1
|
Hirosawa KM, Sato Y, Kasai RS, Yamaguchi E, Komura N, Ando H, Hoshino A, Yokota Y, Suzuki KGN. Uptake of small extracellular vesicles by recipient cells is facilitated by paracrine adhesion signaling. Nat Commun 2025; 16:2419. [PMID: 40075063 PMCID: PMC11903687 DOI: 10.1038/s41467-025-57617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Small extracellular vesicles (sEVs) play crucial roles in intercellular communication. However, the internalization of individual sEVs by recipient cells has not been directly observed. Here, we examined these mechanisms using state-of-the-art imaging techniques. Single-molecule imaging shows that tumor-derived sEVs can be classified into several subtypes. Simultaneous single-sEV particle tracking and observation of super-resolution movies of membrane invaginations in living cells reveal that all sEV subtypes are internalized via clathrin-independent endocytosis mediated by galectin-3 and lysosome-associated membrane protein-2C, while some subtypes that recruited raft markers are internalized through caveolae. Integrin β1 and talin-1 accumulate in recipient cell plasma membranes beneath all sEV subtypes. Paracrine, but not autocrine, sEV binding triggers Ca2+ mobilization induced by the activation of Src family kinases and phospholipase Cγ. Subsequent Ca2+-induced activation of calcineurin-dynamin promotes sEV internalization, leading to the recycling pathway. Thus, we clarified the detailed mechanisms of sEV internalization driven by paracrine adhesion signaling.
Collapse
Affiliation(s)
- Koichiro M Hirosawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Yusuke Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Rinshi S Kasai
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, 104-0045, Japan
| | - Eriko Yamaguchi
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Innovation Research Center for Quantum Medicine. Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan
| | - Ayuko Hoshino
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 153-8904, Japan
- Inamori Research Institute for Science, Inamori Foundation, Kyoto, 600-8411, Japan
| | - Yasunari Yokota
- Department of Electrical, Electronics and Computer Engineering, Faculty of Engineering, Gifu University, Gifu, 501-1193, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, 501-1193, Japan.
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, 104-0045, Japan.
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, 606-8501, Japan.
- Innovation Research Center for Quantum Medicine. Graduate School of Medicine, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
2
|
Suzuki KGN, Komura N, Ando H. Recently developed glycosphingolipid probes and their dynamic behavior in cell plasma membranes as revealed by single-molecule imaging. Glycoconj J 2023; 40:305-314. [PMID: 37133616 DOI: 10.1007/s10719-023-10116-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells by single-molecule imaging.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, 501-1193, Gifu, Japan.
| |
Collapse
|
3
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
4
|
Single-Molecule Imaging of Ganglioside Probes in Living Cell Plasma Membranes. Methods Mol Biol 2023; 2613:215-227. [PMID: 36587082 DOI: 10.1007/978-1-0716-2910-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gangliosides play a variety of physiological roles and are one of the most important lipid raft constituents. However, their dynamic behaviors have scarcely been investigated in living cells because of the lack of fluorescent probes that behave like their parental molecules. Recently, fluorescent ganglioside probes that mimic native ganglioside behaviors have been developed. In this chapter, I discuss the recent advances in research related to the lateral localization and dynamic behaviors of gangliosides in the plasma membranes of living cells.
Collapse
|
5
|
Takahashi M, Komura N, Yoshida Y, Yamaguchi E, Hasegawa A, Tanaka HN, Imamura A, Ishida H, Suzuki KGN, Ando H. Development of lacto-series ganglioside fluorescent probe using late-stage sialylation and behavior analysis with single-molecule imaging. RSC Chem Biol 2022; 3:868-885. [PMID: 35866169 PMCID: PMC9257605 DOI: 10.1039/d2cb00083k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/28/2022] [Indexed: 11/21/2022] Open
Abstract
Gangliosides are a family of sialic-acid-containing glycosphingolipids that form dynamic domains (lipid rafts) with proteins in cell plasma membranes (PMs), and are involved in various biological processes. The dynamic behavior...
Collapse
Affiliation(s)
- Maina Takahashi
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Yukako Yoshida
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Eriko Yamaguchi
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Ami Hasegawa
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hide-Nori Tanaka
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Akihiro Imamura
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hideharu Ishida
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Kenichi G N Suzuki
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiromune Ando
- The United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Department of Applied Bioorganic Chemistry, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE), Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
6
|
Membrane Protein Production and Purification from Escherichia coli and Sf9 Insect Cells. Methods Mol Biol 2021. [PMID: 33582985 DOI: 10.1007/978-1-0716-0724-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A major obstacle to studying membrane proteins by biophysical techniques is the difficulty in producing sufficient amounts of materials for functional and structural studies. To overexpress the target membrane protein heterologously, especially an eukaryotic protein, a key step is to find the optimal host expression system and perform subsequent expression optimization. In this chapter, we describe protocols for screening membrane protein production using bacterial and insect cells, solubilization screening, large-scale production, and commonly used affinity chromatography purification methods. We discuss general optimization conditions, such as promoters and tags, and describe current techniques that can be used in any laboratory without specialized expensive equipment. Especially for insect cells, GFP fusions are particularly useful for localization and in-gel fluorescence detection of the proteins on SDS-PAGE. We give detailed protocols that can be used to screen the best expression and purification conditions for membrane protein study.
Collapse
|
7
|
Yoshii T, Tahara K, Suzuki S, Hatano Y, Kuwata K, Tsukiji S. An Improved Intracellular Synthetic Lipidation-Induced Plasma Membrane Anchoring System for SNAP-Tag Fusion Proteins. Biochemistry 2020; 59:3044-3050. [DOI: 10.1021/acs.biochem.0c00410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tatsuyuki Yoshii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kai Tahara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| | - Sachio Suzuki
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| | - Yuka Hatano
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho,
Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
8
|
Native prion protein homodimers are destabilized by oligomeric amyloid β 1-42 species as shown by single-molecule imaging. Neuroreport 2018; 29:106-111. [PMID: 29120943 DOI: 10.1097/wnr.0000000000000916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prion proteins (PrPc) are receptors for amyloid β 1-42 (Aβ1-42) oligomers, but we do not know the impact of Aβ1-42 binding to PrPc on the interaction of membrane-bound PrPc with molecules that regulate downstream biological pathways. Stability of the PrPc dimeric complex and subsequent intermolecular interactions with membranous or cytoplasmic molecules are important for physiological functions of PrPc including neuroprotection. The principal aim of this study was to determine whether homodimer lifetime of PrPc is affected by the presence of Aβ1-42 oligomers. Single-molecule imaging analysis was carried out by total internal reflection fluorescence microscopy in PrPc-transfected CHO-K1 cells in the absence or presence of characterized Aβ1-42 oligomers. The contribution of different Aβ1-42 oligomer conformations to Alzheimer's disease pathophysiology and to the associated neurotoxicity is unknown. To be precise, with the oligomeric species used in our study, we biochemically analyzed the molecular weight of oligomers formed from Aβ1-42 monomers under our experimental conditions. The lifetime of PrPc homodimers was 210 ms, and in the presence of Aβ1-42 oligomers, the lifetime was significantly reduced (to 92 ms). The reduction of PrPc homodimer lifetime by Aβ1-42 oligomers may impair PrPc-mediated downstream neuroprotective signaling.
Collapse
|
9
|
Suzuki KGN, Ando H, Komura N, Fujiwara T, Kiso M, Kusumi A. Unraveling of Lipid Raft Organization in Cell Plasma Membranes by Single-Molecule Imaging of Ganglioside Probes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:41-58. [DOI: 10.1007/978-981-13-2158-0_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs. Methods Enzymol 2017; 598:267-282. [PMID: 29306438 DOI: 10.1016/bs.mie.2017.06.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gangliosides have been implicated in a variety of physiological processes, particularly in the formation and function of raft domains in the plasma membrane. However, the scarcity of suitable fluorescent ganglioside analogs had long prevented us from determining exactly how gangliosides perform their functions in the live-cell plasma membrane. With the development of new fluorescent ganglioside analogs, as described by Komura et al. (2017), this barrier has been broken. We can now address the dynamic behaviors of gangliosides in the live-cell plasma membrane, using fluorescence microscopy, particularly by single-fluorescent molecule imaging and tracking. Single-molecule tracking of fluorescent GM1 and GM3 revealed that these molecules are transiently and dynamically recruited to monomers (monomer-associated rafts) and homodimer rafts of the raftophilic GPI-anchored protein CD59 in quiescent cells, with exponential residency times of 12 and 40ms, respectively, in a manner dependent on raft-lipid interactions. Upon CD59 stimulation, which induces CD59-cluster signaling rafts, the fluorescent GM1 and GM3 analogs were recruited to the signaling rafts, with a lifetime of 48ms. These results represent the first direct evidence that GPI-anchored receptors and gangliosides interact in a cholesterol-dependent manner. Furthermore, they show that gangliosides continually move in and out of rafts that contain CD59 in an extremely dynamic manner, with much higher frequency than expected previously. Such studies would not have been possible without fluorescent ganglioside probes, which exhibit native-like behavior and single-molecule tracking. In this chapter, we review the methods for single-molecule tracking of fluorescent ganglioside analogs and the results obtained by applying these methods.
Collapse
|
11
|
Suzuki KGN, Ando H, Komura N, Fujiwara TK, Kiso M, Kusumi A. Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochim Biophys Acta Gen Subj 2017; 1861:2494-2506. [PMID: 28734966 DOI: 10.1016/j.bbagen.2017.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 01/13/2023]
Abstract
Gangliosides are involved in a variety of biological roles and are a component of lipid rafts found in cell plasma membranes (PMs). Gangliosides are especially abundant in neuronal PMs and are essential to their physiological functions. However, the dynamic behaviors of gangliosides have not been investigated in living cells due to a lack of fluorescent probes that behave like their parental molecules. We have recently developed, using an entirely chemical method, four new ganglioside probes (GM1, GM2, GM3, and GD1b) that act similarly to their parental molecules in terms of raft partitioning and binding affinity. Using single fluorescent-molecule imaging, we have found that ganglioside probes dynamically enter and leave rafts featuring CD59, a GPI-anchored protein. This occurs both before and after stimulation. The residency time of our ganglioside probes in rafts with CD59 oligomers was 48ms, after stimulation. The residency times in CD59 homodimer and monomer rafts were 40ms and 12ms, respectively. In this review, we introduce an entirely chemical-based ganglioside analog synthesis method and describe its application in single-molecule imaging and for the study of the dynamic behavior of gangliosides in cell PMs. Finally, we discuss how raft domains are formed, both before and after receptor engagement. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; The Institute for Stem Cell Biology and Regenerative Medicine (inStem), The National Centre for Biological Sciences (NCBS), Bangalore 650056, India.
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Kiso
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8507, Japan; Membrane Cooperativity Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
12
|
Presman DM, Ball DA, Paakinaho V, Grimm JB, Lavis LD, Karpova TS, Hager GL. Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods 2017; 123:76-88. [PMID: 28315485 PMCID: PMC5522764 DOI: 10.1016/j.ymeth.2017.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/30/2017] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
Progressive, technological achievements in the quantitative fluorescence microscopy field are allowing researches from many different areas to start unraveling the dynamic intricacies of biological processes inside living cells. From super-resolution microscopy techniques to tracking of individual proteins, fluorescence microscopy is changing our perspective on how the cell works. Fortunately, a growing number of research groups are exploring single-molecule studies in living cells. However, no clear consensus exists on several key aspects of the technique such as image acquisition conditions, or analysis of the obtained data. Here, we describe a detailed approach to perform single-molecule tracking (SMT) of transcription factors in living cells to obtain key binding characteristics, namely their residence time and bound fractions. We discuss different types of fluorophores, labeling density, microscope, cameras, data acquisition, and data analysis. Using the glucocorticoid receptor as a model transcription factor, we compared alternate tags (GFP, mEOS, HaloTag, SNAP-tag, CLIP-tag) for potential multicolor applications. We also examine different methods to extract the dissociation rates and compare them with simulated data. Finally, we discuss several challenges that this exciting technique still faces.
Collapse
Affiliation(s)
- Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, 41 Library Drive, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
14
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
15
|
Abstract
Lipid rafts have been drawing extensive attention as a signaling platform. To investigate molecular interactions in lipid rafts, we often need to observe molecules in the plasma membranes of living cells because chemical fixation and subsequent immunostaining with divalent or multivalent antibodies may change the location of the target molecules. In this chapter, we describe how to examine dynamics of raft-associated glycosylphosphatidylinositol (GPI)-anchored receptors and interactions of the receptors with downstream signaling molecules by single-particle tracking or single-molecule imaging techniques.
Collapse
Affiliation(s)
- Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- National Centre for Biological Sciences (NCBS)/Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, 560065, India.
| |
Collapse
|
16
|
Marchetti L, Luin S, Bonsignore F, de Nadai T, Beltram F, Cattaneo A. Ligand-induced dynamics of neurotrophin receptors investigated by single-molecule imaging approaches. Int J Mol Sci 2015; 16:1949-79. [PMID: 25603178 PMCID: PMC4307343 DOI: 10.3390/ijms16011949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/05/2015] [Indexed: 01/14/2023] Open
Abstract
Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells.
Collapse
Affiliation(s)
- Laura Marchetti
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Stefano Luin
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Fulvio Bonsignore
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Teresa de Nadai
- Biology Laboratory (BioSNS), Scuola Normale Superiore and Istituto di Neuroscienze-CNR, via Moruzzi 1, Pisa I-56100, Italy.
| | - Fabio Beltram
- National Enterprise for nanoScience and nanoTechnology (NEST) Laboratory, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa I-56127, Italy.
| | - Antonino Cattaneo
- Biology Laboratory (BioSNS), Scuola Normale Superiore and Istituto di Neuroscienze-CNR, via Moruzzi 1, Pisa I-56100, Italy.
| |
Collapse
|
17
|
Suzuki KG. New Insights into the Organization of Plasma Membrane and Its Role in Signal Transduction. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:67-96. [DOI: 10.1016/bs.ircmb.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Dahmane S, Rubinstein E, Milhiet PE. Viruses and tetraspanins: lessons from single molecule approaches. Viruses 2014; 6:1992-2011. [PMID: 24800676 PMCID: PMC4036545 DOI: 10.3390/v6051992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/24/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022] Open
Abstract
Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed.
Collapse
Affiliation(s)
- Selma Dahmane
- Inserm, Unité 1054, Single Molecule Biophysics Department, Centre de Biochimie Structurale, 34090, Montpellier, France.
| | | | - Pierre-Emmanuel Milhiet
- Inserm, Unité 1054, Single Molecule Biophysics Department, Centre de Biochimie Structurale, 34090, Montpellier, France.
| |
Collapse
|