1
|
Tran RL, Li T, de la Cerda J, Schuler FW, Khaled AS, Pudakalakatti S, Bhattacharya PK, Sinharay S, Pagel MD. Potentiation of immune checkpoint blockade with a pH-sensitizer as monitored in two pre-clinical tumor models with acidoCEST MRI. Br J Cancer 2025; 132:744-753. [PMID: 39994445 PMCID: PMC11997056 DOI: 10.1038/s41416-025-02962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Tumor acidosis causes resistance to immune checkpoint blockade (ICB). We hypothesized that a "pH-sensitizer" can increase tumor extracellular pH (pHe) and improve tumor control following ICB. We also hypothesized that pHe measured with acidoCEST MRI can predict improved tumor control with ICB. METHODS We tested the effects of pH-sensitizers on proton efflux rate (PER), cytotoxicity, T cell activation, tumor immunogenicity, tumor growth and survival using 4T1 and B16-F10 tumor cells. We measured in vivo tumor pHe of 4T1 and B16-F10 models with acidoCEST MRI. RESULTS Among the pH-sensitizers tested, someprazole caused the greatest reduction in PER without exhibiting cytotoxicity or reducing T cell activation. Esomeprazole improved 4T1 tumor control with ICB administered one day after the pH-sensitizer. Tumor pHe positively correlated with TCF-1 + CD4 effector and CD8 T cell intratumoral frequencies and predicted improved 4T1 tumor control with ICB. For comparison, esomeprazole had a mild effect on B16-F10 tumor pHe, and worsened tumor control with ICB and increased intratumoral myeloid and dendritic cell (DC) frequencies. CONCLUSIONS A pH-sensitizer can improve tumor control with ICB, and acidoCEST MRI can be used to measure pHe and predict tumor control, but only in the 4T1 model and not the B16-F10 model.
Collapse
Affiliation(s)
- Renee L Tran
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Tianzhe Li
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - F William Schuler
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | - Alia S Khaled
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Sanhita Sinharay
- Centre for Biosystems Science & Engineering, Indian Institute of Science, Bangalore, India
| | - Mark D Pagel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Neitzel LR, Fuller DT, Cornell J, Rea S, de Aguiar Ferreira C, Williams CH, Hong CC. Inhibition of GPR68 induces ferroptosis and radiosensitivity in diverse cancer cell types. Sci Rep 2025; 15:4074. [PMID: 39900965 PMCID: PMC11791087 DOI: 10.1038/s41598-025-88357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Radioresistance is thought to be a major consequence of tumor milieu acidification resulting from the Warburg effect. Previously, using ogremorphin (OGM), a small molecule inhibitor of GPR68, an extracellular proton sensing receptor, we demonstrated that GPR68 is a key pro-survival pathway in glioblastoma cells. Here, we demonstrate that GPR68 inhibition also induces ferroptosis in lung cell carcinoma (A549) and pancreatic ductal adenocarcinoma (Panc02) cells. Moreover, OGM synergized with ionizing radiation to induce lipid peroxidation, a hallmark of ferroptosis, as well as reduce colony size in 2D and 3D cell culture. GPR68 inhibition is not acutely detrimental but increases intracellular free ferrous iron, which is known to trigger reactive oxygen species (ROS) generation. In summary, GPR68 inhibition induces lipid peroxidation in cancer cells and sensitizes them to ionizing radiation in part through the mobilization of intracellular free ferrous iron. Our results suggest that GPR68 is a key mediator of cancer cell radioresistance activated by acidic tumor microenvironment.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Daniela T Fuller
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
3
|
Velapure P, Kansal D, Bobade C. Tumor microenvironment-responsive nanoformulations for breast cancer. DISCOVER NANO 2024; 19:212. [PMID: 39708097 DOI: 10.1186/s11671-024-04122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 12/23/2024]
Abstract
Nanomedicine, the most promising approach for regulated and targeted drug delivery, is frequently applied in cancer treatment. Essentially, accumulating evidence indicates that nanomedicine has positive results in the treatment of breast cancer (BC), with many BC patients benefiting from nanomedicine-related treatments. Currently, nanodrug delivery systems based on stimulus responses are gaining popularity because of their additional ability to manage drug release depending on the interior environment of the cancer. This review includes a synopsis of several types of internal (pH, redox, enzyme, reactive oxygen species, and hypoxia) stimuli-responsive nanoparticle drug delivery systems as well as perspectives for forthcoming times. Stimulus-responsive nanoparticles can remain stable under physiological conditions while being rapidly activated to release drugs in response to specific stimuli, prolonging blood circulation and increasing cancer cellular uptake, resulting in excellent therapeutic performance and improved biosafety. In this paper, we discuss tumor microenvironment responsive Nanoformulation for breast cancer treatment.
Collapse
Affiliation(s)
- Pallavi Velapure
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Divyanshi Kansal
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India
| | - Chandrashekhar Bobade
- School of Health Science and Technology, Dr. Vishwanath Karad MIT World Peace University, S.No. 124, MIT Campus, Paud Road, Kothrud, Pune, 411038, Maharashtra, India.
| |
Collapse
|
4
|
Amantakul A, Amantakul A, Pojchamarnwiputh S, Chattipakorn N, Chattipakorn SC, Sripetchwandee J. Targeting mitochondria and programmed cell death as potential interventions for metastatic castration-resistant prostate cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03784-y. [PMID: 39681803 DOI: 10.1007/s12094-024-03784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/02/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer is one of the major causes of morbidity and mortality in men worldwide. Most patients with prostate cancer will turn into end-of-life stage when those tumor cells become metastatic castration-resistant prostate cancer (mCRPC). The mCRPC subsequently developed a resistance to androgen signaling. The current regimens for mCRPC therapy are still ineffective. Much evidence from in vitro and in vivo studies explored the roles of therapeutic interventions targeted at the mitochondria and programmed cell death for prostate cancer therapy. The present review will focus on the recent medications which targeted at mitochondria and programmed cell death in mCRPC and the significant findings from each study will be summarized and discussed. Development of therapeutic interventions, particularly at mitochondrial and cytotoxic targets for treatment of mCRPC without inducing cellular toxicity of normal tissues will be considered as the novel therapeutic strategy for mCRPC.
Collapse
Affiliation(s)
- Amonlaya Amantakul
- Department of Diagnostic Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Akara Amantakul
- Department of Urology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suwalee Pojchamarnwiputh
- Department of Diagnostic Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn Chaisin Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Department of Physiology, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Alfonso I. Supramolecular chemical biology: designed receptors and dynamic chemical systems. Chem Commun (Camb) 2024; 60:9692-9703. [PMID: 39129537 DOI: 10.1039/d4cc03163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Supramolecular chemistry focuses on the study of species joined by non-covalent interactions, and therefore on dynamic and relatively ill-defined structures. Despite being a well-developed field, it has to face important challenges when dealing with the selective recognition of biomolecules in highly competitive biomimetic media. However, supramolecular interactions reside at the core of chemical biology systems, since many processes in nature are governed by weak, non-covalent, strongly dynamic contacts. Therefore, there is a natural connection between these two research fields, which are not frequently related or share interests. In this feature article, I will highlight our most recent results in the molecular recognition of biologically relevant species, following different conceptual approaches from the most conventional design of elaborated receptors to the less popular dynamic combinatorial chemistry methodology. Selected illustrative examples from other groups will be also included. The discussion has been focused mainly on systems with potential biomedical applications.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), The Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
6
|
Neitzel LR, Fuller DT, Williams CH, Hong CC. Inhibition of GPR68 kills glioblastoma in zebrafish xenograft models. BMC Res Notes 2024; 17:235. [PMID: 39180089 PMCID: PMC11342492 DOI: 10.1186/s13104-024-06900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE Inhibition and knockdown of GPR68 negatively affects glioblastoma cell survival in vitro by inducing ferroptosis. Herein, we aimed to demonstrate that inhibition of GPR68 reduces the survival of glioblastoma cells in vivo using two orthotopic larval xenograft models in Danio rerio, using GBM cell lines U87-MG and U138-MG. In vivo survival of the cancer cells was assessed in the setting of GPR68 inhibition or knockdown. RESULTS In vitro, shRNA-mediated knockdown of GPR68 inhibition demonstrated potent cytotoxic effects against U87 and U138 glioblastoma cell lines. This effect was associated with increased intracellular lipid peroxidation, suggesting ferroptosis as the underlying mechanism of cell death. Translating these findings in vivo, we established a novel xenograft model in zebrafish by successfully grafting fluorescently labeled human glioblastoma cells, which were previously shown to overexpress GPR68. shRNA knockdown of GPR68 significantly reduced the viability of grafted GBM cells within this model. Additionally, treatment with ogremorphin (OGM), a highly specific small molecule inhibitor of GPR68, also reduced the viability of grafted GBM cells with limited toxicity to the developing zebrafish embryos. This study suggests that therapeutic targeting of GPR68 with small molecules like OGM represents a promising approach for the treatment of GBM.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Daniela T Fuller
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
7
|
Fuentes-Aguilar A, González-Bakker A, Jovanović M, Stojanov SJ, Puerta A, Gargano A, Dinić J, Vega-Báez JL, Merino-Montiel P, Montiel-Smith S, Alcaro S, Nocentini A, Pešić M, Supuran CT, Padrón JM, Fernández-Bolaños JG, López Ó. Coumarins-lipophilic cations conjugates: Efficient mitocans targeting carbonic anhydrases. Bioorg Chem 2024; 145:107168. [PMID: 38354500 DOI: 10.1016/j.bioorg.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.
Collapse
Affiliation(s)
- Alma Fuentes-Aguilar
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico; Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Mirna Jovanović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Sofija Jovanović Stojanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Adriana Gargano
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy
| | - Jelena Dinić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia
| | - José L Vega-Báez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, PUE, Mexico
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Net4Science Academic Spinoff, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, 88100 Catanzaro, Italy; Associazione CRISEA - Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo, 88055 Belcastro (CZ), Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy
| | - Milica Pešić
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019 Florence, Italy.
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de la Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| | - José G Fernández-Bolaños
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071 Seville, Spain.
| |
Collapse
|
8
|
Williams CH, Neitzel LR, Cornell J, Rea S, Mills I, Silver MS, Ahmad JD, Birukov KG, Birukova A, Brem H, Tyler B, Bar EE, Hong CC. GPR68-ATF4 signaling is a novel prosurvival pathway in glioblastoma activated by acidic extracellular microenvironment. Exp Hematol Oncol 2024; 13:13. [PMID: 38291540 PMCID: PMC10829393 DOI: 10.1186/s40164-023-00468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis. METHOD OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival. RESULTS We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells. CONCLUSION These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.
Collapse
Affiliation(s)
- Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ian Mills
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maya S Silver
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jovanni D Ahmad
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
9
|
Cornell J, Rea S, Neitzel LR, Williams CH, Hong CC. Proton Sensing GPCR's: The missing link to Warburg's Oncogenic Legacy? JOURNAL OF CANCER BIOLOGY 2024; 5:65-75. [PMID: 39641117 PMCID: PMC11619763 DOI: 10.46439/cancerbiology.5.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A century after Otto Warburg's seminal discovery of aerobic glycolysis in cancer cells, a phenomenon dubbed the "Warburg effect", the mechanistic links between this metabolic rewiring and tumorigenesis remain elusive. Warburg postulated that this enhanced glucose fermentation to lactate, even in the presence of oxygen, stemmed from an "irreversible respiratory injury" intrinsic to cancer cells. While oxidative phosphorylation yields higher ATP, the Warburg effect paradoxically persists, suggesting that the excess lactate and acid production are worth the deficit. Since Warburg's discovery, it has been demonstrated that the acidic tumor microenvironment activates a myriad of pro-oncogenic phenotypes ranging from therapeutic resistance to immune escape. Here we propose that proton-sensing G-protein-coupled receptors (GPCRs) act as crucial heirs to Warburg's findings by transducing the acid signal from elevated glycolytic lactate into pro-oncogenic signals. The increased lactate production characteristic of the Warburg effect causes extracellular acidification. This acidic tumor microenvironment can activate proton-sensing GPCRs like GPR68, a proton-sensing receptor shown to stimulate proliferation, migration, and survival pathways in cancer cells. Such pH sensing is accomplished through protonation of key residues such as histidine, which causes a conformational change to activate various downstream signaling cascades including the MAPK, PI3K/Akt, Rho, and β-arrestin pathways implicated in tumor progression and therapeutic resistance. By coupling Warburg's "respiratory injury" to potent mitogenic signaling, proton-sensing GPCRs like GPR68 may unveil a longstanding mystery - why forgo efficient ATP generation? As heirs to Warburg's iconic metabolic observations, these proton sensors could represent novel therapeutic targets to disrupt the synergy between the Warburg effect and oncogenic signaling.
Collapse
Affiliation(s)
- Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Charles H. Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Charles C. Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| |
Collapse
|
10
|
Chan LLY, Kessel SL, Lin B, Juncker-Jensen A, Weingarten P. Characterization and comparison of hypoxia inducing factors on tumor growth and metastasis between two- and three-dimensional cancer models. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 29:S2472-5552(23)00077-1. [PMID: 39492483 DOI: 10.1016/j.slasd.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
The monocarboxylic acid transporter 4 (Mct-4), a downstream biomarker of hypoxia inducing factor (HIF)-1α, is involved in the cellular response to hypoxia, as indicated by the hypoxic response element in its promoter region. Using a tumorsphere assay as an in vitro 3-dimensional (3D) model generated using 384-well ultra-low attachment (ULA) plates for cell proliferation analysis using a plate-based image cytometer, we identify a hypoxic response in the tumorsphere model that is distinct from that of cells grown under 2-dimensional (2D) normoxic conditions and demonstrate a key role for Mct-4 in enabling 3D growth. The tumorsphere model yields evidence of an essential role for Mct-4 in multiple cell lines, which were genetically modified to underexpress and overexpress Mct-4, evidence not apparent in a standard 2D model of growth in the same cell lines. In addition, we identify the effects of overexpressing Mct-4 in cancer cell migration using a transwell chamber assay. We also show that the response to hypoxia may be circumvented by transfection with a CMV promoter driven Mct-4, which confers constitutive 3D growth, wherein tumorsphere growth inhibition by small molecule HIF-1α inhibitors is mitigated. Finally, we demonstrate quantifiable gene/protein expression differences between 2D and 3D cancer models based on the normoxic and hypoxic conditions. Therefore, the tumorsphere 3D model generated using 384-well ULA plates in combination with high-throughput image cytometer is demonstrated to provide a convenient, robust, and reproducible tool and method for the elucidation of mechanisms of action underlying tumor growth and migration in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Bo Lin
- Revvity Health Sciences, Inc., Lawrence, MA 01843, USA
| | | | | |
Collapse
|
11
|
Basha S, Jin-Smith B, Sun C, Pi L. The SLIT/ROBO Pathway in Liver Fibrosis and Cancer. Biomolecules 2023; 13:785. [PMID: 37238655 PMCID: PMC10216401 DOI: 10.3390/biom13050785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis is a common outcome of most chronic liver insults/injuries that can develop into an irreversible process of cirrhosis and, eventually, liver cancer. In recent years, there has been significant progress in basic and clinical research on liver cancer, leading to the identification of various signaling pathways involved in tumorigenesis and disease progression. Slit glycoprotein (SLIT)1, SLIT2, and SLIT3 are secreted members of a protein family that accelerate positional interactions between cells and their environment during development. These proteins signal through Roundabout receptor (ROBO) receptors (ROBO1, ROBO2, ROBO3, and ROBO4) to achieve their cellular effects. The SLIT and ROBO signaling pathway acts as a neural targeting factor regulating axon guidance, neuronal migration, and axonal remnants in the nervous system. Recent findings suggest that various tumor cells differ in SLIT/ROBO signaling levels and show varying degrees of expression patterns during tumor angiogenesis, cell invasion, metastasis, and infiltration. Emerging roles of the SLIT and ROBO axon-guidance molecules have been discovered in liver fibrosis and cancer development. Herein, we examined the expression patterns of SLIT and ROBO proteins in normal adult livers and two types of liver cancers: hepatocellular carcinoma and cholangiocarcinoma. This review also summarizes the potential therapeutics of this pathway for anti-fibrosis and anti-cancer drug development.
Collapse
Affiliation(s)
| | | | | | - Liya Pi
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
El Hadi C, Hilal G, Aoun R. Enhancing cancer treatment and understanding through clustering of gene responses to categorical stressors. Sci Rep 2023; 13:6517. [PMID: 37085609 PMCID: PMC10121664 DOI: 10.1038/s41598-023-33785-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/19/2023] [Indexed: 04/23/2023] Open
Abstract
Cancer cells have a unique metabolic activity in the glycolysis pathway compared to normal cells, which allows them to maintain their growth and proliferation. Therefore, inhibition of glycolytic pathways may be a promising therapeutic approach for cancer treatment. In this novel study, we analyzed the genetic responses of cancer cells to stressors, particularly to drugs that target the glycolysis pathway. Gene expression data for experiments on different cancer cell types were extracted from the Gene Expression Omnibus and the expression fold change was then clustered after dimensionality reduction. We identified four groups of responses: the first and third were most affected by anti-glycolytic drugs, especially those acting on multiple pathways at once, and consisted mainly of squamous and mesenchymal tissues, showing higher mitotic inhibition and apoptosis. The second and fourth groups were relatively unaffected by treatment, comprising mainly gynecologic and hormone-sensitive groups, succumbing least to glycolysis inhibitors. Hexokinase-targeted drugs mainly showed this blunted effect on cancer cells. This study highlights the importance of analyzing the molecular states of cancer cells to identify potential targets for personalized cancer therapies and to improve our understanding of the disease.
Collapse
Affiliation(s)
| | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Rita Aoun
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| |
Collapse
|
13
|
West J, Robertson-Tessi M, Anderson ARA. Agent-based methods facilitate integrative science in cancer. Trends Cell Biol 2023; 33:300-311. [PMID: 36404257 PMCID: PMC10918696 DOI: 10.1016/j.tcb.2022.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
Abstract
In this opinion, we highlight agent-based modeling as a key tool for exploration of cell-cell and cell-environment interactions that drive cancer progression, therapeutic resistance, and metastasis. These biological phenomena are particularly suited to be captured at the cell-scale resolution possible only within agent-based or individual-based mathematical models. These modeling approaches complement experimental work (in vitro and in vivo systems) through parameterization and data extrapolation but also feed forward to drive new experiments that test model-generated predictions.
Collapse
Affiliation(s)
- Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
14
|
Wang Z, Wu X, Chen HN, Wang K. Amino acid metabolic reprogramming in tumor metastatic colonization. Front Oncol 2023; 13:1123192. [PMID: 36998464 PMCID: PMC10043324 DOI: 10.3389/fonc.2023.1123192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Metastasis is considered as the major cause of cancer death. Cancer cells can be released from primary tumors into the circulation and then colonize in distant organs. How cancer cells acquire the ability to colonize in distant organs has always been the focus of tumor biology. To enable survival and growth in the new environment, metastases commonly reprogram their metabolic states and therefore display different metabolic properties and preferences compared with the primary lesions. For different microenvironments in various colonization sites, cancer cells must transfer to specific metabolic states to colonize in different distant organs, which provides the possibility of evaluating metastasis tendency by tumor metabolic states. Amino acids provide crucial precursors for many biosynthesis and play an essential role in cancer metastasis. Evidence has proved the hyperactivation of several amino acid biosynthetic pathways in metastatic cancer cells, including glutamine, serine, glycine, branched chain amino acids (BCAAs), proline, and asparagine metabolism. The reprogramming of amino acid metabolism can orchestrate energy supply, redox homeostasis, and other metabolism-associated pathways during cancer metastasis. Here, we review the role and function of amino acid metabolic reprogramming in cancer cells colonizing in common metastatic organs, including lung, liver, brain, peritoneum, and bone. In addition, we summarize the current biomarker identification and drug development of cancer metastasis under the amino acid metabolism reprogramming, and discuss the possibility and prospect of targeting organ-specific metastasis for cancer treatment.
Collapse
Affiliation(s)
- Zihao Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyun Wu
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy. Biomolecules 2023; 13:biom13030465. [PMID: 36979400 PMCID: PMC10046142 DOI: 10.3390/biom13030465] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Ovarian cancer (OC) is among the most common gynecologic malignancies with a poor prognosis and a high mortality rate. Most patients are diagnosed at an advanced stage (stage III or IV), with 5-year survival rates ranging from 25% to 47% worldwide. Surgical resection and first-line chemotherapy are the main treatment modalities for OC. However, patients usually relapse within a few years of initial treatment due to resistance to chemotherapy. Cell-based therapies, particularly adoptive T-cell therapy and chimeric antigen receptor T (CAR-T) cell therapy, represent an alternative immunotherapy approach with great potential for hematologic malignancies. However, the use of CAR-T-cell therapy for the treatment of OC is still associated with several difficulties. In this review, we comprehensively discuss recent innovations in CAR-T-cell engineering to improve clinical efficacy, as well as strategies to overcome the limitations of CAR-T-cell therapy in OC.
Collapse
|
16
|
Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022; 14:pharmaceutics14122708. [PMID: 36559202 PMCID: PMC9785496 DOI: 10.3390/pharmaceutics14122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and battling cancer has always been a challenging subject in medical sciences. All over the world, scientists from different fields of study try to gain a deeper knowledge about the biology and roots of cancer and, consequently, provide better strategies to fight against it. During the past few decades, nanoparticles (NPs) have attracted much attention for the delivery of therapeutic and diagnostic agents with high efficiency and reduced side effects in cancer treatment. Targeted and stimuli-sensitive nanoparticles have been widely studied for cancer therapy in recent years, and many more studies are ongoing. This review aims to provide a broad view of different nanoparticle systems with characteristics that allow them to target diverse properties of the tumor microenvironment (TME) from nanoparticles that can be activated and release their cargo due to the specific characteristics of the TME (such as low pH, redox, and hypoxia) to nanoparticles that can target different cellular and molecular targets of the present cell and molecules in the TME.
Collapse
|
17
|
Targhazeh N, Hutt KJ, Winship AL, Reiter R, Yousefi B. Melatonin as an oncostatic agent: Review of the modulation of tumor microenvironment and overcoming multidrug resistance. Biochimie 2022; 202:71-84. [PMID: 36116742 DOI: 10.1016/j.biochi.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
Abstract
Multi drug resistance (MDR) generally limits the efficacy of chemotherapy in cancer patients and can be categorized into primary or acquired resistance. Melatonin (MLT), a lipophilic hormone released from pineal gland, is a molecule with oncostatic effects. Here, we will briefly review the contribution of different microenvironmental components including fibroblasts, immune and inflammatory cells, stem cells and vascular endothelial cells in tumor initiation, progression and development. Then, the mechanisms by which MLT can potentially affect these elements and regulate drug resistance will be presented. Finally, we will explain how different studies have used novel strategies incorporating MLT to suppress cancer resistance against therapeutics.
Collapse
Affiliation(s)
- Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karla J Hutt
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy L Winship
- Development and Stem Cell Program and Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Russel Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, USA.
| | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Han JH, Jeong SH, Yuk HD, Jeong CW, Kwak C, Ku JH. Acidic urine is associated with poor prognosis in patients with bladder cancer undergoing radical cystectomy. Front Oncol 2022; 12:964571. [PMID: 36091123 PMCID: PMC9459327 DOI: 10.3389/fonc.2022.964571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To assess the prognostic value of acidic urine (low urine pH) in patients with bladder cancer undergoing radical cystectomy. Materials and methods We reviewed patients enrolled in the Seoul National University Prospectively Enrolled Registry for Urothelial Cancer-Cystectomy (SUPER-UC-Cx) who underwent radical cystectomy for bladder cancer between March 2016 and December 2020 at the Seoul National University Hospital. During this period, 368 patients were registered in our database. To eliminate confounding factors, we excluded patients diagnosed with non-urothelial cancer and end-stage renal disease. Results A total of 351 patients with a mean age of 69.8 ± 10.5 years and median follow-up of 16.0 months were eligible for the analysis. The mean preoperative urine pH was 6.0. The patients were divided into low (pH ≤ 5.5) and high (pH≥6.0) urine pH groups for comparison. All clinicopathological features, including the tumor size, grade, and stage were comparable between the low and high urine pH groups. A Cox regression analysis was performed to assess the independent effect of acidic urine on patient survival. A multivariate analysis showed that high T stage (T3-4) (hazard ratio (HR) 5.18, P<0.001), decreased renal function (estimated glomerular filtration rate <60 mL/min/1.73 m2) (HR 2.29, P=0.003), and low urine pH (≤5.5) (HR 1.69, P=0.05) were associated with shortened recurrence-free survival (RFS). Regarding the overall survival (OS), high T stage (T3-4) (HR 7.15, P<0.001) and low urine pH (≤5.5) (HR 2.66, P=0.029) were significantly associated with shortened survival. A Kaplan–Meier analysis demonstrated that the acidic urine group showed shorter RFS (P=0.04) and OS (P=0.028) than the other groups. Conclusions Acidic urine was independently associated with reduced RFS and OS in patients with bladder cancer undergoing radical cystectomy. Acidic urine contributing to an acidic tumor environment may promote aggressive behavior in bladder cancer.
Collapse
Affiliation(s)
- Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
| | - Seung-hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
| | - Hyeong Dong Yuk
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul, South Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Ja Hyeon Ku,
| |
Collapse
|
19
|
The crosstalk of the human microbiome in breast and colon cancer: A metabolomics analysis. Crit Rev Oncol Hematol 2022; 176:103757. [PMID: 35809795 DOI: 10.1016/j.critrevonc.2022.103757] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiome's role in colon and breast cancer is described in this review. Understanding how the human microbiome and metabolomics interact with breast and colon cancer is the chief area of this study. First, the role of the gut and distal microbiome in breast and colon cancer is investigated, and the direct relationship between microbial dysbiosis and breast and colon cancer is highlighted. This work also focuses on the many metabolomic techniques used to locate prospective biomarkers, make an accurate diagnosis, and research new therapeutic targets for cancer treatment. This review clarifies the influence of anti-tumor medications on the microbiota and the proactive measures that can be taken to treat cancer using a variety of therapies, including radiotherapy, chemotherapy, next-generation biotherapeutics, gene-based therapy, integrated omics technology, and machine learning.
Collapse
|
20
|
Yang S, Cai C, Wang H, Ma X, Shao A, Sheng J, Yu C. Drug delivery strategy in hepatocellular carcinoma therapy. Cell Commun Signal 2022; 20:26. [PMID: 35248060 PMCID: PMC8898478 DOI: 10.1186/s12964-021-00796-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractHepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with high rates of recurrence and death. Surgical resection and ablation therapy have limited efficacy for patients with advanced HCC and poor liver function, so pharmacotherapy is the first-line option for those patients. Traditional antitumor drugs have the disadvantages of poor biological distribution and pharmacokinetics, poor target selectivity, high resistance, and high toxicity to nontargeted tissues. Recently, the development of nanotechnology has significantly improved drug delivery to tumor sites by changing the physical and biological characteristics of drugs and nanocarriers to improve their pharmacokinetics and biological distribution and to selectively accumulate cytotoxic agents at tumor sites. Here, we systematically review the tumor microenvironment of HCC and the recent application of nanotechnology in HCC.
Collapse
|
21
|
Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front Oncol 2022; 12:842496. [PMID: 35359389 PMCID: PMC8963986 DOI: 10.3389/fonc.2022.842496] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Melanin pigment plays a critical role in the protection against the harmful effects of ultraviolet radiation and other environmental stressors. It is produced by the enzymatic transformation of L-tyrosine to dopaquinone and subsequent chemical and biochemical reactions resulting in the formation of various 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) oligomers-main constituents of eumelanin, and benzothiazine and benzothiazole units of pheomelanin. The biosynthesis of melanin is regulated by sun exposure and by many hormonal factors at the tissue, cellular, and subcellular levels. While the presence of melanin protects against the development of skin cancers including cutaneous melanoma, its presence may be necessary for the malignant transformation of melanocytes. This shows a complex role of melanogenesis in melanoma development defined by chemical properties of melanin and the nature of generating pathways such as eu- and pheomelanogenesis. While eumelanin is believed to provide radioprotection and photoprotection by acting as an efficient antioxidant and sunscreen, pheomelanin, being less photostable, can generate mutagenic environment after exposure to the short-wavelength UVR. Melanogenesis by itself and its highly reactive intermediates show cytotoxic, genotoxic, and mutagenic activities, and it can stimulate glycolysis and hypoxia-inducible factor 1-alpha (HIF-1α) activation, which, combined with their immunosuppressive effects, can lead to melanoma progression and resistance to immunotherapy. On the other hand, melanogenesis-related proteins can be a target for immunotherapy. Interestingly, clinicopathological analyses on advanced melanomas have shown a negative correlation between tumor pigmentation and diseases outcome as defined by overall survival and disease-free time. This indicates a "Yin and Yang" role for melanin and active melanogenesis in melanoma development, progression, and therapy. Furthermore, based on the clinical, experimental data and diverse effects of melanogenesis, we propose that inhibition of melanogenesis in advanced melanotic melanoma represents a realistic adjuvant strategy to enhance immuno-, radio-, and chemotherapy.
Collapse
Affiliation(s)
- Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Przemysław M Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States.,Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Krutilina RI, Playa H, Brooks DL, Schwab LP, Parke DN, Oluwalana D, Layman DR, Fan M, Johnson DL, Yue J, Smallwood H, Seagroves TN. HIF-Dependent CKB Expression Promotes Breast Cancer Metastasis, Whereas Cyclocreatine Therapy Impairs Cellular Invasion and Improves Chemotherapy Efficacy. Cancers (Basel) 2021; 14:cancers14010027. [PMID: 35008190 PMCID: PMC8749968 DOI: 10.3390/cancers14010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Targeting dysregulated cellular metabolism is a promising avenue to treat metastatic disease. The aim of our study was to identify genes downstream of the hypoxia-inducible factor (HIF)-1 transcription factor that are amenable to therapeutic intervention to treat metastatic breast cancer (MBC). We identified creatine kinase, brain isoform (CKB) as an HIF-dependent gene that strongly promotes invasion and metastasis in estrogen-receptor (ER)-negative breast cancer models. Deletion of Ckb also repressed glycolysis and mitochondrial respiration, leading to a reduction in intracellular ATP. Either the deletion of Ckb or inhibition of creatine kinase (CK) activity using the creatine analog cyclocreatine (cCr) repressed cell invasion, the formation of invadopodia and lung metastasis. In addition, when paired with paclitaxel or doxorubicin, cCr enhanced growth inhibition in an additive or synergistic manner. cCr may be an effective anti-metastatic agent in ER-negative, HIF-1α-positive breast cancers, targeting both cellular metabolism and motility, particularly when paired with conventional cytotoxic agents. Abstract The oxygen-responsive hypoxia inducible factor (HIF)-1 promotes several steps of the metastatic cascade. A hypoxic gene signature is enriched in triple-negative breast cancers (TNBCs) and is correlated with poor patient survival. Inhibiting the HIF transcription factors with small molecules is challenging; therefore, we sought to identify genes downstream of HIF-1 that could be targeted to block invasion and metastasis. Creatine kinase brain isoform (CKB) was identified as a highly differentially expressed gene in a screen of HIF-1 wild type and knockout mammary tumor cells derived from a transgenic model of metastatic breast cancer. CKB is a cytosolic enzyme that reversibly catalyzes the phosphorylation of creatine, generating phosphocreatine (PCr) in the forward reaction, and regenerating ATP in the reverse reaction. Creatine kinase activity is inhibited by the creatine analog cyclocreatine (cCr). Loss- and gain-of-function genetic approaches were used in combination with cCr therapy to define the contribution of CKB expression or creatine kinase activity to cell proliferation, migration, invasion, and metastasis in ER-negative breast cancers. CKB was necessary for cell invasion in vitro and strongly promoted tumor growth and lung metastasis in vivo. Similarly, cyclocreatine therapy repressed cell migration, cell invasion, the formation of invadopodia and lung metastasis. Moreover, in common TNBC cell line models, the addition of cCr to conventional cytotoxic chemotherapy agents was either additive or synergistic to repress tumor cell growth.
Collapse
Affiliation(s)
- Raisa I. Krutilina
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
| | - Hilaire Playa
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
| | - Danielle L. Brooks
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
| | - Luciana P. Schwab
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
| | - Deanna N. Parke
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
| | - Damilola Oluwalana
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
| | - Douglas R. Layman
- School of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Meiyun Fan
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
| | - Daniel L. Johnson
- Molecular Bioinformatics Core, Office of Research, The University of Tennessee Health Science Center, 71 South Manassas Street, Memphis, TN 38163, USA;
| | - Junming Yue
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
| | - Heather Smallwood
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas Street, Memphis, TN 38163, USA;
| | - Tiffany N. Seagroves
- Center for Cancer Research, Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, Cancer Research Building, 19 South Manassas Street, Memphis, TN 38163, USA; (R.I.K.); (H.P.); (D.L.B.); (L.P.S.); (D.N.P.); (D.O.); (M.F.); (J.Y.)
- Correspondence: ; Tel.: +1-901-448-5018
| |
Collapse
|
23
|
Carvalho TMA, Di Molfetta D, Greco MR, Koltai T, Alfarouk KO, Reshkin SJ, Cardone RA. Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers (Basel) 2021; 13:6135. [PMID: 34885243 PMCID: PMC8657427 DOI: 10.3390/cancers13236135] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the median overall survival of PDAC patients rarely exceeds 1 year and has an overall 5-year survival rate of about 9%. These numbers are anticipated to worsen in the future due to the lack of understanding of the factors involved in its strong chemoresistance. Chemotherapy remains the only treatment option for most PDAC patients; however, the available therapeutic strategies are insufficient. The factors involved in chemoresistance include the development of a desmoplastic stroma which reprograms cellular metabolism, and both contribute to an impaired response to therapy. PDAC stroma is composed of immune cells, endothelial cells, and cancer-associated fibroblasts embedded in a prominent, dense extracellular matrix associated with areas of hypoxia and acidic extracellular pH. While multiple gene mutations are involved in PDAC initiation, this desmoplastic stroma plays an important role in driving progression, metastasis, and chemoresistance. Elucidating the mechanisms underlying PDAC resistance are a prerequisite for designing novel approaches to increase patient survival. In this review, we provide an overview of the stromal features and how they contribute to the chemoresistance in PDAC treatment. By highlighting new paradigms in the role of the stromal compartment in PDAC therapy, we hope to stimulate new concepts aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | | | - Khalid O. Alfarouk
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah 42316, Saudi Arabia;
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (D.D.M.); (M.R.G.); (S.J.R.); (R.A.C.)
| |
Collapse
|
24
|
Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021; 296:102509. [PMID: 34455211 DOI: 10.1016/j.cis.2021.102509] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022]
Abstract
One of the challenges in cancer chemotherapy is the low target to non-target ratio of therapeutic agents which incur severe adverse effect on the healthy tissues. In this regard, nanomaterials have tremendous potential for impacting cancer therapy by altering the toxicity profile of the drug. Some of the striking advantages provided by the nanocarriers mediated targeted drug delivery are relatively high build-up of drug concentration at the tumor site, improved drug content in the formulation and enhanced colloidal stability. Further, nanocarriers with tumor-specific moieties can be targeted to the cancer cell through cell surface receptors, tumor antigens and tumor vasculatures with high affinity and accuracy. Moreover, it overcomes the bottleneck of aimless drug biodistribution, undesired toxicity and heavy dosage of administration. This review discusses the recent developments in active targeting of nanomaterials for anticancer drug delivery through cancer cell surface targeting, organelle specific targeting and tumor microenvironment targeting strategies. Special emphasis has been given towards cancer cell surface and organelle specific targeting as delivery of anticancer drugs through these routes have made paradigm change in cancer management. Further, the current challenges and future prospects of nanocarriers mediated active drug targeting are also demonstrated.
Collapse
|
25
|
Yang YF, Chuang HW, Kuo WT, Lin BS, Chang YC. Current Development and Application of Anaerobic Glycolytic Enzymes in Urothelial Cancer. Int J Mol Sci 2021; 22:ijms221910612. [PMID: 34638949 PMCID: PMC8508954 DOI: 10.3390/ijms221910612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/23/2022] Open
Abstract
Urothelial cancer is a malignant tumor with metastatic ability and high mortality. Malignant tumors of the urinary system include upper tract urothelial cancer and bladder cancer. In addition to typical genetic alterations and epigenetic modifications, metabolism-related events also occur in urothelial cancer. This metabolic reprogramming includes aberrant expression levels of genes, metabolites, and associated networks and pathways. In this review, we summarize the dysfunctions of glycolytic enzymes in urothelial cancer and discuss the relevant phenotype and signal transduction. Moreover, we describe potential prognostic factors and risks to the survival of clinical cancer patients. More importantly, based on several available databases, we explore relationships between glycolytic enzymes and genetic changes or drug responses in urothelial cancer cells. Current advances in glycolysis-based inhibitors and their combinations are also discussed. Combining all of the evidence, we indicate their potential value for further research in basic science and clinical applications.
Collapse
Affiliation(s)
- Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| | - Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bo-Syuan Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Correspondence: ; Tel.: +886-2-2826-7064
| |
Collapse
|
26
|
Pandey S, Sharma VK, Biswas A, Lahiri M, Basu S. Small molecule-mediated induction of endoplasmic reticulum stress in cancer cells. RSC Med Chem 2021; 12:1604-1611. [PMID: 34671742 PMCID: PMC8459384 DOI: 10.1039/d1md00095k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is one of the crucial sub-cellular organelles controlling myriads of functions including protein biosynthesis, folding, misfolding and unfolding. As a result, dysregulation of these pathways in the ER is implicated in cancer development and progression. Subsequently, targeting the ER in cancer cells emerged as an interesting unorthodox strategy in next-generation anticancer therapy. However, development of small molecules to selectively target the ER for cancer therapy remained elusive and unexplored. To address this, herein, we have developed a novel small molecule library of sulfonylhydrazide-hydrazones through a short and concise chemical synthetic strategy. We identified a fluorescent small molecule that localized into the endoplasmic reticulum (ER) of HeLa cells, induced ER stress followed by triggering autophagy which was subsequently inhibited by chloroquine (autophagy inhibitor) to initiate apoptosis. This small molecule showed remarkable cancer cell killing efficacy in different cancer cells as mono and combination therapy with chloroquine, thus opening a new direction to illuminate ER-biology towards the development of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Shalini Pandey
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Homi Bhabha Road, Pashan Pune 411008 India
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| | - Virender Kumar Sharma
- Department of Biology, Indian Institute of Science Education and Research (IISER)-Pune Homi Bhabha Road, Pashan Pune 411008 India
| | - Ankur Biswas
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune Homi Bhabha Road, Pashan Pune 411008 India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research (IISER)-Pune Homi Bhabha Road, Pashan Pune 411008 India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar Palaj Gandhinagar Gujarat 382355 India
| |
Collapse
|
27
|
Curcumin Targets Both Apoptosis and Necroptosis in Acidity-Tolerant Prostate Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8859181. [PMID: 34095313 PMCID: PMC8164543 DOI: 10.1155/2021/8859181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022]
Abstract
Objective Curcumin, a major bioactive curcuminoid derived from the rhizome of Curcuma longa, is known to have anticancer potential and is still under investigation. In this study, we investigated the cytotoxic mechanism(s) of curcumin against acidity-tolerant prostate cancer PC-3AcT cells in lactic acid-containing medium. Methods Using 2D-monolyer and 3D spheroid culture models, MTT assay, annexin V-PE binding assay, flow cytometric analysis, measurement of ATP content, and Western blot analysis were used for this study. Results At nontoxic concentrations in normal prostate epithelial RWPE-1 and HPrEC cells, curcumin led to strong cytotoxicity in PC-3AcT cells, including increases in sub-G0/G1 peak, annexin V-PE-positive cells, and ROS levels; loss of mitochondrial membrane potential; reduction of cellular ATP content; DNA damage; and concurrent induction of apoptosis and necroptosis. A series of changes induced by curcumin were effectively reversed by reducing ROS levels or replenishing ATP. Pretreatment with apoptosis inhibitor Q-VD-Oph-1 or necroptosis inhibitor necrostatin-1 restored cell viability inhibited by curcumin. Treatment of 3D spheroids with curcumin decreased cell viability, accompanied by an increase in mediators of apoptosis and necroptosis, including cleaved caspase-3 and cleaved PARP, phospho (p)-RIP3, and p-MLKL proteins. Conclusion This study shows that curcumin simultaneously induces apoptosis and necroptosis by oxidative mitochondrial dysfunction and subsequent ATP depletion, providing a mechanistic basis for understanding the novel role of curcumin for prostate carcinoma cells.
Collapse
|
28
|
Mosier JA, Wu Y, Reinhart-King CA. Recent advances in understanding the role of metabolic heterogeneities in cell migration. Fac Rev 2021; 10:8. [PMID: 33659926 PMCID: PMC7894266 DOI: 10.12703/r/10-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Migration is an energy-intensive, multi-step process involving cell adhesion, protrusion, and detachment. Each of these steps require cells to generate and consume energy, regulating their morphological changes and force generation. Given the need for energy to move, cellular metabolism has emerged as a critical regulator of both single cell and collective migration. Recently, metabolic heterogeneity has been highlighted as a potential determinant of collective cell behavior, as individual cells may play distinct roles in collective migration. Several tools and techniques have been developed and adapted to study cellular energetics during migration including live-cell probes to characterize energy utilization and metabolic state and methodologies to sort cells based on their metabolic profile. Here, we review the recent advances in techniques, parsing the metabolic heterogeneities inherent in cell populations and their contributions to cell migration.
Collapse
Affiliation(s)
- Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yusheng Wu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
29
|
Halcrow PW, Geiger JD, Chen X. Overcoming Chemoresistance: Altering pH of Cellular Compartments by Chloroquine and Hydroxychloroquine. Front Cell Dev Biol 2021; 9:627639. [PMID: 33634129 PMCID: PMC7900406 DOI: 10.3389/fcell.2021.627639] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to the anti-cancer effects of chemotherapeutic agents (chemoresistance) is a major issue for people living with cancer and their providers. A diverse set of cellular and inter-organellar signaling changes have been implicated in chemoresistance, but it is still unclear what processes lead to chemoresistance and effective strategies to overcome chemoresistance are lacking. The anti-malaria drugs, chloroquine (CQ) and its derivative hydroxychloroquine (HCQ) are being used for the treatment of various cancers and CQ and HCQ are used in combination with chemotherapeutic drugs to enhance their anti-cancer effects. The widely accepted anti-cancer effect of CQ and HCQ is their ability to inhibit autophagic flux. As diprotic weak bases, CQ and HCQ preferentially accumulate in acidic organelles and neutralize their luminal pH. In addition, CQ and HCQ acidify the cytosolic and extracellular environments; processes implicated in tumorigenesis and cancer. Thus, the anti-cancer effects of CQ and HCQ extend beyond autophagy inhibition. The present review summarizes effects of CQ, HCQ and proton pump inhibitors on pH of various cellular compartments and discuss potential mechanisms underlying their pH-dependent anti-cancer effects. The mechanisms considered here include their ability to de-acidify lysosomes and inhibit autophagosome lysosome fusion, to de-acidify Golgi apparatus and secretory vesicles thus affecting secretion, and to acidify cytoplasm thus disturbing aerobic metabolism. Further, we review the ability of these agents to prevent chemotherapeutic drugs from accumulating in acidic organelles and altering their cytosolic concentrations.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| |
Collapse
|
30
|
A New Mathematical Model for Controlling Tumor Growth Based on Microenvironment Acidity and Oxygen Concentration. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8886050. [PMID: 33575354 PMCID: PMC7857879 DOI: 10.1155/2021/8886050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Hypoxia and the pH level of the tumor microenvironment have a great impact on the treatment of tumors. Here, the tumor growth is controlled by regulating the oxygen concentration and the acidity of the tumor microenvironment by introducing a two-dimensional multiscale cellular automata model of avascular tumor growth. The spatiotemporal evolution of tumor growth and metabolic variations is modeled based on biological assumptions, physical structure, states of cells, and transition rules. Each cell is allocated to one of the following states: proliferating cancer, nonproliferating cancer, necrotic, and normal cells. According to the response of the microenvironmental conditions, each cell consumes/produces metabolic factors and updates its state based on some stochastic rules. The input parameters are compatible with cancer biology using experimental data. The effect of neighborhoods during mitosis and simulating spatial heterogeneity is studied by considering multicellular layer structure of tumor. A simple Darwinist mutation is considered by introducing a critical parameter (Nmm) that affects division probability of the proliferative tumor cells based on the microenvironmental conditions and cancer hallmarks. The results show that Nmm regulation has a significant influence on the dynamics of tumor growth, the growth fraction, necrotic fraction, and the concentration levels of the metabolic factors. The model not only is able to simulate the in vivo tumor growth quantitatively and qualitatively but also can simulate the concentration of metabolic factors, oxygen, and acidity graphically. The results show the spatial heterogeneity effects on the proliferation of cancer cells and the rest of the system. By increasing Nmm, tumor shrinkage and significant increasing in the oxygen concentration and the pH value of the tumor microenvironment are observed. The results demonstrate the model's ability, providing an essential tool for simulating different tumor evolution scenarios of a patient and reliable prediction of spatiotemporal progression of tumors for utilizing in personalized therapy.
Collapse
|
31
|
Ye S, Cui C, Cheng X, Zhao M, Mao Q, Zhang Y, Wang A, Fang J, Zhao Y, Shi H. Red Light-Initiated Cross-Linking of NIR Probes to Cytoplasmic RNA: An Innovative Strategy for Prolonged Imaging and Unexpected Tumor Suppression. J Am Chem Soc 2020; 142:21502-21512. [PMID: 33306393 DOI: 10.1021/jacs.0c10755] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Improving the enrichment of drugs or theranostic agents within tumors is very vital to achieve effective cancer diagnosis and therapy while greatly reducing the dosage and damage to normal tissues. Herein, as a proof of concept, we for the first time report a red light-initiated probe-RNA cross-linking (RLIPRC) strategy that can not only robustly promote the accumulation and retention of the probe in the tumor for prolonged imaging but also significantly inhibits the tumor growth. A near-infrared (NIR) fluorescent probe f-CR consisting of a NIR dye (Cyanine 7) as a signal reporter, a cyclic-(arginine-glycine-aspartic acid) (cRGD) peptide for tumor targeting, and a singlet oxygen (1O2)-sensitive furan moiety for RNA cross-linking was rationally designed and synthesized. This probe possessed both passive and active tumor targeting abilities and emitted intense NIR/photoacoustic (PA) signals, allowing for specific and sensitive dual-modality imaging of tumors in vivo. Notably, probe f-CR could be specifically and covalently cross-linked to cytoplasmic RNAs via the cycloaddition reaction between furan and adenine, cytosine, or guanine under the oxidation of 1O2 generated in situ by irradiation of methylene blue (MB) with 660 nm laser light, which effectively blocks the exocytosis of the probes resulting in enhanced tumor accumulation and retention. More excitingly, for the first time, we revealed that the covalent cross-linking of probe f-CR to cytoplasmic RNAs could induce severe apoptosis of cancer cells leading to remarkable tumor suppression. This study thus represents the first red light-initiated RNA cross-linking system with high potential to improve the diagnostic and therapeutic outcomes of tumors in vivo.
Collapse
Affiliation(s)
- Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Xiaju Cheng
- Jiangsu Key Laboratory of Infection & Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Meng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
32
|
Krasavin M, Kalinin S, Sharonova T, Supuran CT. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J Enzyme Inhib Med Chem 2020; 35:1555-1561. [PMID: 32746643 PMCID: PMC7470080 DOI: 10.1080/14756366.2020.1801674] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
Analysis of the literature data reveals that while inhibition of cancer-related carbonic anhydrase IX and XII isoforms continues to be an important enrichment factor for designing anticancer agent development libraries, exclusive reliance on the in vitro inhibition of these two recombinant isozymes in nominating candidate compounds for evaluation of their effects on cancer cells may lead not only to identifying numerous compounds devoid of the desired cellular efficacy but also to overlooking many promising candidates which may not display the best potency in biochemical inhibition assay. However, SLC-0111, now in phase Ib/II clinical trials, was developed based on the excellent agreement between the in vitro, in vivo and more recently, in-patient data.
Collapse
Affiliation(s)
- Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Stanislav Kalinin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Tatiana Sharonova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
33
|
Ray P, Dutta D, Haque I, Nair G, Mohammed J, Parmer M, Kale N, Orr M, Jain P, Banerjee S, Reindl KM, Mallik S, Kambhampati S, Banerjee SK, Quadir M. pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Mol Pharm 2020; 18:87-100. [PMID: 33231464 DOI: 10.1021/acs.molpharmaceut.0c00499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a metabolic disorder, remains one of the leading cancer mortality sources worldwide. An initial response to treatments, such as gemcitabine (GEM), is often followed by emergent resistance reflecting an urgent need for alternate therapies. The PDAC resistance to GEM could be due to ERK1/2 activity. However, successful ERKi therapy is hindered due to low ligand efficiency, poor drug delivery, and toxicity. In this study, to overcome these limitations, we have designed pH-responsive nanoparticles (pHNPs) with a size range of 100-150 nm for the simultaneous delivery of ERKi (SCH 772984) and GEM with tolerable doses. These pHNPs are polyethylene glycol (PEG)-containing amphiphilic polycarbonate block copolymers with tertiary amine side chains. They are systemically stable and capable of improving in vitro and in vivo drug delivery at the cellular environment's acidic pH. The functional analysis indicates that the nanomolar doses of ERKi or GEM significantly decreased the 50% growth inhibition (IC50) of PDAC cells when encapsulated in pHNPs compared to free drugs. The combination of ERKi with GEM displayed a synergistic inhibitory effect. Unexpectedly, we uncover that the minimum effective dose of ERKi significantly promotes GEM activities on PDAC cells. Furthermore, we found that pHNP-encapsulated combination therapy of ERKi with GEM was superior to unencapsulated combination drug therapy. Our findings, thus, reveal a simple, yet efficient, drug delivery approach to overcome the limitations of ERKi for clinical applications and present a new model of sensitization of GEM by ERKi with no or minimal toxicity.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiyan Mohammed
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Meredith Parmer
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Pooja Jain
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
34
|
Jammal N, Rausch CR, Kadia TM, Pemmaraju N. Cell cycle inhibitors for the treatment of acute myeloid leukemia: a review of phase 2 & 3 clinical trials. Expert Opin Emerg Drugs 2020; 25:491-499. [PMID: 33161749 DOI: 10.1080/14728214.2020.1847272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Acute myeloid leukemia (AML) is a clinically heterogeneous hematologic malignancy with poor long term outcomes. Cytotoxic chemotherapy remains the backbone of therapy especially among younger patients; however the effective incorporation of targeted therapies continues to be an area of active research in an effort to improve response durations and survival. Cell cycle inhibitors (CCI) are a novel class of agents which may be of particular interest for development in patients with AML. Areas covered: We will review the concept of CCIs along with available pre-clinical and clinical data in the treatment of AML both in North America and abroad. Specific drug targets reviewed include cyclin D kinase, Aurora kinase, CHK1, and WEE1. Expert opinion: Utilization of CCIs in patients with AML is an emerging approach that has shown promise in pre-clinical models. It has been challenging to translate this concept into clinical success thus far, due to marginal single-agent activity and significant toxicity profiles, however clinical evaluation is ongoing. Addition of these agents to cytotoxic chemotherapy and other targeted therapies provides a potential combinatorial path forward for this novel class of therapies. Developing optimal combinations while balancing toxicity are among the top clinical challenges that must be overcome before we can anticipate adoption of these agents into the armamentarium of AML therapy.
Collapse
Affiliation(s)
- Nadya Jammal
- Department of Leukemia, University of Texas, MD Anderson Cancer Center , Houston, Texas, USA
| | - Caitlin R Rausch
- Department of Leukemia, University of Texas, MD Anderson Cancer Center , Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, University of Texas, MD Anderson Cancer Center , Houston, Texas, USA
| | - Naveen Pemmaraju
- Department of Leukemia, University of Texas, MD Anderson Cancer Center , Houston, Texas, USA
| |
Collapse
|
35
|
An R, Lin B, Zhao S, Cao C, Wang Y, Cheng X, Liu Y, Guo M, Xu H, Wang Y, Hou Z, Guo C. Discovery of novel artemisinin-sulfonamide hybrids as potential carbonic anhydrase IX inhibitors with improved antiproliferative activities. Bioorg Chem 2020; 104:104347. [DOI: 10.1016/j.bioorg.2020.104347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/13/2023]
|
36
|
Abid F, Saleem M, Muller CD, Asim MH, Arshad S, Maqbool T, Hadi F. Anti-Proliferative and Apoptosis-Inducing Activity of Acacia Modesta and Opuntia Monocantha Extracts on HeLa Cells. Asian Pac J Cancer Prev 2020; 21:3125-3131. [PMID: 33112576 PMCID: PMC7798171 DOI: 10.31557/apjcp.2020.21.10.3125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Cancer is one of the leading causes of death in the world. Numerous phytochemicals from plants have shown antineoplastic effects via programmed cell death (apoptosis). The aim of this study was to evaluate the effect of anti-proliferative and apoptosis-inducing activity of Acacia modesta and Opuntia monocantha against HeLa cells. Methods: To estimate anti-proliferative activity of the plants against HeLa cells, ethanol solvent was used for the extraction. For the evaluation of anti-proliferative effects, MTT assay was performed with 100, 200, and 400 µg/mL dose. The antioxidant assays including glutathione reductase (GSH), superoxide dismutase (SOD) and catalase were performed. Moreover, enzyme linked immunosorbent assay (ELISA) was performed. Furthermore, immunocytometry P53 and flow cytometry were also carried out to assess the apoptosis in HeLa cell. Results: MTT assay showed that the groups treated with Opuntia monocantha and Acacia modest have less level of toxicity as compared to untreated groups. Antioxidant assays confirmed that GSH, SPD and, catalase activities were quite decreased in treated groups as compared to untreated groups. Similarly, ELISA and apoptosis p53 have shown more pronounced apoptosis effect in treated groups as compared to untreated groups. Conclusion: Based on above findings, treatment of HeLa cells with these plant extracts induced apoptosis, restricts proliferation, and enhances the anti-oxidative index in post treated cells.
Collapse
Affiliation(s)
- Farah Abid
- Department of Pharmacy, Government College University of Faisalabad, Faisalabad, Pakistan.,Faculty of Pharmacy, University of Lahore, Defence Road, Lahore, Pakistan
| | - Muhammad Saleem
- University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Christian D Muller
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | | | - Shumaila Arshad
- Faculty of Pharmacy, University of Lahore, Defence Road, Lahore, Pakistan
| | - Tahir Maqbool
- Centre of Research in Molecular Medicine, Institute of Molecular Biology & Biotechnology, University of Lahore, Defence Road, Lahore, Pakistan
| | - Faheem Hadi
- Centre of Research in Molecular Medicine, Institute of Molecular Biology & Biotechnology, University of Lahore, Defence Road, Lahore, Pakistan
| |
Collapse
|
37
|
Zhang Y, Bai Y, Bai J, Li L, Gao L, Wang F. Targeting Soluble Epoxide Hydrolase with TPPU Alleviates Irradiation‐Induced Hyposalivation in Mice via Preventing Apoptosis and Microcirculation Disturbance. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yaoyang Zhang
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Yuwen Bai
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Jie Bai
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Lijun Li
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Lu Gao
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| | - Fu Wang
- School of Stomatology Dalian Medical University No.9 West Section Lvshun South Road Dalian Liaoning Province 116044 P. R. China
| |
Collapse
|
38
|
The not-so-sweet side of sugar: Influence of the microenvironment on the processes that unleash cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165960. [PMID: 32919034 DOI: 10.1016/j.bbadis.2020.165960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
The role of "aerobic glycolysis" in cancer has been examined often in the past. Results from those studies, most of which were performed on two dimensional conditions (2D, tissue culture plastic), demonstrate that aerobic glycolysis occurs as a consequence of oncogenic events. These oncogenic events often drive malignant cell growth and survival. Although 2D based experiments are useful in elucidating the molecular mechanisms of oncogenesis, they fail to take contributions of the extracellular microenvironment into account. Indeed we, and others, have shown that the cellular microenvironment is essential in regulating processes that induce and/or suppress the malignant phenotype/properties. This regulation between the cell and its microenvironment is both dynamic and reciprocal and involves the integration of cellular signaling networks in the right context. Therefore, given our previous demonstration of the effect of the microenvironment including tissue architecture and media composition on gene expression and the integration of signaling events observed in three-dimension (3D), we hypothesized that glucose uptake and metabolism must also be essential components of the tissue's signal "integration plan" - that is, if uptake and metabolism of glucose were hyperactivated, the canonical oncogenic pathways should also be similarly activated. This hypothesis, if proven true, suggests that direct inhibition of glucose metabolism in cancer cells should either suppress or revert the malignant phenotype in 3D. Here, we review the up-to-date progress that has been made towards understanding the role that glucose metabolism plays in oncogenesis and re-establishing basally polarized acini in malignant human breast cells.
Collapse
|
39
|
UDP-glucose 6-dehydrogenase knockout impairs migration and decreases in vivo metastatic ability of breast cancer cells. Cancer Lett 2020; 492:21-30. [PMID: 32768525 DOI: 10.1016/j.canlet.2020.07.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Dysregulated metabolism is a hallmark of cancer that supports tumor growth and metastasis. One understudied aspect of cancer metabolism is altered nucleotide sugar biosynthesis, which drives aberrant cell surface glycosylation known to support various aspects of cancer cell behavior including migration and signaling. We examined clinical association of nucleotide sugar pathway gene expression and found that UGDH, encoding UDP-glucose 6-dehydrogenase which catalyzes production of UDP-glucuronate, is associated with worse breast cancer patient survival. Knocking out the mouse homolog Ugdh in highly-metastatic 6DT1 breast cancer cells impaired migration ability without affecting in vitro proliferation. Further, Ugdh-KO resulted in significantly decreased metastatic capacity in vivo when the cells were orthotopically injected in syngeneic mice. Our experiments show that UDP-glucuronate biosynthesis is critical for metastasis in a mouse model of breast cancer.
Collapse
|
40
|
Jo Y, Ali LA, Shim JA, Lee BH, Hong C. Innovative CAR-T Cell Therapy for Solid Tumor; Current Duel between CAR-T Spear and Tumor Shield. Cancers (Basel) 2020; 12:cancers12082087. [PMID: 32731404 PMCID: PMC7464778 DOI: 10.3390/cancers12082087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Novel engineered T cells containing chimeric antigen receptors (CAR-T cells) that combine the benefits of antigen recognition and T cell response have been developed, and their effect in the anti-tumor immunotherapy of patients with relapsed/refractory leukemia has been dramatic. Thus, CAR-T cell immunotherapy is rapidly emerging as a new therapy. However, it has limitations that prevent consistency in therapeutic effects in solid tumors, which accounts for over 90% of all cancer patients. Here, we review the literature regarding various obstacles to CAR-T cell immunotherapy for solid tumors, including those that cause CAR-T cell dysfunction in the immunosuppressive tumor microenvironment, such as reactive oxygen species, pH, O2, immunosuppressive cells, cytokines, and metabolites, as well as those that impair cell trafficking into the tumor microenvironment. Next-generation CAR-T cell therapy is currently undergoing clinical trials to overcome these challenges. Therefore, novel approaches to address the challenges faced by CAR-T cell immunotherapy in solid tumors are also discussed here.
Collapse
Affiliation(s)
- Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Laraib Amir Ali
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
| | - Byung Ha Lee
- NeoImmuneTech, Inc., 2400 Research Blvd., Suite 250, Rockville, MD 20850, USA;
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Korea; (Y.J.); (L.A.A.); (J.A.S.)
- Correspondence: ; Tel.: +82-51-510-8041
| |
Collapse
|
41
|
Maqbool T, Awan SJ, Malik S, Hadi F, Shehzadi S, Tariq K. In-Vitro Anti-Proliferative, Apoptotic and Antioxidative Activities of Medicinal Herb Kalonji (Nigella sativa). Curr Pharm Biotechnol 2020; 20:1288-1308. [PMID: 31433749 DOI: 10.2174/1389201020666190821144633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/27/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Natural product with apoptotic activity could serve as a potential new source for anti-cancer medicine. Numerous phytochemicals from plants have shown to exert antineoplastic effects via programmed cell death (apoptosis). Cancer is one of the leading causes of death in prosperous countries. The subject study was intended to evaluate the anticancer properties of Kalonji extracts against cancer cell lines HeLa and HepG2 and normal cell lines BHK and VERO were used as normal controls. MATERIALS & METHODS For the evaluation of anti-proliferative effects, cell viability and cell death in all groups of cells were evaluated via MTT, crystal violet and trypan blue assays. For the evaluation of angiogenesis, Immunocytochemistry and ELISA of VEGF were done. Immunocytochemistry and ELISA of Annexin-V and p53 were performed for the estimation of apoptosis in all groups of cells. Furthermore, LDH assay, antioxidant enzymes activity (GSH, APOX, CAT and SOD) and RT-PCR with proliferative and apoptotic markers along with internal control were also performed. Cancer cells of both cell lines HepG2 and HeLa cells showed reduced viability, angiogenesis and proliferation with increased apoptosis when treated with Kalonji extracts. Whereas anti-oxidative enzymes show enhanced levels in treated cancer cells as compared to untreated ones. CONCLUSION It was observed that Kalonji extracts have the ability to induce apoptosis and improve the antioxidant status of HeLa and HepG2 cells. They can also inhibit the proliferation and angiogenesis in both these cancer cell lines.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sana J Awan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sabeen Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Faheem Hadi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Somia Shehzadi
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Science, Lahore, Pakistan
| | - Kanza Tariq
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| |
Collapse
|
42
|
Nevler A, Brown SZ, Nauheim D, Portocarrero C, Rodeck U, Bassig J, Schultz CW, McCarthy GA, Lavu H, Yeo TP, Yeo CJ, Brody JR. Effect of Hypercapnia, an Element of Obstructive Respiratory Disorder, on Pancreatic Cancer Chemoresistance and Progression. J Am Coll Surg 2020; 230:659-667. [PMID: 32058016 DOI: 10.1016/j.jamcollsurg.2019.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic obstructive respiratory disorders (ORDs) are linked to increased rates of cancer-related deaths. Little is known about the effects of hypercapnia (elevated CO2) on development of pancreatic ductal adenocarcinoma (PDAC) and drug resistance. STUDY DESIGN Two PDAC cell lines were exposed to normocapnic (5% CO2) and hypercapnic (continuous/intermittent 10% CO2) conditions, physiologically similar to patients with active ORD. Cells were assessed for proliferation rate, colony formation, and chemo-/radiotherapeutic efficacy. In a retrospective clinical study design, patients with PDAC who had undergone pancreatic resection between 2002 and 2014 were reviewed. Active smokers were excluded to remove possible smoking-related protumorigenic influence. Clinical data, pathologic findings, and survival end points were recorded. Kaplan-Meier and Cox regression analyses were performed. RESULTS Exposure to hypercapnia resulted in increased colony formation and proliferation rates in vitro in both cell lines (MIA-PaCa-2: 111% increase and Panc-1: 114% increase; p < 0.05). Hypercapnia exposure induced a 2.5-fold increase in oxaliplatin resistance (p < 0.05) in both cell lines and increased resistance to ionizing radiation in MIA-PaCa-2 cells (p < 0.05). Five hundred and seventy-eight patients were included (52% were male, median age was 68.7 years [interquartile range 60.6 to 76.8 years]). Cox regression analysis, assessing TNM staging, age, sex, and ORD status, identified ORD as an independent risk factor for both overall survival (hazard ratio 1.64; 95% CI, 1.2 to 2.3; p < 0.05) and disease-free survival (hazard ratio 1.68; 95% CI, 1.06 to 2.67). CONCLUSIONS PDAC cells exposed to hypercapnic environments, which is common in patients with ORD, showed tumor proliferation, radioresistance, and chemoresistance. Patients with a history of ORD had a worse overall prognosis, suggesting that hypercapnic conditions play a role in the development and progression of PDAC and stressing the need for patient-tailored care.
Collapse
Affiliation(s)
- Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA.
| | - Samantha Z Brown
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - David Nauheim
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Carla Portocarrero
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Ulrich Rodeck
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Jonathan Bassig
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Christopher W Schultz
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Grace A McCarthy
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Harish Lavu
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Theresa P Yeo
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Charles J Yeo
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Jonathan R Brody
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
43
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|
44
|
Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater 2020; 101:43-68. [PMID: 31518706 DOI: 10.1016/j.actbio.2019.09.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/09/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Recent findings suggest that the cellular and extracellular materials surrounding the cancerous cells from an atypical tumor microenvironment (TM) play a pivotal role in the process of tumor initiation and progression. TM comprises an intricate system involving diverse cell types including endothelial cells, pericytes, smooth muscle cells, fibroblasts, various inflammatory cells, dendritic cells, and cancer stem cells (CSCs). The TM-forming cells dynamically interact with the cancerous cells through various signaling mechanisms and pathways. The existence of this dynamic cellular communication is responsible for creating an environment suitable for sustaining a reasonably high cellular proliferation. Presently, researchers are showing interest to use these TM conditions to mediate effective targeting measures for cancer therapy. The use of nanotherapeutics-based combination therapy; stimuli-responsive nanotherapeutics targeting acidic pH, hypoxic environment; and nanoparticle-induced hyperthermia are some of the approaches that are under intense investigation for cancer therapy. This review discusses TM and its role in cancer progression and crosstalk understanding, opportunities, and epigenetic modifications involved therein to materialize the capability of nanotherapeutics to target cancer by availing TM. STATEMENT OF SIGNIFICANCE: This article presents various recent reports, proof-of-concept studies, patents, and clinical trials on the concept of tumor microenvironment for mediating the cancer-specific delivery of nanotechnology-based systems bearing anticancer drug and diagnostics. We highlight the potential of tumor microenvironment; its role in disease progression, opportunities, challenges, and allied treatment strategies for effective cancer therapy by conceptual understanding of tumor microenvironment and epigenetic modifications involved. Specifically, nanoparticle-based approaches to target various processes related to tumor microenvironment (pH responsive, hypoxic environment responsive, targeting of specific cells involved in tumor microenvironment, etc.) are dealt in detail.
Collapse
|
45
|
Injarabian L, Devin A, Ransac S, Marteyn BS. Neutrophil Metabolic Shift during their Lifecycle: Impact on their Survival and Activation. Int J Mol Sci 2019; 21:E287. [PMID: 31906243 PMCID: PMC6981538 DOI: 10.3390/ijms21010287] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune cells, which represent 50% to 70% of the total circulating leukocytes. How PMNs adapt to various microenvironments encountered during their life cycle, from the bone marrow, to the blood plasma fraction, and to inflamed or infected tissues remains largely unexplored. Metabolic shifts have been reported in other immune cells such as macrophages or lymphocytes, in response to local changes in their microenvironment, and in association with a modulation of their pro-inflammatory or anti-inflammatory functions. The potential contribution of metabolic shifts in the modulation of neutrophil activation or survival is anticipated even though it is not yet fully described. If neutrophils are considered to be mainly glycolytic, the relative importance of alternative metabolic pathways, such as the pentose phosphate pathway, glutaminolysis, or the mitochondrial oxidative metabolism, has not been fully considered during activation. This statement may be explained by the lack of knowledge regarding the local availability of key metabolites such as glucose, glutamine, and substrates, such as oxygen from the bone marrow to inflamed tissues. As highlighted in this review, the link between specific metabolic pathways and neutrophil activation has been outlined in many reports. However, the impact of neutrophil activation on metabolic shifts' induction has not yet been explored. Beyond its importance in neutrophil survival capacity in response to available metabolites, metabolic shifts may also contribute to neutrophil population heterogeneity reported in cancer (tumor-associated neutrophil) or auto-immune diseases (Low/High Density Neutrophils). This represents an active field of research. In conclusion, the characterization of neutrophil metabolic shifts is an emerging field that may provide important knowledge on neutrophil physiology and activation modulation. The related question of microenvironmental changes occurring during inflammation, to which neutrophils will respond to, will have to be addressed to fully appreciate the importance of neutrophil metabolic shifts in inflammatory diseases.
Collapse
Affiliation(s)
- Louise Injarabian
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France;
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Anne Devin
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Stéphane Ransac
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Benoit S. Marteyn
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France;
- Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, 75724 Paris, France
| |
Collapse
|
46
|
Schoonjans CA, Joudiou N, Brusa D, Corbet C, Feron O, Gallez B. Acidosis-induced metabolic reprogramming in tumor cells enhances the anti-proliferative activity of the PDK inhibitor dichloroacetate. Cancer Lett 2019; 470:18-28. [PMID: 31812695 DOI: 10.1016/j.canlet.2019.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/20/2019] [Accepted: 12/01/2019] [Indexed: 01/08/2023]
Abstract
Altered metabolic pathways in cancer such as exacerbated glycolytic flux and increased glutamine metabolism are promising targets for anti-cancer therapies. While commonly observed in glycolytic tumors, extracellular acidosis has never been considered as a potential modulator of anti-metabolic drug activity such as dichloroacetate (DCA). Using cancer cells from various origins selected for their ability to proliferate under acidic conditions, we found that DCA exerts greater inhibitory effects on the growth of these acid-adapted cells than in parental cells. Moreover, daily DCA administration to mice led to a significant decrease in tumor growth from acid-adapted cells but not from parental cells. 13C-tracer studies revealed that DCA induced a double metabolic shift, diminishing glycolysis and increasing intracellular glutamine in acid-adapted cells. As a consequence, DCA reduced the pentose phosphate pathway activity more extensively and increased apoptosis in acid-adapted cells. Finally, the combination of DCA with a glutaminase inhibitor significantly enhanced the cytotoxic effects of DCA. Overall, the interplay between acidosis and DCA exposure leads to metabolic reprogramming that considerably alters cellular fitness.
Collapse
Affiliation(s)
- C A Schoonjans
- Université Catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium; Université Catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique, Pole of Pharmacology and Therapeutics, Belgium
| | - N Joudiou
- Université Catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Nuclear and Electron Spin Technologies, Brussels, Belgium
| | - D Brusa
- Université Catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique, Flow Cytometry Platform, Belgium
| | - C Corbet
- Université Catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique, Pole of Pharmacology and Therapeutics, Belgium
| | - O Feron
- Université Catholique de Louvain (UCLouvain), Institut de Recherche Expérimentale et Clinique, Pole of Pharmacology and Therapeutics, Belgium
| | - B Gallez
- Université Catholique de Louvain (UCLouvain), Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Brussels, Belgium.
| |
Collapse
|
47
|
Niu J, Yan T, Guo W, Wang W, Zhao Z. Insight Into the Role of Autophagy in Osteosarcoma and Its Therapeutic Implication. Front Oncol 2019; 9:1232. [PMID: 31803616 PMCID: PMC6873391 DOI: 10.3389/fonc.2019.01232] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is an aggressive bone cancer that frequently metastasizes to the lungs. The cytotoxicity of most chemotherapeutics and targeted drugs in the treatment of osteosarcoma is partially lessened. Furthermore, there is a poor response to current chemo- and radiotherapy for both primary lesions and pulmonary metastases of osteosarcoma. There is a clear need to explore promising drug candidates that could improve the efficacy of osteosarcoma treatment. Autophagy, a dynamic and highly conserved catabolic process, has dual roles in promoting cell survival as well as cell death. The role of autophagy has been investigated extensively in different tumor types, and a growing body of research has highlighted the potential value of using autophagy in clinical therapy. Here, we address significant aspects of autophagy in osteosarcoma, including its functions, modulation, and possible therapeutic applications.
Collapse
Affiliation(s)
- Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Zhiqing Zhao
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| |
Collapse
|
48
|
Zhang L, Qiao X, Chen M, Li P, Wen X, Sun M, Ma X, Hou Y, Yang J. Ilexgenin A prevents early colonic carcinogenesis and reprogramed lipid metabolism through HIF1α/SREBP-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153011. [PMID: 31301538 DOI: 10.1016/j.phymed.2019.153011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ilexgenin A (IA), the main bioactive compound from Ilex hainanensis Merr., has significant hypolipidemic activities. However, the effects of IA on colitis-associated colorectal cancer (CRC) and its mechanisms are still unknown. PURPOSE The study was designed to evaluate the effect of IA on CRC and explore its underlying mechanisms. STUDY DESIGN The effect of IA on colitis related CRC were evaluated in azoxymethane (AOM)/dextran sulfate sodium (DSS) mice and the underlying mechanisms were revealed by metabolomics, which were further validated in vivo and in vitro. METHODS The Balb/c mice were treated with AOM/DSS to induce CRC model and fed with normal diet with or without 0.02% IA. After the experimental period, samples of plasma were collected and analyzed by ultra-high-performance liquid chromatography/quadrupole time off light mass spectrometry (UHPLC-Q-TOF). Multivariate statistical tools were used to identify the changes of serum metabolites associated with CRC and responses to IA treatment. HT 29 and HCT 116 cells were stimulated by palmitate (PA) and cultured under hypoxia. Western blot, Q-PCR, and Immunofluorescence staining were performed to confirm the molecular pathway in vivo and in vitro. RESULTS Our results showed IA significantly inhibited the inflammatory colitis symptoms such as disease activity index score, shortening of colon tissues and the increase of inflammatory cytokines. In metabolomic study, 31 potential metabolites associated with CRC were identified and 24 of them were reversed by IA treatment. Most of biomarkers were associated with arachidonic acid metabolism, glycerophospholipid catabolism, and phospholipid metabolism, suggesting lipid metabolism might be involved in the beneficial effect of IA on CRC. Furthermore, we also found IA could decrease the expressions of SREBP-1 and its target gene in the colon tissues of AOM/DSS mice. It could down-regulate the triglyceride (TG) content and the expressions of HIF1α, SREBP-1, FASN, and ACC in HT 29 and HCT 116 cells. The inhibitory effect of IA on SREBP-1 was also attenuated by desferrioxamine (DFX), suggesting HIF1α is involved in the regulation of IA on SREBP-1. CONCLUSION IA prevents early colonic carcinogenesis in AOM/DSS mice and reprogramed lipid metabolism partly through HIF1α/SREBP-1.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Xin Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Meihong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Minhui Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Xiaonan Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yingjian Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| |
Collapse
|
49
|
Abstract
Radiation therapy is one of the most commonly used treatments for cancer. Radiation modifiers are agents that alter tumor or normal tissue response to radiation, such as radiation sensitizers and radiation protectors. Radiation sensitizers target aspects of tumor molecular biology or physiology to enhance tumor cell killing after irradiation. Radioprotectors prevent damage of normal tissues selectively. Radiation modifiers remain largely investigational at present, with the promise that molecular characterization of tumors may enhance the capacity for successful clinical development moving forward. A variety of radiation modifiers are described.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10 CRC, Room B2-3500, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Hay MP, Shin HN, Wong WW, Sahimi WW, Vaz ATD, Yadav P, Anderson RF, Hicks KO, Wilson WR. Benzotriazine Di-Oxide Prodrugs for Exploiting Hypoxia and Low Extracellular pH in Tumors. Molecules 2019; 24:E2524. [PMID: 31295864 PMCID: PMC6680510 DOI: 10.3390/molecules24142524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular acidification is an important feature of tumor microenvironments but has yet to be successfully exploited in cancer therapy. The reversal of the pH gradient across the plasma membrane in cells that regulate intracellular pH (pHi) has potential to drive the selective uptake of weak acids at low extracellular pH (pHe). Here, we investigate the dual targeting of low pHe and hypoxia, another key feature of tumor microenvironments. We prepared eight bioreductive prodrugs based on the benzotriazine di-oxide (BTO) nucleus by appending alkanoic or aminoalkanoic acid sidechains. The BTO acids showed modest selectivity for both low pHe (pH 6.5 versus 7.4, ratios 2 to 5-fold) and anoxia (ratios 2 to 8-fold) in SiHa and FaDu cell cultures. Related neutral BTOs were not selective for acidosis, but had greater cytotoxic potency and hypoxic selectivity than the BTO acids. Investigation of the uptake and metabolism of representative BTO acids confirmed enhanced uptake at low pHe, but lower intracellular concentrations than expected for passive diffusion. Further, the modulation of intracellular reductase activity and competition by the cell-excluded electron acceptor WST-1 suggests that the majority of metabolic reductions of BTO acids occur at the cell surface, compromising the engagement of the resulting free radicals with intracellular targets. Thus, the present study provides support for designing bioreductive prodrugs that exploit pH-dependent partitioning, suggesting, however, that that the approach should be applied to prodrugs with obligate intracellular activation.
Collapse
Affiliation(s)
- Michael P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
| | - Hong Nam Shin
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Way Wua Wong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Wan Wan Sahimi
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Aaron T D Vaz
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Pooja Yadav
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand.
| |
Collapse
|