1
|
Huang Q, Hu L, Chen H, Yang B, Sun X, Wang M. A Medicinal Chemistry Perspective on Protein Tyrosine Phosphatase Nonreceptor Type 2 in Tumor Immunology. J Med Chem 2025; 68:3995-4021. [PMID: 39936476 DOI: 10.1021/acs.jmedchem.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
PTPN2 (protein tyrosine phosphatase nonreceptor type 2) is an important member of the protein tyrosine phosphatase (PTP) family. It plays a crucial role in dephosphorylating tyrosine-phosphorylated proteins and modulating critical signaling pathways associated with T-cell receptors, IL-2, IFNγ, and various cytokines. In recent years, the PTPN2's biological role has been clarified, particularly since its association with tumor immunology was gradually revealed in 2017, making it a star target for cancer immunotherapy. The dual inhibitor AC484, which targets both PTPN2 and PTP1B, is currently undergoing phase I clinical trials. This advancement has attracted great interest from researchers to develop new drugs based on its unique structure. This review outlines the structural modification processes of PTPN2-targeted agents, focusing primarily on inhibitors and degraders. Finally, this review endeavors to provide a comprehensive perspective on the evolving field of PTPN2-targeted drug discovery for tumor immunotherapy, offering valuable insights for future drug development.
Collapse
Affiliation(s)
- Qi Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Linghao Hu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Haowen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 Guangdong China
| | - Bingjie Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Sun
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Mingliang Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 Guangdong China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Chen TA, Staples RJ, Warren TH. Copper catalyzed benzylic sp 3 C-H alkenylation. Chem Sci 2024:d4sc03430a. [PMID: 39391381 PMCID: PMC11459437 DOI: 10.1039/d4sc03430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024] Open
Abstract
The prenyl group is present in numerous biologically active small molecule drugs and natural products. We introduce benzylic C-H alkenylation of substrates Ar-CH3 with alkenylboronic esters (CH2)3O2B-CH[double bond, length as m-dash]CMe2 as a pathway to form prenyl functionalized arenes Ar-CH2CH[double bond, length as m-dash]CMe2. Mechanistic studies of this radical relay catalytic protocol reveal diverse reactivity pathways exhibited by the copper(ii) alkenyl intermediate [CuII]-CH[double bond, length as m-dash]CMe2 that involve radical capture, bimolecular C-C bond formation, and hydrogen atom transfer (HAT).
Collapse
Affiliation(s)
- Ting-An Chen
- Department of Chemistry, Georgetown University Washington D.C. 20057 USA
- Department of Chemistry, Michigan State University East Lansing Michigan 48824 USA
| | - Richard J Staples
- Department of Chemistry, Michigan State University East Lansing Michigan 48824 USA
| | - Timothy H Warren
- Department of Chemistry, Michigan State University East Lansing Michigan 48824 USA
| |
Collapse
|
3
|
Binti S, Linder AG, Edeen PT, Fay DS. A conserved protein tyrosine phosphatase, PTPN-22, functions in diverse developmental processes in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584557. [PMID: 38559252 PMCID: PMC10980042 DOI: 10.1101/2024.03.12.584557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Adison G Linder
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming
| |
Collapse
|
4
|
Hu L, Li H, Qin J, Yang D, Liu J, Luo X, Ma J, Luo C, Ye F, Zhou Y, Li J, Wang M. Discovery of PVD-06 as a Subtype-Selective and Efficient PTPN2 Degrader. J Med Chem 2023; 66:15269-15287. [PMID: 37966047 DOI: 10.1021/acs.jmedchem.3c01348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Protein tyrosine phosphatase nonreceptor Type 2 (PTPN2) is an attractive target for cancer immunotherapy. PTPN2 and another subtype of PTP1B are highly similar in structure, but their biological functions are distinct. Therefore, subtype-selective targeting of PTPN2 remains a challenge for researchers. Herein, the development of small molecular PTPN2 degraders based on a thiadiazolidinone dioxide-naphthalene scaffold and a VHL E3 ligase ligand is described, and the PTPN2/PTP1B subtype-selective degradation is achieved for the first time. The linker structure modifications led to the discovery of the subtype-selective PTPN2 degrader PVD-06 (PTPN2/PTP1B selective index > 60-fold), which also exhibits excellent proteome-wide degradation selectivity. PVD-06 induces PTPN2 degradation in a ubiquitination- and proteasome-dependent manner. It efficiently promotes T cell activation and amplifies IFN-γ-mediated B16F10 cell growth inhibition. This study provides a convenient chemical knockdown tool for PTPN2-related research and a paradigm for subtype-selective PTP degradation through nonspecific substrate-mimicking ligands, demonstrating the therapeutic potential of PTPN2 subtype-selective degradation.
Collapse
Affiliation(s)
- Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Huiyun Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou China
| | - Junlin Qin
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Dan Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| | - Jieming Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Xiaomin Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | | | - Cheng Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fei Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yubo Zhou
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
| | - Jia Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Mingliang Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, Guangdong, China
| |
Collapse
|
5
|
Wang CC, Shen WJ, Anuraga G, Khoa Ta HD, Xuan DTM, Chen ST, Shen CF, Jiang JZ, Sun Z, Wang CY, Wang WJ. Novel Potential Therapeutic Targets of PTPN Families for Lung Cancer. J Pers Med 2022; 12:jpm12121947. [PMID: 36556168 PMCID: PMC9784538 DOI: 10.3390/jpm12121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Despite the treatment of lung adenocarcinoma (LUAD) having partially improved in recent years, LUAD patients still have poor prognosis rates. Therefore, it is especially important to explore effective biomarkers and exploit novel therapeutic developments. High-throughput technologies are widely used as systematic approaches to explore differences in expressions of thousands of genes for both biological and genomic systems. Recently, using big data analyses in biomedicine research by integrating several high-throughput databases and tools, including The Cancer Genome Atlas (TCGA), cBioportal, Oncomine, and Kaplan-Meier plotter, is an important strategy to identify novel biomarkers for cancer therapy. Here, we used two different comprehensive bioinformatics analysis and revealed protein tyrosine phosphatase non-receptor type (PTPN) family genes, especially PTPN1 and PTPN22, were downregulated in lung cancer tissue in comparison with normal samples. The survival curves indicated that LUAD patients with high transcription levels of PTPN5 were significantly associated with a good prognosis. Meanwhile, Gene Ontology (GO) and MetaCore analyses indicated that co-expression of the PTPN1, PTPN5, and PTPN21 genes was significantly enriched in cancer development-related pathways, including GTPase activity, regulation of small GTPase-mediated signal transduction, response to mechanical stimuli, vasculogenesis, organ morphogenesis, regulation of stress fiber assembly, mitogen-activated protein kinase (MAPK) cascade, cell migration, and angiogenesis. Collectively, this study revealed that PTPN family members are both significant prognostic biomarkers for lung cancer progression and promising clinical therapeutic targets, which provide new targets for treating LUAD patients.
Collapse
Affiliation(s)
- Chin-Chou Wang
- Divisions of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan
| | - Wan-Jou Shen
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Sih-Tong Chen
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Chiu-Fan Shen
- Divisions of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jia-Zhen Jiang
- Emergency Department, Huashan Hospital North, Fudan University, Shanghai 201508, China
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (C.-Y.W.); (W.-J.W.)
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40676, Taiwan
- Correspondence: (C.-Y.W.); (W.-J.W.)
| |
Collapse
|
6
|
Singh JP, Lin MJ, Hsu SF, Peti W, Lee CC, Meng TC. Crystal Structure of TCPTP Unravels an Allosteric Regulatory Role of Helix α7 in Phosphatase Activity. Biochemistry 2021; 60:3856-3867. [PMID: 34910875 DOI: 10.1021/acs.biochem.1c00519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The T-cell protein tyrosine phosphatase (TCPTP/PTPN2) targets a broad variety of substrates across different subcellular compartments. In spite of that, the structural basis for the regulation of TCPTP's activity remains elusive. Here, we investigated whether the activity of TCPTP is regulated by a potential allosteric site in a comparable manner to its most similar PTP family member (PTP1B/PTPN1). We determined two crystal structures of TCPTP at 1.7 and 1.9 Å resolutions that include helix α7 at the TCPTP C-terminus. Helix α7 has been functionally characterized in PTP1B and was identified as its allosteric switch. However, its function is unknown in TCPTP. Here, we demonstrate that truncation or deletion of helix α7 reduced the catalytic efficiency of TCPTP by ∼4-fold. Collectively, our data supports an allosteric role of helix α7 in regulation of TCPTP's activity, similar to its function in PTP1B, and highlights that the coordination of helix α7 with the core catalytic domain is essential for the efficient catalytic function of TCPTP.
Collapse
Affiliation(s)
- Jai Prakash Singh
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, 101, Kuang-Fu Road, Sec. 2, Hsinchu 300, Taiwan
| | - Meng-Jung Lin
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Shu-Fang Hsu
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan.,Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, 128, Academia Road Sec. 2, Nankang, Taipei 115, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
7
|
Sigaud R, Dussault N, Berenguer-Daizé C, Vellutini C, Benyahia Z, Cayol M, Parat F, Mabrouk K, Vázquez R, Riveiro ME, Metellus P, Ouafik L. Role of the Tyrosine Phosphatase SHP-2 in Mediating Adrenomedullin Proangiogenic Activity in Solid Tumors. Front Oncol 2021; 11:753244. [PMID: 34692535 PMCID: PMC8531523 DOI: 10.3389/fonc.2021.753244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
VE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherinY731) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown. In this article, we demonstrate that the AM-mediated dephosphorylation of pVE-cadherinY731 takes place through activation of the tyrosine phosphatase SHP-2, as judged by the rise of its active fraction phosphorylated at tyrosine 542 (pSHP-2Y542) in HUVECs and glioblastoma-derived-endothelial cells. Both pre-incubation of HUVECs with SHP-2 inhibitors NSC-87877 and SHP099 and SHP-2 silencing hindered AM-induced dephosphorylation of pVE-cadherinY731 in a dose dependent-manner, showing the role of SHP-2 in the regulation of endothelial cell contacts. Furthermore, SHP-2 inhibition impaired AM-induced HUVECs differentiation into cord-like structures in vitro and impeded AM-induced neovascularization in in vivo Matrigel plugs bioassays. Subcutaneously transplanted U87-glioma tumor xenograft mice treated with AM-receptors-blocking antibodies showed a decrease in pSHP-2Y542 associated with VE-cadherin in nascent tumor vasculature when compared to control IgG-treated xenografts. Our findings show that AM acts on VE-cadherin dynamics through pSHP-2Y542 to finally modulate cell-cell junctions in the angiogenesis process, thereby promoting a stable and functional tumor vasculature.
Collapse
Affiliation(s)
- Romain Sigaud
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Nadège Dussault
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Christine Vellutini
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Zohra Benyahia
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Mylène Cayol
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Fabrice Parat
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille University, CNRS, Institut de Chimie Radicalaire (ICR), Unité Mixte de Recherche (UMR) 7273 Chimie Radicalaire Organique et Polymères de Spécialité (CROPS), Marseille, France
| | - Ramiro Vázquez
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France.,Center for Genomic Science of Istituto Italiano di Tecnologia, Center for Genomic Science, European School of Molecular Medicine (IIT@SEMM), Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Maria E Riveiro
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | - Philippe Metellus
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France.,Centre Hospitalier Clairval, Département de Neurochirurgie, Marseille, France
| | - L'Houcine Ouafik
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Institut de Neurophysiopathologie( INP), Inst Neurophysiopathol, Marseille, France.,Assistance Publique Hôpitaux de Marseille (APHM), Centre Hospitalo Universitaire (CHU) Nord, Service d'OncoBiologie, Marseille, France
| |
Collapse
|
8
|
Current Views on the Interplay between Tyrosine Kinases and Phosphatases in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13102311. [PMID: 34065882 PMCID: PMC8151247 DOI: 10.3390/cancers13102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The chromosomal alteration t(9;22) generating the BCR-ABL1 fusion protein represents the principal feature that distinguishes some types of leukemia. An increasing number of articles have focused the attention on the relevance of protein phosphatases and their potential role in the control of BCR-ABL1-dependent or -independent signaling in different areas related to the biology of chronic myeloid leukemia. Herein, we discuss how tyrosine and serine/threonine protein phosphatases may interact with protein kinases, in order to regulate proliferative signal cascades, quiescence and self-renewals on leukemic stem cells, and drug-resistance, indicating how BCR-ABL1 can (directly or indirectly) affect these critical cells behaviors. We provide an updated review of the literature on the function of protein phosphatases and their regulation mechanism in chronic myeloid leukemia. Abstract Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by BCR-ABL1 oncogene expression. This dysregulated protein-tyrosine kinase (PTK) is known as the principal driver of the disease and is targeted by tyrosine kinase inhibitors (TKIs). Extensive documentation has elucidated how the transformation of malignant cells is characterized by multiple genetic/epigenetic changes leading to the loss of tumor-suppressor genes function or proto-oncogenes expression. The impairment of adequate levels of substrates phosphorylation, thus affecting the balance PTKs and protein phosphatases (PPs), represents a well-established cellular mechanism to escape from self-limiting signals. In this review, we focus our attention on the characterization of and interactions between PTKs and PPs, emphasizing their biological roles in disease expansion, the regulation of LSCs and TKI resistance. We decided to separate those PPs that have been validated in primary cell models or leukemia mouse models from those whose studies have been performed only in cell lines (and, thus, require validation), as there may be differences in the manner that the associated pathways are modified under these two conditions. This review summarizes the roles of diverse PPs, with hope that better knowledge of the interplay among phosphatases and kinases will eventually result in a better understanding of this disease and contribute to its eradication.
Collapse
|
9
|
Sun T, Guan Q, Wang Y, Qian K, Sun W, Ji Q, Wu Y, Guo K, Xiang J. Identification of differentially expressed genes and signaling pathways in papillary thyroid cancer: a study based on integrated microarray and bioinformatics analysis. Gland Surg 2021; 10:629-644. [PMID: 33708546 DOI: 10.21037/gs-20-673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The techniques of DNA microarray and bioinformatic analysis have exhibited efficiency in identifying dysregulated gene expression in human cancers. In this study, we used integrated bioinformatics analysis to improve our understanding of the pathogenesis of papillary thyroid cancer (PTC). Methods In this study, we integrated four Gene Expression Omnibus (GEO) datasets, GSE33630, GSE35570, GSE60542 and GSE29265, including 136 normal samples and 157 PTC specimens. The contents of the four datasets are based on GPL570, an Affymetrix Human Genome U133 Plus 2.0 array. Gene ontology (GO) analysis was used to identify characteristic the biological attributes of differentially expressed genes (DEGs) between PTC and normal samples. GO annotation was performed on the DEGs obtained, and the process relied on the DAVID online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG) approach enrichment analyses were adopted to obtain the basic functions of the DEGs. The KOBAS online analysis database was used to complete DEG KEGG pathway comparison and analysis. The search tool (STRING) database was mainly used to search for interacting genes and complete the construction of protein-protein interaction (PPI) networks. Results Five hundred-ninety DEGs were consistently expressed in the four datasets; 327 of them were upregulated, while 263 were downregulated. Ten DEGs, including five upregulated (ENTPD1, THRSP, KLK10, ADAMTS9, MIR31HG) and five downregulated (SCARA5, EPHB1, CHRDL1, LOC440934, FOXP2) genes, were randomly selected for q-PCR in our own tissue samples to validate the integrated data. The most highly enriched GO terms were extracellular exosome (GO:0070062), cell adhesion (GO:0070062), positive regulation of gene expression (GO:0010628), and extracellular matrix (ECM) organization (GO:0030198). KEGG pathway analysis was performed, and it was found that abnormally expressed genes effectively participated in pathways such as tyrosine metabolism, complement and coagulation cascades, cell adhesion molecules (CAMs), transcriptional misregulation and ECM-receptor interaction pathways. Conclusions Five hundred-ninety DEGs were identified in PTC by integrated microarray analysis. The GO and KEGG analyses presented here suggest that the DEGs were enriched in extracellular exosome, tyrosine metabolism, CAMs, complement and coagulation cascades, transcriptional misregulation and ECM-receptor interaction pathways. Functional studies of PTC should focus on these pathways.
Collapse
Affiliation(s)
- Tuanqi Sun
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Guan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunjun Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Qian
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenyu Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Ultrasonography, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Guo
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Xiang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Zhang S, Zhang S, Wang H, Huang X, Wang J, Li J, Cheng D, Wang H, Lu D, Wang Y. Silencing myelin protein zero-like 1 expression suppresses cell proliferation and invasiveness of human glioma cells by inhibiting multiple cancer-associated signal pathways. JOURNAL OF NEURORESTORATOLOGY 2021. [DOI: 10.26599/jnr.2021.9040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system. It has high morbidity and poor survival. Myelin protein zero-like protein 1 (MPZL1) is a cell surface glycoprotein that activates numerous adhesion-dependent signaling pathways. MPZL1 plays important roles in human cancers that include metastatic process; however, it is not clear if MPZL1 plays a role in human glioma. Therefore, this study aimed to determine if silencing MPZL1 impacted the cell proliferative features of human glioma cells. First, MPZL1 expression was investigated in human glioma samples and tumor cell lines. Then the effects of small interfering RNA (siRNA)-targeting MPZL1 were analyzed on proliferation, colony formation, cell cycle progression, and invasion of human glioma cells. The results from this study demonstrated that MPZL1 was highly expressed in human glioma tissues and glioma cell lines. In addition, knockdown of MPZL1 significantly inhibited cell proliferation, colony formation, and invasiveness of glioma cells, and effectively induced cell cycle arrest at the G1 phase. Western blotting analysis indicated that silencing MPZL1 expression downregulated the expression of matrix metalloproteinase-2 (MMP-2), WNT1, caspase-3, cyclin A1, epidermal growth factor receptor (EGFR), and signal transducer and activator of transcription 3 (STAT3), and upregulated p53. The results from this study suggest that MPZL1 might be a marker for tumors and could be a potential therapeutic target for human glioma.
Collapse
|
11
|
Mishra OP, Popov AV, Pietrofesa RA, Hwang WT, Andrake M, Nakamaru-Ogiso E, Christofidou-Solomidou M. Radiation activates myeloperoxidase (MPO) to generate active chlorine species (ACS) via a dephosphorylation mechanism - inhibitory effect of LGM2605. Biochim Biophys Acta Gen Subj 2020; 1864:129548. [PMID: 32035161 PMCID: PMC8413008 DOI: 10.1016/j.bbagen.2020.129548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Radiation exposure of tissues is associated with inflammatory cell influx. Myeloperoxidase (MPO) is an enzyme expressed in granulocytes, such as neutrophils (PMN) and macrophages, responsible for active chlorine species (ACS) generation. The present study aimed to: 1) determine whether exposure to γ-irradiation induces MPO-dependent ACS generation in murine PMN; 2) elucidate the mechanism of radiation-induced ACS generation; and 3) evaluate the effect of the synthetic lignan LGM2605, known for ACS scavenging properties. METHODS MPO-dependent ACS generation was determined by using hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and a highly potent MPO inhibitor, 4-aminobenzoic acid hydrazide (ABAH), and confirmed in PMN derived from MPO-/- mice. Radiation-induced MPO activation was determined by EPR spectroscopy and computational analysis identified tyrosine, serine, and threonine residues near MPO's active site. RESULTS γ-radiation increased MPO-dependent ACS generation dose-dependently in human MPO and in wild-type murine PMN, but not in PMN from MPO-/- mice. LGM2605 decreased radiation-induced, MPO-dependent ACS. Protein tyrosine phosphatase (PTP) and protein serine/threonine phosphatase (PSTP) inhibitors decreased the radiation-induced increase in ACS. Peroxidase cycle results demonstrate that tyrosine phosphorylation blocks MPO Compound I formation by preventing catalysis on H2O2 in the active site of MPO. EPR data demonstrate that γ-radiation increased tyrosyl radical species formation in a dose-dependent manner. CONCLUSIONS We demonstrate that γ-radiation induces MPO-dependent generation of ACS, which is dependent, at least in part, by protein tyrosine and Ser/Thr dephosphorylation and is reduced by LGM2605. This study identified for the first time a novel protein dephosphorylation-dependent mechanism of radiation-induced MPO activation.
Collapse
Affiliation(s)
- Om P Mishra
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Philadelphia, PA 19104, United States of America.
| | - Anatoliy V Popov
- University of Pennsylvania Perelman School of Medicine, Department of Radiology, Philadelphia, PA 19104, United States of America.
| | - Ralph A Pietrofesa
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Philadelphia, PA 19104, United States of America.
| | - Wei-Ting Hwang
- University of Pennsylvania Perelman School of Medicine, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, PA 19104, United States of America.
| | - Mark Andrake
- Molecular Modeling Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, United States of America.
| | - Eiko Nakamaru-Ogiso
- Children's Hospital of Philadelphia, Department of Pediatrics, Philadelphia, PA 19104, United States of America.
| | - Melpo Christofidou-Solomidou
- University of Pennsylvania Perelman School of Medicine, Department of Medicine, Pulmonary, Allergy, and Critical Care Division, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
12
|
Mukherjee P, Berns EJ, Patino CA, Hakim Moully E, Chang L, Nathamgari SSP, Kessler JA, Mrksich M, Espinosa HD. Temporal Sampling of Enzymes from Live Cells by Localized Electroporation and Quantification of Activity by SAMDI Mass Spectrometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000584. [PMID: 32452612 PMCID: PMC7401324 DOI: 10.1002/smll.202000584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 05/07/2023]
Abstract
Measuring changes in enzymatic activity over time from small numbers of cells remains a significant technical challenge. In this work, a method for sampling the cytoplasm of cells is introduced to extract enzymes and measure their activity at multiple time points. A microfluidic device, termed the live cell analysis device (LCAD), is designed, where cells are cultured in microwell arrays fabricated on polymer membranes containing nanochannels. Localized electroporation of the cells opens transient pores in the cell membrane at the interface with the nanochannels, enabling extraction of enzymes into nanoliter-volume chambers. In the extraction chambers, the enzymes modify immobilized substrates, and their activity is quantified by self-assembled monolayers for matrix-assisted laser desorption/ionization (SAMDI) mass spectrometry. By employing the LCAD-SAMDI platform, protein delivery into cells is demonstrated. Next, it is shown that enzymes can be extracted, and their activity measured without a loss in viability. Lastly, cells are sampled at multiple time points to study changes in phosphatase activity in response to oxidation by hydrogen peroxide. With this unique sampling device and label-free assay format, the LCAD with SAMDI enables a powerful new method for monitoring the dynamics of cellular activity from small populations of cells.
Collapse
Affiliation(s)
- Prithvijit Mukherjee
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - Eric J Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Cesar A Patino
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | | | - Lingqian Chang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - S Shiva P Nathamgari
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Cell and Development Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Horacio D Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
13
|
Lin SR, Mokgautsi N, Liu YN. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis. Molecules 2020; 25:E2380. [PMID: 32443915 PMCID: PMC7287876 DOI: 10.3390/molecules25102380] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and malignant cancer types in men, which causes more than three-hundred thousand cancer death each year. At late stage of PCa progression, bone marrow is the most often metastatic site that constitutes almost 70% of metastatic cases of the PCa population. However, the characteristic for the osteo-philic property of PCa is still puzzling. Recent studies reported that the Wnt and Ras signaling pathways are pivotal in bone metastasis and that take parts in different cytological changes, but their crosstalk is not well studied. In this review, we focused on interactions between the Wnt and Ras signaling pathways during each stage of bone metastasis and present the fate of those interactions. This review contributes insights that can guide other researchers by unveiling more details with regard to bone metastasis and might also help in finding potential therapeutic regimens for preventing PCa bone metastasis.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| |
Collapse
|
14
|
Yin X, Huang H, Huang S, Xu A, Fan F, Luo S, Yan H, Chen L, Sun C, Hu Y. A Novel Scoring System for Risk Assessment of Elderly Patients With Cytogenetically Normal Acute Myeloid Leukemia Based on Expression of Three AQP1 DNA Methylation-Associated Genes. Front Oncol 2020; 10:566. [PMID: 32373535 PMCID: PMC7186486 DOI: 10.3389/fonc.2020.00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Aquaporin 1 (AQP-1), a transmembrane water channel protein, has been proven to involve in many diseases' progression and prognosis. This research aims to explore the prognostic value of AQP-1 in elderly cytogenetically normal acute myeloid leukemia (CN-AML). Methods: Complete clinical and expression data of 226 elderly patients (aged > 60) with cytogenetically normal acute myeloid leukemia (CN-AML) were downloaded from the databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We have explored prognostic significance of AQP-1, investigated the underlying mechanism, and developed a novel scoring system for the risk assessment of elderly patients with AML based on AQP1 methylation. Results: In the first and second independent group, AQP1 shows lower expression in CN-AML than normal people, while high AQP1 expression and AQP1 promoter hypomethylation were related to better overall survival (OS; P < 0.05). To understand the underlying mechanisms, we investigated differentially expressed genes (DEGs), miRNA and lncRNA associated with AQP1 methylation. A three-gene prognostic signature based on AQP1 methylation which was highly correlated with OS was established, and the performance was validated by Permutation Test and Leave-one-out Cross Validation method. Furthermore, an independent cohort was used to verify the prognostic value of this model. Conclusions: AQP1 methylation could serve as an independent prognostic biomarker in elderly CN-AML, and may provide new insights for the diagnosis and treatment for elderly CN-AML patients.
Collapse
Affiliation(s)
- Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifan Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Yuan C, Wang W, Wang J, Li X, Wu YB, Li S, Lu L, Zhu M, Xing S, Fu X. Potent and selective PTP1B inhibition by a platinum(ii) complex: possible implications for a new antitumor strategy. Chem Commun (Camb) 2019; 56:102-105. [PMID: 31793564 DOI: 10.1039/c9cc06972k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Showing anti-proliferation activity against MCF7 cells better than cisplatin, a platinum(ii) complex, [PtL(DMSO)Cl], was found to potently and selectively inhibit protein tyrosine phosphatase 1B (PTP1B), a putative target for anticancer agents, suggesting a new possible anticancer strategy based on platinum drugs.
Collapse
Affiliation(s)
- Caixia Yuan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Morales LD, Archbold AK, Olivarez S, Slaga TJ, DiGiovanni J, Kim DJ. The role of T-cell protein tyrosine phosphatase in epithelial carcinogenesis. Mol Carcinog 2019; 58:1640-1647. [PMID: 31264291 PMCID: PMC6692238 DOI: 10.1002/mc.23078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
T-cell protein tyrosine phosphatase (TC-PTP, encoded by PTPN2) is a nonreceptor PTP that is most highly expressed in hematopoietic tissues. TC-PTP modulates a variety of physiological functions including cell cycle progression, cell survival and proliferation, and hematopoiesis through tyrosine dephosphorylation of its target substrates, such as EGFR, JAK1, JAK3, STAT1, and STAT3. Studies with whole or tissue-specific loss of TC-PTP function transgenic mice have shown that TC-PTP has crucial roles in the regulation of the immune response, insulin signaling, and oncogenic signaling. More recently, the generation of epidermal-specific TC-PTP-deficient mice for use in multistage skin carcinogenesis bioassays demonstrated that TC-PTP suppresses skin tumor formation by negatively regulating STAT3 and AKT signaling. Further investigation showed that TC-PTP also minimizes UVB-induced epidermal cell damage by promoting apoptosis through the negative regulation of Flk-1/JNK signaling. These findings provide major evidence for a tumor suppressive function for TC-PTP against environment-induced skin cancer. Here, we will discuss TC-PTP, its substrates, and its functions with an emphasis on its role in skin carcinogenesis.
Collapse
Affiliation(s)
- Liza D. Morales
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Anna K. Archbold
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Serena Olivarez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Thomas J. Slaga
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - John DiGiovanni
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA
| | - Dae Joon Kim
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| |
Collapse
|
17
|
PTPN3 suppresses lung cancer cell invasiveness by counteracting Src-mediated DAAM1 activation and actin polymerization. Oncogene 2019; 38:7002-7016. [DOI: 10.1038/s41388-019-0948-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
18
|
Liu X, Huang J, Liu L, Liu R. MPZL1 is highly expressed in advanced gallbladder carcinoma and promotes the aggressive behavior of human gallbladder carcinoma GBC‑SD cells. Mol Med Rep 2019; 20:2725-2733. [PMID: 31322261 PMCID: PMC6691252 DOI: 10.3892/mmr.2019.10506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/09/2019] [Indexed: 01/17/2023] Open
Abstract
Myelin protein 0‑like 1 (MPZL1) has been reported to have a role in hepatocellular carcinoma. However, to the best of our knowledge, there have been no studies on the function and molecular mechanism of MPZL1 gene in gallbladder carcinoma. The present study confirmed that MPZL1 was upregulated in four gallbladder carcinoma tissues according to the mRNA microarray analysis. The results of the immunohistochemical analysis of tissues from 82 patients with gallbladder carcinoma demonstrated that patients with advanced tumor stages (both T and N stage) had higher positive expression of MPZL1. Moreover, a total of 20 cases of gallbladder carcinoma and matched paired paracarcinoma tissues along with 20 samples of healthy gallbladder tissue from patients with cholecystitis were analyzed using reverse transcription‑quantitative PCR and western blotting. The results demonstrated that the expression of MPZL1 in gallbladder carcinoma tissues was significantly higher than that of paired paracarcinoma tissues and randomly matched normal gallbladder epithelial tissues. According to the Tumor‑Node‑Metastasis classification, the expression level of MPZL1 protein in stage IV gallbladder carcinoma was significantly higher than that in stage III gallbladder carcinoma. The enhanced expression of MPZL1 gene appeared to improve the migration ability of GBC‑SD cells. Conversely, GBC‑SD cells that transfected with MPZL1 siRNA exhibited decreased migration ability. The results of proliferation experiments showed that the knockdown of MPZL1 siRNA caused impairments in GBC‑SD cell proliferation. On the contrary, the overexpression of MPZL1 increased the proliferation ability of GBC‑SD cells. The results of flow cytometry analyses indicated that the upregulation of MPZL1 had an anti‑apoptotic effect on GBC‑SD cells. In conclusion, the present study showed that the expression and protein levels of MPZL1 were significantly higher in gallbladder carcinoma tissues, especially in patients diagnosed with advanced tumor stages. Overexpression of MPZL1 may have promoted the invasion, metastasis, proliferation and survival of GBC‑SD cells.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Hepato‑Pancreato‑Biliary Surgical Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jia Huang
- Department of General Surgery, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Liguo Liu
- Department of General Surgery, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Rong Liu
- Department of Hepato‑Pancreato‑Biliary Surgical Oncology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
19
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Wang D, Cheng Z, Zhao M, Jiao C, Meng Q, Pan H, Xie Y, Li L, Zhu Y, Wang W, Qu C, Liang D. PTPN9 induces cell apoptosis by mitigating the activation of Stat3 and acts as a tumor suppressor in colorectal cancer. Cancer Manag Res 2019; 11:1309-1319. [PMID: 30804683 PMCID: PMC6371942 DOI: 10.2147/cmar.s187001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Accumulating evidence has shown that protein tyrosine phosphatases (PTPs) are involved in regulating the transduction of many signaling pathways and play important roles in modulating the progression of some cancers, but the functions of PTPs in cancers have not been well elucidated until now. Here, we aimed to identify the roles of protein tyrosine phosphatase nonreceptor type 9 (PTPN9), a cytoplasmic PTP, in the development of colorectal cancer and elucidate the regulatory mechanism involved. Materials and methods Cell viability assessment, colony formation assay, caspase-3 and caspase-9 activity assay, real-time PCR, and Western blot analysis were applied. Results Our results showed that PTPN9 expression was frequently downregulated in colorectal cancer tissues compared with adjacent normal tissues. Overexpression of PTPN9 mitigated cell growth and colony formation and induced cell apoptosis in colorectal cancer. Conversely, PTPN9 knockdown promoted cell growth and survival. Moreover, PTPN9 negatively regulated the activation of Stat3 and depressed its nuclear translocation in colorectal cancer. The effects of PTPN9 knockdown on cell apoptosis were attenuated by inhibition of the Stat3 pathway. Conclusion These results indicate that PTPN9 inhibits cell growth and survival by repressing the activation of Stat3 in colorectal cancer, which suggests an important underlying mechanism of regulating cell growth and provides a novel candidate therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Dawei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Zhuoxin Cheng
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi 154002, People's Republic of China.,Heilongjiang Provincial Key Laboratory of Metabolic Disease, Jiamusi 154002, People's Republic of China
| | - Ming Zhao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Chengbin Jiao
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi 154002, People's Republic of China
| | - Qinghui Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Huayang Pan
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Yu Xie
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Long Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Yexing Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Chunlei Qu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| | - Deshen Liang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China,
| |
Collapse
|
21
|
Role of protein phosphatases in the cancer microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:144-152. [DOI: 10.1016/j.bbamcr.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
22
|
Li BH, Wang Y, Wang CY, Zhao MJ, Deng T, Ren XQ. Up-Regulation of Phosphatase in Regenerating Liver-3 (PRL-3) Contributes to Malignant Progression of Hepatocellular Carcinoma by Activating Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN)/Phosphoinositide 3-Kinase (PI3K)/AKT Signaling Pathway. Med Sci Monit 2018; 24:8105-8114. [PMID: 30418964 PMCID: PMC6243833 DOI: 10.12659/msm.913307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The purpose of the study was to investigate the functional roles of phosphatase in regenerating liver-3 (PRL-3) in hepatocellular carcinoma (HCC), as well as the related molecular mechanisms. MATERIAL AND METHODS HCC tissues and adjacent normal tissues were collected from 124 HCC patients. The mRNA and protein levels of PRL-3 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot assays, respectively. The relationship between PRL-3 expression and clinical characteristics of HCC patients was evaluated by chi-square test. MTT and Transwell assays were performed to estimate cell proliferation and motility, respectively. RESULTS The expression of PRL-3 was significantly increased in HCC tissues and cells at both protein and mRNA levels (P<0.01 for all). Furthermore, the up-regulation of PRL-3 was positively correlated with hepatic vascular invasion (P=0.019), lymph node metastasis (P=0.012), and TNM stage (P=0.001). The knockdown of PRL-3 suppressed HCC cell proliferation, migration, and invasion, and PR3K/AKT pathway activity was also obviously inhibited in HCC cells with PRL-3 deficiency. The levels of PTEN were negatively associated with PRL-3 expression. PRL-3 might inhibit the protein level of PTEN through enhancing its phosphorylation level. The transfection of si-PTEN can reverse the anti-tumor action caused by PRL-3 knockdown in HCC cells. CONCLUSIONS Up-regulation of PRL-3 may activate the PI3K/AKT signaling pathway and enhance malignant progression of HCC through targeting PTEN.
Collapse
Affiliation(s)
- Bing-Hui Li
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Yang Wang
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Chao-Yang Wang
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Ming-Juan Zhao
- Department of Cardiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Tong Deng
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Xue-Qun Ren
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, P.R. China
| |
Collapse
|
23
|
Wang Y, Yang Z, Wang L, Sun L, Liu Z, Li Q, Yao B, Chen T, Wang C, Yang W, Liu Q, Han S. miR-532-3p promotes hepatocellular carcinoma progression by targeting PTPRT. Biomed Pharmacother 2018; 109:991-999. [PMID: 30551553 DOI: 10.1016/j.biopha.2018.10.145] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aberrant expression of miR-532-3p was involved in progression and development of multiple cancers, whereas miR-532-3p has not been reported in hepatocellular carcinoma (HCC). The aim of this study was to elucidate the functions of miR-532-3p in progression of HCC. METHODS Real-time PCR in HCC tissues and cell lines and database analysis were conducted for detection of the expression of miR-532-3p in HCC. Then, the association of miR-532-3p with clinicopathological features and prognosis of HCC patients were statistically measured. Subsequently, we attempted to observe the effects of miR-532-3p on migration, invasion and proliferation of HCC cells by Wound healing assay, Transwell assays, MTT assay and EdU assay. Furthermore, bioinformatics tools, database analysis, luciferase reporter gene assay and rescue experiments were conducted to explore the target of miR-532-3p in HCC, and to explore whether the target mediated the effects of miR-532-3p on HCC cells. RESULTS Our findings and data from databases consistently indicated that the miR-532-3p expression level was higher in HCC. In addition, high miR-532-3p expression was found to be closely related to larger tumor size (P = 0.0027), presence of vascular invasion (P = 0.015), and advanced TNM stage (P = 0.015). In addition, experiments in vitro revealed that miR-532-3p promotes migration, invasion and proliferation of HCC cells. Furthermore, receptor protein tyrosine phosphatase T (PTPRT) was identified as the target and mediator of miR-532-3p in HCC cells. CONCLUSION Our results demonstrate that miR-532-3p, which is frequently up-regulated in HCC, contributes to HCC cells mobility and proliferation through targeting PTPRT.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Zhencun Yang
- Emergency Department, The First Affiliated Hospital of AFMU, Xi'an, Shaanxi province, 710032, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Qing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Cong Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi province, 710061, China.
| |
Collapse
|
24
|
The Many Faces of Rap1 GTPase. Int J Mol Sci 2018; 19:ijms19102848. [PMID: 30241315 PMCID: PMC6212855 DOI: 10.3390/ijms19102848] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
This review addresses the issue of the numerous roles played by Rap1 GTPase (guanosine triphosphatase) in different cell types, in terms of both physiology and pathology. It is one among a myriad of small G proteins with endogenous GTP-hydrolyzing activity that is considerably stimulated by posttranslational modifications (geranylgeranylation) or guanine nucleotide exchange factors (GEFs), and inhibited by GTPase-activating proteins (GAPs). Rap1 is a ubiquitous protein that plays an essential role in the control of metabolic processes, such as signal transduction from plasma membrane receptors, cytoskeleton rearrangements necessary for cell division, intracellular and substratum adhesion, as well as cell motility, which is needed for extravasation or fusion. We present several examples of how Rap1 affects cells and organs, pointing to possible molecular manipulations that could have application in the therapy of several diseases.
Collapse
|
25
|
Kanshin E, Pascariu M, Tyers M, D’Amours D, Thibault P. Combined Enrichment/Enzymatic Approach To Study Tightly Clustered Multisite Phosphorylation on Ser-Rich Domains. J Proteome Res 2018; 17:3050-3060. [DOI: 10.1021/acs.jproteome.8b00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | | |
Collapse
|
26
|
Kim M, Baek M, Kim DJ. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Curr Pharm Des 2018. [PMID: 28625132 DOI: 10.2174/1381612823666170616082125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphorylation is a crucial signaling mechanism that plays a role in epithelial carcinogenesis. Protein tyrosine kinases (PTKs) control various cellular processes including growth, differentiation, metabolism, and motility by activating major signaling pathways including STAT3, AKT, and MAPK. Genetic mutation of PTKs and/or prolonged activation of PTKs and their downstream pathways can lead to the development of epithelial cancer. Therefore, PTKs became an attractive target for cancer prevention. PTK inhibitors are continuously being developed, and they are currently used for the treatment of cancers that show a high expression of PTKs. Protein tyrosine phosphatases (PTPs), the homeostatic counterpart of PTKs, negatively regulate the rate and duration of phosphotyrosine signaling. PTPs initially were considered to be only housekeeping enzymes with low specificity. However, recent studies have demonstrated that PTPs can function as either tumor suppressors or tumor promoters, depending on their target substrates. Together, both PTK and PTP signal transduction pathways are potential therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Minwoo Baek
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
27
|
Perron M, Saragovi HU. Inhibition of CD45 Phosphatase Activity Induces Cell Cycle Arrest and Apoptosis of CD45 + Lymphoid Tumors Ex Vivo and In Vivo. Mol Pharmacol 2018; 93:575-580. [PMID: 29555821 DOI: 10.1124/mol.117.110908] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Src-family kinases (SFK) govern cellular proliferation of bone marrow-derived cells. SFKs are regulated by the protein tyrosine phosphatase enzymatic activity of CD45. All lymphoid cells express CD45, but only proliferating cells are dependent on CD45 activity. We postulated that compound 211 (2-[(4-acetylphenyl)amino]-3-chloronaphthoquinone), a selective inhibitor of CD45 phosphatase activity, could preferentially affect actively proliferating cells but spare resting lymphoid cells. Compound 211 inhibited CD45 and induced inappropriate SFK signaling, leading to a G2/M cell cycle arrest and apoptotic cell death. CD45+ cell lines were sensitive to compound 211 cytotoxicity at low micromolar LD50 while control CD45- cell lines and CD45+ resting primary T cells were spared any toxicity. In two syngeneic tumor models in vivo, compound 211 delayed the growth of established primary tumors and reduced tumor metastasis without causing depletion of resting T cells. This work validates targeting CD45 phosphatase enzymatic activity, which may be a druggable target for cancer therapy.
Collapse
Affiliation(s)
- Michael Perron
- Lady Davis Institute-Jewish General Hospital and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - H Uri Saragovi
- Lady Davis Institute-Jewish General Hospital and Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
McQueeney KE, Salamoun JM, Burnett JC, Barabutis N, Pekic P, Lewandowski SL, Llaneza DC, Cornelison R, Bai Y, Zhang ZY, Catravas JD, Landen CN, Wipf P, Lazo JS, Sharlow ER. Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget 2018; 9:8223-8240. [PMID: 29492190 PMCID: PMC5823565 DOI: 10.18632/oncotarget.23787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/25/2017] [Indexed: 12/16/2022] Open
Abstract
Overexpression of protein tyrosine phosphatase PTP4A oncoproteins is common in many human cancers and is associated with poor patient prognosis and survival. We observed elevated levels of PTP4A3 phosphatase in 79% of human ovarian tumor samples, with significant overexpression in tumor endothelium and pericytes. Furthermore, PTP4A phosphatases appear to regulate several key malignant processes, such as invasion, migration, and angiogenesis, suggesting a pivotal regulatory role in cancer and endothelial signaling pathways. While phosphatases are attractive therapeutic targets, they have been poorly investigated because of a lack of potent and selective chemical probes. In this study, we disclose that a potent, selective, reversible, and noncompetitive PTP4A inhibitor, JMS-053, markedly enhanced microvascular barrier function after exposure of endothelial cells to vascular endothelial growth factor or lipopolysaccharide. JMS-053 also blocked the concomitant increase in RhoA activation and loss of Rac1. In human ovarian cancer cells, JMS-053 impeded migration, disrupted spheroid growth, and decreased RhoA activity. Importantly, JMS-053 displayed anticancer activity in a murine xenograft model of drug resistant human ovarian cancer. These data demonstrate that PTP4A phosphatases can be targeted in both endothelial and ovarian cancer cells, and confirm that RhoA signaling cascades are regulated by the PTP4A family.
Collapse
Affiliation(s)
- Kelley E. McQueeney
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - James C. Burnett
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Barabutis
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Paula Pekic
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - Danielle C. Llaneza
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Robert Cornelison
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - John D. Catravas
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Charles N. Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
29
|
PTPRG and PTPRC modulate nilotinib response in chronic myeloid leukemia cells. Oncotarget 2018; 9:9442-9455. [PMID: 29507701 PMCID: PMC5823647 DOI: 10.18632/oncotarget.24253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023] Open
Abstract
The introduction of second-generation tyrosine kinase inhibitors (TKIs) targeting the protein-tyrosine kinase (PTK) BCR-ABL1 has improved treatment response in chronic myeloid leukemia (CML). However, in some patients response still remains suboptimal. Protein-tyrosine phosphatases (PTPs) are natural counter-actors of PTK activity and can affect TKI sensitivity, but the impact of PTPs on treatment response to second-generation TKIs is unknown. We assessed the mRNA expression level of 38 PTPs in 66 newly diagnosed CML patients and analyzed the potential relation with treatment outcome after 9 months of nilotinib medication. A significantly positive association with response was observed for higher PTPN13, PTPRA, PTPRC (also known as CD45), PTPRG, and PTPRM expression. Selected PTPs were then subjected to a functional analysis in CML cell line models using PTP gene knockout by CRISPR/Cas9 technology or PTP overexpression. These analyses revealed PTPRG positively and PTPRC negatively modulating nilotinib response. Consistently, PTPRG negatively and PTPRC positively affected BCR-ABL1 dependent transformation. We identified BCR-ABL1 signaling events, which were affected by modulating PTP levels or nilotinib treatment in the same direction. In conclusion, the PTP status of CML cells is important for the response to second generation TKIs and may help in optimizing therapeutic strategies.
Collapse
|
30
|
Ciribilli Y, Borlak J. Oncogenomics of c-Myc transgenic mice reveal novel regulators of extracellular signaling, angiogenesis and invasion with clinical significance for human lung adenocarcinoma. Oncotarget 2017; 8:101808-101831. [PMID: 29254206 PMCID: PMC5731916 DOI: 10.18632/oncotarget.21981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/21/2017] [Indexed: 11/25/2022] Open
Abstract
The c-Myc transcription factor is frequently deregulated in cancers. To search for disease diagnostic and druggable targets a transgenic lung cancer disease model was investigated. Oncogenomics identified c-Myc target genes in lung tumors. These were validated by RT-PCR, Western Blotting, EMSA assays and ChIP-seq data retrieved from public sources. Gene reporter and ChIP assays verified functional importance of c-Myc binding sites. The clinical significance was established by RT-qPCR in tumor and matched healthy control tissues, by RNA-seq data retrieved from the TCGA Consortium and by immunohistochemistry recovered from the Human Protein Atlas repository. In transgenic lung tumors 25 novel candidate genes were identified. These code for growth factors, Wnt/β-catenin and inhibitors of death receptors signaling, adhesion and cytoskeleton dynamics, invasion and angiogenesis. For 10 proteins over-expression was confirmed by IHC thus demonstrating their druggability. Moreover, c-Myc over-expression caused complete gene silencing of 12 candidate genes, including Bmp6, Fbln1 and Ptprb to influence lung morphogenesis, invasiveness and cell signaling events. Conversely, among the 75 repressed genes TNFα and TGF-β pathways as well as negative regulators of IGF1 and MAPK signaling were affected. Additionally, anti-angiogenic, anti-invasive, adhesion and extracellular matrix remodeling and growth suppressive functions were repressed. For 15 candidate genes c-Myc-dependent DNA binding and transcriptional responses in human lung cancer samples were confirmed. Finally, Kaplan-Meier survival statistics revealed clinical significance for 59 out of 100 candidate genes, thus confirming their prognostic value. In conclusion, previously unknown c-Myc target genes in lung cancer were identified to enable the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Yari Ciribilli
- Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
31
|
Tong J, Helmy M, Cavalli FMG, Jin L, St-Germain J, Karisch R, Taylor P, Minden MD, Taylor MD, Neel BG, Bader GD, Moran MF. Integrated analysis of proteome, phosphotyrosine-proteome, tyrosine-kinome, and tyrosine-phosphatome in acute myeloid leukemia. Proteomics 2017; 17. [PMID: 28176486 DOI: 10.1002/pmic.201600361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/21/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Reversible protein-tyrosine phosphorylation is catalyzed by the antagonistic actions of protein-tyrosine kinases (PTKs) and phosphatases (PTPs), and represents a major form of cell regulation. Acute myeloid leukemia (AML) is an aggressive hematological malignancy that results from the acquisition of multiple genetic alterations, which in some instances are associated with deregulated protein-phosphotyrosine (pY) mediated signaling networks. However, although individual PTKs and PTPs have been linked to AML and other malignancies, analysis of protein-pY networks as a function of activated PTKs and PTPs has not been done. In this study, MS was used to characterize AML proteomes, and phospho-proteome-subsets including pY proteins, PTKs, and PTPs. AML proteomes resolved into two groups related to high or low degrees of maturation according to French-American-British classification, and reflecting differential expression of cell surface antigens. AML pY proteomes reflect canonical, spatially organized signaling networks, unrelated to maturation, with heterogeneous expression of activated receptor and nonreceptor PTKs. We present the first integrated analysis of the pY-proteome, activated PTKs, and PTPs. Every PTP and most PTKs have both positive and negative associations with the pY-proteome. pY proteins resolve into groups with shared PTK and PTP correlations. These findings highlight the importance of pY turnover and the PTP phosphatome in shaping the pY-proteome in AML.
Collapse
Affiliation(s)
- Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada
| | - Mohamed Helmy
- The Donnelly Centre, University of Toronto, Toronto, Canada
| | - Florence M G Cavalli
- Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada.,Program in Developmental & Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Lily Jin
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada
| | | | - Robert Karisch
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Paul Taylor
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada.,Program in Developmental & Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada.,Departmet of Medicine, NYU School of Medicine, New York, NY, USA
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael F Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Peter Gilgan Centre for Research and Learning, Hospital For Sick Children, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
32
|
Zhong Y, Yang J, Xu WW, Wang Y, Zheng CC, Li B, He QY. KCTD12 promotes tumorigenesis by facilitating CDC25B/CDK1/Aurora A-dependent G2/M transition. Oncogene 2017; 36:6177-6189. [PMID: 28869606 PMCID: PMC5671937 DOI: 10.1038/onc.2017.287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Cell cycle dysregulation leads to uncontrolled cell proliferation and tumorigenesis. Understanding the molecular mechanisms underlying cell cycle progression can provide clues leading to the identification of key proteins involved in cancer development. In this study, we performed proteomics analysis to identify novel regulators of the cell cycle. We found that potassium channel tetramerization domain containing 12 (KCTD12) was significantly upregulated in M phase compared with S phase. We also found that KCTD12 overexpression not only facilitated the G2/M transition and induced cancer cell proliferation, but also promoted the growth of subcutaneous tumors and Ki-67 proliferation index in mice. Regarding the mechanism underlying these phenomena, cyclin-dependent kinase 1 (CDK1) was identified as an interacting partner of KCTD12 by immunoprecipitation and mass spectrometry analysis, which showed that KCTD12 activated CDK1 and Aurora kinase A (Aurora A) and that the effects of KCTD12 on CDK1 phosphorylation and cell proliferation were abrogated by cell division cycle 25B (CDC25B) silencing. In addition, Aurora A phosphorylated KCTD12 at serine 243, thereby initiating a positive feedback loop necessary for KCTD12 to exert its cancer-promoting effects. Furthermore, we analyzed the expression levels of various genes and the correlations between the expression of these genes and survival using tumor tissue microarray and Gene Expression Omnibus (GEO) data sets. The data showed that KCTD12 expression was significantly upregulated in cervical and lung cancers. More importantly, high KCTD12 expression was associated with larger tumor sizes, higher pathological stages and poor patient survival. Collectively, our study demonstrate that KCTD12 binds to CDC25B and activates CDK1 and Aurora A to facilitate the G2/M transition and promote tumorigenesis and that Aurora A phosphorylates KCTD12 at serine 243 to trigger a positive feedback loop, thereby potentiating the effects of KCTD12. Thus, the KCTD12-CDC25B-CDK1-Aurora A axis has important implications for cancer diagnoses and prognoses.
Collapse
Affiliation(s)
- Y Zhong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - J Yang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - W W Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Y Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - C-C Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - B Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Q-Y He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
33
|
Lazo JS, McQueeney KE, Sharlow ER. New Approaches to Difficult Drug Targets: The Phosphatase Story. SLAS DISCOVERY 2017; 22:1071-1083. [DOI: 10.1177/2472555217721142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The drug discovery landscape is littered with promising therapeutic targets that have been abandoned because of insufficient validation, historical screening failures, and inferior chemotypes. Molecular targets once labeled as “undruggable” or “intractable” are now being more carefully interrogated, and while they remain challenging, many target classes are appearing more approachable. Protein tyrosine phosphatases represent an excellent example of a category of molecular targets that have emerged as druggable, with several small molecules and antibodies recently becoming available for further development. In this review, we examine some of the diseases that are associated with protein tyrosine phosphatase dysfunction and use some prototype contemporary strategies to illustrate approaches that are being used to identify small molecules targeting this enzyme class.
Collapse
Affiliation(s)
- John S. Lazo
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Kelley E. McQueeney
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R. Sharlow
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
34
|
Abstract
Much effort has been expended to develop inhibitors against protein-tyrosine phosphatases (PTPs), nearly all of it unsuccessful. A recent report, describing a highly specific, orally bioavailable inhibitor of the PTP oncoprotein SHP2 with in vivo activity, suggests that allostery might provide a way forward for PTP inhibitor development.
Collapse
Affiliation(s)
- Hao Ran
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ryouhei Tsutsumi
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
35
|
Labbé DP, Uetani N, Vinette V, Lessard L, Aubry I, Migon E, Sirois J, Haigh JJ, Bégin LR, Trotman LC, Paquet M, Tremblay ML. PTP1B Deficiency Enables the Ability of a High-Fat Diet to Drive the Invasive Character of PTEN-Deficient Prostate Cancers. Cancer Res 2016; 76:3130-5. [PMID: 27020859 DOI: 10.1158/0008-5472.can-15-1501] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
Abstract
Diet affects the risk and progression of prostate cancer, but the interplay between diet and genetic alterations in this disease is not understood. Here we present genetic evidence in the mouse showing that prostate cancer progression driven by loss of the tumor suppressor Pten is mainly unresponsive to a high-fat diet (HFD), but that coordinate loss of the protein tyrosine phosphatase Ptpn1 (encoding PTP1B) enables a highly invasive disease. Prostate cancer in Pten(-/-)Ptpn1(-/-) mice was characterized by increased cell proliferation and Akt activation, interpreted to reflect a heightened sensitivity to IGF-1 stimulation upon HFD feeding. Prostate-specific overexpression of PTP1B was not sufficient to initiate prostate cancer, arguing that it acted as a diet-dependent modifier of prostate cancer development in Pten(-/-) mice. Our findings offer a preclinical rationale to investigate the anticancer effects of PTP1B inhibitors currently being studied clinically for diabetes treatment as a new modality for management of prostate cancer. Cancer Res; 76(11); 3130-5. ©2016 AACR.
Collapse
Affiliation(s)
- David P Labbé
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Noriko Uetani
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Valérie Vinette
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | - Laurent Lessard
- Research Group in Molecular Oncology and Endocrinology, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Isabelle Aubry
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Eva Migon
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Jacinthe Sirois
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
| | - Jody J Haigh
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University and Alfred Health Alfred Centre, Melbourne, Victoria, Australia
| | - Louis R Bégin
- Service d'anatomopathologie, Hôpital du Sacré-Cœur de Montréal, Montréal, Québec, Canada
| | | | - Marilène Paquet
- Faculté de Médecine Vétérinaire, Département de Pathologie et de Microbiologie, Université de Montréal, St-Hyacinthe, Québec, Canada
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada. Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada. Department of Biochemistry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
36
|
Kostantin E, Hardy S, Valinsky WC, Kompatscher A, de Baaij JHF, Zolotarov Y, Landry M, Uetani N, Martínez-Cruz LA, Hoenderop JGJ, Shrier A, Tremblay ML. Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth. J Biol Chem 2016; 291:10716-25. [PMID: 26969161 PMCID: PMC4865918 DOI: 10.1074/jbc.m115.705863] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 11/06/2022] Open
Abstract
The oncogenic phosphatase of regenerating liver 2 (PRL-2) has been shown to regulate intracellular magnesium levels by forming a complex through an extended amino acid loop present in the Bateman module of the CNNM3 magnesium transporter. Here we identified highly conserved residues located on this amino acid loop critical for the binding with PRL-2. A single point mutation (D426A) of one of those critical amino acids was found to completely disrupt PRL-2·human Cyclin M 3 (CNNM3) complex formation. Whole-cell voltage clamping revealed that expression of CNNM3 influenced the surface current, whereas overexpression of the binding mutant had no effect, indicating that the binding of PRL-2 to CNNM3 is important for the activity of the complex. Interestingly, overexpression of the CNNM3 D426A-binding mutant in cancer cells decreased their ability to proliferate under magnesium-deprived situations and under anchorage-independent growth conditions, demonstrating a PRL-2·CNNM3 complex-dependent oncogenic advantage in a more stringent environment. We further confirmed the importance of this complex in vivo using an orthotopic xenograft breast cancer model. Finally, because molecular modeling showed that the Asp-426 side chain in CNNM3 buries into the catalytic cavity of PRL-2, we showed that a PRL inhibitor could abrogate complex formation, resulting in a decrease in proliferation of human breast cancer cells. In summary, we provide evidence that this fundamental regulatory aspect of PRL-2 in cancer cells could potentially lead to broadly applicable and innovative therapeutic avenues.
Collapse
Affiliation(s)
- Elie Kostantin
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| | - Serge Hardy
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | | | - Andreas Kompatscher
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Jeroen H F de Baaij
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Yevgen Zolotarov
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| | - Melissa Landry
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | - Noriko Uetani
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada
| | - Luis Alfonso Martínez-Cruz
- the Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Joost G J Hoenderop
- the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, and
| | - Alvin Shrier
- Physiology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Michel L Tremblay
- From the Rosalind and Morris Goodman Cancer Research Centre, Montréal, Québec H3A 1A3, Canada, the Departments of Biochemistry and
| |
Collapse
|
37
|
Xiong JB, Li DJ, Jie ZG, Chen HP, Li ZR. Role of phosphatase of regenerating liver 3 in gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:59-66. [DOI: 10.11569/wcjd.v24.i1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric carcinoma is one of the most common malignancies worldwide and remains the third leading cause of cancer death in both sexes worldwide. Phosphatase of regenerating liver 3 (PRL-3) is a tyrosine phosphatase that has been reported to be overexpressed in gastric tissues and play an important role in lymphatic metastasis and peritoneal metastasis of gastric carcinoma. It has also been reported that PRL-3 has a negative relationship with the prognosis of gastric carcinoma patients. More and more researchers have focused on the regulatory mechanism of PRL-3 in gastric carcinoma, aiming to elucidate the possible pathway and influencing factors. However, the exact mechanism of PRL-3 in promoting lymphatic metastasis, peritoneal metastasis and recurrence of gastric cancer is unknown. This paper will review the role of PRL-3 in gastric carcinoma with regard to its structure, function and possible mechanism in gastric carcinoma development.
Collapse
|
38
|
Narayanan KB, Ali M, Barclay BJ, Cheng Q(S, D’Abronzo L, Dornetshuber-Fleiss R, Ghosh PM, Gonzalez Guzman MJ, Lee TJ, Leung PS, Li L, Luanpitpong S, Ratovitski E, Rojanasakul Y, Romano MF, Romano S, Sinha RK, Yedjou C, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Ryan EP, Colacci AM, Hamid RA, Mondello C, Raju J, Salem HK, Woodrick J, Scovassi A, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Kim SY, Bisson WH, Lowe L, Park HH. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. Carcinogenesis 2015; 36 Suppl 1:S89-S110. [PMID: 26106145 PMCID: PMC4565614 DOI: 10.1093/carcin/bgv032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/12/2022] Open
Abstract
Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- Department of Chemistry and Biochemistry, Yeungnam University, Gyeongsan 712-749, South Korea
- Sultan Zainal Abidin University, Malaysia
- Plant Biotechnologies Inc, St. Albert AB, Canada
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
- Department of Pharmacology and Toxicology, University of Vienna, Austria
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
- Advenced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh, 226003, India
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Manaf Ali
- Sultan Zainal Abidin University, Malaysia
| | | | - Qiang (Shawn) Cheng
- Computer Science Department, Southern Illinois University, Carbondale, IL 62901, USA
| | - Leandro D’Abronzo
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | | | - Paramita M. Ghosh
- Department of Urology, University of California Davis, Sacramento, CA 95817, USA
| | - Michael J. Gonzalez Guzman
- University of Puerto Rico, Medical Sciences Campus, School of Public Health, Nutrition Program, San Juan Puerto Rico 00936-5067, USA
| | - Tae-Jin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu, 705-717, South Korea
| | - Po Sing Leung
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Lin Li
- School of Biomedical Science, The Chinese University Of Hong Kong, Hong Kong, China
| | - Suidjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Edward Ratovitski
- Department of Otolaryngology/Head and Neck Surgery, Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80131 Naples, Italy
| | - Ranjeet K. Sinha
- Department of Molecular and Experimental Medicine, MEM 180, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clement Yedjou
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado state University/ Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario, K1A0K9, Canada
| | - Hosni K. Salem
- Urology Department, Kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo, 12515, Egypt
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - A.Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia, 27100, Italy
| | - Neetu Singh
- Advenced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh, 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, 40126, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande, 95029, Italy
| | - Seo Yun Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul 139-706, South Korea
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA and
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Hyun Ho Park
- *To whom correspondence should be addressed. Tel: +82 53 810 3015; Fax: +82 53 810 4619;
| |
Collapse
|
39
|
Lai X, Chen Q, Zhu C, Deng R, Zhao X, Chen C, Wang Y, Yu J, Huang J. Regulation of RPTPα-c-Src signalling pathway by miR-218. FEBS J 2015; 282:2722-34. [PMID: 25940608 DOI: 10.1111/febs.13314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/28/2015] [Accepted: 04/29/2015] [Indexed: 11/27/2022]
Abstract
Receptor protein tyrosine phosphatase alpha (RPTPα), an activator of Src family kinases, is found significantly overexpressed in human cancer tissues. However, little is known about the regulation of RPTPα expression. miRNAs target multiple genes and play important roles in many cancer processes. Here, we identified a miRNA, miR-218 that binds directly to the 3'-UTR of RPTPα. Ectopic overexpression of miR-218 decreased RPTPα protein leading to decreased dephosphorylation of c-Src and decreased tumour growth in vitro and in vivo. A feedback loop between c-Src and miR-218 was revealed where c-Src inhibits transcription of SLIT2, which intronically hosts miR-218. These results show a novel regulatory pathway for RPTPα-c-Src signalling.
Collapse
Affiliation(s)
- Xueping Lai
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Qin Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Changhong Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Cheng Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumour Microenvironment and Inflammation, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
40
|
Defelipe LA, Lanzarotti E, Gauto D, Marti MA, Turjanski AG. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families. PLoS Comput Biol 2015; 11:e1004051. [PMID: 25741692 PMCID: PMC4351059 DOI: 10.1371/journal.pcbi.1004051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023] Open
Abstract
Cysteine residues have a rich chemistry and play a critical role in the catalytic activity of a plethora of enzymes. However, cysteines are susceptible to oxidation by Reactive Oxygen and Nitrogen Species, leading to a loss of their catalytic function. Therefore, cysteine oxidation is emerging as a relevant physiological regulatory mechanism. Formation of a cyclic sulfenyl amide residue at the active site of redox-regulated proteins has been proposed as a protection mechanism against irreversible oxidation as the sulfenyl amide intermediate has been identified in several proteins. However, how and why only some specific cysteine residues in particular proteins react to form this intermediate is still unknown. In the present work using in-silico based tools, we have identified a constrained conformation that accelerates sulfenyl amide formation. By means of combined MD and QM/MM calculation we show that this conformation positions the NH backbone towards the sulfenic acid and promotes the reaction to yield the sulfenyl amide intermediate, in one step with the concomitant release of a water molecule. Moreover, in a large subset of the proteins we found a conserved beta sheet-loop-helix motif, which is present across different protein folds, that is key for sulfenyl amide production as it promotes the previous formation of sulfenic acid. For catalytic activity, in several cases, proteins need the Cysteine to be in the cysteinate form, i.e. a low pKa Cys. We found that the conserved motif stabilizes the cysteinate by hydrogen bonding to several NH backbone moieties. As cysteinate is also more reactive toward ROS we propose that the sheet-loop-helix motif and the constraint conformation have been selected by evolution for proteins that need a reactive Cys protected from irreversible oxidation. Our results also highlight how fold conservation can be correlated to redox chemistry regulation of protein function. Cysteine oxidation is emerging as a relevant regulatory mechanism of enzymatic function in the cell. Many proteins are protected from over oxidation by reactive oxygen species by the formation of a cyclic sulfenyl amide. Understanding how cyclic sulfenyl amide is formed and its dependence on protein structure is not only a basic question but necessary to predict which proteins may auto protect from over oxidation We describe a structural motif, which includes cysteine residues with a constrained conformation in a “forbidden” region of the Ramachandran plot plus a Beta-Cys-loop-helix motif, which has a reactive low pKa Cysteine and also enables to form the cyclic sulfenyl amide with a low activation barrier. Our QM/MM computations show that the cyclization reaction only occurs if the “forbidden” conformation is acquired by the Cysteine residue. This structural motif was identified at least in 7 PFAM families and 145 proteins with solved structure, showing that a large number of proteins could have the ability to go through such cyclic product preventing irreversible oxidation.
Collapse
Affiliation(s)
- Lucas A. Defelipe
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Esteban Lanzarotti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego Gauto
- INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Marcelo A. Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, Argentina
- * E-mail: (MAM); (AGT)
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- INQUIMAE/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Buenos Aires, Argentina
- * E-mail: (MAM); (AGT)
| |
Collapse
|
41
|
Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene 2014; 34:3791-803. [DOI: 10.1038/onc.2014.312] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/26/2014] [Accepted: 08/16/2014] [Indexed: 12/12/2022]
|
42
|
Li J, Pang Q. Oxidative stress-associated protein tyrosine kinases and phosphatases in Fanconi anemia. Antioxid Redox Signal 2014; 20:2290-301. [PMID: 24206276 PMCID: PMC3995293 DOI: 10.1089/ars.2013.5715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. RECENT ADVANCES A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. CRITICAL ISSUES In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. FUTURE DIRECTIONS Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting.
Collapse
Affiliation(s)
- Jie Li
- 1 Division of Neurosurgery, Center for Theoretic and Applied Neuro-Oncology, Moores Cancer Center, University of California , San Diego, La Jolla, California
| | | |
Collapse
|
43
|
Abstract
SIGNIFICANCE Protein tyrosine phosphatases (PTPs) play essential roles in controlling cell proliferation, differentiation, communication, and adhesion. The dysregulated activities of PTPs are involved in the pathogenesis of a number of human diseases such as cancer, diabetes, and autoimmune diseases. RECENT ADVANCES Many PTPs have emerged as potential new targets for novel drug discovery. PTP inhibitors have attracted much attention. Many PTP inhibitors have been developed. Some of them have been proven to be efficient in lowering blood glucose levels in vivo or inhibiting tumor xenograft growth. CRITICAL ISSUES Some metal ions and metal complexes potently inhibit PTPs. The metal atoms within metal complexes play an important role in PTP binding, while ligand structures influence the inhibitory potency and selectivity. Some metal complexes can penetrate the cell membrane and selectively bind to their targeting PTPs, enhancing the phosphorylation of the related substrates and influencing cellular metabolism. PTP inhibition is potentially involved in the pathophysiological and toxicological processes of metals and some PTPs may be cellular targets of certain metal-based therapeutic agents. FUTURE DIRECTIONS Investigating the structural basis of the interactions between metal complexes and PTPs would facilitate a comprehensive understanding of the structure-activity relationship and accelerate the development of promising metal-based drugs targeting specific PTPs.
Collapse
Affiliation(s)
- Liping Lu
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University , Taiyuan, People's Republic of China
| | | |
Collapse
|
44
|
Pereira L, Igea A, Canovas B, Dolado I, Nebreda AR. Inhibition of p38 MAPK sensitizes tumour cells to cisplatin-induced apoptosis mediated by reactive oxygen species and JNK. EMBO Mol Med 2013; 5:1759-74. [PMID: 24115572 PMCID: PMC3840490 DOI: 10.1002/emmm.201302732] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/11/2022] Open
Abstract
The p38 MAPK pathway is an important regulator of many cellular responses. It is well established that p38 MAPK signalling negatively regulates epithelial cell transformation, but enhanced p38 MAPK activity has been also correlated with bad clinical prognosis in some tumour types. Here, we provide genetic and pharmacological evidence showing that p38 MAPK inhibition cooperates with the chemotherapeutic agent cisplatin to kill tumour cells. We show that p38 MAPK inhibition results in ROS upregulation, which in turn activates the JNK pathway via inactivation of phosphatases, sensitizing human tumour cells to cisplatin-induced apoptosis. Using a mouse model for breast cancer, we confirm that inhibition of p38 MAPK cooperates with cisplatin treatment to reduce tumour size and malignancy in vivo. Taken together, our results illustrate a new function of p38 MAPK that helps tumour cells to survive chemotherapeutic drug treatments, and reveal that the combination of p38 MAPK inhibitors with cisplatin can be potentially exploited for cancer therapy.
Collapse
Affiliation(s)
- Lorena Pereira
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | | | | | | | | |
Collapse
|
45
|
Krishnan N, Bencze G, Cohen P, Tonks NK. The anti-inflammatory compound BAY-11-7082 is a potent inhibitor of protein tyrosine phosphatases. FEBS J 2013; 280:2830-41. [PMID: 23578302 DOI: 10.1111/febs.12283] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
The families of protein tyrosine phosphatases (PTPs) and protein tyrosine kinases (PTKs) function in a coordinated manner to regulate signal transduction events that are critical for cellular homeostasis. Aberrant tyrosine phosphorylation, resulting from disruption of either PTP or PTK function, has been shown to be the cause of major human diseases, including cancer and diabetes. Consequently, the characterization of small-molecule inhibitors of these kinases and phosphatases may not only provide molecular probes with which to define the significance of particular signaling events, but also may have therapeutic implications. BAY-11-7082 is an anti-inflammatory compound that has been reported to inhibit IκB kinase activity. The compound has an α,β-unsaturated electrophilic center, which confers the property of being a Michael acceptor; this suggests that it may react with nucleophilic cysteine-containing proteins, such as PTPs. In this study, we demonstrated that BAY-11-7082 was a potent, irreversible inhibitor of PTPs. Using mass spectrometry, we have shown that BAY-11-7082 inactivated PTPs by forming a covalent adduct with the active-site cysteine. Administration of the compound caused an increase in protein tyrosine phosphorylation in RAW 264 macrophages, similar to the effects of the generic PTP inhibitor sodium orthovanadate. These data illustrate that BAY-11-7082 is an effective pan-PTP inhibitor with cell permeability, revealing its potential as a new probe for chemical biology approaches to the study of PTP function. Furthermore, the data suggest that inhibition of PTP function may contribute to the many biological effects of BAY-11-7082 that have been reported to date.
Collapse
Affiliation(s)
- Navasona Krishnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724-2208, USA
| | | | | | | |
Collapse
|
46
|
De Munter S, Köhn M, Bollen M. Challenges and opportunities in the development of protein phosphatase-directed therapeutics. ACS Chem Biol 2013; 8:36-45. [PMID: 23214403 DOI: 10.1021/cb300597g] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatases have both protective and promoting roles in the etiology of diseases. A prominent example is the existence of oncogenic as well as tumor-suppressing protein phosphatases. A few protein phosphatase activity modulators are already applied in therapies. These were however not developed in target-directed approaches, and the recent discovery of phosphatase involvement followed their application in therapy. Nevertheless, these examples demonstrate that small molecules can be generated that modulate the activity of protein phosphatases and are beneficial for the treatment of protein phosphorylation diseases. We describe here strategies for the development of activators and inhibitors of protein phosphatases and clarify some long-standing misconceptions concerning the druggability of these enzymes. Recent developments suggest that it is feasible to design potent and selective protein phosphatase modulators with a therapeutic potential.
Collapse
Affiliation(s)
- Sofie De Munter
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Maja Köhn
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg,
Germany
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Zhang YW, Ghosh AK, Pommier Y. Lasonolide A, a potent and reversible inducer of chromosome condensation. Cell Cycle 2012; 11:4424-35. [PMID: 23159859 DOI: 10.4161/cc.22768] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lasonolide A (LSA) is a natural product with high and selective cytotoxicity against mesenchymal cancer cells, including leukemia, melanomas and glioblastomas. Here, we reveal that LSA induces rapid and reversible premature chromosome condensation (PCC) associated with cell detachment, plasma membrane smoothening and actin reorganization. PCC is induced at all phases of the cell cycle in proliferative cells as well as in circulating human lymphocytes in G 0. It is independent of Cdk1 signaling, associated with cyclin B downregulation and induced in cells at LSA concentrations that are three orders of magnitude lower than those required to block phosphatases 1 and 2A in vitro. At the epigenetic level, LSA-induced PCC is coupled with histone H3 and H1 hyperphosphorylation and deacetylation. Treatment with SAHA reduced LSA-induced PCC, implicating histone deacetylation as one of the PCC effector mechanisms. In addition, PCC is coupled with topoisomerase II (Top2) and Aurora A hyperphosphorylation and activation. Inhibition of Top2 or Aurora A partially blocked LSA-induced PCC. Our findings demonstrate the profound epigenetic alterations induced by LSA and the potential of LSA as a new cytogenetic tool. Based on the unique cellular effects of LSA, further studies are warranted to uncover the cellular target of lasonolide A ("TOL").
Collapse
Affiliation(s)
- Yong-Wei Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD USA
| | | | | |
Collapse
|