1
|
Tapia-Arellano A, Cabrera P, Cortés-Adasme E, Riveros A, Hassan N, Kogan MJ. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. J Nanobiotechnology 2024; 22:248. [PMID: 38741193 DOI: 10.1186/s12951-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.
Collapse
Affiliation(s)
- Andreas Tapia-Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Pablo Cabrera
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Elizabeth Cortés-Adasme
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Ana Riveros
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Natalia Hassan
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Marcelo J Kogan
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
| |
Collapse
|
2
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
3
|
Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents. PLoS Pathog 2019; 15:e1007978. [PMID: 31469892 PMCID: PMC6748439 DOI: 10.1371/journal.ppat.1007978] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 09/17/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Curli amyloid fibrils secreted by Enterobacteriaceae mediate host cell adhesion and contribute to biofilm formation, thereby promoting bacterial resistance to environmental stressors. Here, we present crystal structures of amyloid-forming segments from the major curli subunit, CsgA, revealing steric zipper fibrils of tightly mated β-sheets, demonstrating a structural link between curli and human pathological amyloids. D-enantiomeric peptides, originally developed to interfere with Alzheimer's disease-associated amyloid-β, inhibited CsgA fibrillation and reduced biofilm formation in Salmonella typhimurium. Moreover, as previously shown, CsgA fibrils cross-seeded fibrillation of amyloid-β, providing support for the proposed structural resemblance and potential for cross-species amyloid interactions. The presented findings provide structural insights into amyloidogenic regions important for curli formation, suggest a novel strategy for disrupting amyloid-structured biofilms, and hypothesize on the formation of self-propagating prion-like species originating from a microbial source that could influence neurodegenerative diseases.
Collapse
|
4
|
Schartmann E, Schemmert S, Niemietz N, Honold D, Ziehm T, Tusche M, Elfgen A, Gering I, Brener O, Shah NJ, Langen KJ, Kutzsche J, Willbold D, Willuweit A. In Vitro Potency and Preclinical Pharmacokinetic Comparison of All-D-Enantiomeric Peptides Developed for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2019; 64:859-873. [PMID: 29966196 PMCID: PMC6218115 DOI: 10.3233/jad-180165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diffusible amyloid-β (Aβ) oligomers are currently presumed to be the most cytotoxic Aβ assembly and held responsible to trigger the pathogenesis of Alzheimer’s disease (AD). Thus, Aβ oligomers are a prominent target in AD drug development. Previously, we reported on our solely D-enantiomeric peptide D3 and its derivatives as AD drug candidates. Here, we compare one of the most promising D3 derivatives, ANK6, with its tandem version (tANK6), and its head-to-tail cyclized isoform (cANK6r). In vitro tests investigating the D-peptides’ potencies to inhibit Aβ aggregation, eliminate Aβ oligomers, and reduce Aβ-induced cytotoxicity revealed that all three D-peptides efficiently target Aβ. Subsequent preclinical pharmacokinetic studies of the three all-D-peptides in wildtype mice showed promising blood-brain barrier permeability with cANK6r yielding the highest levels in brain. The peptides’ potencies to lower Aβ toxicity and their remarkable brain/plasma ratios make them promising AD drug candidates.
Collapse
Affiliation(s)
- Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nicole Niemietz
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dominik Honold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anne Elfgen
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ian Gering
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Oleksandr Brener
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Nadim Joni Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, Aachen, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Correspondence to: Antje Willuweit, Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 6196358; E-mail: and Dieter Willbold, Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 612100; E-mail:
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Correspondence to: Antje Willuweit, Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 6196358; E-mail: and Dieter Willbold, Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. Tel.: +49 2461 612100; E-mail:
| |
Collapse
|
5
|
Ren S, Chang M, Yin Z, Feng R, Wei Y, Duan J, Jiang X, Wei S, Tang Y, Wang F, Li S. Age-Related Alterations of White Matter Integrity in Adolescents and Young Adults With Bipolar Disorder. Front Psychiatry 2019; 10:1010. [PMID: 32047447 PMCID: PMC6997540 DOI: 10.3389/fpsyt.2019.01010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alterations of white matter integrity during adolescence/young adulthood may contribute to the neurodevelopmental pathophysiology of bipolar disorder (BD), but it remains unknown how white matter integrity changes in BD patients during this critical period of brain development. In the present study, we aimed to identify possible age-associated alterations of white matter integrity in adolescents and young adults with BD across the age range of 13-30 years. METHODS We divided the participants into two groups by age as follows: adolescent group involving individuals of 13-21 years old (39 patients with BD and 39 healthy controls) and young adult group involving individuals of 22-30 years old (47 patients with BD and 47 healthy controls). Diffusion tensor imaging (DTI) was performed in all participants to assess white matter integrity. RESULTS In the adolescent group, compared to those of healthy controls, fractional anisotropy (FA) values were significantly lower in BD patients in the left inferior longitudinal fasciculus, splenium of the corpus callosum and posterior thalamic radiation. In the young adult group, BD patients showed significantly decreased FA values in the bilateral uncinate fasciculus, genu of the corpus callosum, right anterior limb of internal capsule and fornix compared to healthy controls. White matter impairments changed from the posterior brain to the anterior brain representing a back-to-front spatiotemporal directionality in an age-related pattern. CONCLUSIONS Our findings provide neuroimaging evidence supporting a back-to-front spatiotemporal directionality of the altered development of white matter integrity associated with age in BD patients during adolescence/young adulthood.
Collapse
Affiliation(s)
- Sihua Ren
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Miao Chang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyang Yin
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruiqi Feng
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yange Wei
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Duan
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaowei Jiang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shengnan Wei
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Brain Function Research Section, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Songbai Li
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Ziehm T, Buell AK, Willbold D. Role of Hydrophobicity and Charge of Amyloid-Beta Oligomer Eliminating d-Peptides in the Interaction with Amyloid-Beta Monomers. ACS Chem Neurosci 2018; 9:2679-2688. [PMID: 29893543 DOI: 10.1021/acschemneuro.8b00132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inhibition of the self-assembly process of amyloid-beta and even more the removal of already existing toxic amyloid-beta assemblies represent promising therapeutic strategies against Alzheimer's disease. To approach this aim, we selected a d-enantiomeric peptide by phage-display based on the interaction with amyloid-beta monomers. This lead compound was successfully optimized by peptide microarrays with respect to its affinity and specificity to the target resulting in d-peptides with both increased hydrophobicity and net charge. Here, we present a detailed biophysical characterization of the interactions between these optimized d-peptides and amyloid-beta monomers in comparison to the original lead compound in order to obtain a more thorough understanding of the physicochemical determinants of the interactions. Kinetics and apparent stoichiometry of complex formation were studied using surface plasmon resonance. Potential modes of binding to amyloid-beta were identified, and the influences of ionic strength on complex stability, as well as on the inhibitory effect on amyloid-beta aggregation were investigated. The results reveal a very different mode of interaction of the optimized d-peptides based on a combination of electrostatic and hydrophobic interactions as compared to the mostly electrostatically driven interaction of the lead compound. These conclusions were supported by the thermodynamic profiles of the interaction between optimized d-peptides and Aβ monomers, which indicate an increase in binding entropy with respect to the lead compound.
Collapse
Affiliation(s)
- Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Alexander K. Buell
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Schemmert S, Schartmann E, Honold D, Zafiu C, Ziehm T, Langen KJ, Shah NJ, Kutzsche J, Willuweit A, Willbold D. Deceleration of the neurodegenerative phenotype in pyroglutamate-Aβ accumulating transgenic mice by oral treatment with the Aβ oligomer eliminating compound RD2. Neurobiol Dis 2018; 124:36-45. [PMID: 30391539 DOI: 10.1016/j.nbd.2018.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease, a multifactorial incurable disorder, is mainly characterised by progressive neurodegeneration, extracellular accumulation of amyloid-β protein (Aβ), and intracellular aggregation of hyperphosphorylated tau protein. During the last years, Aβ oligomers have been claimed to be the disease causing agent. Consequently, development of compounds that are able to disrupt already existing Aβ oligomers is highly desirable. We developed d-enantiomeric peptides, consisting solely of d-enantiomeric amino acid residues, for the direct and specific elimination of toxic Aβ oligomers. The drug candidate RD2 did show high oligomer elimination efficacy in vitro and the in vivo efficacy of RD2 was demonstrated in treatment studies by enhanced cognition in transgenic mouse models of amyloidosis. Here, we report on the in vitro and in vivo efficacy of the compound towards pyroglutamate-Aβ, a particular aggressive Aβ species. Using the transgenic TBA2.1 mouse model, which develops pyroglutamate-Aβ(3-42) induced neurodegeneration, we are able to show that oral RD2 treatment resulted in a significant deceleration of the progression of the phenotype. The in vivo efficacy against this highly toxic Aβ species further validates RD2 as a drug candidate for the therapeutic use in humans.
Collapse
Affiliation(s)
- Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Dominik Honold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Christian Zafiu
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany; Clinic for Nuclear Medicine, RWTH Aachen University, Aachen, Germany
| | - Nadim Joni Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| |
Collapse
|
8
|
Schemmert S, Schartmann E, Zafiu C, Kass B, Hartwig S, Lehr S, Bannach O, Langen KJ, Shah NJ, Kutzsche J, Willuweit A, Willbold D. Aβ Oligomer Elimination Restores Cognition in Transgenic Alzheimer's Mice with Full-blown Pathology. Mol Neurobiol 2018; 56:2211-2223. [PMID: 30003517 PMCID: PMC6394605 DOI: 10.1007/s12035-018-1209-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/26/2018] [Indexed: 11/05/2022]
Abstract
Oligomers of the amyloid-β (Aβ) protein are suspected to be responsible for the development and progression of Alzheimer’s disease. Thus, the development of compounds that are able to eliminate already formed toxic Aβ oligomers is very desirable. Here, we describe the in vivo efficacy of the compound RD2, which was developed to directly and specifically eliminate toxic Aβ oligomers. In a truly therapeutic, rather than a preventive study, oral treatment with RD2 was able to reverse cognitive deficits and significantly reduce Aβ pathology in old-aged transgenic Alzheimer’s Disease mice with full-blown pathology and behavioral deficits. For the first time, we demonstrate the in vivo target engagement of RD2 by showing a significant reduction of Aβ oligomers in the brains of RD2-treated mice compared to placebo-treated mice. The correlation of Aβ elimination in vivo and the reversal of cognitive deficits in old-aged transgenic mice support the hypothesis that Aβ oligomers are relevant not only for disease development and progression, but also offer a promising target for the causal treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christian Zafiu
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bettina Kass
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich Heine University Düsseldorf, Leibniz Centre for Diabetes Research, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich Heine University Düsseldorf, Leibniz Centre for Diabetes Research, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Partner Düsseldorf, Germany
| | - Oliver Bannach
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425, Jülich, Germany.,Clinic for Nuclear Medicine, RWTH Aachen University, Aachen, Germany
| | - Nadim Joni Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425, Jülich, Germany.,Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
9
|
Ribarič S. Peptides as Potential Therapeutics for Alzheimer's Disease. Molecules 2018; 23:E283. [PMID: 29385735 PMCID: PMC6017258 DOI: 10.3390/molecules23020283] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Intracellular synthesis, folding, trafficking and degradation of proteins are controlled and integrated by proteostasis. The frequency of protein misfolding disorders in the human population, e.g., in Alzheimer's disease (AD), is increasing due to the aging population. AD treatment options are limited to symptomatic interventions that at best slow-down disease progression. The key biochemical change in AD is the excessive accumulation of per-se non-toxic and soluble amyloid peptides (Aβ(1-37/44), in the intracellular and extracellular space, that alters proteostasis and triggers Aβ modification (e.g., by reactive oxygen species (ROS)) into toxic intermediate, misfolded soluble Aβ peptides, Aβ dimers and Aβ oligomers. The toxic intermediate Aβ products aggregate into progressively less toxic and less soluble protofibrils, fibrils and senile plaques. This review focuses on peptides that inhibit toxic Aβ oligomerization, Aβ aggregation into fibrils, or stabilize Aβ peptides in non-toxic oligomers, and discusses their potential for AD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Lin CY, Cheng YS, Liao TY, Lin C, Chen ZT, Twu WI, Chang CW, Tan DTW, Liu RS, Tu PH, Chen RPY. Intranasal Administration of a Polyethylenimine-Conjugated Scavenger Peptide Reduces Amyloid-β Accumulation in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 53:1053-67. [PMID: 27340844 DOI: 10.3233/jad-151024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-β (Aβ) aggregation in the brain plays a central and initiatory role in pathogenesis and/or progression of Alzheimer's disease (AD). Inhibiting Aβ aggregation is a potential strategy in the prevention of AD. A scavenger peptide, V24P(10-40), designed to decrease Aβ accumulation in the brain, was conjugated to polyethylenimine (PEI) and tested as a preventive/therapeutic strategy for AD in this study. This PEI-conjugated V24P(10-40) peptide was delivered intranasally, as nasal drops, to four-month-old APP/PS1 double transgenic mice for four or eight months. Compared with control values, peptide treatment for four months significantly reduced the amount of GdnHCl-extracted Aβ40 and Aβ42 in the mice's hippocampus and cortex. After treatment for eight months, amyloid load, as quantified by Pittsburgh compound B microPET imaging, was significantly decreased in the mice's hippocampus, cortex, amygdala, and olfactory bulb. Our data suggest that this intranasally delivered scavenger peptide is effective in decreasing Aβ accumulation in the brain of AD transgenic mice. Nasal application of peptide drops is easy to use and could be further developed to prevent and treat AD.
Collapse
Affiliation(s)
- Chih-Yun Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yu-Sung Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tai-Yan Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chen Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Zih-Ten Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Woan-Ing Twu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Wei Chang
- Biomedical Imaging Research Center, Department of Nuclear Medicine, National Yang Ming University and Taipei Veterans General Hospital, Taipei, Taiwan
| | - David Tat-Wei Tan
- Biomedical Imaging Research Center, Department of Nuclear Medicine, National Yang Ming University and Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Biomedical Imaging Research Center, Department of Nuclear Medicine, National Yang Ming University and Taipei Veterans General Hospital, Taipei, Taiwan.,Molecular and Genetic Imaging Core, Taiwan Mouse Clinic, Academia Sinica, Taipei, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Schartmann E, Schemmert S, Ziehm T, Leithold LHE, Jiang N, Tusche M, Joni Shah N, Langen KJ, Kutzsche J, Willbold D, Willuweit A. Comparison of blood-brain barrier penetration efficiencies between linear and cyclic all-d-enantiomeric peptides developed for the treatment of Alzheimer's disease. Eur J Pharm Sci 2017; 114:93-102. [PMID: 29225107 DOI: 10.1016/j.ejps.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/25/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD), until now, is an incurable progressive neurodegenerative disease. To target toxic amyloid β oligomers in AD patients' brains and to convert them into non-toxic aggregation-incompetent species, we designed peptides consisting solely of d-enantiomeric amino acid residues. The original lead compound was named D3 and several D3 derivatives were designed to enhance beneficial properties. Here, we compare four d-peptides concerning their efficiencies to pass the blood-brain barrier (BBB). We demonstrate that the d-peptides' concentrations in murine brain directly correlate with concentrations in cerebrospinal fluid. The cyclic d-enantiomeric peptide cRD2D3 is characterized by the highest efficiency to pass the BBB. For in total three cyclic peptides we show that administration of cyclic peptides resulted in up to tenfold higher peak concentrations in brain as compared to their linear equivalents which have partially been characterized before (Jiang et al., 2015; Leithold et al., 2016a). These results suggest that cyclic peptides pass the murine BBB more efficiently than their linear equivalents. cRD2D3's proteolytic stability, oral bioavailability, long duration of action and its favorable brain/plasma ratio reveal that it may become a suitable drug for long-term AD-treatment from a pharmacokinetic point of view.
Collapse
Affiliation(s)
- Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sarah Schemmert
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Leonie H E Leithold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nan Jiang
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - N Joni Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, 52074 Aachen, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
12
|
van Groen T, Schemmert S, Brener O, Gremer L, Ziehm T, Tusche M, Nagel-Steger L, Kadish I, Schartmann E, Elfgen A, Jürgens D, Willuweit A, Kutzsche J, Willbold D. The Aβ oligomer eliminating D-enantiomeric peptide RD2 improves cognition without changing plaque pathology. Sci Rep 2017; 7:16275. [PMID: 29176708 PMCID: PMC5701182 DOI: 10.1038/s41598-017-16565-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023] Open
Abstract
While amyloid-β protein (Aβ) aggregation into insoluble plaques is one of the pathological hallmarks of Alzheimer’s disease (AD), soluble oligomeric Aβ has been hypothesized to be responsible for synapse damage, neurodegeneration, learning, and memory deficits in AD. Here, we investigate the in vitro and in vivo efficacy of the d-enantiomeric peptide RD2, a rationally designed derivative of the previously described lead compound D3, which has been developed to efficiently eliminate toxic Aβ42 oligomers as a promising treatment strategy for AD. Besides the detailed in vitro characterization of RD2, we also report the results of a treatment study of APP/PS1 mice with RD2. After 28 days of treatment we observed enhancement of cognition and learning behaviour. Analysis on brain plaque load did not reveal significant changes, but a significant reduction of insoluble Aβ42. Our findings demonstrate that RD2 was significantly more efficient in Aβ oligomer elimination in vitro compared to D3. Enhanced cognition without reduction of plaque pathology in parallel suggests that synaptic malfunction due to Aβ oligomers rather than plaque pathology is decisive for disease development and progression. Thus, Aβ oligomer elimination by RD2 treatment may be also beneficial for AD patients.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Sarah Schemmert
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Oleksandr Brener
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Tamar Ziehm
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Luitgard Nagel-Steger
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Elena Schartmann
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Anne Elfgen
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Dagmar Jürgens
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Janine Kutzsche
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6), Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
13
|
Large-Scale Oral Treatment Study with the Four Most Promising D3-Derivatives for the Treatment of Alzheimer's Disease. Molecules 2017; 22:molecules22101693. [PMID: 28994710 PMCID: PMC6151452 DOI: 10.3390/molecules22101693] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 01/26/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is associated with the aggregation of the amyloid β protein (Aβ). Aβ oligomers are currently thought to be the major neurotoxic agent responsible for disease development and progression. Thus, their elimination is highly desirable for therapy development. Our therapeutic approach aims at specific and direct elimination of toxic Aβ oligomers by stabilizing Aβ monomers in an aggregation-incompetent conformation. We have proven that our lead compound “D3”, an all d-enantiomeric-peptide, specifically eliminates Aβ oligomers in vitro. In vivo, D3 enhances cognition and reduces plaque load in several transgenic AD mouse models. Here, we performed a large-scale oral proof of concept efficacy study, in which we directly compared four of the most promising D3-derivatives in transgenic mice expressing human amyloid precursor protein with Swedish and London mutations (APPSL), transgenic mice, to identify the most effective compound. RD2 and D3D3, both derived from D3 by rational design, were discovered to be the most effective derivatives in improving cognition in the Morris water maze. The performance of RD2- and D3D3-treated mice within the Morris water maze was significantly better than placebo-treated mice and, importantly, nearly as good as those of non-transgenic littermates, suggesting a complete reversal of the cognitive deficit of APPSL mice.
Collapse
|
14
|
Elfgen A, Santiago-Schübel B, Gremer L, Kutzsche J, Willbold D. Surprisingly high stability of the Aβ oligomer eliminating all-d-enantiomeric peptide D3 in media simulating the route of orally administered drugs. Eur J Pharm Sci 2017; 107:203-207. [PMID: 28711713 DOI: 10.1016/j.ejps.2017.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/27/2022]
Abstract
The aggregation of the amyloid β protein (Aβ) plays an important role in the pathology of Alzheimer's disease. Previously, we have developed the all-d-enantiomeric peptide D3, which is able to eliminate neurotoxic Aβ oligomers in vitro and improve cognition in a transgenic Alzheimer's disease mouse model in vivo even after oral administration. d-Peptides are expected to be more resistant against enzymatic proteolysis compared to their l-enantiomeric equivalents, and indeed, a pharmacokinetic study with tritiated D3 revealed the oral bioavailability to be about 58%. To further investigate the underlying properties, we examined the stability of D3 in comparison to its corresponding all-l-enantiomeric mirror image l-D3 in media simulating the gastrointestinal tract, blood and liver. Potential metabolization was followed by reversed-phase high-performance liquid chromatography. In simulated gastric fluid, D3 remained almost completely stable (89%) within 24h, while 70% of l-D3 was degraded within the same time period. Notably, in simulated intestinal fluid, D3 also remained stable (96%) for 24h, whereas l-D3 was completely metabolized within seconds. In human plasma and human liver microsomes, l-D3 was metabolized several hundred times faster than D3. The remarkably high stability may explain the high oral bioavailability seen in previous studies allowing oral administration of the drug candidate. Thus, all-d-enantiomeric peptides may represent a promising new compound class for drug development.
Collapse
Affiliation(s)
- Anne Elfgen
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52428 Jülich, Germany
| | - Beatrix Santiago-Schübel
- Central Institute for Engineering, Electronics and Analytics (ZEA-3), Research Center Jülich, 52428 Jülich, Germany
| | - Lothar Gremer
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52428 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52428 Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Center Jülich, 52428 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
15
|
Ziehm T, Brener O, van Groen T, Kadish I, Frenzel D, Tusche M, Kutzsche J, Reiß K, Gremer L, Nagel-Steger L, Willbold D. Increase of Positive Net Charge and Conformational Rigidity Enhances the Efficacy of d-Enantiomeric Peptides Designed to Eliminate Cytotoxic Aβ Species. ACS Chem Neurosci 2016; 7:1088-96. [PMID: 27240424 DOI: 10.1021/acschemneuro.6b00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common type of dementia. Until now, there is no curative therapy available. Previously, we selected the amyloid-beta (Aβ) targeting peptide D3 consisting of 12 d-enantiomeric amino acid residues by mirror image phage display as a potential drug candidate for the treatment of AD. In the current approach, we investigated the optimization potential of linear D3 with free C-terminus (D3COOH) by chemical modifications. First, the impact of the net charge was investigated and second, cyclization was introduced which is a well-known tool for the optimization of peptides for enhanced target affinity. Following this strategy, three D3 derivatives in addition to D3COOH were designed: C-terminally amidated linear D3 (D3CONH2), cyclic D3 (cD3), and cyclic D3 with an additional arginine residue (cD3r) to maintain the net charge of linear D3CONH2. These four compounds were compared to each other according to their binding affinities to Aβ(1-42), their efficacy to eliminate cytotoxic oligomers, and consequently their potency to neutralize Aβ(1-42) oligomer induced neurotoxicity. D3CONH2 and cD3r versions with equally increased net charge showed superior properties over D3COOH and cD3, respectively. The cyclic versions showed superior properties compared to their linear version with equal net charge, suggesting cD3r to be the most efficient compound among these four. Indeed, treatment of the transgenic AD mouse model Tg-SwDI with cD3r significantly enhanced spatial memory and cognition of these animals as revealed by water maze performance. Therefore, charge increase and cyclization imply suitable modification steps for an optimization approach of the Aβ targeting compound D3.
Collapse
Affiliation(s)
- Tamar Ziehm
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Oleksandr Brener
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35233, United States
| | - Inga Kadish
- Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35233, United States
| | - Daniel Frenzel
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Markus Tusche
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Janine Kutzsche
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kerstin Reiß
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lothar Gremer
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Luitgard Nagel-Steger
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Jiang N, Frenzel D, Schartmann E, van Groen T, Kadish I, Shah NJ, Langen KJ, Willbold D, Willuweit A. Blood-brain barrier penetration of an Aβ-targeted, arginine-rich, d-enantiomeric peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2717-2724. [PMID: 27423267 DOI: 10.1016/j.bbamem.2016.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/01/2016] [Accepted: 07/12/2016] [Indexed: 02/05/2023]
Abstract
The application of small peptides targeting amyloid beta (Aβ) is one of many drug development strategies for the treatment of Alzheimer's disease (AD). We have previously identified several peptides consisting solely of D-enantiomeric amino acid residues obtained from mirror-image phage display selection, which bind to Aβ in different assembly states and eliminate toxic Aβ aggregates. Some of these D-peptides show both diagnostic and therapeutic potential in vitro and in vivo. Here we have analysed the similarity of the arginine-rich D-peptide D3 to the arginine-rich motif (ARM) of the human immunodeficiency virus type 1 transactivator of transcription (HIV-Tat) protein, and examined its in vivo blood-brain barrier (BBB) permeability using wild type mice and transgenic mouse models of Alzheimer's disease. We are able to demonstrate that D3 rapidly enters the brain where it can be found associated with amyloid plaques suggesting a direct penetration of BBB.
Collapse
Affiliation(s)
- Nan Jiang
- Forschungszentrum Jülich, Institute of Complex Systems, Structural Biochemistry, 52428 Jülich, Germany
| | - Daniel Frenzel
- Forschungszentrum Jülich, Institute of Complex Systems, Structural Biochemistry, 52428 Jülich, Germany; European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Elena Schartmann
- Forschungszentrum Jülich, Institute of Complex Systems, Structural Biochemistry, 52428 Jülich, Germany
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Inga Kadish
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - N Jon Shah
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Medical Imaging Physics, 52428 Jülich, Germany
| | - Karl-Josef Langen
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Medical Imaging Physics, 52428 Jülich, Germany; Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Dieter Willbold
- Forschungszentrum Jülich, Institute of Complex Systems, Structural Biochemistry, 52428 Jülich, Germany; Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, 40225 Düsseldorf, Germany.
| | - Antje Willuweit
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Medical Imaging Physics, 52428 Jülich, Germany.
| |
Collapse
|
17
|
Uppalapati M, Lee DJ, Mandal K, Li H, Miranda LP, Lowitz J, Kenney J, Adams JJ, Ault-Riché D, Kent SBH, Sidhu SS. A Potent d-Protein Antagonist of VEGF-A is Nonimmunogenic, Metabolically Stable, and Longer-Circulating in Vivo. ACS Chem Biol 2016; 11:1058-65. [PMID: 26745345 DOI: 10.1021/acschembio.5b01006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Polypeptides composed entirely of d-amino acids and the achiral amino acid glycine (d-proteins) inherently have in vivo properties that are proposed to be near-optimal for a large molecule therapeutic agent. Specifically, d-proteins are resistant to degradation by proteases and are anticipated to be nonimmunogenic. Furthermore, d-proteins are manufactured chemically and can be engineered to have other desirable properties, such as improved stability, affinity, and pharmacokinetics. Thus, a well-designed d-protein therapeutic would likely have significant advantages over l-protein drugs. Toward the goal of developing d-protein therapeutics, we previously generated RFX001.D, a d-protein antagonist of natural vascular endothelial growth factor A (VEGF-A) that inhibited binding to its receptor. However, RFX001.D is unstable at physiological temperatures (Tm = 33 °C). Here, we describe RFX037.D, a variant of RFX001.D with extreme thermal stability (Tm > 95 °C), high affinity for VEGF-A (Kd = 6 nM), and improved receptor blocking. Comparison of the two enantiomeric forms of RFX037 revealed that the d-protein is more stable in mouse, monkey, and human plasma and has a longer half-life in vivo in mice. Significantly, RFX037.D was nonimmunogenic in mice, whereas the l-enantiomer generated a strong immune response. These results confirm the potential utility of synthetic d-proteins as alternatives to therapeutic antibodies.
Collapse
Affiliation(s)
- Maruti Uppalapati
- Banting
and Best Department of Medical Research and Department of Molecular
Genetics, the Donnelly Centre, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Dong Jun Lee
- Department
of Chemistry; Department of Biochemistry and Molecular Biology, Institute
for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Kalyaneswar Mandal
- Department
of Chemistry; Department of Biochemistry and Molecular Biology, Institute
for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Hongyan Li
- Pharmacokinetics & Drug Metabolism, Amgen, Inc., Thousand Oaks, California 91320, United States
| | - Les P. Miranda
- Therapeutic Discovery, Amgen, Inc., Thousand
Oaks, California 91320, United States
| | - Joshua Lowitz
- Antibody Solutions, Sunnyvale, California 94089, United States
| | - John Kenney
- Antibody Solutions, Sunnyvale, California 94089, United States
| | - Jarrett J. Adams
- Banting
and Best Department of Medical Research and Department of Molecular
Genetics, the Donnelly Centre, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Dana Ault-Riché
- Reflexion Pharmaceuticals, Inc., San Francisco, California 94104, United States
| | - Stephen B. H. Kent
- Department
of Chemistry; Department of Biochemistry and Molecular Biology, Institute
for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Sachdev S. Sidhu
- Banting
and Best Department of Medical Research and Department of Molecular
Genetics, the Donnelly Centre, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
18
|
Leithold LHE, Jiang N, Post J, Niemietz N, Schartmann E, Ziehm T, Kutzsche J, Shah NJ, Breitkreutz J, Langen KJ, Willuweit A, Willbold D. Pharmacokinetic properties of tandem d-peptides designed for treatment of Alzheimer's disease. Eur J Pharm Sci 2016; 89:31-8. [PMID: 27086111 DOI: 10.1016/j.ejps.2016.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 11/15/2022]
Abstract
Peptides are more and more considered for the development of drug candidates. However, they frequently exhibit severe disadvantages such as instability and unfavourable pharmacokinetic properties. Many peptides are rapidly cleared from the organism and oral bioavailabilities as well as in vivo half-lives often remain low. In contrast, some peptides consisting solely of d-enantiomeric amino acid residues were shown to combine promising therapeutic properties with high proteolytic stability and enhanced pharmacokinetic parameters. Recently, we have shown that D3 and RD2 have highly advantageous pharmacokinetic properties. Especially D3 has already proven promising properties suitable for treatment of Alzheimer's disease. Here, we analyse the pharmacokinetic profiles of D3D3 and RD2D3, which are head-to-tail tandem d-peptides built of D3 and its derivative RD2. Both D3D3 and RD2D3 show proteolytic stability in mouse plasma and organ homogenates for at least 24h and in murine and human liver microsomes for 4h. Notwithstanding their high affinity to plasma proteins, both peptides are taken up into the brain following i.v. as well as i.p. administration. Although both peptides contain identical d-amino acid residues, they are arranged in a different sequence order and the peptides show differences in pharmacokinetic properties. After i.p. administration RD2D3 exhibits lower plasma clearance and higher bioavailability than D3D3. We therefore concluded that the amino acid sequence of RD2 leads to more favourable pharmacokinetic properties within the tandem peptide, which underlines the importance of particular sequence motifs, even in short peptides, for the design of further therapeutic d-peptides.
Collapse
Affiliation(s)
- Leonie H E Leithold
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Nan Jiang
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Julia Post
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Nicole Niemietz
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Elena Schartmann
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Tamar Ziehm
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Neurology, Universitätsklinikum der RWTH Aachen, 52074 Aachen, Germany.
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, 52074 Aachen, Germany.
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Pharmacokinetic Properties of a Novel d-Peptide Developed to be Therapeutically Active Against Toxic β-Amyloid Oligomers. Pharm Res 2015; 33:328-36. [DOI: 10.1007/s11095-015-1791-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
20
|
Jiang N, Leithold LHE, Post J, Ziehm T, Mauler J, Gremer L, Cremer M, Schartmann E, Shah NJ, Kutzsche J, Langen KJ, Breitkreutz J, Willbold D, Willuweit A. Preclinical Pharmacokinetic Studies of the Tritium Labelled D-Enantiomeric Peptide D3 Developed for the Treatment of Alzheimer´s Disease. PLoS One 2015; 10:e0128553. [PMID: 26046986 PMCID: PMC4457900 DOI: 10.1371/journal.pone.0128553] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s disease animal models. However, there is little information on the pharmacokinetic behaviour of D-enantiomeric peptides in general. Therefore, we conducted experiments with the tritium labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavailability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the plasma protein binding. Based on its high stability and long biological half-life, our pharmacokinetic results support the therapeutic potential of D-peptides in general, with D3 being a new promising drug candidate for Alzheimer´s disease treatment.
Collapse
Affiliation(s)
- Nan Jiang
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Leonie H. E. Leithold
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Julia Post
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Tamar Ziehm
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Mauler
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lothar Gremer
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Cremer
- Structural and functional organisation of the brain, Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Elena Schartmann
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - N. Jon Shah
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Janine Kutzsche
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Josef Langen
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- Department of Nuclear Medicine, Universitätsklinikum der RWTH Aachen, Aachen, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Structural Biochemistry, Institute of Complex Systems (ICS-6), Forschungszentrum Jülich GmbH, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: (DW); (AW)
| | - Antje Willuweit
- Medical Imaging Physics, Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail: (DW); (AW)
| |
Collapse
|
21
|
van Groen T, Kadish I, Funke SA, Bartnik D, Willbold D. Treatment with D3 removes amyloid deposits, reduces inflammation, and improves cognition in aged AβPP/PS1 double transgenic mice. J Alzheimers Dis 2013; 34:609-20. [PMID: 23271316 DOI: 10.3233/jad-121792] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
One of the characteristic pathological hallmarks of Alzheimer's disease (AD) is neuritic plaques. The sequence of events leading to deposition of amyloid-β (Aβ) peptides in plaques is not clear. Here we investigate the effects of D3, an Aβ oligomer directed D-enantiomeric peptide that was obtained from a mirror image phage display selection against monomeric or small oligomeric forms of Aβ42, on Aβ deposition in aged AβPP/PS1 double transgenic AD-model mice. Using Alzet minipumps, we infused the brains of these AD model mice for 8 weeks with FITC-labeled D3, and examined the subsequent changes in pathology and cognitive deficits. Initial cognitive deficits are similar comparing control and D3-FITC-treated mice, but the treated mice show a significant improvement on the last day of testing. Further, we show that there is a substantial reduction in the amount of amyloid deposits in the animals treated with D3-FITC, compared to the control mice. Finally, the amount of activated microglia and astrocytes surrounding Aβ deposits is dramatically reduced in the D3-FITC-treated mice. Our findings demonstrate that treatments with the high affinity Aβ42 oligomer binding D-enantiomeric peptide D3 significantly decrease Aβ deposits and the associated inflammatory response, and improve cognition even when applied only at late stages and high age. Together, this suggests that the treatment reduces the level of Aβ peptide in the brains of AβPP/PS1 mice, possibly by increasing Aβ outflow from the brain. In conclusion, treatments with this D-peptide have great potential to be successful in AD patients.
Collapse
Affiliation(s)
- Thomas van Groen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
22
|
Zhang Q, DU X, Xu Y, Dang L, Xiang L, Zhang J. The effects of Gouqi extracts on Morris maze learning in the APP/PS1 double transgenic mouse model of Alzheimer's disease. Exp Ther Med 2013; 5:1528-1530. [PMID: 23737913 PMCID: PMC3671880 DOI: 10.3892/etm.2013.1006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/08/2013] [Indexed: 11/23/2022] Open
Abstract
The present study examined the effects of Gouqi (Lycium barbarum) on the learning and memory abilities of an APP/PS1 double transgenic mouse model of Alzheimer’s disease. We employed a Morris water maze to examine the spatial memory in this mice line with or without Gouqi extracts treatment. We identified that 2 weeks of oral administration of Gouqi extracts at 10 mg/kg improved the performance of the APP/PS1 mice in the learning and the memory retrieval phases of the Morris maze. In correlation with this, the levels of Aβ(1–42) in hippocampal tissue were reduced by the Gouqi treatment. We conclude that pharmacological treatment with Gouqi extracts is beneficial at the later stages of Alzheimer’s disease.
Collapse
Affiliation(s)
- Qianlin Zhang
- Department of Neurology, Renmin's Hospital, Zhengzhou, Henan 450006
| | | | | | | | | | | |
Collapse
|