1
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
2
|
Chaudhuri D, Majumder S, Giri K. Repurposing of drugs targeting heparan sulphate binding site of dengue virus envelope protein: an in silico competitive binding study. Mol Divers 2025; 29:87-101. [PMID: 38570391 DOI: 10.1007/s11030-024-10834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024]
Abstract
Dengue virus, an arbovirus, leads to millions of infections every year ultimately leading to a high rate of mortality. Highly effective and specific therapeutic option is not available till date to combat viral infection. One of the first stages in the virus lifecycle encompasses the viral entry into the host cell which is mediated by the interaction between heparan sulphate and the Dengue virus envelope protein in turn leading to the interaction between the envelope protein receptor binding domain and host cell receptors. The heparan sulphate binding site on the envelope protein was established using literature survey and the result validated using ColDock simulations. We have performed virtual screening against the heparan sulphate binding site using DrugBank database and short-listed probable inhibitors based on binding energy calculation following Molecular Dynamics (MD) simulations in this study. Two compounds (PubChem IDS 448062 and 656615) were selected for further analyses on which RAMD simulations were performed to quantitate the binding stability of both the molecules in the protein binding pocket which ultimately led to the selection of ZK-806450 molecule as the final selected compound. Competitive binding MD simulation against dengue virus envelope protein was performed for this molecule and heparan sulphate in order to ascertain the efficiency of binding of this molecule to the dengue virus envelope protein in the presence of its natural ligand molecule and found that this molecule has a higher affinity for the dengue virus envelope protein GAG binding site than heparan sulphate. This study may help in the use of this inhibitor molecule to combat dengue virus infection in foreseeable future and open a new avenue for drug repurposing methodology using competitive binding MD simulation.
Collapse
Affiliation(s)
- Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Satyabrata Majumder
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
3
|
Komarudin AG, Adharis A, Sasmono RT. Natural Compounds and Their Analogs as Antivirals Against Dengue Virus: A Review. Phytother Res 2025; 39:888-921. [PMID: 39697048 DOI: 10.1002/ptr.8408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 12/20/2024]
Abstract
Dengue virus (DENV) continues to pose a significant global health challenge, causing diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. While efforts in vaccine development and antiviral drug discovery are ongoing, effective therapeutic options remain limited. In this review, we highlight natural compounds and the analogs that demonstrated antiviral activity against DENV in in vitro and in vivo studies. Specifically, these studies examine alkaloids, phenolic acids, phenols, flavonoids, terpenoids, and glycosides which have shown potential in inhibiting DENV entry, replication, and reducing the cytokine storm. By focusing on these bioactive compounds and the analogs, a comprehensive overview of their promising roles is provided to advance therapeutic strategies for combating DENV infection.
Collapse
Affiliation(s)
- Amalina Ghaisani Komarudin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Kabupaten Bogor, Jawa Barat, Indonesia
| | - Azis Adharis
- Department of Chemistry, Faculty of Science and Computer Science, Universitas Pertamina (UPER), Jakarta, Indonesia
| | - R Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Kabupaten Bogor, Jawa Barat, Indonesia
| |
Collapse
|
4
|
Pourzangiabadi M, Najafi H, Fallah A, Goudarzi A, Pouladi I. Dengue virus: Etiology, epidemiology, pathobiology, and developments in diagnosis and control - A comprehensive review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105710. [PMID: 39732271 DOI: 10.1016/j.meegid.2024.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Dengue flavivirus (DENV) is the virus that causes dengue, one of the most dangerous and common viral diseases in humans that are carried by mosquitoes and can lead to fatalities. Every year, there are over 400 million cases of dengue fever worldwide, and 22,000 fatalities. It has been documented in tropical and subtropical climates in over 100 nations. Unfortunately, there is no specific treatment approach, but prevention, adequate awareness, diagnosis in the early stages of viral infection and proper medical care can reduce the mortality rate. The first licensed vaccine for dengue virus (CYD Denvaxia) was quadrivalent, but it is not approved in all countries. The primary barriers to vaccine development include inadequate animal models, inadequate etiology mechanistic studies, and adverse drug events. This study provides current knowledge and a comprehensive view of the biology, production and reproduction, transmission, pathogenesis and diagnosis, epidemiology and control measures of dengue virus.
Collapse
Affiliation(s)
- Masoud Pourzangiabadi
- Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Hamideh Najafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aida Goudarzi
- Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Iman Pouladi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Pedreañez A, Carrero Y, Vargas R, Hernández-Fonseca JP, Mosquera JA. Role of angiotensin II in cellular entry and replication of dengue virus. Arch Virol 2024; 169:121. [PMID: 38753119 DOI: 10.1007/s00705-024-06040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have demonstrated the relevance of several soluble molecules in the pathogenesis of dengue. In this regard, a possible role for angiotensin II (Ang II) in the pathophysiology of dengue has been suggested by the observation of a blockade of Ang II in patients with dengue, increased expression of molecules related to Ang II production in the plasma of dengue patients, increased expression of circulating cytokines and soluble molecules related to the action of Ang II, and an apparent relationship between DENV, Ang II effects, and miRNAs. In addition, in ex vivo experiments, the blockade of Ang II AT1 receptor and ACE-1 (angiotensin converting enzyme 1), both of which are involved in Ang II production and its function, inhibits infection of macrophages by DENV, suggesting a role of Ang II in viral entry or in intracellular viral replication of the virus. Here, we discuss the possible mechanisms of Ang II in the entry and replication of DENV. Ang II has the functions of increasing the expression of DENV entry receptors, creation of clathrin-coated vesicles, and increasing phagocytosis, all of which are involved in DENV entry. This hormone also modulates the expression of the Rab5 and Rab7 proteins, which are important in the endosomal processing of DENV during viral replication. This review summarizes the data related to the possible involvement of Ang II in the entry of DENV into cells and its replication.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernández-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología (CNB- CSIC), Madrid, España
| | - Jesús Alberto Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| |
Collapse
|
6
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
7
|
Boon PLS, Martins AS, Lim XN, Enguita FJ, Santos NC, Bond PJ, Wan Y, Martins IC, Huber RG. Dengue Virus Capsid Protein Facilitates Genome Compaction and Packaging. Int J Mol Sci 2023; 24:ijms24098158. [PMID: 37175867 PMCID: PMC10179140 DOI: 10.3390/ijms24098158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Dengue virus (DENV) is a single-stranded (+)-sense RNA virus that infects humans and mosquitoes, posing a significant health risk in tropical and subtropical regions. Mature virions are composed of an icosahedral shell of envelope (E) and membrane (M) proteins circumscribing a lipid bilayer, which in turn contains a complex of the approximately 11 kb genomic RNA with capsid (C) proteins. Whereas the structure of the envelope is clearly defined, the structure of the packaged genome in complex with C proteins remains elusive. Here, we investigated the interactions of C proteins with viral RNA, in solution and inside mature virions, via footprinting and cross-linking experiments. We demonstrated that C protein interaction with DENV genomes saturates at an RNA:C protein ratio below 1:250. Moreover, we also showed that the length of the RNA genome interaction sites varies, in a multimodal distribution, consistent with the C protein binding to each RNA site mostly in singlets or pairs (and, in some instances, higher numbers). We showed that interaction sites are preferentially sites with low base pairing, as previously measured by 2'-acetylation analyzed by primer extension (SHAPE) reactivity indicating structuredness. We found a clear association pattern emerged: RNA-C protein binding sites are strongly associated with long-range RNA-RNA interaction sites, particularly inside virions. This, in turn, explains the need for C protein in viral genome packaging: the protein has a chief role in coordinating these key interactions, promoting proper packaging of viral RNA. Such sites are, thus, highly consequential for viral assembly, and, as such, may be targeted in future drug development strategies against these and related viruses.
Collapse
Affiliation(s)
- Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Xin Ni Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| |
Collapse
|
8
|
Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 2021; 13:v13101967. [PMID: 34696397 PMCID: PMC8541669 DOI: 10.3390/v13101967] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Dengue is a mosquito-borne viral disease (arboviral) caused by the Dengue virus. It is one of the prominent public health problems in tropical and subtropical regions with no effective vaccines. Every year around 400 million people get infected by the Dengue virus, with a mortality rate of about 20% among the patients with severe dengue. The Dengue virus belongs to the Flaviviridae family, and it is an enveloped virus with positive-sense single-stranded RNA as the genetic material. Studies of the infection cycle of this virus revealed potential host targets important for the virus replication cycle. Here in this review article, we will be discussing different stages of the Dengue virus infection cycle inside mammalian host cells and how host proteins are exploited by the virus in the course of infection as well as how the host counteracts the virus by eliciting different antiviral responses.
Collapse
Affiliation(s)
- Nikita Nanaware
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | | | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: or (P.B.); or (A.M.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
- Correspondence: or (P.B.); or (A.M.)
| |
Collapse
|
9
|
Abstract
Dengue is a vector-borne viral disease caused by the flavivirus dengue virus (DENV). Approximately 400 million cases and 22 000 deaths occur due to dengue worldwide each year. It has been reported in more than 100 countries in tropical and subtropical regions. A positive-stranded enveloped RNA virus (DENV) is principally transmitted by Aedes mosquitoes. It has four antigenically distinct serotypes, DENV-1 to DENV-4, with different genotypes and three structural proteins and seven non-structural proteins. Clinical symptoms of dengue range from mild fever to severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), with thrombocytopenia, leucopenia, and increased vascular permeability. Although primary infection causes activation of immune responses against DENV serotypes, the severity of the disease is enhanced via heterotypic infection by various serotypes as well as antibody-dependent enhancement (ADE). The first licensed DENV vaccine was tetravalent CYD Denvaxia, but it has not been approved in all countries. The lack of a suitable animal model, a proper mechanistic study in pathogenesis, and ADE are the main hindrances in vaccine development. This review summarizes the current knowledge on DENV epidemiology, biology, and disease aetiology in the context of prevention and protection from dengue virus disease.
Collapse
Affiliation(s)
- Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| |
Collapse
|
10
|
Quirino-Teixeira AC, Andrade FB, Pinheiro MBM, Rozini SV, Hottz ED. Platelets in dengue infection: more than a numbers game. Platelets 2021; 33:176-183. [PMID: 34027810 DOI: 10.1080/09537104.2021.1921722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Dengue virus (DENV) infection is responsible for the development of dengue illness, which can be either asymptomatic, present mild manifestations or evolve to severe dengue. Thrombocytopenia is an important characteristic during DENV infection, being observed both in mild and severe dengue, although the lowest platelet counts are encountered during severe cases. This review gathers information regarding several mechanisms that have been related to alterations in platelet number and function, leading to thrombocytopenia but also platelet-mediated immune and inflammatory response. On this regard, we highlight that the decrease in platelet counts may be due to bone marrow suppression or consumption of platelets at the periphery. We discuss the infection of hematopoietic progenitors and stromal cells as mechanisms involved in bone marrow suppression. Concerning peripheral consumption of platelets, we addressed the direct infection of platelets by DENV, adhesion of platelets to leukocytes and vascular endothelium and platelet clearance mediated by anti-platelet antibodies. We also focused on platelet involvement on the dengue immunity and pathogenesis through translation and secretion of viral and host factors and through platelet-leukocyte aggregates formation. Hence, the present review highlights important findings related to platelet activation and thrombocytopenia during dengue infection, and also exhibits different mechanisms associated with decreased platelet counts.Graphical abstract:Schematic mechanistic representation of platelet-mediated immune responses and thrombocytopenia during dengue infection. (A) DENV-infected platelets secrete cytokines and chemokines and also adhere to activated vascular endothelium. Platelets aggregate with leukocytes, inducing the secretion of NETs and inflammatory mediators by neutrophils and monocytes, respectively. (B) DENV directly infects stromal cells and hematopoietic precursors, including megakaryocytes, which compromises megakaryopoiesis. Both central and peripheric mechanisms contribute to DENV-associated thrombocytopenia.
Collapse
Affiliation(s)
- Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| |
Collapse
|
11
|
Diosa-Toro M, Prasanth KR, Bradrick SS, Garcia Blanco MA. Role of RNA-binding proteins during the late stages of Flavivirus replication cycle. Virol J 2020; 17:60. [PMID: 32334603 PMCID: PMC7183730 DOI: 10.1186/s12985-020-01329-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/11/2020] [Indexed: 12/21/2022] Open
Abstract
The genus Flavivirus encompasses several worldwide-distributed arthropod-borne viruses including, dengue virus, Japanese encephalitis virus, West Nile virus, yellow fever virus, Zika virus, and tick-borne encephalitis virus. Infection with these viruses manifest with symptoms ranging from febrile illness to life- threatening hypotensive shock and encephalitis. Therefore, flaviviruses pose a great risk to public health. Currently, preventive measures are falling short to control epidemics and there are no antivirals against any Flavivirus.Flaviviruses carry a single stranded positive-sense RNA genome that plays multiple roles in infected cells: it is translated into viral proteins, used as template for genome replication, it is the precursor of the subgenomic flaviviral RNA and it is assembled into new virions. Furthermore, viral RNA genomes are also packaged into extracellular vesicles, e.g. exosomes, which represent an alternate mode of virus dissemination.Because RNA molecules are at the center of Flavivirus replication cycle, viral and host RNA-binding proteins (RBPs) are critical determinants of infection. Numerous studies have revealed the function of RBPs during Flavivirus infection, particularly at the level of RNA translation and replication. These proteins, however, are also critical participants at the late stages of the replication cycle. Here we revise the function of host RBPs and the viral proteins capsid, NS2A and NS3, during the packaging of viral RNA and the assembly of new virus particles. Furthermore, we go through the evidence pointing towards the importance of host RBPs in mediating cellular RNA export with the idea that the biogenesis of exosomes harboring Flavivirus RNA would follow an analogous pathway.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Global Health, Surveillance & Diagnostics Group, MRIGlobal, Kansas City, MO, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariano A Garcia Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Abstract
Arthropod-borne viral diseases caused by dengue virus (DENV) are major re-emerging public health problem worldwide. In spite of intense research, DENV pathogenesis is not fully understood and remains enigmatic; however, current evidence suggests that dengue progression is associated with an inflammatory response, mainly in patients suffering from a second DENV infection. Monocytes are one of the main target cells of DENV infection and play an important role in pathogenesis since they are known to produce several inflammatory cytokines that can lead to endothelial dysfunction and therefore vascular leak. In addition, monocytes play an important role in antibody dependent enhancement, infection with consequences in viral load and immune response. Despite the physiological functions of monocytes in immune response, their life span in the bloodstream is very short, and activation of monocytes by DENV infection can trigger different types of cell death. For example, DENV can induce apoptosis in monocytes related with the production of Tumor necrosis factor alpha (TNF-α). Additionally, recent studies have shown that DENV-infected monocytes also exhibit a cell death process mediated by caspase-1 activation together with IL-1 production, referred to as pyroptosis. Taken together, the aforementioned studies strongly depict that multiple cell death pathways may be occurring in monocytes upon DENV-2 infection. This review provides insight into mechanisms of DENV-induced death of both monocytes and other cell types for a better understanding of this process. Further knowledge in cell death induced by DENV will help in the developing novel strategies to prevent disease progression.
Collapse
|
13
|
Castillo JA, Naranjo JS, Rojas M, Castaño D, Velilla PA. Role of Monocytes in the Pathogenesis of Dengue. Arch Immunol Ther Exp (Warsz) 2018; 67:27-40. [DOI: 10.1007/s00005-018-0525-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/03/2018] [Indexed: 11/29/2022]
|
14
|
Hsieh MS, Chen MY, Hsieh CH, Pan CH, Yu GY, Chen HW. Detection and quantification of dengue virus using a novel biosensor system based on dengue NS3 protease activity. PLoS One 2017; 12:e0188170. [PMID: 29161301 PMCID: PMC5697845 DOI: 10.1371/journal.pone.0188170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023] Open
Abstract
Background The traditional methods, plaque assays and immuno-focus assays, used to titrate infectious dengue virus (DENV) particles are time consuming and labor intensive. Here, we developed a DENV protease activity detection system (DENPADS) to visualize DENV infection in cells based on dengue protease activity. Methodology/Principal findings Dengue NS3 protease cleaves NS4B-NS5. BHK-21 cells stably expressing the sensor module comprising DENV-2 NS4 and the 10 amino-terminal amino acids of NS5 (N10NS5) fused with the SV40 nuclear localization signal (NLS) and Cre recombinase (Cre), were generated. Cre is constrained outside the nucleus in the absence of NS3 activity but translocates into the nucleus through NS4B-NS5 cleavage when cells are infected with DENV. Nuclear translocation of Cre can trigger the reporter system, which contains a cis-loxP-flanked mCherry with three continuous stop codons following an SV40 polyA tail cDNA upstream of EGFP or mHRP cDNA. Our results show that DENPADS is an efficient and accurate method to titrate 4 DENV serotypes in 24 hours. Compared with current virus titration methods, the entire process is easy to perform, and the data are easily acquired. Conclusions/Significance In this study, we demonstrate that DENPADS can be used to detect dengue viral infection through a fluorescence switch or HRP activity in the infected cells. This approach is sensitive with less incubation time and labor input. In addition, DENPADS can simultaneously evaluate the efficacy and cytotoxicity of potential anti-DENV candidates. Overall, DENPADS is a useful tool for dengue research.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Chun-Hsiang Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Chien-Hsiung Pan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Hsin-Wei Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
15
|
Diosa-Toro M, Echavarría-Consuegra L, Flipse J, Fernández GJ, Kluiver J, van den Berg A, Urcuqui-Inchima S, Smit JM. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS Negl Trop Dis 2017; 11:e0005981. [PMID: 29045406 PMCID: PMC5662241 DOI: 10.1371/journal.pntd.0005981] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/30/2017] [Accepted: 09/20/2017] [Indexed: 01/18/2023] Open
Abstract
Background Due to the high burden of dengue disease worldwide, a better understanding of the interactions between dengue virus (DENV) and its human host cells is of the utmost importance. Although microRNAs modulate the outcome of several viral infections, their contribution to DENV replication is poorly understood. Methods and principal findings We investigated the microRNA expression profile of primary human macrophages challenged with DENV and deciphered the contribution of microRNAs to infection. To this end, human primary macrophages were challenged with GFP-expressing DENV and sorted to differentiate between truly infected cells (DENV-positive) and DENV-exposed but non-infected cells (DENV-negative cells). The miRNAome was determined by small RNA-Seq analysis and the effect of differentially expressed microRNAs on DENV yield was examined. Five microRNAs were differentially expressed in human macrophages challenged with DENV. Of these, miR-3614-5p was found upregulated in DENV-negative cells and its overexpression reduced DENV infectivity. The cellular targets of miR-3614-5p were identified by liquid chromatography/mass spectrometry and western blot. Adenosine deaminase acting on RNA 1 (ADAR1) was identified as one of the targets of miR-3614-5p and was shown to promote DENV infectivity at early time points post-infection. Conclusion/Significance Overall, miRNAs appear to play a limited role in DENV replication in primary human macrophages. The miRNAs that were found upregulated in DENV-infected cells did not control the production of infectious virus particles. On the other hand, miR-3614-5p, which was upregulated in DENV-negative macrophages, reduced DENV infectivity and regulated ADAR1 expression, a protein that facilitates viral replication. Dengue is the most common mosquito-borne disease worldwide and it is an increasing global concern for public health as its etiological agent, dengue virus (DENV), keeps spreading around the globe. Currently there are no specific antiviral therapies available to treat the disease. Macrophages are important target cells during natural DENV infection of humans. Here, we unraveled the importance of miRNAs in DENV replication in human primary macrophages. The expression profile of miRNAs was determined in truly DENV-infected cells and cells that were exposed but not productively infected by the virus by RNA sequencing. We revealed that only five miRNAs are regulated in primary macrophages challenged with DENV. These results show that miRNAs do not play a major role in DENV replication. Unexpectedly, we did identify a miRNA with moderate yet significant antiviral properties to DENV. Moreover, miRNA-3614-5p was found to not only decrease DENV but also West Nile virus infectivity. Mass spectrometry and bioinformatics analysis identified adenosine deaminase acting on RNA 1 (ADAR1) as one of the targets. Moreover, ADAR1 was observed to promote the early stages of DENV replication. Collectively, our study broadens the knowledge of the contribution of human miRNAs in shaping the network of interactions between DENV and its human host cells.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Liliana Echavarría-Consuegra
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jacky Flipse
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jolanda M. Smit
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- * E-mail:
| |
Collapse
|
16
|
Wang CC, Hsu YC, Wu HC, Wu HN. Insights into the coordinated interplay of the sHP hairpin and its co-existing and mutually-exclusive dengue virus terminal RNA elements for viral replication. Virology 2017; 505:56-70. [PMID: 28235683 DOI: 10.1016/j.virol.2017.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/15/2022]
Abstract
Terminal RNA elements of the dengue virus (DENV) genome are necessary for balanced stability of linear and circular conformations during replication. We examined the small hairpin (sHP) and co-existing and mutually-exclusive terminal RNA elements by mutagenesis analysis, compensatory mutation screening, and by probing with RNA fragments to explore localized RNA folding and long-range RNA interactions. We found that the first base pair of the sHP and the stability of SLB and the 3'SL bottom stem affected circularization; sHPgc/C10631G+G10644C prohibited circularization, sHPuG accelerated and stabilized 5'-to-3' RNA hybridization, while C94A and A97G and C10649 mutations loosened SLB and 3'SL, respectively, for circularization. sHPuG+C10649G induced circularization and impeded replication, whereas point mutations that loosened the UAR or DAR ds region, strengthened the sHP, or reinforced the 3'SL bottom stem, rescued the replication deficiency. Overall, we reveal structural and sequence features and interplay of DENV genome terminal RNA elements essential to viral replication.
Collapse
Affiliation(s)
- Chun-Chung Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hsin-Chieh Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China; Faculty of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Huey-Nan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.
| |
Collapse
|
17
|
Tabachnick WJ. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses. Annu Rev Virol 2016; 3:125-145. [DOI: 10.1146/annurev-virology-110615-035630] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Walter J. Tabachnick
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, Florida 32962;
| |
Collapse
|
18
|
Fajardo-Sánchez E, Galiano V, Villalaín J. Molecular dynamics study of the membrane interaction of a membranotropic dengue virus C protein-derived peptide. J Biomol Struct Dyn 2016; 35:1283-1294. [DOI: 10.1080/07391102.2016.1179595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Emmanuel Fajardo-Sánchez
- Physics and Computer Architecture Department Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| | - Vicente Galiano
- Physics and Computer Architecture Department Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| | - José Villalaín
- Molecular and Cellular Biology Institute, Universitas “Miguel Hernández”, E-03202 Elche-Alicante, Spain
| |
Collapse
|
19
|
Vitamin D-Regulated MicroRNAs: Are They Protective Factors against Dengue Virus Infection? Adv Virol 2016; 2016:1016840. [PMID: 27293435 PMCID: PMC4879221 DOI: 10.1155/2016/1016840] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/07/2016] [Accepted: 04/20/2016] [Indexed: 12/19/2022] Open
Abstract
Over the last few years, an increasing body of evidence has highlighted the critical participation of vitamin D in the regulation of proinflammatory responses and protection against many infectious pathogens, including viruses. The activity of vitamin D is associated with microRNAs, which are fine tuners of immune activation pathways and provide novel mechanisms to avoid the damage that arises from excessive inflammatory responses. Severe symptoms of an ongoing dengue virus infection and disease are strongly related to highly altered production of proinflammatory mediators, suggesting impairment in homeostatic mechanisms that control the host's immune response. Here, we discuss the possible implications of emerging studies anticipating the biological effects of vitamin D and microRNAs during the inflammatory response, and we attempt to extrapolate these findings to dengue virus infection and to their potential use for disease management strategies.
Collapse
|
20
|
Castillo JA, Castrillón JC, Diosa-Toro M, Betancur JG, St Laurent G, Smit JM, Urcuqui-Inchima S. Complex interaction between dengue virus replication and expression of miRNA-133a. BMC Infect Dis 2016; 16:29. [PMID: 26818704 PMCID: PMC4728791 DOI: 10.1186/s12879-016-1364-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 01/18/2016] [Indexed: 12/25/2022] Open
Abstract
Background Dengue virus (DENV) is the most common vector-borne viral infection worldwide with approximately 390 million cases and 25,000 reported deaths each year. MicroRNAs (miRNAs) are small non-coding RNA molecules responsible for the regulation of gene expression by repressing mRNA translation or inducing mRNA degradation. Although miRNAs possess antiviral activity against many mammalian-infecting viruses, their involvement in DENV replication is poorly understood. Methods Here, we explored the relationship between DENV and cellular microRNAs using bioinformatics tools. We overexpressed miRNA-133a in Vero cells to test its role in DENV replication and analyzed its expression using RT-qPCR. Furthermore, the expression of polypyrimidine tract binding protein (PTB), a protein involved in DENV replication, was analyzed by western blot. In addition, we profiled miRNA-133a expression in Vero cells challenged with DENV-2, using Taqman miRNA. Results Bioinformatic analysis revealed that the 3' untranslated region (3'UTR) of the DENV genome of all four DENV serotypes is targeted by several cellular miRNAs, including miRNA-133a. We found that overexpression of synthetic miRNA-133a suppressed DENV replication. Additionally, we observed that PTB transcription , a miRNA-133a target, is down-regulated during DENV infection. Based in our results we propose that 3'UTR of DENV down-regulates endogenous expression of miRNA-133a in Vero cells during the first hours of infection. Conclusions miRNA-133a regulates DENV replication possibly through the modulation of a host factor such as PTB. Further investigations are needed to verify whether miRNA-133a has an anti-DENV effect in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1364-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge Andrés Castillo
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Juan Camilo Castrillón
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Mayra Diosa-Toro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.,Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Juan Guillermo Betancur
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Georges St Laurent
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.,St Laurent Institute, 317 New Boston St, Woburn, MA, 01801, USA
| | - Jolanda M Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.
| |
Collapse
|
21
|
León-Juárez M, Martínez-Castillo M, Shrivastava G, García-Cordero J, Villegas-Sepulveda N, Mondragón-Castelán M, Mondragón-Flores R, Cedillo-Barrón L. Recombinant Dengue virus protein NS2B alters membrane permeability in different membrane models. Virol J 2016; 13:1. [PMID: 26728778 PMCID: PMC4700614 DOI: 10.1186/s12985-015-0456-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Background One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investigated whether the small hydrophobic DENV protein NS2B serves a viroporin function. Methods We cloned the DENV NS2B sequence and expressed it in a bacterial expression system. Subsequently, we evaluated the effect of DENV NS2B on membranes when NS2B was overexpressed, measured bacterial growth restriction, and evaluated changes of permeability to hygromycin. The NS2B protein was purified by affinity chromatography, and crosslinking assays were performed to determine the presence of oligomers. Hemolysis assays and transmission electron microscopy were performed to identify structures involved in permeability changes. Results The DENV-2 NS2B protein showed similitude with the JEV viroporin. The DENV-2 NS2B protein possessed the ability to change the membrane permeability in bacteria, to restrict bacterial cell growth, and to enable membrane permeability to hygromycin B. The NS2B protein formed trimers that could participate in cell lysis and generate organized structures on eukaryotes membranes. Conclusions Our data suggest that the DENV-2 NS2B viral protein is capable of oligomerizing and organizing to form pore-like structures in different lipid environments, thereby modifying the permeability of cell membranes.
Collapse
Affiliation(s)
- Moisés León-Juárez
- Departmento de Biomedicina Molecular, Centro de Investigacion y Estudios avanzados IPN, Av. Instituto Politecnico 2508 Col. San Pedro Zacatenco, 07360, México, Mexico. .,Present Address: Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, Montes Urales #800 Col. Lomas de Virreyes, 1100, México, Mexico.
| | - Macario Martínez-Castillo
- Departmento de Biomedicina Molecular, Centro de Investigacion y Estudios avanzados IPN, Av. Instituto Politecnico 2508 Col. San Pedro Zacatenco, 07360, México, Mexico.
| | - Gaurav Shrivastava
- Departmento de Biomedicina Molecular, Centro de Investigacion y Estudios avanzados IPN, Av. Instituto Politecnico 2508 Col. San Pedro Zacatenco, 07360, México, Mexico.
| | - Julio García-Cordero
- Departmento de Biomedicina Molecular, Centro de Investigacion y Estudios avanzados IPN, Av. Instituto Politecnico 2508 Col. San Pedro Zacatenco, 07360, México, Mexico.
| | - Nicolás Villegas-Sepulveda
- Departmento de Biomedicina Molecular, Centro de Investigacion y Estudios avanzados IPN, Av. Instituto Politecnico 2508 Col. San Pedro Zacatenco, 07360, México, Mexico.
| | - Mónica Mondragón-Castelán
- Departamento de Bioquímica, CINVESTAV IPN Av, IPN # 2508 Col. San Pedro Zacatenco, 07360, México, DF, Mexico.
| | - Ricardo Mondragón-Flores
- Departamento de Bioquímica, CINVESTAV IPN Av, IPN # 2508 Col. San Pedro Zacatenco, 07360, México, DF, Mexico.
| | - Leticia Cedillo-Barrón
- Departmento de Biomedicina Molecular, Centro de Investigacion y Estudios avanzados IPN, Av. Instituto Politecnico 2508 Col. San Pedro Zacatenco, 07360, México, Mexico.
| |
Collapse
|
22
|
Abstract
DENV envelope glycoprotein (E) is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD) of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.
Collapse
|
23
|
Dengue virus binding and replication by platelets. Blood 2015; 126:378-85. [PMID: 25943787 DOI: 10.1182/blood-2014-09-598029] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/28/2015] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) infection causes ∼200 million cases of severe flulike illness annually, escalating to life-threatening hemorrhagic fever or shock syndrome in ∼500,000. Although thrombocytopenia is typical of both mild and severe diseases, the mechanism triggering platelet reduction is incompletely understood. As a probable initiating event, direct purified DENV-platelet binding was followed in the current study by quantitative reverse transcription-polymerase chain reaction and confirmed antigenically. Approximately 800 viruses specifically bound per platelet at 37°C. Fewer sites were observed at 25°C, the blood bank storage temperature (∼350 sites), or 4°C, known to attenuate virus cell entry (∼200 sites). Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and heparan sulfate proteoglycan were implicated as coreceptors because only the combination of anti-DC-SIGN and low-molecular-weight heparin prevented binding. Interestingly, at 37°C and 25°C, platelets replicated the positive sense single-stranded RNA genome of DENV by up to ∼4-fold over 7 days. Further time course experiments demonstrated production of viral NS1 protein, which is known to be highly antigenic in patient serum. The infectivity of DENV intrinsically decayed in vitro, which was moderated by platelet-mediated generation of viable progeny. This was shown using a transcription inhibitor and confirmed by freeze-denatured platelets being incapable of replicating the DENV genome. For the first time, these data demonstrate that platelets directly bind DENV saturably and produce infectious virus. Thus, expression of antigen encoded by DENV is a novel consideration in the pathogen-induced thrombocytopenia mechanism. These results furthermore draw attention to the possibility that platelets may produce permissive RNA viruses in addition to DENV.
Collapse
|
24
|
Faustino AF, Guerra GM, Huber RG, Hollmann A, Domingues MM, Barbosa GM, Enguita FJ, Bond PJ, Castanho MARB, Da Poian AT, Almeida FCL, Santos NC, Martins IC. Understanding dengue virus capsid protein disordered N-Terminus and pep14-23-based inhibition. ACS Chem Biol 2015; 10:517-26. [PMID: 25412346 DOI: 10.1021/cb500640t] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dengue virus (DENV) infection affects millions of people and is becoming a major global disease for which there is no specific available treatment. pep14-23 is a recently designed peptide, based on a conserved segment of DENV capsid (C) protein. It inhibits the interaction of DENV C with host intracellular lipid droplets (LDs), which is crucial for viral replication. Combining bioinformatics and biophysics, here, we analyzed pep14-23 structure and ability to bind different phospholipids, relating that information with the full-length DENV C. We show that pep14-23 acquires α-helical conformation upon binding to negatively charged phospholipid membranes, displaying an asymmetric charge distribution structural arrangement. Structure prediction for the N-terminal segment reveals four viable homodimer orientations that alternatively shield or expose the DENV C hydrophobic pocket. Taken together, these findings suggest a new biological role for the disordered N-terminal region, which may function as an autoinhibitory domain mediating DENV C interaction with its biological targets. The results fit with our current understanding of DENV C and pep14-23 structure and function, paving the way for similar approaches to understanding disordered proteins and improved peptidomimetics drug development strategies against DENV and similar Flavivirus infections.
Collapse
Affiliation(s)
- André F. Faustino
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Gabriela M. Guerra
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G. Huber
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
| | - Axel Hollmann
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Marco M. Domingues
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Glauce M. Barbosa
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Francisco J. Enguita
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J. Bond
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis
Street, #07-01 Matrix, 138671 Singapore, Singapore
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, 117543 Singapore, Singapore
| | - Miguel A. R. B. Castanho
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Andrea T. Da Poian
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Fabio C. L. Almeida
- Instituto
de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
- Centro
Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro and National Institute of Structural Biology and Bioimage, Rio de Janeiro, RJ 21941-902, Brazil
| | - Nuno C. Santos
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ivo C. Martins
- Instituto
de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
25
|
Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(14)60635-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Castillo Ramirez JA, Urcuqui-Inchima S. Dengue Virus Control of Type I IFN Responses: A History of Manipulation and Control. J Interferon Cytokine Res 2015; 35:421-30. [PMID: 25629430 DOI: 10.1089/jir.2014.0129] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The arthropod-borne diseases caused by dengue virus (DENV) are a major and emerging problem of public health worldwide. Infection with DENV causes a series of clinical manifestations ranging from mild flu syndrome to severe diseases that include hemorrhage and shock. It has been demonstrated that the innate immune response plays a key role in DENV pathogenesis. However, in recent years, it was shown that DENV evades the innate immune response by blocking type I interferon (IFN-I). It has been demonstrated that DENV can inhibit both the production and the signaling of IFN-I. The viral proteins, NS2A and NS3, inhibit IFN-I production by degrading cellular signaling molecules. In addition, the viral proteins, NS2A, NS4A, NS4B, and NS5, can inhibit IFN-I signaling by blocking the phosphorylation of the STAT1 and STAT2 molecules. Finally, NS5 mediates the degradation of STAT2 using the proteasome machinery. In this study, we briefly review the most recent insights regarding the IFN-I response to DENV infection and its implication for pathogenesis.
Collapse
Affiliation(s)
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA , Medellín, Colombia
| |
Collapse
|
27
|
Cedillo-Barrón L, García-Cordero J, Bustos-Arriaga J, León-Juárez M, Gutiérrez-Castañeda B. Antibody response to dengue virus. Microbes Infect 2014; 16:711-20. [PMID: 25124542 DOI: 10.1016/j.micinf.2014.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 12/23/2022]
Abstract
In this review, we discuss the current knowledge of the role of the antibody response against dengue virus and highlight novel insights into targets recognized by the human antibody response. We also discuss how the balance of pathological and protective antibody responses in the host critically influences clinical aspects of the disease.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico
| | - José Bustos-Arriaga
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, 20892 MD, USA
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Montes Urales #800, Col. Lomas de Virreyes, 11000, Mexico
| | - Benito Gutiérrez-Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala, Universidad Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
28
|
Černý J, Černá Bolfíková B, Valdés JJ, Grubhoffer L, Růžek D. Evolution of tertiary structure of viral RNA dependent polymerases. PLoS One 2014; 9:e96070. [PMID: 24816789 PMCID: PMC4015915 DOI: 10.1371/journal.pone.0096070] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Viral RNA dependent polymerases (vRdPs) are present in all RNA viruses; unfortunately, their sequence similarity is too low for phylogenetic studies. Nevertheless, vRdP protein structures are remarkably conserved. In this study, we used the structural similarity of vRdPs to reconstruct their evolutionary history. The major strength of this work is in unifying sequence and structural data into a single quantitative phylogenetic analysis, using powerful a Bayesian approach. The resulting phylogram of vRdPs demonstrates that RNA-dependent DNA polymerases (RdDPs) of viruses within Retroviridae family cluster in a clearly separated group of vRdPs, while RNA-dependent RNA polymerases (RdRPs) of dsRNA and +ssRNA viruses are mixed together. This evidence supports the hypothesis that RdRPs replicating +ssRNA viruses evolved multiple times from RdRPs replicating +dsRNA viruses, and vice versa. Moreover, our phylogram may be presented as a scheme for RNA virus evolution. The results are in concordance with the actual concept of RNA virus evolution. Finally, the methods used in our work provide a new direction for studying ancient virus evolution.
Collapse
Affiliation(s)
- Jiří Černý
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- * E-mail:
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - James J. Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
- Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
29
|
García Cordero J, León Juárez M, González-Y-Merchand JA, Cedillo Barrón L, Gutiérrez Castañeda B. Caveolin-1 in lipid rafts interacts with dengue virus NS3 during polyprotein processing and replication in HMEC-1 cells. PLoS One 2014; 9:e90704. [PMID: 24643062 PMCID: PMC3958351 DOI: 10.1371/journal.pone.0090704] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/18/2014] [Indexed: 01/10/2023] Open
Abstract
Lipid rafts are ordered microdomains within cellular membranes that are rich in cholesterol and sphingolipids. Caveolin (Cav-1) and flotillin (Flt-1) are markers of lipid rafts, which serve as an organizing center for biological phenomena and cellular signaling. Lipid rafts involvement in dengue virus (DENV) processing, replication, and assembly remains poorly characterized. Here, we investigated the role of lipid rafts after DENV endocytosis in human microvascular endothelial cells (HMEC-1). The non-structural viral proteins NS3 and NS2B, but not NS5, were associated with detergent-resistant membranes. In sucrose gradients, both NS3 and NS2B proteins appeared in Cav-1 and Flt-1 rich fractions. Additionally, double immunofluorescence staining of DENV-infected HMEC-1 cells showed that NS3 and NS2B, but not NS5, colocalized with Cav-1 and Flt-1. Furthermore, in HMEC-1cells transfected with NS3 protease, shown a strong overlap between NS3 and Cav-1, similar to that in DENV-infected cells. In contrast, double-stranded viral RNA (dsRNA) overlapped weakly with Cav-1 and Flt-1. Given these results, we investigated whether Cav-1 directly interacted with NS3. Cav-1 and NS3 co-immunoprecipitated, indicating that they resided within the same complex. Furthermore, when cellular cholesterol was depleted by methyl-beta cyclodextrin treatment after DENV entrance, lipid rafts were disrupted, NS3 protein level was reduced, besides Cav-1 and NS3 were displaced to fractions 9 and 10 in sucrose gradient analysis, and we observed a dramatically reduction of DENV particles release. These data demonstrate the essential role of caveolar cholesterol-rich lipid raft microdomains in DENV polyprotein processing and replication during the late stages of the DENV life cycle.
Collapse
Affiliation(s)
- Julio García Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas IPN, México City, México
| | - Moisés León Juárez
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
| | | | - Leticia Cedillo Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y Estudios Avanzados del IPN, México City, México
- * E-mail: (BGC); (LCB)
| | - Benito Gutiérrez Castañeda
- Laboratorio de Inmunología, Facultad de Estudios Superiores Iztacala Universidad Autónoma de México, Tlalnepantla Estado de México, México
- * E-mail: (BGC); (LCB)
| |
Collapse
|
30
|
Teo CSH, Chu JJH. Cellular vimentin regulates construction of dengue virus replication complexes through interaction with NS4A protein. J Virol 2014; 88:1897-913. [PMID: 24284321 PMCID: PMC3911532 DOI: 10.1128/jvi.01249-13] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 11/20/2013] [Indexed: 01/23/2023] Open
Abstract
Dengue virus (DENV) interacts with host cellular factors to construct a more favorable environment for replication, and the interplay between DENV and the host cellular cytoskeleton may represent one of the potential antiviral targeting sites. However, the involvement of cellular vimentin intermediate filaments in DENV replication has been explored less. Here, we revealed the direct interaction between host cellular vimentin and DENV nonstructural protein 4A (NS4A), a known component of the viral replication complex (RC), during DENV infection using tandem affinity purification, coimmunoprecipitation, and scanning electron microscopy. Furthermore, the dynamics of vimentin-NS4A interaction were demonstrated by using confocal three-dimensional (3D) reconstruction and proximity ligation assay. Most importantly, we report for the first time the discovery of the specific region of NS4A that interacts with vimentin lies within the first 50 amino acid residues at the cytosolic N-terminal domain of NS4A (N50 region). Besides identifying vimentin-NS4A interaction, vimentin reorganization and phosphorylation by calcium calmodulin-dependent protein kinase II occurs during DENV infection, signifying that vimentin reorganization is important in maintaining and supporting the DENV RCs. Interestingly, we found that gene silencing of vimentin by small interfering RNA induced a significant alteration in the distribution of RCs in DENV-infected cells. This finding further supports the crucial role of intact vimentin scaffold in localizing and concentrating DENV RCs at the perinuclear site, thus facilitating efficient viral RNA replication. Collectively, our findings implicate the biological and functional significance of vimentin during DENV replication, as we propose that the association of DENV RCs with vimentin is mediated by DENV NS4A.
Collapse
Affiliation(s)
- Catherine Su Hui Teo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | | |
Collapse
|
31
|
Nemésio H, Palomares-Jerez MF, Villalaín J. Hydrophobic segment of dengue virus C protein. Interaction with model membranes. Mol Membr Biol 2013; 30:273-87. [PMID: 23745515 DOI: 10.3109/09687688.2013.805835] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Dengue virus (DENV) C protein is essential for viral assembly. DENV C protein associates with intracellular membranes through a conserved hydrophobic domain and accumulates around endoplasmic reticulum-derived lipid droplets which could provide a platform for capsid formation during assembly. In a previous work we described a region in DENV C protein which induced a nearly complete membrane rupture of several membrane model systems, which was coincident with the theoretically predicted highly hydrophobic region of the protein. In this work we have carried out a study of the binding to and interaction with model biomembranes of a peptide corresponding to this DENV C region, DENV2C6. We show that DENV2C6 partitions into phospholipid membranes, is capable of rupturing membranes even at very low peptide-to-lipid ratios and its membrane-activity is modulated by lipid composition. These results identify an important region in the DENV C protein which might be directly implicated in the DENV life cycle through the modulation of membrane structure.
Collapse
Affiliation(s)
- Henrique Nemésio
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche-Alicante, Spain
| | | | | |
Collapse
|
32
|
Diosa-Toro M, Urcuqui-Inchima S, Smit JM. Arthropod-borne flaviviruses and RNA interference: seeking new approaches for antiviral therapy. Adv Virus Res 2013; 85:91-111. [PMID: 23439025 PMCID: PMC7149629 DOI: 10.1016/b978-0-12-408116-1.00004-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Flaviviruses are the most prevalent arthropod-borne viruses worldwide, and nearly half of the 70 Flavivirus members identified are human pathogens. Despite the huge clinical impact of flaviviruses, there is no specific human antiviral therapy available to treat infection with any of the flaviviruses. Therefore, there is a continued search for novel therapies, and this review describes the current knowledge on the usage of RNA interference (RNAi) in combating flavivirus infections. RNAi is a process of sequence-specific gene silencing triggered by double-stranded RNA. Antiviral RNAi strategies against arthropod-borne flaviviruses have been reported and although several hurdles must be overcome to employ this technology in clinical applications, they potentially represent a new therapeutic tool.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
33
|
Nemésio H, Palomares-Jerez F, Villalaín J. NS4A and NS4B proteins from dengue virus: Membranotropic regions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2818-30. [DOI: 10.1016/j.bbamem.2012.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 10/28/2022]
|
34
|
Viral targets of acylguanidines. Drug Discov Today 2012; 17:1039-43. [PMID: 22580299 PMCID: PMC7108427 DOI: 10.1016/j.drudis.2012.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/12/2012] [Accepted: 05/02/2012] [Indexed: 01/01/2023]
Abstract
Acylguanidines are a new class of antiviral compounds with the unique ability to target both RNA polymerase and transmembrane proteins of viruses from different families. Importantly, they inhibit proteins which are not targeted by existing antiviral therapies, for example, Vpu of HIV type 1, p7 of hepatitis C virus, E of severe acute respiratory syndrome coronavirus and RNA-dependent RNA polymerase of coxsackievirus B3. BIT225, developed by Biotron Limited, is the first acylguanidine in clinical trials against HIV type 1 and hepatitis C virus. In this article we focus on the mechanisms of inhibition of viral proteins by acylguanidines.
Collapse
|
35
|
Dengue virus-like particles: construction and application. Appl Microbiol Biotechnol 2012; 94:39-46. [DOI: 10.1007/s00253-012-3958-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
36
|
POOPATHI SUBBIAH, ABIDHA SURESH. The use of clarified butter sediment waste from dairy industries for the production of mosquitocidal bacteria. INT J DAIRY TECHNOL 2011. [DOI: 10.1111/j.1471-0307.2011.00745.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
The membrane-active regions of the dengue virus proteins C and E. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2390-402. [DOI: 10.1016/j.bbamem.2011.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/23/2011] [Accepted: 06/28/2011] [Indexed: 12/24/2022]
|
38
|
Fagundes CT, Costa VV, Cisalpino D, Souza DG, Teixeira MM. Therapeutic opportunities in dengue infection. Drug Dev Res 2011. [DOI: 10.1002/ddr.20455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|