues.
Collapse
Affiliation(s)
- Wei Tang
- Department of Pharmacy and Department of Diagnostic Radiology, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.
| | - Yu Zhang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy, The Developmental Therapeutics Program, Massey Cancer Center, Richmond, VA 23298, USA.
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy, The Developmental Therapeutics Program, Massey Cancer Center, Richmond, VA 23298, USA.
| |
Collapse
|
16
|
Cao P, Wang J, Sun B, Rewatkar P, Popat A, Fu C, Peng H, Xu ZP, Li L. Enhanced Mucosal Transport of Polysaccharide-Calcium Phosphate Nanocomposites for Oral Vaccination. ACS APPLIED BIO MATERIALS 2021; 4:7865-7878. [PMID: 35006768 DOI: 10.1021/acsabm.1c00798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral vaccine has attracted much interest, as it can stimulate both mucosal and systemic immunity with noninvasive and good patient compliance. However, the oral vaccine efficiency is strongly constrained by the low absorption of antigens in the small intestine due to the mucosal barriers. Physicochemical characteristics of nanoparticles (NPs) have strong effects on antigen mucosal penetration, helping to improve immune response. However, surface functions of NPs on mucosal transportation have not been clearly understood. In this work, we elaborately investigated how the surface characteristics of mucoadhesive chitosan and its derivant act on oral antigen absorption and immune response. Core-shell chitosan- and o-carboxymethyl chitosan-coated calcium phosphate (CaP) nanocomposites have been fabricated to investigate the surface property effect on protein antigen delivery using the oral route. The interaction between polymer-coated CaP NPs and the intestinal mucosal layer was studied using mucin absorption, NP diffusion through the mucus layer, NP permeability across the epithelium monolayer, and their cellular uptake by antigen presenting cells in detail. Ex vivo mucosa distribution and in vivo oral immunization of polymer-coated CaP nanocomposites were further examined to demonstrate that the surface property of NPs affects CaP diffusion and penetration through the mucosal layer. As expected, OVA orally delivered by polymer-coated CaP nanocomposites improved the response of mucosal immunity compared to antigen OVA itself in vivo.
Collapse
Affiliation(s)
- Pei Cao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jingjing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4102, Australia.,Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Markarian NM, Abrahamyan L. AMDV Vaccine: Challenges and Perspectives. Viruses 2021; 13:v13091833. [PMID: 34578415 PMCID: PMC8472842 DOI: 10.3390/v13091833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
Aleutian mink disease virus (AMDV) is known to cause the most significant disease in the mink industry. It is globally widespread and manifested as a deadly plasmacytosis and hyperglobulinemia. So far, measures to control the viral spread have been limited to manual serological testing for AMDV-positive mink. Further, due to the persistent nature of this virus, attempts to eradicate Aleutian disease (AD) have largely failed. Therefore, effective strategies to control the viral spread are of crucial importance for wildlife protection. One potentially key tool in the fight against this disease is by the immunization of mink against AMDV. Throughout many years, several researchers have tried to develop AMDV vaccines and demonstrated varying degrees of protection in mink by those vaccines. Despite these attempts, there are currently no vaccines available against AMDV, allowing the continuation of the spread of Aleutian disease. Herein, we summarize previous AMDV immunization attempts in mink as well as other preventative measures with the purpose to shed light on future studies designing such a potentially crucial preventative tool against Aleutian disease.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases of Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Correspondence:
| |
Collapse
|
18
|
Durán-Lobato M, López-Estévez AM, Cordeiro AS, Dacoba TG, Crecente-Campo J, Torres D, Alonso MJ. Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Adv Drug Deliv Rev 2021; 176:113899. [PMID: 34314784 DOI: 10.1016/j.addr.2021.113899] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Biological macromolecule-based therapeutics irrupted in the pharmaceutical scene generating a great hope due to their outstanding specificity and potency. However, given their susceptibility to degradation and limited capacity to overcome biological barriers new delivery technologies had to be developed for them to reach their targets. This review aims at analyzing the historical seminal advances that shaped the development of the protein/peptide delivery field, along with the emerging technologies on the lead of the current landscape. Particularly, focus is made on technologies with a potential for transmucosal systemic delivery of protein/peptide drugs, followed by approaches for the delivery of antigens as new vaccination strategies, and formulations of biological drugs in oncology, with special emphasis on mAbs. Finally, a discussion of the key challenges the field is facing, along with an overview of prospective advances are provided.
Collapse
|
19
|
Akbar A, Pillalamarri N, Jonnakuti S, Ullah M. Artificial intelligence and guidance of medicine in the bubble. Cell Biosci 2021; 11:108. [PMID: 34108005 PMCID: PMC8191053 DOI: 10.1186/s13578-021-00623-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Microbubbles are nanosized gas-filled bubbles. They are used in clinical diagnostics, in medical imaging, as contrast agents in ultrasound imaging, and as transporters for targeted drug delivery. They can also be used to treat thrombosis, neoplastic diseases, open arteries and vascular plaques and for localized transport of chemotherapies in cancer patients. Microbubbles can be filled with any type of therapeutics, cure agents, growth factors, extracellular vesicles, exosomes, miRNAs, and drugs. Microbubbles protect their cargo from immune attack because of their specialized encapsulated shell composed of lipid and protein. Filled with curative medicine, they could effectively circulate through the whole body safely and efficiently to reach the target area. The advanced bubble-based drug-delivery system, integrated with artificial intelligence for guidance, holds great promise for the targeted delivery of drugs and medicines.
Collapse
Affiliation(s)
- Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA.
- Molecular Medicine, Department of Biomedical Innovation and Bioengineering, School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
20
|
Rodrigues G, Gonçalves da Costa Sousa M, da Silva DC, Berto Rezende TM, de Morais PC, Franco OL. Nanostrategies to Develop Current Antiviral Vaccines. ACS APPLIED BIO MATERIALS 2021; 4:3880-3890. [PMID: 35006813 DOI: 10.1021/acsabm.0c01284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infectious diseases are a worldwide concern. They are responsible for increasing the mortality rate and causing economic and social problems. Viral epidemics and pandemics, such as the COVID-19 pandemic, force the scientific community to consider molecules with antiviral activity. A number of viral infections still do not have a vaccine or efficient treatment and it is imperative to search for vaccines to control these infections. In this context, nanotechnology in association with the design of vaccines has presented an option for virus control. Nanovaccines have displayed an impressive immune response using a low dosage. This review aims to describe the advances and update the data in studies using nanovaccines and their immunomodulatory effect against human viruses.
Collapse
Affiliation(s)
- Gisele Rodrigues
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| | - Mauricio Gonçalves da Costa Sousa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Dieime Custódia da Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Departamento de Física, Fundação Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | - Taia Maria Berto Rezende
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Curso de Odontologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Paulo César de Morais
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Nanociências e Nanobiotecnologia, Universidade de Brasília, Brasília Distrito Federal 70790-160, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
| |
Collapse
|
21
|
Genito CJ, Batty CJ, Bachelder EM, Ainslie KM. Considerations for Size, Surface Charge, Polymer Degradation, Co-Delivery, and Manufacturability in the Development of Polymeric Particle Vaccines for Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000041. [PMID: 33681864 PMCID: PMC7917382 DOI: 10.1002/anbr.202000041] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Indexed: 01/15/2023] Open
Abstract
Vaccines have advanced human health for centuries. To improve upon the efficacy of subunit vaccines they have been formulated into nano/microparticles for infectious diseases. Much progress in the field of polymeric particles for vaccine formulation has been made since the push for a tetanus vaccine in the 1990s. Modulation of particle properties such as size, surface charge, degradation rate, and the co-delivery of antigen and adjuvant has been used. This review focuses on advances in the understanding of how these properties influence immune responses to injectable polymeric particle vaccines. Consideration is also given to how endotoxin, route of administration, and other factors influence conclusions that can be made. Current manufacturing techniques involved in preserving vaccine efficacy and scale-up are discussed, as well as those for progressing polymeric particle vaccines toward commercialization. Consideration of all these factors should aid the continued development of efficacious and marketable polymeric particle vaccines.
Collapse
Affiliation(s)
- Christopher J. Genito
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Cole J. Batty
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Eric M. Bachelder
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Kristy M. Ainslie
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| |
Collapse
|
22
|
Andrade RGD, Reis B, Costas B, Lima SAC, Reis S. Modulation of Macrophages M1/M2 Polarization Using Carbohydrate-Functionalized Polymeric Nanoparticles. Polymers (Basel) 2020; 13:polym13010088. [PMID: 33379389 PMCID: PMC7796279 DOI: 10.3390/polym13010088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Exploiting surface endocytosis receptors using carbohydrate-conjugated nanocarriers brings outstanding approaches to an efficient delivery towards a specific target. Macrophages are cells of innate immunity found throughout the body. Plasticity of macrophages is evidenced by alterations in phenotypic polarization in response to stimuli, and is associated with changes in effector molecules, receptor expression, and cytokine profile. M1-polarized macrophages are involved in pro-inflammatory responses while M2 macrophages are capable of anti-inflammatory response and tissue repair. Modulation of macrophages’ activation state is an effective approach for several disease therapies, mediated by carbohydrate-coated nanocarriers. In this review, polymeric nanocarriers targeting macrophages are described in terms of production methods and conjugation strategies, highlighting the role of mannose receptor in the polarization of macrophages, and targeting approaches for infectious diseases, cancer immunotherapy, and prevention. Translation of this nanomedicine approach still requires further elucidation of the interaction mechanism between nanocarriers and macrophages towards clinical applications.
Collapse
Affiliation(s)
- Raquel G. D. Andrade
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Bruno Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence:
| | - Salette Reis
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (B.R.); (B.C.); (S.R.)
| |
Collapse
|
23
|
Renu S, Renukaradhya GJ. Chitosan Nanoparticle Based Mucosal Vaccines Delivered Against Infectious Diseases of Poultry and Pigs. Front Bioeng Biotechnol 2020; 8:558349. [PMID: 33282847 PMCID: PMC7691491 DOI: 10.3389/fbioe.2020.558349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Infectious disease of poultry and pig are major threat to health and cause severe economic loss to the food industry and a global food safety issue. Poultry and pig act as a mixing vessel of zoonotic transmission of disease to humans. Effective mucosal vaccines used in animals could reduce the impact of diseases in food animals. Chitosan is a biocompatible polymer, and its positive charge makes it a natural mucoadhesive agent. Therefore, since last one-decade chitosan derived nanoparticles (CS NPs) have been in use widely to deliver vaccine antigens in animals through mucosal route. Primary route of entry of most infectious disease pathogen is through oral and nasal routes, and the CS NPs based vaccines delivered through that routes enhance the immunogenicity of encapsulated vaccine antigens by targeting the cargo to mucosal microfold cells, dendritic cells and macrophages. Resulting in induction of robust secretory and systemic antibodies and/or cell mediated immune response which provides protection against infections. To date, CS NPs is being widely used for mucosal vaccine delivery in poultry and pigs to control bacterial and viral infections, and tested in several preclinical trials for vaccine delivery in humans. In this review, we highlighted the progress so far made in using CS NPs as a vehicle for mucosal vaccine delivery against infectious and zoonotic diseases of poultry and pigs. Discussed about the need of CS NPs modifications, CS NPs based vaccines induced immune responses and its role in protection, and challenges in vaccination and future directions.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|