1
|
Valverde-Lopez JA, Li-Bao L, Sierra R, Santos E, Giovinazzo G, Díaz-Díaz C, Torres M. P53 and BCL-2 family proteins PUMA and NOXA define competitive fitness in pluripotent cell competition. PLoS Genet 2024; 20:e1011193. [PMID: 38489392 PMCID: PMC10971546 DOI: 10.1371/journal.pgen.1011193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/27/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
Cell Competition is a process by which neighboring cells compare their fitness. As a result, viable but suboptimal cells are selectively eliminated in the presence of fitter cells. In the early mammalian embryo, epiblast pluripotent cells undergo extensive Cell Competition, which prevents suboptimal cells from contributing to the newly forming organism. While competitive ability is regulated by MYC in the epiblast, the mechanisms that contribute to competitive fitness in this context are largely unknown. Here, we report that P53 and its pro-apoptotic targets PUMA and NOXA regulate apoptosis susceptibility and competitive fitness in pluripotent cells. PUMA is widely expressed specifically in pluripotent cells in vitro and in vivo. We found that P53 regulates MYC levels in pluripotent cells, which connects these two Cell Competition pathways, however, MYC and PUMA/NOXA levels are independently regulated by P53. We propose a model that integrates a bifurcated P53 pathway regulating both MYC and PUMA/NOXA levels and determines competitive fitness.
Collapse
Affiliation(s)
- Jose A Valverde-Lopez
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lin Li-Bao
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Rocío Sierra
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Elisa Santos
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Giovanna Giovinazzo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Pluripotent Cell Technology Unit, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Covadonga Díaz-Díaz
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Torres
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
2
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
3
|
Zhou J, Hu J, Wang Y, Gao S. Induction and application of human naive pluripotency. Cell Rep 2023; 42:112379. [PMID: 37043354 DOI: 10.1016/j.celrep.2023.112379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/18/2022] [Accepted: 03/26/2023] [Indexed: 04/13/2023] Open
Abstract
Over the past few decades, many attempts have been made to capture different states of pluripotency in vitro. Naive and primed pluripotent stem cells, corresponding to the pluripotency states of pre- and post-implantation epiblasts, respectively, have been well characterized in mice and can be interconverted in vitro. Here, we summarize the recently reported strategies to generate human naive pluripotent stem cells in vitro. We discuss their applications in studies of regulatory mechanisms involved in early developmental processes, including identification of molecular features, X chromosome inactivation modeling, transposable elements regulation, metabolic characteristics, and cell fate regulation, as well as potential for extraembryonic differentiation and blastoid construction for embryogenesis modeling. We further discuss the naive pluripotency-related research, including 8C-like cell establishment and disease modeling. We also highlight limitations of current naive pluripotency studies, such as imperfect culture conditions and inadequate responsiveness to differentiation signals.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jindian Hu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yixuan Wang
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Fang H, Luo Z, Lin C. Epigenetic reorganization during early embryonic lineage specification. Genes Genomics 2022; 44:379-387. [PMID: 35133623 DOI: 10.1007/s13258-021-01213-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dynamic chromatin reorganization occurs during two waves of cell lineage specification process, blastocyst formation and gastrulation, to generate distinct cell types. Epigenetic defects have been associated with severe developmental defects and diseases. How epigenetic remodeling coordinates the two lineage specification waves is becoming uncovered, benefiting from the development and application of new technologies including low-input or single-cell epigenome analysis approached in the past few years. OBJECTIVE In this review, we aim to highlight the most recent findings on epigenetic remodeling in cell lineage specification during blastocyst formation and gastrulation. METHODS First, we introduce how DNA methylation dynamically changes in blastocyst formation and gastrulation and its function in transcriptional regulation lineage-specific genes. Then, we discuss widespread remodeling of histone modification at promoters and enhancers in orchestrating the trajectory of cell lineage specification. Finally, we review dynamics of chromatin accessibility and 3D structure regulating developmental gene expression and associating with specific transcription factor binding events at stage specific manner. We also highlight the key questions that remain to be answered to fully understand chromatin regulation and reorganization in lineage specification. CONCLUSION Here, we summarize the recent advances and discoveries on epigenetic reorganization and its roles in blastocyst formation and gastrulation, and how it cooperates with the lineage specification, painting from global sequencing data from mouse in vivo tissues.
Collapse
Affiliation(s)
- Haitong Fang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| | - Zhuojuan Luo
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Chengqi Lin
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
5
|
Application of mesenchymal stem cells in corneal regeneration. Tissue Cell 2021; 73:101600. [PMID: 34371292 DOI: 10.1016/j.tice.2021.101600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Due to delicate its structure, the cornea is susceptible to physical, chemical, and genetic damages. Corneal transplantation is the main treatment for serious corneal damage, but it faces significant challenges, including donor shortages and severe complications. In recent years, cell therapy is suggested as a novel alternative method for corneal regeneration. Regarding the unique characteristics of Mesenchymal stem cells including the potential to differentiate into discrete cell types, secretion of growth factors, mobilization potency, and availability from different sources; special attention has been paid to these cells in corneal engineering. Differentiation of MSCs into specialized corneal cells such as keratocytes, epithelial and endothelial cells is reported. Potential for Treatment of keratitis, reducing inflammation, and inhibition of neovascularization by MSCs, introducing them as novel agents for corneal repairing. In this review, various types of MSCs used to treat corneal injuries as well as their potential for restoring different corneal layers was investigated.
Collapse
|
6
|
Fu Y, Liu F, Cao S, Zhang J, Wang H, Wu B, Song Y, Duo S, Li X, Bao S. Bdh2 Deficiency Promotes Endoderm-Biased Early Differentiation of Mouse Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:655145. [PMID: 33898455 PMCID: PMC8060705 DOI: 10.3389/fcell.2021.655145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
3-hydroxybutyrate dehydrogenase-2 (Bdh2), a short-chain dehydrogenase, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore, playing a key role in iron homeostasis, energy metabolism and apoptosis. However, the function of Bdh2 in embryonic stem cells (ESCs) remains unknown. To gain insights into the role of Bdh2 on pluripotency and cell fate decisions of mouse ESCs, we generated Bdh2 homozygous knockout lines for both mouse advanced embryonic stem cell (ASC) and ESC using CRISPR/Cas9 genome editing technology. Bdh2 deficiency in both ASCs and ESCs had no effect on expression of core pluripotent transcription factors and alkaline phosphatase activity, suggesting dispensability of Bdh2 for self-renewal and pluripotency of ESCs. Interestingly, cells with Bdh2 deficiency exhibited potency of endoderm differentiation in vitro; with upregulated endoderm associated genes revealed by RNA-seq and RT-qPCR. We further demonstrate that Bdh2 loss inhibited expression of multiple methyltransferases (DNMTs) at both RNA and protein level, suggesting that Bdh2 may be essentially required to maintain DNA methylation in ASCs and ESCs. Overall, this study provides valuable data and resources for understanding how Bdh2 regulate earliest cell fate decision and DNA methylation in ASCs/ESCs.
Collapse
Affiliation(s)
- Yuting Fu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fangyuan Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jia Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Huizhi Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Baojiang Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongli Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shuguang Duo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Siqin Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China.,Institute of Animal Genetic Research of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
7
|
Florkowska A, Meszka I, Zawada M, Legutko D, Proszynski TJ, Janczyk-Ilach K, Streminska W, Ciemerych MA, Grabowska I. Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas. Stem Cell Res Ther 2020; 11:238. [PMID: 32552916 PMCID: PMC7301568 DOI: 10.1186/s13287-020-01742-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Pluripotent stem cells present the ability to self-renew and undergo differentiation into any cell type building an organism. Importantly, a lot of evidence on embryonic stem cell (ESC) differentiation comes from in vitro studies. However, ESCs cultured in vitro do not necessarily behave as cells differentiating in vivo. For this reason, we used teratomas to study early and advanced stages of in vivo ESC myogenic differentiation and the role of Pax7 in this process. Pax7 transcription factor plays a crucial role in the formation and differentiation of skeletal muscle precursor cells during embryonic development. It controls the expression of other myogenic regulators and also acts as an anti-apoptotic factor. It is also involved in the formation and maintenance of satellite cell population. Methods In vivo approach we used involved generation and analysis of pluripotent stem cell-derived teratomas. Such model allows to analyze early and also terminal stages of tissue differentiation, for example, terminal stages of myogenesis, including the formation of innervated and vascularized mature myofibers. Results We determined how the lack of Pax7 function affects the generation of different myofiber types. In Pax7−/− teratomas, the skeletal muscle tissue occupied significantly smaller area, as compared to Pax7+/+ ones. The proportion of myofibers expressing Myh3 and Myh2b did not differ between Pax7+/+ and Pax7−/− teratomas. However, the area of Myh7 and Myh2a myofibers was significantly lower in Pax7−/− ones. Molecular characteristic of skeletal muscles revealed that the levels of mRNAs coding Myh isoforms were significantly lower in Pax7−/− teratomas. The level of mRNAs encoding Pax3 was significantly higher, while the expression of Nfix, Eno3, Mck, Mef2a, and Itga7 was significantly lower in Pax7−/− teratomas, as compared to Pax7+/+ ones. We proved that the number of satellite cells in Pax7−/− teratomas was significantly reduced. Finally, analysis of neuromuscular junction localization in samples prepared with the iDISCO method confirmed that the organization of neuromuscular junctions in Pax7−/− teratomas was impaired. Conclusions Pax7−/− ESCs differentiate in vivo to embryonic myoblasts more readily than Pax7+/+ cells. In the absence of functional Pax7, initiation of myogenic differentiation is facilitated, and as a result, the expression of mesoderm embryonic myoblast markers is upregulated. However, in the absence of functional Pax7 neuromuscular junctions, formation is abnormal, what results in lower differentiation potential of Pax7−/− ESCs during advanced stages of myogenesis.
Collapse
Affiliation(s)
- Anita Florkowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Igor Meszka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Zawada
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Diana Legutko
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Proszynski
- Laboratory of Synaptogenesis, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Present Address: Lukasiewicz Research Network - PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates. Heart Fail Rev 2020; 24:133-142. [PMID: 30421074 DOI: 10.1007/s10741-018-9750-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemic cardiomyopathy is the cardiovascular condition with the highest impact on the Western population. In mammals (humans included), prolonged ischemia in the ventricular walls causes the death of cardiomyocytes (myocardial infarction, MI). The loss of myocardial mass is soon compensated by the formation of a reparative, non-contractile fibrotic scar that ultimately affects heart performance. Despite the enormous clinical relevance of MI, no effective therapy is available for the long-term treatment of this condition. Moreover, since the human heart is not able to undergo spontaneous regeneration, many researchers aim at designing cell-based therapies that allow for the substitution of dead cardiomyocytes by new, functional ones. So far, the majority of such strategies rely on the injection of different progenitor/stem cells to the infarcted heart. These cardiovascular progenitors, which are expected to differentiate into cardiomyocytes de novo, seldom give rise to new cardiac muscle. In this context, the most important challenge in the field is to fully disclose the molecular and cellular mechanisms that could promote active myocardial regeneration after cardiac damage. Accordingly, we suggest that such strategy should be inspired by the unique regenerative and reparative responses displayed by non-human animal models, from the restricted postnatal myocardial regeneration abilities of the murine heart to the full ventricular regeneration of some bony fishes (e.g., zebrafish). In this review article, we will discuss about current scientific approaches to study cardiac reparative and regenerative phenomena using animal models.
Collapse
|
9
|
Taei A, Rasooli P, Braun T, Hassani SN, Baharvand H. Signal regulators of human naïve pluripotency. Exp Cell Res 2020; 389:111924. [PMID: 32112799 DOI: 10.1016/j.yexcr.2020.111924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
Pluripotent cells transiently develop during peri-implantation embryogenesis and have the capacity to convert into three embryonic lineages. Two typical states of pluripotency, naïve and primed, can be experimentally induced in vitro. The in vitro naïve state can be stabilized in response to environmental inductive cues via a unique transcriptional regulatory program. However, interference with various signaling pathways creates a spectrum of alternative pluripotent cells that display different functions and molecular expression patterns. Similarly, human naïve pluripotent cells can be placed into two main levels - intermediate and bona fide. Here, we discuss several culture conditions that have been used to establish naïve-associated gene regulatory networks in human pluripotent cells. We also describe different transcriptional patterns in various culture systems that are associated with these two levels of human naïve pluripotency.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Paniz Rasooli
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
10
|
Prajapati RS, Hintze M, Streit A. PRDM1 controls the sequential activation of neural, neural crest and sensory progenitor determinants. Development 2019; 146:dev.181107. [PMID: 31806661 DOI: 10.1242/dev.181107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/27/2019] [Indexed: 12/25/2022]
Abstract
During early embryogenesis, the ectoderm is rapidly subdivided into neural, neural crest and sensory progenitors. How the onset of lineage determinants and the loss of pluripotency markers are temporally and spatially coordinated in vivo is still debated. Here, we identify a crucial role for the transcription factor PRDM1 in the orderly transition from epiblast to defined neural lineages in chick. PRDM1 is initially expressed broadly in the entire epiblast, but becomes gradually restricted as cell fates are specified. We find that PRDM1 is required for the loss of some pluripotency markers and the onset of neural, neural crest and sensory progenitor specifier genes. PRDM1 directly activates their expression by binding to their promoter regions and recruiting the histone demethylase Kdm4a to remove repressive histone marks. However, once neural lineage determinants become expressed, they in turn repress PRDM1, whereas prolonged PRDM1 expression inhibits neural, neural crest and sensory progenitor genes, suggesting that its downregulation is necessary for cells to maintain their identity. Therefore, PRDM1 plays multiple roles during ectodermal cell fate allocation.
Collapse
Affiliation(s)
- Ravindra S Prajapati
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Mark Hintze
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial & Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Frum T, Watts JL, Ralston A. TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development 2019; 146:dev.179861. [PMID: 31444221 PMCID: PMC6765126 DOI: 10.1242/dev.179861] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022]
Abstract
In mice, pluripotent cells are thought to derive from cells buried inside the embryo around the 16-cell stage. Sox2 is the only pluripotency gene known to be expressed specifically within inside cells at this stage. To understand how pluripotency is established, we therefore investigated the mechanisms regulating the initial activation of Sox2 expression. Surprisingly, Sox2 expression initiated normally in the absence of both Nanog and Oct4 (Pou5f1), highlighting differences between embryo and stem cell models of pluripotency. However, we observed precocious ectopic expression of Sox2 prior to the 16-cell stage in the absence of Yap1, Wwtr1 and Tead4. Interestingly, the repression of premature Sox2 expression was sensitive to LATS kinase activity, even though LATS proteins normally do not limit activity of TEAD4, YAP1 and WWTR1 during these early stages. Finally, we present evidence for direct transcriptional repression of Sox2 by YAP1, WWTR1 and TEAD4. Taken together, our observations reveal that, while embryos are initially competent to express Sox2 as early as the four-cell stage, transcriptional repression prevents the premature expression of Sox2, thereby restricting the pluripotency program to the stage when inside cells are first created. Highlighted Article: The pluripotency marker SOX2 is not initially regulated by OCT4 and NANOG, but by HIPPO pathway members during the first 2 days of mouse embryogenesis.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Watts
- Physiology Graduate Program, Michigan State University, East Lansing, MI 48824, USA.,Reproductive and Developmental Biology Training Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA .,Reproductive and Developmental Biology Training Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
12
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Hassani SN, Moradi S, Taleahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci 2019; 76:873-892. [PMID: 30420999 PMCID: PMC11105545 DOI: 10.1007/s00018-018-2965-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Embryonic stem cells (ESCs) are immortal stem cells that own multi-lineage differentiation potential. ESCs are commonly derived from the inner cell mass (ICM) of pre-implantation embryos. Due to their tremendous developmental capacity and unlimited self-renewal, ESCs have diverse biomedical applications. Different culture media have been developed to procure and maintain ESCs in a state of naïve pluripotency, and to preserve a stable genome and epigenome during serial passaging. Chromatin modifications such as DNA methylation and histone modifications along with microRNA activity and different signaling pathways dynamically contribute to the regulation of the ESC gene regulatory network (GRN). Such modifications undergo remarkable changes in different ESC media and determine the quality and developmental potential of ESCs. In this review, we discuss the current approaches for derivation and maintenance of ESCs, and examine how differences in culture media impact on the characteristics of pluripotency via modulation of GRN during the course of ICM outgrowth into ESCs. We also summarize the current hypotheses concerning the origin of ESCs and provide a perspective about the relationship of these cells to their in vivo counterparts (early embryonic cells around the time of implantation). Finally, we discuss generation of ESCs from human embryos and domesticated animals, and offer suggestions to further advance this fascinating field.
Collapse
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
14
|
An S, Park UH, Moon S, Kang M, Youn H, Hwang JT, Kim EJ, Um SJ. Asxl1 ablation in mouse embryonic stem cells impairs neural differentiation without affecting self-renewal. Biochem Biophys Res Commun 2018; 508:907-913. [PMID: 30545639 DOI: 10.1016/j.bbrc.2018.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Additional sex comb-like1 (Asxl1) is known as a chromatin modulator that plays dual functions in transcriptional regulation depending on the cell type. Recent studies using Asxl1 knockout mice revealed that Asxl1 is important for the proliferation and differentiation of hematopoietic progenitor cells, and the development of organs. Although we previously reported Asxl1 as a Sox2 target gene, its function in embryonic stem cells (ESCs) remains largely unknown. For this purpose, we isolated ESCs from the blastocyst inner cell mass of Asxl1-/- mice. Asxl1 deficiency in ESCs exhibited no effect on cell proliferation, expression of core pluripotent transcription factors, or alkaline phosphatase activity, suggesting dispensability of Asxl1 for self-renewal of ESCs. By contrast, the differentiation of Asxl1-/- ESCs was significantly affected as shown by size reductions of embryoid bodies accompanied with apoptosis, aberrant expression of differentiation genes, downregulation of bivalent neurogenesis genes, and abnormal axon formation in neurons. Overall, our findings indicated that Asxl1 played a critical role in regulating genes associated with neural differentiation without affecting self-renewal of mouse ESCs.
Collapse
Affiliation(s)
- SoJung An
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Ui-Hyun Park
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Seungtae Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Myengmo Kang
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Hyesook Youn
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, South Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Jeonju, Jeonbuk 55365, South Korea
| | - Eun-Joo Kim
- Department of Molecular Biology, Dankook University, Chungnam 31116, South Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
15
|
Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation. Sci Rep 2018; 8:11965. [PMID: 30097661 PMCID: PMC6086879 DOI: 10.1038/s41598-018-30461-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
In the stem cell research field, the molecular regulatory network used to define cellular states has been extensively studied, however, the general driving force guiding the collective state dynamics remains to be identified from biophysical aspects. Here we monitored the time-development of the cell-state transition at the single-cell and colony levels, simultaneously, during the early differentiation process in mouse embryonic stem cells. Our quantitative analyses revealed that cellular heterogeneity was a result of spontaneous fluctuation of cellular state and cell-cell cooperativity. We considered that the cell state is like a ball fluctuating on a potential landscape, and found that the cooperativity affects the fluctuation. Importantly, the cooperativity temporarily decreased and increased in the intermediate state of cell differentiation, leading to cell-state transition in unison. This process can be explained using the mathematical equation of flashing-ratchet behaviour, which suggests that a general mechanism is driving the collective decision-making of stem cells.
Collapse
|
16
|
Galkowski D, Ratajczak MZ, Kocki J, Darzynkiewicz Z. Of Cytometry, Stem Cells and Fountain of Youth. Stem Cell Rev Rep 2018; 13:465-481. [PMID: 28364326 DOI: 10.1007/s12015-017-9733-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Outlined are advances of cytometry applications to identify and sort stem cells, of laser scanning cytometry and ImageStream imaging instrumentation to further analyze morphometry of these cells, and of mass cytometry to classify a multitude of cellular markers in large cell populations. Reviewed are different types of stem cells, including potential candidates for cancer stem cells, with respect to their "stemness", and other characteristics. Appraised is further progress in identification and isolation of the "very small embryonic-like stem cells" (VSELs) and their autogenous transplantation for tissue repair and geroprotection. Also assessed is a function of hyaluronic acid, the major stem cells niche component, as a guardian and controller of stem cells. Briefly appraised are recent advances and challenges in the application of stem cells in regenerative medicine and oncology and their future role in different disciplines of medicine, including geriatrics.
Collapse
Affiliation(s)
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University in Lublin, 20-080, Lublin, Poland
| | - Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY, 10095, USA.
| |
Collapse
|
17
|
Nassiri Asl M, Aali E. Review on the mesenchymal stem cells and their potential application in regenerative medicine. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.21.6.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
18
|
Rajderkar S, Panaretos C, Kaartinen V. Trim33 regulates early maturation of mouse embryoid bodies in vitro. Biochem Biophys Rep 2017; 12:185-192. [PMID: 29090280 PMCID: PMC5650645 DOI: 10.1016/j.bbrep.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) are an established model for investigating developmental processes, disease conditions, tissue regeneration and therapeutic targets. Previous studies have shown that tripartite motif-containing 33 protein (Trim33) functions as a chromatin reader during Nodal-induced mesoderm induction. Here we report that despite reduced proliferation, mouse ESCs deficient in Trim33 remained pluripotent when cultured under non-differentiating conditions. However, when induced to differentiate to embryoid bodies (EBs), the mutant cultures showed increased cell shedding and apoptosis at day 3 of differentiation. Gene set enrichment analysis (GSEA) indicated that several molecular functions associated with cell survival, transcriptional/translational activity and growth factor signaling were affected already by the second day of differentiation in Trim33-deficient EBs. Consistent with increased apoptosis, expression of Rac1, a critical factor for EB cell survival, was reduced in Trim33 mutant EBs. In addition, a set of genes involved in regulation of pluripotency was upregulated in mutant EBs. Our results suggest that Trim33 regulates early maturation of mouse embryoid bodies in vitro. Trim33-/- ES cells can be normally maintained under non-differentiating conditions. Trim33-/- EBs show changes in gene expression during early maturation. Trim33 is required for survival and appropriate maturation of EBs in vitro.
Collapse
|
19
|
Roberts RM, Yuan Y, Ezashi T. Exploring early differentiation and pluripotency in domestic animals. Reprod Fertil Dev 2017; 29:101-107. [PMID: 28278797 DOI: 10.1071/rd16292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This short review describes some general features of the origins of the pluripotent inner cell mass and epiblast during the early development of eutherian mammals and the two kinds of embryonic stem cell (ESC), naïve and primed type, that have been produced from these structures. We point out that the derivation of pluripotent stem cells from domesticated species continues to be fraught with difficulties, most likely because the culture requirements of these cells are distinct from those of mouse and human ESCs. Generation of induced pluripotent stem cells (iPSCs) from the domesticated species has been more straightforward, although the majority of the iPSC lines remain dependent on the continued expression of one or more integrated reprogramming genes. Although hope for the potential usefulness of these cells in genetic modification of livestock and other domestic species has dimmed, ESCs and iPSCs remain our best source of self-renewing populations of pluripotent cells, with potential usefulness in preserving and propagating valuable animal breeds and making contributions to fields such as regenerative medicine, toxicology and even laboratory meat production.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, 245 Bond Life Sciences Center, 1201 East Rollins Street, Columbia, MO 65211, USA
| | - Ye Yuan
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, 245 Bond Life Sciences Center, 1201 East Rollins Street, Columbia, MO 65211, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, 245 Bond Life Sciences Center, 1201 East Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
20
|
Rossant J, Tam PPL. New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell 2017; 20:18-28. [PMID: 28061351 DOI: 10.1016/j.stem.2016.12.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathways underlying mouse embryonic development have always informed efforts to derive, maintain, and drive differentiation of human pluripotent stem cells. However, direct application of mouse embryology to the human system has not always been successful because of fundamental developmental differences between species. The naive pluripotent state of mouse embryonic stem cells (ESCs), in particular, has been difficult to capture in human ESCs, and appears to be transitory in the human embryo itself. Further studies of human and non-human primate embryo development are needed to untangle the complexities of pluripotency networks across mammalian species.
Collapse
Affiliation(s)
- Janet Rossant
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and School of Medical Sciences, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
21
|
Chen Q, Hu G. Post-transcriptional regulation of the pluripotent state. Curr Opin Genet Dev 2017; 46:15-23. [PMID: 28654825 DOI: 10.1016/j.gde.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Abstract
Pluripotency describes the developmental capacity to give rise to all cell types in the adult body. A comprehensive understanding of the molecular mechanisms that regulate pluripotency is important for both basic and translational research. While earlier studies mostly focused on signaling pathways, transcriptional regulation, and epigenetic modifications, recent investigations showed that RNA binding proteins, RNA processing machineries, and regulatory RNA molecules also play essential roles. Here, we provide a concise review on the latest findings and developments in post-transcriptional regulation of the pluripotent state.
Collapse
Affiliation(s)
- Qing Chen
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC, United States.
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, RTP, NC, United States.
| |
Collapse
|
22
|
Wen J, Zeng Y, Fang Z, Gu J, Ge L, Tang F, Qu Z, Hu J, Cui Y, Zhang K, Wang J, Li S, Sun Y, Jin Y. Single-cell analysis reveals lineage segregation in early post-implantation mouse embryos. J Biol Chem 2017; 292:9840-9854. [PMID: 28298438 DOI: 10.1074/jbc.m117.780585] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/13/2017] [Indexed: 11/06/2022] Open
Abstract
The mammalian post-implantation embryo has been extensively investigated at the tissue level. However, to unravel the molecular basis for the cell-fate plasticity and determination, it is essential to study the characteristics of individual cells. In particular, the individual definitive endoderm (DE) cells have not been characterized in vivo Here, we report gene expression patterns in single cells freshly isolated from mouse embryos on days 5.5 and 6.5. Initial transcriptome data from 124 single cells yielded signature genes for the epiblast, visceral endoderm, and extra-embryonic ectoderm and revealed a unique distribution pattern of fibroblast growth factor (FGF) ligands and receptors. Further analysis indicated that early-stage epiblast cells do not segregate into lineages of the major germ layers. Instead, some cells began to diverge from epiblast cells, displaying molecular features of the premesendoderm by expressing higher levels of mesendoderm markers and lower levels of Sox3 transcripts. Analysis of single-cell high-throughput quantitative RT-PCR data from 441 cells identified a late stage of the day 6.5 embryo in which mesoderm and DE cells emerge, with many of them coexpressing Oct4 and Gata6 Analysis of single-cell RNA-sequence data from 112 cells of the late-stage day 6.5 embryos revealed differentially expressed signaling genes and networks of transcription factors that might underlie the segregation of the mesoderm and DE lineages. Moreover, we discovered a subpopulation of mesoderm cells that possess molecular features of the extraembryonic mesoderm. This study provides fundamental insight into the molecular basis for lineage segregation in post-implantation mouse embryos.
Collapse
Affiliation(s)
- Jing Wen
- From the Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031
| | - Yanwu Zeng
- the Department of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, and
| | - Zhuoqing Fang
- From the Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031
| | - Junjie Gu
- the Department of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, and
| | - Laixiang Ge
- the Department of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, and
| | - Fan Tang
- the Department of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, and
| | - Zepeng Qu
- the Department of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, and
| | - Jing Hu
- the Department of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, and
| | - Yaru Cui
- the Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Kushan Zhang
- the Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Junbang Wang
- the Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Siguang Li
- the Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yi Sun
- the Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Ying Jin
- From the Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai 200031, .,the Department of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, and
| |
Collapse
|
23
|
Augustin I, Dewi DL, Hundshammer J, Erdmann G, Kerr G, Boutros M. Autocrine Wnt regulates the survival and genomic stability of embryonic stem cells. Sci Signal 2017; 10:10/461/eaah6829. [PMID: 28074006 DOI: 10.1126/scisignal.aah6829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt signaling plays an important role in the self-renewal and differentiation of stem cells. The secretion of Wnt ligands requires Evi (also known as Wls). Genetically ablating Evi provides an experimental approach to studying the consequence of depleting all redundant Wnt proteins, and overexpressing Evi enables a nonspecific means of increasing Wnt signaling. We generated Evi-deficient and Evi-overexpressing mouse embryonic stem cells (ESCs) to analyze the role of autocrine Wnt production in self-renewal and differentiation. Self-renewal was reduced in Evi-deficient ESCs and increased in Evi-overexpressing ESCs in the absence of leukemia inhibitory factor, which supports the self-renewal of ESCs. The differentiation of ESCs into cardiomyocytes was enhanced when Evi was overexpressed and teratoma formation and growth of Evi-deficient ESCs in vivo were impaired, indicating that autocrine Wnt ligands were necessary for ESC differentiation and survival. ESCs lacking autocrine Wnt signaling had mitotic defects and showed genomic instability. Together, our study demonstrates that autocrine Wnt secretion is important for the survival, chromosomal stability, differentiation, and tumorigenic potential of ESCs.
Collapse
Affiliation(s)
- Iris Augustin
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| | - Dyah L Dewi
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Jennifer Hundshammer
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Gerrit Erdmann
- NMI TT Naturwissenschaftliches und Medizinisches Institut Technologie Transfer GmbH Pharmaservices, Berlin 13353, Germany
| | - Grainne Kerr
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
24
|
Immune cell recruitment in teratomas is impaired by increased Wnt secretion. Stem Cell Res 2016; 17:607-615. [PMID: 27838585 DOI: 10.1016/j.scr.2016.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 10/16/2016] [Accepted: 10/25/2016] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling plays a central role in tumor initiation and tumor progression. Mutations in Wnt pathway components, such as the tumor suppressor APC, lead to malignant transformation. While previous studies focused on Wnt-related changes in cancer cells, the impact of aberrant Wnt signaling on the tumor microenvironment is only beginning to emerge. In order to investigate the role of increased Wnt secretion on tumor growth and the microenvironment, we generated a novel germ cell tumor model by overexpressing the Wnt secretion factor Evi/Wls in mouse embryonic stem cells. Evi-overexpressing teratoma were characterized by enhanced tumor growth in supporting a tumor-promoting role of Wnt secretion. Interestingly, enhanced Evi expression correlated with impaired immune cell recruitment. Specifically, T- and B-cell infiltration was reduced in Evi-overexpressing teratomas, which was independent of teratoma size and differentiation. Our study suggests that Wnt secretion impairs immunosurveillance. Since immune cell infiltration has been shown to have prognostic value, the levels of secreted Wnt activity might impact the efficiency of cancer immunotherapy.
Collapse
|
25
|
CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports 2016; 7:897-910. [PMID: 27746116 PMCID: PMC5106518 DOI: 10.1016/j.stemcr.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Poly(A) tail length and mRNA deadenylation play important roles in gene regulation. However, how they regulate embryonic development and pluripotent cell fate is not fully understood. Here we present evidence that CNOT3-dependent mRNA deadenylation governs the pluripotent state. We show that CNOT3, a component of the Ccr4-Not deadenylase complex, is required for mouse epiblast maintenance. It is highly expressed in blastocysts and its deletion leads to peri-implantation lethality. The epiblast cells in Cnot3 deletion embryos are quickly lost during diapause and fail to outgrow in culture. Mechanistically, CNOT3 C terminus is required for its interaction with the complex and its function in embryonic stem cells (ESCs). Furthermore, Cnot3 deletion results in increases in the poly(A) tail lengths, half-lives, and steady-state levels of differentiation gene mRNAs. The half-lives of CNOT3 target mRNAs are shorter in ESCs and become longer during normal differentiation. Together, we propose that CNOT3 maintains the pluripotent state by promoting differentiation gene mRNA deadenylation and degradation, and we identify poly(A) tail-length regulation as a post-transcriptional mechanism that controls pluripotency. CNOT3 is required for mouse epiblast maintenance during early development CNOT3 C-terminal domain is necessary for the maintenance of the pluripotent state CNOT3 promotes differentiation gene mRNA deadenylation and degradation mRNA poly(A) tail regulation plays a critical role in pluripotency
Collapse
|
26
|
Roberts RM, Green JA, Schulz LC. The evolution of the placenta. Reproduction 2016; 152:R179-89. [PMID: 27486265 DOI: 10.1530/rep-16-0325] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/01/2016] [Indexed: 01/23/2023]
Abstract
The very apt definition of a placenta is coined by Mossman, namely apposition or fusion of the fetal membranes to the uterine mucosa for physiological exchange. As such, it is a specialized organ whose purpose is to provide continuing support to the developing young. By this definition, placentas have evolved within every vertebrate class other than birds. They have evolved on multiple occasions, often within quite narrow taxonomic groups. As the placenta and the maternal system associate more intimately, such that the conceptus relies extensively on maternal support, the relationship leads to increased conflict that drives adaptive changes on both sides. The story of vertebrate placentation, therefore, is one of convergent evolution at both the macromolecular and molecular levels. In this short review, we first describe the emergence of placental-like structures in nonmammalian vertebrates and then transition to mammals themselves. We close the review by discussing the mechanisms that might have favored diversity and hence evolution of the morphology and physiology of the placentas of eutherian mammals.
Collapse
Affiliation(s)
- R Michael Roberts
- C.S. Bond Life Sciences CenterUniversity of Missouri, Columbia, Missouri, USA Division of Animal SciencesUniversity of Missouri, Columbia, Missouri, USA
| | - Jonathan A Green
- Division of Animal SciencesUniversity of Missouri, Columbia, Missouri, USA
| | - Laura C Schulz
- Department of ObstetricsGynecology and Women's Health, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
27
|
Balmer S, Nowotschin S, Hadjantonakis AK. Notochord morphogenesis in mice: Current understanding & open questions. Dev Dyn 2016; 245:547-57. [PMID: 26845388 DOI: 10.1002/dvdy.24392] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/25/2022] Open
Abstract
The notochord is a structure common to all chordates, and the feature that the phylum Chordata has been named after. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Yet, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary, we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. Developmental Dynamics 245:547-557, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
28
|
Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming. PLoS One 2016; 11:e0150715. [PMID: 26943822 PMCID: PMC4778944 DOI: 10.1371/journal.pone.0150715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/18/2016] [Indexed: 12/27/2022] Open
Abstract
Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1–Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF)-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming.
Collapse
|
29
|
Abstract
Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation.
Collapse
|
30
|
Ahuja AK, Jodkowska K, Teloni F, Bizard AH, Zellweger R, Herrador R, Ortega S, Hickson ID, Altmeyer M, Mendez J, Lopes M. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells. Nat Commun 2016; 7:10660. [PMID: 26876348 PMCID: PMC4756311 DOI: 10.1038/ncomms10660] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022] Open
Abstract
Embryonic stem cells (ESCs) represent a transient biological state, where pluripotency is coupled with fast proliferation. ESCs display a constitutively active DNA damage response (DDR), but its molecular determinants have remained elusive. Here we show in cultured ESCs and mouse embryos that H2AX phosphorylation is dependent on Ataxia telangiectasia and Rad3 related (ATR) and is associated with chromatin loading of the ssDNA-binding proteins RPA and RAD51. Single-molecule analysis of replication intermediates reveals massive ssDNA gap accumulation, reduced fork speed and frequent fork reversal. All these marks of replication stress do not impair the mitotic process and are rapidly lost at differentiation onset. Delaying the G1/S transition in ESCs allows formation of 53BP1 nuclear bodies and suppresses ssDNA accumulation, fork slowing and reversal in the following S-phase. Genetic inactivation of fork slowing and reversal leads to chromosomal breakage in unperturbed ESCs. We propose that rapid cell cycle progression makes ESCs dependent on effective replication-coupled mechanisms to protect genome integrity. In fast proliferating embryonic stem cells (ESC) the DNA damage response is activated by mechanisms that are as yet elusive. Here, Ahuja et al. link the DNA damage response to replication stress in mouse ESCs, caused by a short G1 phase, and propose fork remodelling as maintaining genome stability in embryos.
Collapse
Affiliation(s)
- Akshay K Ahuja
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Karolina Jodkowska
- DNA Replication Group, Molecular Oncology Programme, CNIO, Madrid E-28029, Spain
| | - Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich CH-8057, Switzerland
| | - Anna H Bizard
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Panum Institute, Copenhagen N DK-2200, Denmark
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Raquel Herrador
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| | - Sagrario Ortega
- Transgenic Mice Core Unit, Biotechnology Programme, CNIO, Madrid E-28029, Spain
| | - Ian D Hickson
- Department of Cellular and Molecular Medicine, Center for Chromosome Stability and Center for Healthy Aging, University of Copenhagen, Panum Institute, Copenhagen N DK-2200, Denmark
| | - Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Zurich CH-8057, Switzerland
| | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, CNIO, Madrid E-28029, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich CH-8057, Switzerland
| |
Collapse
|
31
|
Kress C, Montillet G, Jean C, Fuet A, Pain B. Chicken embryonic stem cells and primordial germ cells display different heterochromatic histone marks than their mammalian counterparts. Epigenetics Chromatin 2016; 9:5. [PMID: 26865862 PMCID: PMC4748481 DOI: 10.1186/s13072-016-0056-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Background Chromatin epigenetics participate in control of gene expression during metazoan development. DNA methylation and post-translational modifications (PTMs) of histones have been extensively characterised in cell types present in, or derived from, mouse embryos. In embryonic stem cells (ESCs) derived from blastocysts, factors involved in deposition of epigenetic marks regulate properties related to self-renewal and pluripotency. In the germ lineage, changes in histone PTMs and DNA demethylation occur during formation of the primordial germ cells (PGCs) to reset the epigenome of the future gametes. Trimethylation of histone H3 on lysine 27 (H3K27me3) by Polycomb group proteins is involved in several epigenome-remodelling steps, but it remains unclear whether these epigenetic features are conserved in non-mammalian vertebrates. To investigate this question, we compared the abundance and nuclear distribution of the main histone PTMs, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in chicken ESCs, PGCs and blastodermal cells (BCs) with differentiated chicken ESCs and embryonic fibroblasts. In addition, we analysed the expression of chromatin modifier genes to better understand the establishment and dynamics of chromatin epigenetic profiles. Results The nuclear distributions of most PTMs and 5hmC in chicken stem cells were similar to what has been described for mammalian cells. However, unlike mouse pericentric heterochromatin (PCH), chicken ESC PCH contained high levels of trimethylated histone H3 on lysine 27 (H3K27me3). In differentiated chicken cells, PCH was less enriched in H3K27me3 relative to chromatin overall. In PGCs, the H3K27me3 global level was greatly reduced, whereas the H3K9me3 level was elevated. Most chromatin modifier genes known in mammals were expressed in chicken ESCs, PGCs and BCs. Genes presumably involved in de novo DNA methylation were very highly expressed. DNMT3B and HELLS/SMARCA6 were highly expressed in chicken ESCs, PGCs and BCs compared to differentiated chicken ESCs and embryonic fibroblasts, and DNMT3A was strongly expressed in ESCs, differentiated ESCs and BCs. Conclusions Chicken ESCs and PGCs differ from their mammalian counterparts with respect to H3K27 methylation. High enrichment of H3K27me3 at PCH is specific to pluripotent cells in chicken. Our results demonstrate that the dynamics in chromatin constitution described during mouse development is not universal to all vertebrate species. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0056-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clémence Kress
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| | - Guillaume Montillet
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| | - Christian Jean
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| | - Aurélie Fuet
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| | - Bertrand Pain
- Inserm, U1208, INRA, USC1361, Stem Cell and Brain Research Institute, 18 avenue du Doyen Lépine, 69500 Bron, France ; Université de Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
32
|
Strnad P, Gunther S, Reichmann J, Krzic U, Balazs B, de Medeiros G, Norlin N, Hiiragi T, Hufnagel L, Ellenberg J. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat Methods 2015; 13:139-42. [DOI: 10.1038/nmeth.3690] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/17/2015] [Indexed: 12/23/2022]
|
33
|
Biechele S, Lin CJ, Rinaudo PF, Ramalho-Santos M. Unwind and transcribe: chromatin reprogramming in the early mammalian embryo. Curr Opin Genet Dev 2015; 34:17-23. [PMID: 26183187 DOI: 10.1016/j.gde.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Within the first few days of life, the unipotent gametic genomes are rapidly reprogrammed to support emergence of pluripotent cells in the early mammalian embryo. It is now appreciated that this crucial stage of development involves dramatic changes to chromatin at multiple levels, such as DNA methylation, histone modifications, histone mobility, and higher-order chromatin organization. Technological advances are beginning to allow genome-wide views of this chromatin reprogramming, and provide new approaches to functionally dissect its regulation. Here we review recent insights into the dynamic chromatin environment of the early mouse embryo. New data challenge long-held assumptions, for example, with regards to the asymmetry of DNA methylation of the parental genomes or the onset of functional zygotic genome activation. We discuss how impaired chromatin reprogramming can lead to early embryonic lethality, but might also have delayed effects that only manifest later in embryogenesis or postnatally, potentially influencing the propensity for adult-onset diseases.
Collapse
Affiliation(s)
- Steffen Biechele
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA
| | - Chih-Jen Lin
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA
| | - Paolo F Rinaudo
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA
| | - Miguel Ramalho-Santos
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, 35 Medical Center Way, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Frum T, Ralston A. Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet 2015; 31:402-10. [PMID: 25999217 DOI: 10.1016/j.tig.2015.04.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/05/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
The first cell fate decisions during mammalian development establish tissues essential for healthy pregnancy. The mouse has served as a valuable model for discovering pathways regulating the first cell fate decisions because of the ease with which early embryos can be recovered and the availability of an arsenal of classical and emerging methods for manipulating gene expression. We summarize the major pathways that govern the first cell fate decisions in mouse development. This knowledge serves as a paradigm for exploring how emergent properties of a self-organizing system can dynamically regulate gene expression and cell fate plasticity. Moreover, it brings to light the processes that establish healthy pregnancy and ES cells. We also describe unsolved mysteries and new technologies that could help to overcome experimental challenges in the field.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Sheng G. Epiblast morphogenesis before gastrulation. Dev Biol 2015; 401:17-24. [DOI: 10.1016/j.ydbio.2014.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 12/21/2022]
|
36
|
Shoni M, Lui KO, Vavvas DG, Muto MG, Berkowitz RS, Vlahos N, Ng SW. Protein kinases and associated pathways in pluripotent state and lineage differentiation. Curr Stem Cell Res Ther 2015; 9:366-87. [PMID: 24998240 DOI: 10.2174/1574888x09666140616130217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
Protein kinases (PKs) mediate the reversible conversion of substrate proteins to phosphorylated forms, a key process in controlling intracellular signaling transduction cascades. Pluripotency is, among others, characterized by specifically expressed PKs forming a highly interconnected regulatory network that culminates in a finely-balanced molecular switch. Current high-throughput phosphoproteomic approaches have shed light on the specific regulatory PKs and their function in controlling pluripotent states. Pluripotent cell-derived endothelial and hematopoietic developments represent an example of the importance of pluripotency in cancer therapeutics and organ regeneration. This review attempts to provide the hitherto known kinome profile and the individual characterization of PK-related pathways that regulate pluripotency. Elucidating the underlying intrinsic and extrinsic signals may improve our understanding of the different pluripotent states, the maintenance or induction of pluripotency, and the ability to tailor lineage differentiation, with a particular focus on endothelial cell differentiation for anti-cancer treatment, cell-based tissue engineering, and regenerative medicine strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shu-Wing Ng
- 221 Longwood Avenue, BLI- 449A, Boston MA 02115, USA.
| |
Collapse
|
37
|
Morgani SM, Brickman JM. LIF supports primitive endoderm expansion during pre-implantation development. Development 2015; 142:3488-99. [DOI: 10.1242/dev.125021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/19/2015] [Indexed: 01/31/2023]
Abstract
Embryonic stem cells (ESCs) are pluripotent cell lines that can be maintained indefinitely in an early developmental state. ESC culture conditions almost all require the cytokine LIF to maintain self-renewal. As ESCs are not homogeneous, but contain multiple populations reminiscent of the blastocyst, identifying the target cells of LIF is necessary to understand the propagation of pluripotency. We recently found that LIF acts under self-renewing conditions to stimulate the fraction of ESCs that express extraembryonic markers, but has little impact on pluripotent gene expression. Here we report that LIF has two distinct roles. It blocks early epiblast differentiation and supports the expansion of primitive endoderm (PrE) primed ESCs and PrE in vivo. We find that activation of JAK/STAT signalling downstream of LIF occurs initially throughout the pre-implantation embryo, but later marks the PrE. Moreover, the addition of LIF to cultured embryos increases the GATA6+ PrE population while inhibition of JAK/STAT reduces both NANOG+ epiblast (Epi) and GATA6+ PrE. The reduction of the NANOG+ Epi may be explained by its precocious differentiation to later Epi derivatives, while the increase in PrE is mediated both by an increase in proliferation and inhibition of PrE apoptosis that is normally triggered in embryos with an excess of GATA6+ cells. Thus, it appears that the relative size of the PrE is determined by the number of LIF-producing cells in the embryo. This suggests a mechanism by which the embryo adjusts the relative ratio of the primary lineages in response to experimental manipulation.
Collapse
Affiliation(s)
- Sophie M. Morgani
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Joshua M. Brickman
- The Danish Stem Cell Centre - DanStem, University of Copenhagen, 3B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
38
|
Abranches E, Guedes AMV, Moravec M, Maamar H, Svoboda P, Raj A, Henrique D. Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency. Development 2014; 141:2770-9. [PMID: 25005472 DOI: 10.1242/dev.108910] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heterogeneous expression of the transcription factor NANOG has been linked to the existence of various functional states in pluripotent stem cells. This heterogeneity seems to arise from fluctuations of Nanog expression in individual cells, but a thorough characterization of these fluctuations and their impact on the pluripotent state is still lacking. Here, we have used a novel fluorescent reporter to investigate the temporal dynamics of NANOG expression in mouse embryonic stem cells (mESCs), and to dissect the lineage potential of mESCs at different NANOG states. Our results show that stochastic NANOG fluctuations are widespread in mESCs, with essentially all expressing cells showing fluctuations in NANOG levels, even when cultured in ground-state conditions (2i media). We further show that fluctuations have similar kinetics when mESCs are cultured in standard conditions (serum plus leukemia inhibitory factor) or ground-state conditions, implying that NANOG fluctuations are inherent to the pluripotent state. We have then compared the developmental potential of low-NANOG and high-NANOG mESCs, grown in different conditions, and confirm that mESCs are more susceptible to enter differentiation at the low-NANOG state. Further analysis by gene expression profiling reveals that low-NANOG cells have marked expression of lineage-affiliated genes, with variable profiles according to the signalling environment. By contrast, high-NANOG cells show a more stable expression profile in different environments, with minimal expression of lineage markers. Altogether, our data support a model in which stochastic NANOG fluctuations provide opportunities for mESCs to explore multiple lineage options, modulating their probability to change functional state.
Collapse
Affiliation(s)
- Elsa Abranches
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia - Doca de Pedrouços, Lisboa 1400-038, Portugal
| | - Ana M V Guedes
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia - Doca de Pedrouços, Lisboa 1400-038, Portugal
| | - Martin Moravec
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hedia Maamar
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, PA 19104, USA
| | - Domingos Henrique
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasilia - Doca de Pedrouços, Lisboa 1400-038, Portugal
| |
Collapse
|
39
|
Kojima Y, Tam OH, Tam PPL. Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol 2014; 34:65-75. [PMID: 24954643 DOI: 10.1016/j.semcdb.2014.06.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 01/29/2023]
Abstract
The timing of developmental events during early mouse development has been investigated in embryos that have been subject to experimental manipulation of cell number and tissue mass. These phenomenological studies revealed that the timing of preimplantation events, such as compaction, formation of blastocyst cavity and lineage allocation is correlated with the rounds of cleavage division or DNA replication of the blastomeres. Timing of postimplantation processes, such as formation of proamniotic cavity and onset of gastrulation is sensitive to cell number and probably the tissue mass, which may be measured by a mechanosensory signaling mechanism. Developmental changes in these two physical attributes are correlated with the cell proliferative activity and the growth trajectory of the whole embryo prior to the transit to organogenesis. During organogenesis, timing of morphogenesis appears to be regulated by individual devices that could be uncoupled during compensatory growth. Insights of the timing mechanism may be gleaned from the analysis of genomic activity associated with the transition through developmental milestones.
Collapse
Affiliation(s)
- Yoji Kojima
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Oliver H Tam
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|