1
|
Shao X, Le Fur S, Cheung W, Belot MP, Perge K, Bouhours-Nouet N, Bensignor C, Levaillant L, Ge B, Kwan T, Lathrop M, Pastinen T, Bougnères P. CpG methylation changes associated with hyperglycemia in type 1 diabetes occur at angiogenic glomerular and retinal gene loci. Sci Rep 2025; 15:15999. [PMID: 40341532 PMCID: PMC12062505 DOI: 10.1038/s41598-024-82698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/09/2024] [Indexed: 05/10/2025] Open
Abstract
Chronic hyperglycemia is a major risk factor for glomerular or retinal microangiopathy and cardiovascular complications of type 1 diabetes (T1D). At the interface of genetics and environment, dynamic epigenetic changes associated with hyperglycemia may unravel some of the mechanisms contributing to these T1D complications. In this study, blood samples were collected from 112 young patients at T1D diagnosis and 3 years later in average. Whole genome-wide bisulfite sequencing was used to measure blood DNA methylation changes of about 28 million CpGs at single base resolution over this time. Chronic hyperglycemia was estimated every 3-4 months by HbA1c measurement. Linear regressions with adjustment to age, sex, treatment duration, blood proportions and batch effects were employed to characterize the relationships between the dynamic changes of DNA methylation and average HbA1c levels. We identified that longitudinal DNA methylation changes at 815 CpGs (with suggestive p-value threshold of 1e-4) were associated with average HbA1c. Most of them (> 98%) were located outside of the promoter regions and were enriched in CpG island shores and multiple immune cell type specific accessible chromatin regions. Among the 36 more strongly associated loci (p-value < 5e-6), 16 were harbouring genes or non-coding sequences involved in angiogenesis regulation, glomerular and retinal vascularization or development, or coronary disease. Our findings support the identification of new genomic sites where CpG methylation associated with hyperglycemia may contribute to long-term complications of T1D, shedding light on potential mechanisms for further exploration.
Collapse
Affiliation(s)
- Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Sophie Le Fur
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France
| | - Warren Cheung
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Marie-Pierre Belot
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France
| | - Kevin Perge
- Endocrinologie Pédiatrique, Hôpital Mère Enfant, 69677, Lyon, Bron, France
| | - Natacha Bouhours-Nouet
- Endocrinologie et diabétologie pédiatriques , Hôpital universitaire, Angers Cedex 9, 49933, France
| | | | - Lucie Levaillant
- Endocrinologie et diabétologie pédiatriques , Hôpital universitaire, Angers Cedex 9, 49933, France
| | - Bing Ge
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Pierre Bougnères
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France.
| |
Collapse
|
2
|
Zhang L, Ji C, Li Z, Jiwa H, Xie Z, Luo X, Luo J. Sonic Hedgehog potentiates BMP9-induced osteogenic differentiation of mesenchymal stem cells. Genes Dis 2025; 12:101308. [PMID: 40070367 PMCID: PMC11894376 DOI: 10.1016/j.gendis.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 03/14/2025] Open
Abstract
Bone morphogenetic protein 9 (BMP9) has remarkable potential to induce the differentiation of mesenchymal stem cells (MSCs) towards the osteoblastic lineage. Additionally, research suggests that certain growth factors have the ability to potentiate BMP9-induced osteogenic differentiation of MSCs. Sonic Hedgehog (Shh) plays an indispensable role in the regulation of skeletal development. The objective of this research was to assess the potential influence of Shh on BMP9-induced osteogenic differentiation of MSCs. Our findings indicated that Shh effectively enhanced BMP9-induced early and late osteogenic differentiation of MSCs, and increased BMP9-induced expression/transcriptional activity of osteogenesis-related transcription factors. Besides, it was observed that Shh promoted BMP9-induced ectopic bone formation of MSCs in vivo. Moreover, BMP9 was able to facilitate the repair of bone defects in rats, while Shh further accelerated this reparative process. Mechanistically, Shh enhanced the activation of the Smad1/5/8 signaling pathway which was induced by BMP9. Furthermore, GANT-61, an inhibitor of Gli1 and Gli2, attenuated the enhancing effect of Shh on BMP9-induced osteogenic differentiation of MSCs. Collectively, the co-administration of BMP9 and Shh may present a promising therapeutic approach for the treatment of fracture nonunion, delayed fracture healing, and bone defects.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, China
| | - Caixia Ji
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang, Sichuan 618000, China
| | - Ziyun Li
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, China
| | - Habu Jiwa
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhou Xie
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinyong Luo
- Key Laboratory of Diagnostic Medicine Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 40016, China
| |
Collapse
|
3
|
Dilawar M, Yu X, Jin Y, Yang J, Lin S, Liao J, Dai Q, Zhang X, Nisar MF, Chen G. Notch signaling pathway in osteogenesis, bone development, metabolism, and diseases. FASEB J 2025; 39:e70417. [PMID: 39985304 DOI: 10.1096/fj.202402545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
The skeletal system provides vital importance to support organ development and functions. The Notch signaling pathway possesses well-established functions in organ development and cellular homeostasis. The Notch signaling pathway comprises five typical ligands (JAG1, JAG2, DLL1, DLL3, and DLL4), four receptors (Notch1-4), and four intracellular domains (NICD1-4). Each component of the Notch signaling pathway has been demonstrated to be fundamental in osteoblast differentiation and bone formation. The dysregulation in the Notch signaling pathway is highly linked with skeletal disorders or diseases at the developmental and postnatal stages. Recent studies have highlighted the importance of the elements of the Notch signaling pathway in the skeletal system, as well as its interaction with signaling, such as Wnt/β-catenin, BMP, TGF-β, FGF, autophagy, and hedgehog (Hh) to construct a potential gene regulatory network to orchestrate osteogenesis and ossification. Our review has provided a comprehensive summary of the Notch signaling pathway in the skeletal system, as well as the insights targeting Notch signaling for innovative potential drug discovery targets or therapeutic interventions to treat bone disorders, such as osteoporosis and osteoarthritis. An in-depth molecular mechanistic strategy to modulate the Notch signaling pathway and its associated signaling pathway will be encouraged for consideration to trigger enhanced therapeutic approaches for bone disorders by defining Notch-regulating drugs for clinical use.
Collapse
Affiliation(s)
- Muhammad Dilawar
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuan Yu
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuanyuan Jin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Yang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junguang Liao
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Dai
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology & Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Xu W, Ran B, Aizawa T, Liu W, Zhao J, Niu R, Liu Z, Gu R. The Hedgehog-GLI1 Pathway Regulates Osteogenic Differentiation of Human Cervical Posterior Longitudinal Ligament Cells by BMP Signalling Pathway. J Cell Mol Med 2025; 29:e70393. [PMID: 39910703 PMCID: PMC11798735 DOI: 10.1111/jcmm.70393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Cervical ossification of the posterior longitudinal ligament (OPLL) is an ectopic ossification disorder characterised by endochondral ossification. Its aetiology remains to be fully elucidated. This study aimed to clarify its pathogenesis through RNA sequencing of primary cells cultured from patients without cervical OPLL (control, PLL) and patients with cervical OPLL (disease, OPLL). We revealed for the first time the role of GLI1 within OPLL cells. Functional experiments indicated that GLI1, acting as a pivotal mediator between the upstream Hedgehog pathway and downstream BMP pathway, influences the pathogenesis of OPLL. The positive/negative effects on osteogenic differentiation following activation/inhibition of the Hedgehog pathway can be rescued by manipulating GLI1 expression. Overexpression of GLI1 activates BMP signalling, enhancing osteogenic capacity in PLL cells, while GLI1 knockdown suppresses BMP signal transduction, attenuating osteogenic differentiation in OPLL cells. Our findings highlight the significant role of the canonical Hedgehog signalling pathway and its interaction with the BMP pathway in the pathogenesis of OPLL.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Bingbing Ran
- Department of UltrasoundThe First Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Toshimi Aizawa
- Department of Orthopaedic SurgeryTohoku University School of MedicineSendaiJapan
| | - Wanguo Liu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Jianhui Zhao
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Renrui Niu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Zeping Liu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Rui Gu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| |
Collapse
|
5
|
Lv D, Li B, Liu Z, Zhang Q, Cao S, Xu Y, Zhang Z. LPS‑mediated adaptation accelerates ecto‑MSCs differentiation into osteoblasts. Mol Med Rep 2024; 30:241. [PMID: 39422037 PMCID: PMC11544396 DOI: 10.3892/mmr.2024.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Addressing the repair and regeneration of large bone defects poses significant challenges in bone tissue engineering. Despite the abundant evidence demonstrating the positive role of MSCs in osteogenesis, their limited osteogenic differentiation ability still needs to be improved. The present study used lipopolysaccharide (LPS) to enhance the osteogenic properties of ecto‑mesenchymal stem cells (EMSCs). Human nasal respiratory mucosa‑derived EMSCs were cultured on plates and stimulated with LPS for 5 days prior to undergoing osteogenic differentiation. The findings revealed that LPS effectively stimulated the osteogenic differentiation capacity of EMSCs, as evidenced by heightened alkaline phosphatase activity, elevated expression levels of osteogenic‑related proteins and enhanced mineralization of EMSCs. The present study also demonstrated that the augmentation occurred due to increased IL‑10 levels, although it was not solely attributable to this factor. Together, the findings illustrated that the LPS‑mediated adaptation of EMSCs is an active process driving osteogenic differentiation and could be a novel strategy for bone regeneration.
Collapse
Affiliation(s)
- Demin Lv
- Department of Traumatic Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bingxia Li
- Department of Stomatology, Zhenjiang 359th Hospital, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhen Liu
- Department of Neurosurgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Qing Zhang
- Department of Traumatic Orthopedics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Sucheng Cao
- Department of Emergency Services, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yanlong Xu
- Department of Emergency Services, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zheng Zhang
- Department of Medical Ultrasonics, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
6
|
Wu C, Chen F, Huang S, Zhang Z, Wan J, Zhang W, Liu X. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115770. [PMID: 36191661 DOI: 10.1016/j.jep.2022.115770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular diseases are still the leading cause of death worldwide. Heart failure (HF), as the terminal stage of many cardiovascular diseases, has brought a heavy burden to the global medical system. Microvascular rarefaction (decreased myocardial capillary density) with reduced coronary flow reserve is a hallmark of HF and therapeutic myocardial angiogenesis is now emerging as a promising approach for the prevention and treatment in HF. Traditional Chinese medicine (TCM) has made remarkable achievements in the treatment of many cardiovascular diseases. Growing evidence have shown that their protective effect in HF is closely related to therapeutic angiogenesis. AIM OF THE STUDY This review is to enlighten the therapeutic effect and pro-angiogenic mechanism of TCM in HF, and provide valuable hints for the development of pro-angiogenic drugs for the treatment of HF. MATERIALS AND METHODS The relevant information about cardioprotective TCM was collected from electronic scientific databases such as PubMed, Web of Science, ScienceDirect, and China National Knowledge Infrastructure (CNKI). RESULTS The studies showed that TCM formulas, extracts, and compounds from herbal medicines can provide therapeutic effect in HF with their pro-angiogenic activity. Their actions are achieved mainly by regulating the key angiogenesis factors particularly VEGF, as well as related regulators including signal molecules and pathways, non-coding miRNAs and stem cells. CONCLUSION TCM and their active components might be promising in therapeutic angiogenesis for the treatment of HF.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Si Huang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Academy of Interdisciplinary Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Liang C, Liu X, Yan Y, Sun R, Li J, Geng W. Effectiveness and Mechanisms of Low-Intensity Pulsed Ultrasound on Osseointegration of Dental Implants and Biological Functions of Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:7397335. [PMID: 36199628 PMCID: PMC9529500 DOI: 10.1155/2022/7397335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Dental implant restoration is the preferred choice for patients with dentition defects or edentulous patients, and obtaining stable osseointegration is the determining factor for successful implant healing. The risk of implant failure during the healing stage is still an urgent problem in clinical practice due to differences in bone quality at different implant sites and the impact of some systemic diseases on bone tissue metabolism. Low-intensity pulsed ultrasound (LIPUS) is a noninvasive physical intervention method widely recognized in the treatment of bone fracture and joint damage repair. Moreover, many studies indicated that LIPUS could effectively promote the osseointegration of dental implants and improve the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This review is aimed at investigating the research progress on the use of LIPUS in dental implant medicine from three aspects: (1) discuss the promoting effects of LIPUS on osseointegration and peri-implant bone regeneration, (2) summarize the effects and associated mechanisms of LIPUS on the biological functions of BMSCs, and (3) introduce the application and prospects of LIPUS in the clinical work of dental implantation. Although many challenges need to be overcome in the future, LIPUS is bound to be an efficient and convenient therapeutic method to improve the dental implantation success rate and expand clinical implant indications.
Collapse
Affiliation(s)
- Chao Liang
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuwei Yan
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Rongxin Sun
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
8
|
Ixazomib Improves Bone Remodeling and Counteracts sonic Hedgehog signaling Inhibition Mediated by Myeloma Cells. Cancers (Basel) 2020; 12:cancers12020323. [PMID: 32019102 PMCID: PMC7073172 DOI: 10.3390/cancers12020323] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of plasma cells (PC) in the bone marrow (BM), leading to bone loss and BM failure. Osteolytic bone disease is a common manifestation observed in MM patients and represents the most severe cause of morbidity, leading to progressive skeletal damage and disabilities. Pathogenetic mechanisms of MM bone disease are closely linked to PCs and osteoclast (OCs) hyperactivity, coupled with defective osteoblasts (OBs) function that is unable to counteract bone resorption. The aim of the present study was to investigate the effects of Ixazomib, a third-generation proteasome inhibitor, on osteoclastogenesis and osteogenic differentiation. We found that Ixazomib was able to reduce differentiation of human monocytes into OCs and to inhibit the expression of OC markers when added to the OC medium. Concurrently, Ixazomib was able to stimulate osteogenic differentiation of human mesenchymal stromal cells (MSCs), increasing osteogenic markers, either alone or in combination with the osteogenic medium. Given the key role of Sonic Hedgehog (SHH) signaling in bone homeostasis, we further investigated Ixazomib-induced SHH pathway activation. This set of experiments showed that Ixazomib, but not Bortezomib, was able to bind the Smoothened (SMO) receptor leading to nuclear translocation of GLI1 in human MSCs. Moreover, we demonstrated that PCs act as GLI1 suppressors on MSCs, thus reducing the potential of MSCs to differentiate in OBs. In conclusion, our data demonstrated that Ixazomib regulates bone remodeling by decreasing osteoclastogenesis and prompting osteoblast differentiation via the canonical SHH signaling pathway activation, thus, representing a promising therapeutic option to improve the complex pathological condition of MM patients.
Collapse
|
9
|
Zhou PT, Wang LP, Qu MJ, Shen H, Zheng HR, Deng LD, Ma YY, Wang YY, Wang YT, Tang YH, Tian HL, Zhang ZJ, Yang GY. Dl-3-N-butylphthalide promotes angiogenesis and upregulates sonic hedgehog expression after cerebral ischemia in rats. CNS Neurosci Ther 2019; 25:748-758. [PMID: 30784219 PMCID: PMC6515698 DOI: 10.1111/cns.13104] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Dl-3-N-butylphthalide (NBP), a small molecule drug used clinically in the acute phase of ischemic stroke, has been shown to improve functional recovery and promote angiogenesis and collateral vessel circulation after experimental cerebral ischemia. However, the underlying molecular mechanism is unknown. AIMS To explore the potential molecular mechanism of angiogenesis induced by NBP after cerebral ischemia. RESULTS NBP treatment attenuated body weight loss, reduced brain infarct volume, and improved neurobehavioral outcomes during focal ischemia compared to the control rats (P < 0.05). NBP increased the number of CD31+ microvessels, the number of CD31+ /BrdU+ proliferating endothelial cells, and the functional vascular density (P < 0.05). Further study demonstrated that NBP also promoted the expression of vascular endothelial growth factor and angiopoietin-1 (P < 0.05), which was accompanied by upregulated sonic hedgehog expression in astrocytes in vivo and in vitro. CONCLUSION NBP treatment promoted the expression of vascular endothelial growth factor and angiopoietin-1, induced angiogenesis, and improved neurobehavioral recovery. These effects were associated with increased sonic hedgehog expression after NBP treatment. Our results broadened the clinical application of NBP to include the later phase of ischemia.
Collapse
Affiliation(s)
- Pan-Ting Zhou
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Ping Wang
- Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mei-Jie Qu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hui Shen
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Ran Zheng
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Dong Deng
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Yuan Ma
- Department of Neurology, School of Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Yang Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yong-Ting Wang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao-Hui Tang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Li Tian
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Jun Zhang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong Affiliated Sixth People's Hospital, Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Salybekov AA, Salybekova AK, Pola R, Asahara T. Sonic Hedgehog Signaling Pathway in Endothelial Progenitor Cell Biology for Vascular Medicine. Int J Mol Sci 2018; 19:E3040. [PMID: 30301174 PMCID: PMC6213474 DOI: 10.3390/ijms19103040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023] Open
Abstract
The Hedgehog (HH) signaling pathway plays an important role in embryonic and postnatal vascular development and in maintaining the homeostasis of organs. Under physiological conditions, Sonic Hedgehog (SHH), a secreted protein belonging to the HH family, regulates endothelial cell growth, promotes cell migration and stimulates the formation of new blood vessels. The present review highlights recent advances made in the field of SHH signaling in endothelial progenitor cells (EPCs). The canonical and non-canonical SHH signaling pathways in EPCs and endothelial cells (ECs) related to homeostasis, SHH signal transmission by extracellular vesicles (EVs) or exosomes containing single-strand non-coding miRNAs and impaired SHH signaling in cardiovascular diseases are discussed. As a promising therapeutic tool, the possibility of using the SHH signaling pathway for the activation of EPCs in patients suffering from cardiovascular diseases is further explored.
Collapse
Affiliation(s)
- Amankeldi A Salybekov
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| | - Ainur K Salybekova
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| | - Roberto Pola
- Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 2591193, Japan.
| |
Collapse
|
11
|
Zhou XY, Xu XM, Wu SY, Zhang ZC, Wang F, Yang YL, Li M, Wei XZ. Low-intensity pulsed ultrasound promotes spinal fusion and enhances migration and proliferation of MG63s through sonic hedgehog signaling pathway. Bone 2018; 110:47-57. [PMID: 29414599 DOI: 10.1016/j.bone.2018.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 12/23/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been found to accelerate the healing process of spinal fusion via a process closely related to osteoblast differentiation and migration. Sonic hedgehog (Shh) signaling plays an important role in development and homeostasis, including a critical function in bone formation. However, its role in spinal fusion during LIPUS treatment is still unknown. This study showed that LIPUS treatment after spinal fusion surgery increased bone formation. The increased bone mass under LIPUS treatment appeared to result from the increased migration and proliferation of osteoblasts, resulting from upregulation of the Shh signaling pathway. In contrast, inhibition of Shh reduced the migratory and proliferative ability of osteoblast-like MG63 cells and blocked the efficacy of LIPUS treatment.
Collapse
Affiliation(s)
- Xiao-Yi Zhou
- Department of Orthopedic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xi-Ming Xu
- Department of Spinal Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Sui-Yi Wu
- Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Zi-Cheng Zhang
- Department of Orthopedic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Fei Wang
- Department of Orthopedic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yi-Lin Yang
- Department of Orthopedic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ming Li
- Department of Orthopedic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xian-Zhao Wei
- Department of Orthopedic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
12
|
Kant RJ, Coulombe KLK. Integrated approaches to spatiotemporally directing angiogenesis in host and engineered tissues. Acta Biomater 2018; 69:42-62. [PMID: 29371132 PMCID: PMC5831518 DOI: 10.1016/j.actbio.2018.01.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
The field of tissue engineering has turned towards biomimicry to solve the problem of tissue oxygenation and nutrient/waste exchange through the development of vasculature. Induction of angiogenesis and subsequent development of a vascular bed in engineered tissues is actively being pursued through combinations of physical and chemical cues, notably through the presentation of topographies and growth factors. Presenting angiogenic signals in a spatiotemporal fashion is beginning to generate improved vascular networks, which will allow for the creation of large and dense engineered tissues. This review provides a brief background on the cells, mechanisms, and molecules driving vascular development (including angiogenesis), followed by how biomaterials and growth factors can be used to direct vessel formation and maturation. Techniques to accomplish spatiotemporal control of vascularization include incorporation or encapsulation of growth factors, topographical engineering, and 3D bioprinting. The vascularization of engineered tissues and their application in angiogenic therapy in vivo is reviewed herein with an emphasis on the most densely vascularized tissue of the human body - the heart. STATEMENT OF SIGNIFICANCE Vascularization is vital to wound healing and tissue regeneration, and development of hierarchical networks enables efficient nutrient transfer. In tissue engineering, vascularization is necessary to support physiologically dense engineered tissues, and thus the field seeks to induce vascular formation using biomaterials and chemical signals to provide appropriate, pro-angiogenic signals for cells. This review critically examines the materials and techniques used to generate scaffolds with spatiotemporal cues to direct vascularization in engineered and host tissues in vitro and in vivo. Assessment of the field's progress is intended to inspire vascular applications across all forms of tissue engineering with a specific focus on highlighting the nuances of cardiac tissue engineering for the greater regenerative medicine community.
Collapse
Affiliation(s)
- Rajeev J Kant
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.
| |
Collapse
|
13
|
Zhang Y, Fukui N, Yahata M, Katsuragawa Y, Tashiro T, Ikegawa S, Lee MTM. Identification of DNA methylation changes associated with disease progression in subchondral bone with site-matched cartilage in knee osteoarthritis. Sci Rep 2016; 6:34460. [PMID: 27686527 PMCID: PMC5043275 DOI: 10.1038/srep34460] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Subchondral bone plays a key role in the development of osteoarthritis, however, epigenetics of subchondral bone has not been extensively studied. In this study, we examined the genome-wide DNA methylation profiles of subchondral bone from three regions on tibial plateau representing disease progression using HumanMethylation450 BeadChip to identify progression associated DNA methylation alterations. Significant differential methylated probes (DMPs) and differential methylated genes (DMGs) were identified in the intermediate and late stages and during the transition from intermediate to late stage of OA in the subchondral bone. Over half of the DMPs were hyper-methylated. Genes associated with OA and bone remodeling were identified. DMGs were enriched in morphogenesis and development of skeletal system, and HOX transcription factors. Comparison of DMGs identified in subchondral bone and site-matched cartilage indicated that DNA methylation changes occurred earlier in subchondral bone and identified different methylation patterns at the late stage of OA. However, shared DMPs, DMGs and common pathways that implicated the tissue reparation were also identified. Methylation is one key mechanism to regulate the crosstalk between cartilage and subchondral bone.
Collapse
Affiliation(s)
- Yanfei Zhang
- Laboratory for International Alliance on Genomic Research, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA
| | - Naoshi Fukui
- Clinical Research Center, National Hospital Organization Sagamihara Hospital, Kanagawa, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo, Japan
| | - Mitsunori Yahata
- Laboratory for International Alliance on Genomic Research, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Laboratory for Pharmacogenomics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Yozo Katsuragawa
- Department of Orthopaedic Surgery, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshiyuki Tashiro
- Department of Orthopaedic Surgery, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - Ming Ta Michael Lee
- Laboratory for International Alliance on Genomic Research, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.,Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Nochioka K, Okuda H, Tatsumi K, Morita S, Ogata N, Wanaka A. Hedgehog Signaling Components Are Expressed in Choroidal Neovascularization in Laser-induced Retinal Lesion. Acta Histochem Cytochem 2016; 49:67-74. [PMID: 27239075 PMCID: PMC4858541 DOI: 10.1267/ahc.15036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
Choroidal neovascularization is one of the major pathological changes in age-related macular degeneration, which causes devastating blindness in the elderly population. The molecular mechanism of choroidal neovascularization has been under extensive investigation, but is still an open question. We focused on sonic hedgehog signaling, which is implicated in angiogenesis in various organs. Laser-induced injuries to the mouse retina were made to cause choroidal neovascularization. We examined gene expression of sonic hedgehog, its receptors (patched1, smoothened, cell adhesion molecule down-regulated by oncogenes (Cdon) and biregional Cdon-binding protein (Boc)) and downstream transcription factors (Gli1-3) using real-time RT-PCR. At seven days after injury, mRNAs for Patched1 and Gli1 were upregulated in response to injury, but displayed no upregulation in control retinas. Immunohistochemistry revealed that Patched1 and Gli1 proteins were localized to CD31-positive endothelial cells that cluster between the wounded retina and the pigment epithelium layer. Treatment with the hedgehog signaling inhibitor cyclopamine did not significantly decrease the size of the neovascularization areas, but the hedgehog agonist purmorphamine made the areas significantly larger than those in untreated retina. These results suggest that the hedgehog-signaling cascade may be a therapeutic target for age-related macular degeneration.
Collapse
Affiliation(s)
- Katsunori Nochioka
- Department of Ophthalmology, Nara Medical University Faculty of Medicine
| | - Hiroaki Okuda
- Department of Anatomy and Neuroscience, Nara Medical University Faculty of Medicine
| | - Kouko Tatsumi
- Department of Anatomy and Neuroscience, Nara Medical University Faculty of Medicine
| | - Shoko Morita
- Department of Anatomy and Neuroscience, Nara Medical University Faculty of Medicine
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University Faculty of Medicine
| | - Akio Wanaka
- Department of Anatomy and Neuroscience, Nara Medical University Faculty of Medicine
| |
Collapse
|
15
|
Expression pattern of sonic hedgehog signaling and calcitonin gene-related peptide in the socket healing process after tooth extraction. Biochem Biophys Res Commun 2015; 467:21-6. [PMID: 26427874 DOI: 10.1016/j.bbrc.2015.09.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/25/2015] [Indexed: 12/26/2022]
Abstract
Sonic Hedgehog (SHH), a neural development inducer, plays a significant role in the bone healing process. Calcitonin gene-related peptide (CGRP), a neuropeptide marker of sensory nerves, has been demonstrated to affect bone formation. The roles of SHH signaling and CGRP-positive sensory nerves in the alveolar bone formation process have been unknown. Here we examined the expression patterns of SHH signaling and CGRP in mouse socket by immunohistochemistry and immunofluorescence analysis. We found that the expression level of SHH peaked at day 3 and was then decreased at 5 days after tooth extraction. CGRP, PTCH1 and GLI2 were each expressed in a similar pattern with their highest expression levels at day 5 and day 7 after tooth extraction. CGRP and GLI2 were co-expressed in some inflammatory cells and bone forming cells. In some areas, CGRP-positive neurons expressed GLI2. In conclusion, SHH may affect alveolar bone healing by interacting with CGRP-positive sensory neurons and thus regulate the socket's healing process after tooth extraction.
Collapse
|
16
|
Schou KB, Pedersen LB, Christensen ST. Ins and outs of GPCR signaling in primary cilia. EMBO Rep 2015; 16:1099-113. [PMID: 26297609 DOI: 10.15252/embr.201540530] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
Primary cilia are specialized microtubule-based signaling organelles that convey extracellular signals into a cellular response in most vertebrate cell types. The physiological significance of primary cilia is underscored by the fact that defects in assembly or function of these organelles lead to a range of severe diseases and developmental disorders. In most cell types of the human body, signaling by primary cilia involves different G protein-coupled receptors (GPCRs), which transmit specific signals to the cell through G proteins to regulate diverse cellular and physiological events. Here, we provide an overview of GPCR signaling in primary cilia, with main focus on the rhodopsin-like (class A) and the smoothened/frizzled (class F) GPCRs. We describe how such receptors dynamically traffic into and out of the ciliary compartment and how they interact with other classes of ciliary GPCRs, such as class B receptors, to control ciliary function and various physiological and behavioral processes. Finally, we discuss future avenues for developing GPCR-targeted drug strategies for the treatment of ciliopathies.
Collapse
|
17
|
Abstract
The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.
Collapse
|
18
|
In Vitro Osteoinductive Effects of Hydroxycholesterol on Human Adipose-Derived Stem Cells Are Mediated through the Hedgehog Signaling Pathway. Plast Reconstr Surg 2014; 134:960-968. [DOI: 10.1097/prs.0000000000000601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Petrova R, Joyner AL. Roles for Hedgehog signaling in adult organ homeostasis and repair. Development 2014; 141:3445-57. [PMID: 25183867 DOI: 10.1242/dev.083691] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hedgehog (HH) pathway is well known for its mitogenic and morphogenic functions during development, and HH signaling continues in discrete populations of cells within many adult mammalian tissues. Growing evidence indicates that HH regulates diverse quiescent stem cell populations, but the exact roles that HH signaling plays in adult organ homeostasis and regeneration remain poorly understood. Here, we review recently identified functions of HH in modulating the behavior of tissue-specific adult stem and progenitor cells during homeostasis, regeneration and disease. We conclude that HH signaling is a key factor in the regulation of adult tissue homeostasis and repair, acting via multiple different routes to regulate distinct cellular outcomes, including maintenance of plasticity, in a context-dependent manner.
Collapse
Affiliation(s)
- Ralitsa Petrova
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA BCMB Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
20
|
Thompson EM, Matsiko A, Farrell E, Kelly DJ, O'Brien FJ. Recapitulating endochondral ossification: a promising route toin vivobone regeneration. J Tissue Eng Regen Med 2014; 9:889-902. [DOI: 10.1002/term.1918] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/14/2014] [Accepted: 04/24/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Emmet M. Thompson
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| | - Amos Matsiko
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC; University Medical Centre Rotterdam; The Netherlands
| | - Daniel J. Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering; Trinity College Dublin; Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute; Trinity College Dublin; Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; Dublin Ireland
| |
Collapse
|
21
|
Yuan G, Zhang L, Yang G, Yang J, Wan C, Zhang L, Song G, Chen S, Chen Z. The distribution and ultrastructure of the forming blood capillaries and the effect of apoptosis on vascularization in mouse embryonic molar mesenchyme. Cell Tissue Res 2014; 356:137-45. [PMID: 24477797 DOI: 10.1007/s00441-013-1785-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
Vascularization is essential for organ and tissue development. Teeth develop through interactions between epithelium and mesenchyme. The developing capillaries in the enamel organ, the dental epithelial structure, occur simultaneously by mechanisms of vasculogenesis and angiogenesis at the onset of dentinogenesis. The vascular neoformation in the dental mesenchyme has been reported to start from the cap stage. However, the mechanisms of vascularization in the dental mesenchyme remain unknown. In the hope of understanding the mechanisms of the formation of dental mesenchymal vasculature, mouse lower molar germs from embryonic day (E) 13.5 to E16.5 were processed for immunostaining of CD31 and CD34, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) and transmission electron microscopy (TEM). In addition, the role of apoptosis for the vascularization in dental mesenchyme was examined by in vitro culture of E14.0 lower molars in the presence of the apoptosis inhibitor (z-VAD-fmk) and a subsequent subrenal culture. Our results showed that CD31- and CD34-positive cells progressively entered the central part of the dental papilla from the peridental mesenchyme. For TEM, angioblasts, young capillaries with thick endothelium and endothelial cells containing vacuoles were observed in peripheral dental mesenchyme, suggesting vasculogenesis was taking place. The presence of lateral sprouting, cytoplasmic filopodia and transluminal bridges in the dental papilla suggested angiogenesis was also occurring. Inhibition of apoptosis delayed the angiogenic vascularization of the dental papilla. Therefore, these data demonstrated that molar mesenchyme is progressively vascularized by mechanisms of both vasculogenesis and angiogenesis and apoptosis partially contributes to the vascularization of the dental papilla.
Collapse
Affiliation(s)
- Guohua Yuan
- Key Laboratory of Oral Biomedicine of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China, 430079
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
van Wijk XMR, van Kuppevelt TH. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 2013; 17:443-62. [PMID: 24146040 DOI: 10.1007/s10456-013-9401-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2), as well as interaction with anti-angiogenic factors (e.g. endostatin), warrants its role as an important modifier of (tumor) angiogenesis. This review summarizes our current understanding of the role of HS in angiogenic growth factor signaling, and discusses therapeutic strategies to target HS and modulate angiogenesis.
Collapse
Affiliation(s)
- Xander M R van Wijk
- Department of Biochemistry (280), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
23
|
Carulli C, Innocenti M, Brandi ML. Bone vascularization in normal and disease conditions. Front Endocrinol (Lausanne) 2013; 4:106. [PMID: 23986744 PMCID: PMC3752619 DOI: 10.3389/fendo.2013.00106] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/06/2013] [Indexed: 01/14/2023] Open
Abstract
Bone vasculature is essential for many processes, such as skeletal development and growth, bone modeling and remodeling, and healing processes. Endothelium is an integral part of bone tissue, expressing a physiological paracrine function via growth factors and chemokines release, and interacting with several cellular lines. Alterations of the complex biochemical interactions between vasculature and bone cells may lead to various clinical manifestations. Two different types of pathologies result: a defect or an excess of bone vasculature or endothelium metabolism. Starting from the molecular basis of the interactions between endothelial and bone cells, the Authors present an overview of the recent acquisitions in the physiopathology of the most important clinical patterns, and the modern therapeutic strategies for their treatments.
Collapse
Affiliation(s)
- Christian Carulli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Massimo Innocenti
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
- *Correspondence: Maria Luisa Brandi, Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini, 650139 Florence, Italy e-mail:
| |
Collapse
|
24
|
Lamplot JD, Denduluri S, Liu X, Wang J, Yin L, Li R, Shui W, Zhang H, Wang N, Nan G, Angeles J, Shi LL, Haydon RC, Luu HH, Ho S, He TC. Major Signaling Pathways Regulating the Proliferation and Differentiation of Mesenchymal Stem Cells. ESSENTIALS OF MESENCHYMAL STEM CELL BIOLOGY AND ITS CLINICAL TRANSLATION 2013:75-100. [DOI: 10.1007/978-94-007-6716-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
25
|
Affiliation(s)
- Darwin J Prockop
- Texas A&M Health Science Center College of Medicine Institute for Regenerative Medicine at Scott&White, Temple, Texas, USA
| |
Collapse
|
26
|
Abstract
The Hedgehog (Hh) signaling pathway has been implicated in tumor initiation and metastasis across different malignancies. Major mechanisms by which the Hh pathway is aberrantly activated can be attributed to mutations of members of Hh pathway or excessive/inappropriate expression of Hh pathway ligands. The Hh signaling pathway also affects the regulation of cancer stem cells, leading to their capabilities in tumor formation, disease progression, and metastasis. Preliminary results of early phase clinical trials of Hh inhibitors administered as monotherapy demonstrated promising results in patients with basal cell carcinoma and medulloblastoma, but clinically meaningful anticancer efficacy across other tumor types seems to be lacking. Additionally, cases of resistance have been already observed. Mutations of SMO, activation of Hh pathway components downstream to SMO, and upregulation of alternative signaling pathways are possible mechanisms of resistance development. Determination of effective Hh inhibitor-based combination regimens and development of correlative biomarkers relevant to this pathway should remain as clear priorities for future research.
Collapse
Affiliation(s)
- Solmaz Sahebjam
- Drug Development Program, Division of Medical Oncology and Hematology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|