1
|
Patil AS, Oak MD, Gijare S, Gobade A, Jaybhay S, Surve VD, G SP, Salunkhe D, Waghmare BN, Idhol B, Patil RM, Pawar D. Genome-wide exploration of soybean domestication traits: integrating association mapping and SNP × SNP interaction analyses. PLANT MOLECULAR BIOLOGY 2025; 115:55. [PMID: 40178675 DOI: 10.1007/s11103-025-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Soybean domestication has been essential for crop evolution, adaptation, and modern breeding. Despite advancements in understanding soybean genetics, the genetic basis of DRTs has yet to be fully explored, particularly in the context of genome-wide association studies (GWASs) and gene interaction analyses (epistasis). This study evaluated 198 diverse soybean accessions using 23,574 high-quality SNPs obtained via ddRAD-seq. Nine key DRTs-including those related to seed size (length, width, and thickness), seed coat color, cotyledon color, hypocotyl color, stem growth habit, flower color, pod color, pubescence, and pod-shattering-were phenotyped in two environments. A GWASs conducted via the FarmCPU and BLINK models identified 78 significant SNPs, 14 consistently detected across both environments and models, demonstrating stability. Notably, the SNP rs.Gm16.29778273 linked to pod-shattering resistance. The functional annotation linked three known quantitative trait loci /genes and revealed 11 novel candidate genes associated with DRTs, providing insights into their roles via Gene Ontology (GO) terms. The main effect SNP × SNP interaction analysis revealed that the significant SNP rs.Gm13.16695800 exhibits a pleiotropic effect, controlling both hypocotyl and flower color. Furthermore, 324 epistatic interactions were identified, influencing the expression of DRTs, thereby highlighting the complex genetic architecture underlying these traits. These findings offer valuable insights into domestication and the traits linked to higher yield. They provide a solid foundation for developing marker-assisted selection (MAS) strategies and functional studies to improve soybean breeding for resilient, high-yielding varieties.
Collapse
Affiliation(s)
- Abhinandan S Patil
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| | - Manoj D Oak
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreyash Gijare
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Aditya Gobade
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Santosh Jaybhay
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Vilas D Surve
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Suresha P G
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Dattatraya Salunkhe
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Balasaheb N Waghmare
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Bhanudas Idhol
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Ravindra M Patil
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Deepak Pawar
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| |
Collapse
|
2
|
Zhang H, Qiu X, Mittelstadt J, Müller U. Ankyrins are dispensable for mechanotransduction by cochlear hair cells. Hear Res 2025; 459:109224. [PMID: 40024092 PMCID: PMC11934226 DOI: 10.1016/j.heares.2025.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
The mechanotransduction (MET) channels of cochlear hair cells is a heteromeric protein complex consisting of TMC1, TMIE and CIB2. The activity of this ion channel is thought to be regulated by a gating spring, a mechanical element that conveys sound-induced vibrations to the MET channel. In nematodes, orthologs of TMC-1, TMIE and CIB2 similarly assemble into a MET channel mediating light nose-touch. Studies in nematodes have suggested that nematode Unc-44, an ortholog of the mammalian ankyrins Ank1, 2, and 3, encodes a gating spring that tethers the nematode MET channel to the cytoskeleton. Here we show that mammalian ankyrins are expressed in cochlear hair cells. Using single and triple conditional knockout mice, we demonstrate that Ank1, 2, and 3 are dispensable for the function of cochlear hair cells. We concluded that Ank1, 2, and 3 are unlikely to be components of the gating spring that gates mechanotransduction channels in mammalian cochlear hair cells.
Collapse
Affiliation(s)
- Hong Zhang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Meicine, Baltimore, MD 21205, USA
| | - Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Meicine, Baltimore, MD 21205, USA
| | - Jonah Mittelstadt
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Meicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Meicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Jenkins PM, Bender KJ. Axon initial segment structure and function in health and disease. Physiol Rev 2025; 105:765-801. [PMID: 39480263 DOI: 10.1152/physrev.00030.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
At the simplest level, neurons are structured to integrate synaptic input and perform computational transforms on that input, converting it into an action potential (AP) code. This process, converting synaptic input into AP output, typically occurs in a specialized region of the axon termed the axon initial segment (AIS). The AIS, as its name implies, is often contained to the first section of axon abutted to the soma and is home to a dizzying array of ion channels, attendant scaffolding proteins, intracellular organelles, extracellular proteins, and, in some cases, synapses. The AIS serves multiple roles as the final arbiter for determining if inputs are sufficient to evoke APs, as a gatekeeper that physically separates the somatodendritic domain from the axon proper, and as a regulator of overall neuronal excitability, dynamically tuning its size to best suit the needs of parent neurons. These complex roles have received considerable attention from experimentalists and theoreticians alike. Here, we review recent advances in our understanding of the AIS and its role in neuronal integration and polarity in health and disease.
Collapse
Affiliation(s)
- Paul M Jenkins
- Departments of Pharmacology and Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Kevin J Bender
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, United States
| |
Collapse
|
4
|
De Winter J, Van de Vondel L, Ermanoska B, Monticelli A, Isapof A, Cohen E, Stojkovic T, Hackman P, Johari M, Palmio J, Waldrop MA, Meyer AP, Nicolau S, Flanigan KM, Töpf A, Diaz-Manera J, Straub V, Longman C, McWilliam CA, Orbach R, Verma S, Laine R, Donkervoort S, Bonnemann CG, Rebelo A, Züchner S, Grider T, Shy ME, Maystadt I, Demurger F, Cairns A, Beecroft S, Folland C, De Ridder W, Ravenscroft G, Bonne G, Udd B, Baets J. Heterozygous loss-of-function variants in SPTAN1 cause an early childhood onset distal myopathy. Genet Med 2025; 27:101399. [PMID: 40023774 DOI: 10.1016/j.gim.2025.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
PURPOSE Heterozygous pathogenic variants in SPTAN1 cause a diverse spectrum of neurogenetic disorders ranging from peripheral and central nervous system involvement to complex syndromic presentations. We set out to investigate the role of SPTAN1 in genetically unsolved hereditary myopathies. METHODS Through international collaboration we identified 14 families with distal weakness and heterozygous SPTAN1 loss-of-function variants. Clinical data, electrophysiology, muscle computed tomography or magnetic resonance imaging, and muscle biopsy findings were collected and standardized. SPTAN1 protein, messenger RNA expression analysis and copy DNA sequencing was performed on muscle tissue from 2 participants. RESULTS Five families showed autosomal dominant mode of inheritance, whereas in 9 patients the variant was shown to be de novo, including 2 pairs of monozygotic twins. In 2 families, further segregation analysis was not possible. All affected participants presented with early childhood-onset distal weakness and foot abnormalities. Muscle magnetic resonance imaging or computed tomography in 10 patients showed fatty infiltration of the distal lower limb anterior compartment and/or selective involvement of the extensor hallucis longus muscle. Muscle biopsy revealed myopathic changes in 7 patients. Finally, we provide proof for nonsense-mediated decay in muscle tissue derived from 2 patients. CONCLUSION We present evidence linking heterozygous SPTAN1 loss-of-function variants to childhood-onset distal myopathy in 14 unrelated families.
Collapse
Affiliation(s)
- Jonathan De Winter
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Biljana Ermanoska
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Alice Monticelli
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Arnaud Isapof
- Centre de Référence des Maladies Neuromusculaires Nord-Est-Ile de France, Hôpital Armand Trousseau, APHP, Paris, France
| | - Enzo Cohen
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Tanya Stojkovic
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France; Centre de Référence des Maladies Neuromusculaires Nord-Est-Ile de France, Hôpital Pitié-Salpêtrière, Institut de Myologie, APHP, Paris, France
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, Helsinki, Finland; Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Johanna Palmio
- Tampere Neuromuscular Center, Tampere University and Tampere University Hospital Tampere, Finland
| | - Megan A Waldrop
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Wexner Medical Center, Ohio State University, Columbus OH
| | - Alayne P Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Stefan Nicolau
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Kevin M Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH; Departments of Pediatrics and Neurology, Wexner Medical Center, Ohio State University, Columbus OH
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Cheryl Longman
- West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Catherine A McWilliam
- West Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Rotem Orbach
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sumit Verma
- Department of Pediatrics and Neurology, Emory University School of Medicine, Atlanta, GA
| | - Regina Laine
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurologic Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL
| | - Tiffany Grider
- Neurology, The University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA
| | - Michael E Shy
- Neurology, The University of Iowa Roy J and Lucille A Carver College of Medicine, Iowa City, IA
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium; URPHYM, Department of Medicine, UNamur, Namur, Belgium
| | | | - Anita Cairns
- Neurosciences Department, Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Sarah Beecroft
- Pawsey Supercomputing Research Centre, Kensington, WA, Australia
| | - Chiara Folland
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Willem De Ridder
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Gina Ravenscroft
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland and Medicum, University of Helsinki, Helsinki, Finland; Tampere Neuromuscular Center, Tampere University and Tampere University Hospital Tampere, Finland
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
5
|
Eichel K. Endocytosis in the axon initial segment: Roles in neuronal polarity and plasticity. Curr Opin Neurobiol 2025; 90:102949. [PMID: 39689414 DOI: 10.1016/j.conb.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/15/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The axon initial segment (AIS) is a specialized domain that maintains neuronal polarity and is the site of action potential generation, both of which underlie the neuron's ability to send and receive signals. Disruption of the AIS leads to a loss of neuronal polarity, altered neuronal signaling, and an array of neurological disorders. Therefore, understanding how the AIS forms and functions is a central question in cellular neuroscience that is essential to understanding neuronal physiology. Decades of study have identified many molecular components and mechanisms at the AIS. Recently, endocytosis at the AIS has been identified to function in both maintaining neuronal polarity and in mediating AIS plasticity through its ability to dynamically remodel the plasma membrane composition. This review discusses the emerging evidence for the roles of endocytosis in regulating AIS function and structural insights into how endocytosis can occur at the AIS.
Collapse
Affiliation(s)
- Kelsie Eichel
- Howard Hughes Medical Institute, University of Colorado Boulder, USA.
| |
Collapse
|
6
|
O'Connell M, Harstad E, Aites J, Hayes K, Arnett AB, Scotellaro J, Patel S, Brewster SJ, Barbaresi W, Doan RN. Diverse clinical presentation of SPTBN1 variants: Complex versus primary attention-deficit/hyperactivity disorder. Am J Med Genet A 2025; 197:e63851. [PMID: 39162370 DOI: 10.1002/ajmg.a.63851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) belongs to a phenotypically broad class of mental health disorders impacting social and cognitive functioning. Despite heritability estimates of 77%-88% and a global prevalence of up to 1 in 20 children, most of the underlying genetic etiology of the disorder remains undiscovered, making it challenging to obtain a clinical molecular genetic diagnosis and to develop new treatments (Biological Psychiatry, 2005, 57, 1313; Psychological Bulletin, 2009, 135, 608; Psychological Medicine, 2014, 44, 2223). Here we report the identification of a novel ultra-rare heterozygous loss-of-function (p.Q1625*) variant in a child with complex ADHD (i.e., comorbid mild intellectual disability [ID]) and a missense (p.G1748R) variant (allele frequency of 4.7 × 10-5) in a child with primary ADHD (i.e., absence of comorbid autism spectrum disorder [ASD], ID, or syndromic features) both in the SPTBN1 gene. Missense variants in SPTBN1 have been reported in individuals with developmental disorders, language and communication disorders, and motor delays in recent publications (Nature Genetics, 2021, 53, 1006; American Journal of Medical Genetics Part A, 2021, 185, 2037) and ClinVar, though most variants in ClinVar have uncertain disease associations. The functional impact of these 135 variants, including from the current study, were further assessed using prediction scores from the recently developed AlphaMissense tool and benchmarked against published functional studies on a subset of the variants. While heterozygous SPTBN1 variants have recently been associated with neurodevelopmental disorders characterized by global developmental delay, intellectual disability, and behavioral abnormalities, the two patients in the current study expand the phenotypic spectrum to include ADHD in the absence of more severe neurodevelopmental disorders, such as ASD and moderate to severe ID. Furthermore, the culmination of these data with existing reported cases suggests that variation including loss of function and missense events underlie a broader clinical spectrum than previously understood.
Collapse
Affiliation(s)
- Mia O'Connell
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Elizabeth Harstad
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jennifer Aites
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katheryn Hayes
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anne B Arnett
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Julia Scotellaro
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Soleha Patel
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Stephanie J Brewster
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - William Barbaresi
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan N Doan
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
De Winter J, Van de Vondel L, Ermanoska B, Monticelli A, Isapof A, Cohen E, Stojkovic T, Hackman P, Johari M, Palmio J, Waldrop MA, Meyer AP, Nicolau S, Flanigan KM, Töpf A, Diaz-Manera J, Straub V, Longman C, McWilliam CA, Orbach R, Verma S, Laine R, Donkervoort S, Bonnemann CG, Rebelo A, Züchner S, Grider T, Shy ME, Maystadt I, Demurger F, Cairns A, Beecroft S, Folland C, De Ridder W, Ravenscroft G, Bonne G, Udd B, Baets J. Heterozygous loss-of-function variants in SPTAN1 cause a novel early childhood onset distal myopathy with chronic neurogenic features. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24313872. [PMID: 39371122 PMCID: PMC11451714 DOI: 10.1101/2024.09.23.24313872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Neurogenetic disorders caused by pathogenic variants in four genes encoding non-erythrocytic spectrins ( SPTAN1, SPTBN1, SPTBN2, SPTBN4) range from peripheral and central nervous system involvement to complex syndromic presentations. Heterozygous pathogenic variants in SPTAN1 are exemplary for this diversity with phenotypes spanning almost the entire spectrum. Methods Through international collaboration we identified 14 families with genetically unsolved distal weakness and unreported heterozygous SPTAN1 loss-of-function variants including frameshift, nonsense and splice-acceptor variants. Clinical data, electrophysiology, muscle CT or MRI and muscle biopsy findings were collected and standardized. SPTAN1 protein, mRNA expression analysis and cDNA sequencing was performed on muscle tissue from two patients. Results All 20 patients presented with early childhood onset distal weakness. The severity varied both within families and between different families. Foot abnormalities ranged from hammer toes and pes cavus to distal arthrogryposis. Electrophysiology showed mixed myogenic and neurogenic features. Muscle MRI or CT in 10 patients showed fatty infiltration of the distal lower limb anterior compartment and/or selective involvement of the extensor hallucis longus muscle. Muscle biopsy revealed myopathic changes with mild dystrophic and chronic neurogenic changes in 7 patients. Finally, we provide proof for nonsense mediated decay in tissues derived from two patients. Conclusions We provide evidence for the association of SPTAN1 loss-of-function variants with childhood onset distal myopathy in 14 families. This finding extends the phenotypic spectrum of SPTAN1 loss-of-function variants ranging from intellectual disability to distal weakness with a predominant myogenic cause. KEY MESSAGES SPTAN1 loss-of-function variants, including frameshift, nonsense and splice site variants cause a novel childhood onset distal weakness syndrome with primarily skeletal muscle involvement. Hereditary motor neuropathies and distal myopathic disorders present a well-known diagnostic challenge as they demonstrate substantial clinical and genetic overlap. The emergence of SPTAN1 loss-of-function variants serves as a noteworthy example, highlighting a growing convergence in the spectrum of genotypes linked to both hereditary motor neuropathies and distal myopathies.
Collapse
|
8
|
Xiao F, Nguyen NUN, Wang P, Li S, Hsu CC, Thet S, Kimura W, Luo X, Lam NT, Menendez-Montes I, Elhelaly W, Cardoso AC, Pereira AHM, Singh R, Sadayappan S, Kanchwala M, Xing C, Ladha FA, Hinson JT, Hajjar RJ, Hill JA, Sadek HA. Adducin Regulates Sarcomere Disassembly During Cardiomyocyte Mitosis. Circulation 2024; 150:791-805. [PMID: 38708635 PMCID: PMC11651639 DOI: 10.1161/circulationaha.122.059102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in vitro and in vivo identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.
Collapse
Affiliation(s)
- Feng Xiao
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ngoc Uyen Nhi Nguyen
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ping Wang
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shujuan Li
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ching-Cheng Hsu
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suwannee Thet
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wataru Kimura
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan
| | - Xiang Luo
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas T. Lam
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Menendez-Montes
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Waleed Elhelaly
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alisson Campos Cardoso
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Ana Helena Macedo Pereira
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Rohit Singh
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
- Amgen Research, Department of Cardiometabolic Disorders, Amgen, South San Francisco, CA, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- O'Donnell School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feria A. Ladha
- University of Connecticut Health Center, Farmington, CT, USA
| | - J. Travis Hinson
- University of Connecticut Health Center, Farmington, CT, USA
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Roger J. Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, Cambridge, MA, USA
| | - Joseph A. Hill
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Moss Heart Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham A. Sadek
- Departments of Internal Medicine (Cardiology), The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| |
Collapse
|
9
|
Sert O, Ding X, Zhang C, Mi R, Hoke A, Rasband MN. Postsynaptic β1 spectrin maintains Na + channels at the neuromuscular junction. J Physiol 2024; 602:1127-1145. [PMID: 38441922 PMCID: PMC10942750 DOI: 10.1113/jp285894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/13/2024] [Indexed: 03/16/2024] Open
Abstract
Spectrins function together with actin as obligatory subunits of the submembranous cytoskeleton. Spectrins maintain cell shape, resist mechanical forces, and stabilize ion channel and transporter protein complexes through binding to scaffolding proteins. Recently, pathogenic variants of SPTBN4 (β4 spectrin) were reported to cause both neuropathy and myopathy. Although the role of β4 spectrin in neurons is mostly understood, its function in skeletal muscle, another excitable tissue subject to large forces, is unknown. Here, using a muscle specific β4 spectrin conditional knockout mouse, we show that β4 spectrin does not contribute to muscle function. In addition, we show β4 spectrin is not present in muscle, indicating the previously reported myopathy associated with pathogenic SPTBN4 variants is neurogenic in origin. More broadly, we show that α2, β1 and β2 spectrins are found in skeletal muscle, with α2 and β1 spectrins being enriched at the postsynaptic neuromuscular junction (NMJ). Surprisingly, using muscle specific conditional knockout mice, we show that loss of α2 and β2 spectrins had no effect on muscle health, function or the enrichment of β1 spectrin at the NMJ. Muscle specific deletion of β1 spectrin also had no effect on muscle health, but, with increasing age, resulted in the loss of clustered NMJ Na+ channels. Together, our results suggest that muscle β1 spectrin functions independently of an associated α spectrin to maintain Na+ channel clustering at the postsynaptic NMJ. Furthermore, despite repeated exposure to strong forces and in contrast to neurons, muscles do not require spectrin cytoskeletons to maintain cell shape or integrity. KEY POINTS: The myopathy found in pathogenic human SPTBN4 variants (where SPTBN4 is the gene encoding β4 spectrin) is neurogenic in origin. β1 spectrin plays essential roles in maintaining the density of neuromuscular junction Nav1.4 Na+ channels. By contrast to the canonical view of spectrin organization and function, we show that β1 spectrin can function independently of an associated α spectrin. Despite the large mechanical forces experienced by muscle, we show that spectrins are not required for muscle cell integrity. This is in stark contrast to red blood cells and the axons of neurons.
Collapse
Affiliation(s)
- Ozlem Sert
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Xiaoyun Ding
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Chuansheng Zhang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| | - Ruifa Mi
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Ahmet Hoke
- Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA 77030
| |
Collapse
|
10
|
Caballero-Florán RN, Nelson AD, Min L, Jenkins PM. Effects of chronic lithium treatment on neuronal excitability and GABAergic transmission in an Ank3 mutant mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564203. [PMID: 37961630 PMCID: PMC10634991 DOI: 10.1101/2023.10.26.564203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Bipolar disorder (BD) is a common psychiatric disease that can lead to psychosocial disability, decreased quality of life, and high risk for suicide. Genome-wide association studies have shown that the ANK3 gene is a significant risk factor for BD, but the mechanisms involved in BD pathophysiology are not yet fully understood. Previous work has shown that ankyrin-G, the protein encoded by ANK3, stabilizes inhibitory synapses in vivo through its interaction with the GABAA receptor-associated protein (GABARAP). We generated a mouse model with a missense p.W1989R mutation in Ank3, that abolishes the interaction between ankyrin-G and GABARAP, which leads to reduced inhibitory signaling in the somatosensory cortex and increased pyramidal cell excitability. Humans with the same mutation exhibit BD symptoms, which can be attenuated with lithium therapy. In this study, we describe that chronic treatment of Ank3 p.W1989R mice with lithium normalizes neuronal excitability in cortical pyramidal neurons and increases inhibitory GABAergic postsynaptic currents. The same outcome in inhibitory transmission was observed when mice were treated with the GSK-3β inhibitor Tideglusib. These results suggest that lithium treatment modulates the excitability of pyramidal neurons in the cerebral cortex by increasing GABAergic neurotransmission, likely via GSK-3 inhibition. In addition to the importance of these findings regarding ANK3 variants as a risk factor for BD development, this study may have significant implications for treating other psychiatric disorders associated with alterations in inhibitory signaling, such as schizophrenia, autism spectrum disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | - Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
11
|
Kong C, Qu X, Liu M, Xu W, Chen D, Zhang Y, Zhang S, Zhu F, Liu Z, Li J, Huang C, Wang C. Dynamic interactions between E-cadherin and Ankyrin-G mediate epithelial cell polarity maintenance. Nat Commun 2023; 14:6860. [PMID: 37891324 PMCID: PMC10611751 DOI: 10.1038/s41467-023-42628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
E-cadherin is an essential cell‒cell adhesion protein that mediates canonical cadherin-catenin complex formation in epithelial lateral membranes. Ankyrin-G (AnkG), a scaffold protein linking membrane proteins to the spectrin-based cytoskeleton, coordinates with E-cadherin to maintain epithelial cell polarity. However, the molecular mechanisms governing this complex formation and its relationships with the cadherin-catenin complex remain elusive. Here, we report that AnkG employs a promiscuous manner to encapsulate three discrete sites of E-cadherin by the same region, a dynamic mechanism that is distinct from the canonical 1:1 molar ratio previously described for other AnkG or E-cadherin-mediated complexes. Moreover, we demonstrate that AnkG-binding-deficient E-cadherin exhibited defective accumulation at the lateral membranes and show that disruption of interactions resulted in cell polarity malfunction. Finally, we demonstrate that E-cadherin is capable of simultaneously anchoring to AnkG and β-catenin, providing mechanistic insights into the functional orchestration of the ankyrin-spectrin complex with the cadherin-catenin complex. Collectively, our results show that complex formation between E-cadherin and AnkG is dynamic, which enables the maintenance of epithelial cell polarity by ensuring faithful targeting of the adhesion molecule-scaffold protein complex, thus providing molecular mechanisms for essential E-cadherin-mediated complex assembly at cell‒cell junctions.
Collapse
Affiliation(s)
- Chao Kong
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Xiaozhan Qu
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingming Liu
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiya Xu
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Da Chen
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| | - Yanshen Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shan Zhang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenbang Liu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chengdong Huang
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Chao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
12
|
Su D, Li Y, Zhang W, Gao H, Cheng Y, Hou Y, Li J, Ye Y, Lai Z, Li Z, Huang H, Li J, Li J, Cheng M, Nian C, Wu N, Zhou Z, Xing Y, Zhao Y, Liu H, Tang J, Chen Q, Hong L, Li W, Peng Z, Zhao B, Johnson RL, Liu P, Hong W, Chen L, Zhou D. SPTAN1/NUMB axis senses cell density to restrain cell growth and oncogenesis through Hippo signaling. J Clin Invest 2023; 133:e168888. [PMID: 37843276 PMCID: PMC10575737 DOI: 10.1172/jci168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin α chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling.
Collapse
Affiliation(s)
- Dongxue Su
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yuxi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Weiji Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yao Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Junhong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yi Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhangjian Lai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhe Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Haitao Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiaxin Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jinhuan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Mengyu Cheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Cheng Nian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Na Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Zhien Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yunzhi Xing
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Yu Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - He Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Jiayu Tang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Lixin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| | - Wengang Li
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhihai Peng
- Department of Hepatobiliary and Pancreatic and Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Randy L. Johnson
- Department of Cancer Biology, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Pingguo Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Department of Hepatobiliary Surgery, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University and
| |
Collapse
|
13
|
Goswami-Sewell D, Bagnetto C, Gomez CC, Anderson JT, Maheshwari A, Zuniga-Sanchez E. βII-Spectrin Is Required for Synaptic Positioning during Retinal Development. J Neurosci 2023; 43:5277-5289. [PMID: 37369589 PMCID: PMC10359034 DOI: 10.1523/jneurosci.0063-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
Neural circuit assembly is a multistep process where synaptic partners are often born at distinct developmental stages, and yet they must find each other and form precise synaptic connections with one another. This developmental process often relies on late-born neurons extending their processes to the appropriate layer to find and make synaptic connections to their early-born targets. The molecular mechanism responsible for the integration of late-born neurons into an emerging neural circuit remains unclear. Here, we uncovered a new role for the cytoskeletal protein βII-spectrin in properly positioning presynaptic and postsynaptic neurons to the developing synaptic layer. Loss of βII-spectrin disrupts retinal lamination, leads to synaptic connectivity defects, and results in impaired visual function in both male and female mice. Together, these findings highlight a new function of βII-spectrin in assembling neural circuits in the mouse outer retina.SIGNIFICANCE STATEMENT Neurons that assemble into a functional circuit are often integrated at different developmental time points. However, the molecular mechanism that guides the precise positioning of neuronal processes to the correct layer for synapse formation is relatively unknown. Here, we show a new role for the cytoskeletal scaffolding protein, βII-spectrin in the developing retina. βII-spectrin is required to position presynaptic and postsynaptic neurons to the nascent synaptic layer in the mouse outer retina. Loss of βII-spectrin disrupts positioning of neuronal processes, alters synaptic connectivity, and impairs visual function.
Collapse
Affiliation(s)
| | - Caitlin Bagnetto
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Cesiah C Gomez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Joseph T Anderson
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Akash Maheshwari
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
| | - Elizabeth Zuniga-Sanchez
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
14
|
Rodríguez Díaz JC, Jenkins PM, Pritchett DL, Jones KS. A Novel Approach to Study Coherent γ-Band Oscillations in Hippocampal Brain Sections. eNeuro 2023; 10:ENEURO.0167-23.2023. [PMID: 37344232 PMCID: PMC10368148 DOI: 10.1523/eneuro.0167-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
γ-Band oscillations (GBOs) are generated by fast-spiking interneurons (FSIs) and are critical for cognitive functions. Abnormalities in GBOs are frequently observed in schizophrenia and bipolar disorder and are strongly correlated with cognitive impairment. However, the underlying mechanisms are poorly understood. Studying GBOs in ex vivo preparations is challenging because of high energy demands and the need for continuous oxygen delivery to the tissue. As a result, GBOs are typically studied in brain tissue from very young animals or in experimental setups that maximize oxygen supply but compromise spatial resolution. Thus, there is a limited understanding of how GBOs interact within and between different brain structures and in brain tissue from mature animals. To address these limitations, we have developed a novel approach for studying GBOs in ex vivo hippocampal slices from mature animals, using 60-channel, perforated microelectrode arrays (pMEAs). pMEAs enhance oxygen delivery and increase spatial resolution in electrophysiological recordings, enabling comprehensive analyses of GBO synchronization within discrete brain structures. We found that transecting the Schaffer collaterals, a neural pathway within the hippocampus, impairs GBO coherence between CA1 and CA3 subfields. Furthermore, we validated our approach by studying GBO coherence in an Ank3 mutant mouse model exhibiting inhibitory synaptic dysfunction. We discovered that GBO coherence remains intact in the CA3 subfield of these mutant mice but is impaired within and between the CA1 subfield. Overall, our approach offers significant potential to characterize GBOs in ex vivo brain sections of animal models, enhancing our understanding of network dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Jean C Rodríguez Díaz
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, 48109 MI
| | - Paul M Jenkins
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, 48109 MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, 48109 MI
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, 48109 MI
| | | | - Kevin S Jones
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, 48109 MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, 48109 MI
| |
Collapse
|
15
|
Somsuan K, Aluksanasuwan S. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Genomics Inform 2023; 21:e22. [PMID: 37423640 PMCID: PMC10326534 DOI: 10.5808/gi.23013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 07/08/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OSkirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
16
|
Ahmed T, Ramonett A, Kwak EA, Kumar S, Flores PC, Ortiz HR, Langlais PR, Hund TJ, Mythreye K, Lee NY. Endothelial tip/stalk cell selection requires BMP9-induced β IV-spectrin expression during sprouting angiogenesis. Mol Biol Cell 2023; 34:ar72. [PMID: 37126382 PMCID: PMC10295478 DOI: 10.1091/mbc.e23-02-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
βIV-Spectrin is a membrane cytoskeletal protein with specialized roles in the nervous system and heart. Recent evidence also indicates a fundamental role for βIV-spectrin in angiogenesis as its endothelial-specific gene deletion in mice enhances embryonic lethality due to hypervascularization and hemorrhagic defects. During early vascular sprouting, βIV-spectrin is believed to inhibit tip cell sprouting in favor of the stalk cell phenotype by mediating VEGFR2 internalization and degradation. Despite these essential roles, mechanisms governing βIV-spectrin expression remain unknown. Here we identify bone morphogenetic protein 9 (BMP9) as a major inducer of βIV-spectrin gene expression in the vascular system. We show that BMP9 signals through the ALK1/Smad1 pathway to induce βIV-spectrin expression, which then recruits CaMKII to the cell membrane to induce phosphorylation-dependent VEGFR2 turnover. Although BMP9 signaling promotes stalk cell behavior through activation of hallmark stalk cell genes ID-1/3 and Hes-1 and Notch signaling cross-talk, we find that βIV-spectrin acts upstream of these pathways as loss of βIV-spectrin in neonate mice leads to retinal hypervascularization due to excessive VEGFR2 levels, increased tip cell populations, and strong Notch inhibition irrespective of BMP9 treatment. These findings demonstrate βIV-spectrin as a BMP9 gene target critical for tip/stalk cell selection during nascent vessel sprouting.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Eun-A Kwak
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research, Tirupati 517507, India
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Hannah R. Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | - Thomas J. Hund
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nam Y. Lee
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
17
|
Lorenzo DN, Edwards RJ, Slavutsky AL. Spectrins: molecular organizers and targets of neurological disorders. Nat Rev Neurosci 2023; 24:195-212. [PMID: 36697767 PMCID: PMC10598481 DOI: 10.1038/s41583-022-00674-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
Spectrins are cytoskeletal proteins that are expressed ubiquitously in the mammalian nervous system. Pathogenic variants in SPTAN1, SPTBN1, SPTBN2 and SPTBN4, four of the six genes encoding neuronal spectrins, cause neurological disorders. Despite their structural similarity and shared role as molecular organizers at the cell membrane, spectrins vary in expression, subcellular localization and specialization in neurons, and this variation partly underlies non-overlapping disease presentations across spectrinopathies. Here, we summarize recent progress in discerning the local and long-range organization and diverse functions of neuronal spectrins. We provide an overview of functional studies using mouse models, which, together with growing human genetic and clinical data, are helping to illuminate the aetiology of neurological spectrinopathies. These approaches are all critical on the path to plausible therapeutic solutions.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anastasia L Slavutsky
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Gupta JP, Jenkins PM. Ankyrin-B is lipid-modified by S-palmitoylation to promote dendritic membrane scaffolding of voltage-gated sodium channel Na V1.2 in neurons. Front Physiol 2023; 14:959660. [PMID: 37064897 PMCID: PMC10098127 DOI: 10.3389/fphys.2023.959660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Neuronal ankyrin-B is an intracellular scaffolding protein that plays multiple roles in the axon. By contrast, relatively little is known about the function of ankyrin-B in dendrites, where ankyrin-B is also localized in mature neurons. Recently, we showed that ankyrin-B acts as a scaffold for the voltage-gated sodium channel, NaV1.2, in dendrites of neocortical pyramidal neurons. How ankyrin-B is itself targeted to the dendritic membrane is not well understood. Here, we report that ankyrin-B is lipid-modified by S-palmitoylation to promote dendritic localization of NaV1.2. We identify the palmitoyl acyl transferase zDHHC17 as a key mediator of ankyrin-B palmitoylation in heterologous cells and in neurons. Additionally, we find that zDHHC17 regulates ankyrin-B protein levels independently of its S-acylation function through a conserved binding mechanism between the ANK repeat domain of zDHHC17 and the zDHHC ankyrin-repeat binding motif of ankyrin-B. We subsequently identify five cysteines in the N-terminal ankyrin repeat domain of ankyrin-B that are necessary for ankyrin-B palmitoylation. Mutation of these five cysteines to alanines not only abolishes ankyrin-B palmitoylation, but also prevents ankyrin-B from scaffolding NaV1.2 at dendritic membranes of neurons due to ankyrin-B's inability to localize properly at dendrites. Thus, we show palmitoylation is critical for localization and function of ankyrin-B at dendrites. Strikingly, loss of ankyrin-B palmitoylation does not affect ankyrin-B-mediated axonal cargo transport of synaptic vesicle synaptotagmin-1 in neurons. This is the first demonstration of S-palmitoylation of ankyrin-B as an underlying mechanism required for ankyrin-B localization and function in scaffolding NaV1.2 at dendrites.
Collapse
Affiliation(s)
- Julie P. Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Paul M. Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Nihei Y, Haniuda K, Higashiyama M, Asami S, Iwasaki H, Fukao Y, Nakayama M, Suzuki H, Kikkawa M, Kazuno S, Miura Y, Suzuki Y, Kitamura D. Identification of IgA autoantibodies targeting mesangial cells redefines the pathogenesis of IgA nephropathy. SCIENCE ADVANCES 2023; 9:eadd6734. [PMID: 36947618 PMCID: PMC10032602 DOI: 10.1126/sciadv.add6734] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is the most common type of primary glomerulonephritis, often progressing to renal failure. IgAN is triggered by IgA deposition in the glomerular mesangium by an undefined mechanism. Here, we show that grouped ddY (gddY) mice, a spontaneous IgAN model, produce serum IgA against mesangial antigens, including βII-spectrin. Most patients with IgAN also have serum anti-βII-spectrin IgA. As in patients with IgAN, IgA+ plasmablasts accumulate in the kidneys of gddY mice. IgA antibodies cloned from the plasmablasts carry substantial V-region mutations and bind to βII-spectrin and the surface of mesangial cells. These IgAs recognize transfected and endogenous βII-spectrin exposed on the surface of embryonic kidney-derived cells. Last, we demonstrate that the cloned IgA can bind selectively to glomerular mesangial regions in situ. The identification of IgA autoantibody and its antigen in IgAN provides key insights into disease onset and redefines IgAN as a tissue-specific autoimmune disease.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo 278-0022, Japan
| | - Kei Haniuda
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo 278-0022, Japan
| | - Mizuki Higashiyama
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo 278-0022, Japan
| | - Shohei Asami
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo 278-0022, Japan
| | - Hiroyuki Iwasaki
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo 278-0022, Japan
| | - Yusuke Fukao
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Mika Kikkawa
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo 278-0022, Japan
| |
Collapse
|
20
|
Solinger JA, Spang A. Sorting of cargo in the tubular endosomal network. Bioessays 2022; 44:e2200158. [DOI: 10.1002/bies.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - Anne Spang
- Biozentrum University of Basel Basel Switzerland
| |
Collapse
|
21
|
Dziadkowiak E, Nowakowska-Kotas M, Budrewicz S, Koszewicz M. Pathology of Initial Axon Segments in Chronic Inflammatory Demyelinating Polyradiculoneuropathy and Related Disorders. Int J Mol Sci 2022; 23:13621. [PMID: 36362407 PMCID: PMC9658771 DOI: 10.3390/ijms232113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is based on a combination of clinical, electrodiagnostic and laboratory features. The different entities of the disease include chronic immune sensory polyradiculopathy (CISP) and autoimmune nodopathies. It is debatable whether CIDP occurring in the course of other conditions, i.e., monoclonal IgG or IgA gammopathy, should be treated as a separate disease entity from idiopathic CIDP. This study aims to evaluate the molecular differences of the nodes of Ranvier and the initial axon segment (AIS) and juxtaparanode region (JXP) as the potential cause of phenotypic variation of CIDP while also seeking new pathomechanisms since JXP is sequestered behind the paranode and autoantibodies may not access the site easily. The authors initially present the structure of the different parts of the neuron and its functional significance, then discuss the problem of whether damage to the juxtaparanodal region, Schwann cells and axons could cause CIDP or if these damages should be separated as separate disease entities. In particular, AIS's importance for modulating neural excitability and carrying out transport along the axon is highlighted. The disclosure of specific pathomechanisms, including novel target antigens, in the heterogeneous CIDP syndrome is important for diagnosing and treating these patients.
Collapse
|
22
|
Dorrego-Rivas A, Ezan J, Moreau MM, Poirault-Chassac S, Aubailly N, De Neve J, Blanchard C, Castets F, Fréal A, Battefeld A, Sans N, Montcouquiol M. The core PCP protein Prickle2 regulates axon number and AIS maturation by binding to AnkG and modulating microtubule bundling. SCIENCE ADVANCES 2022; 8:eabo6333. [PMID: 36083912 PMCID: PMC9462691 DOI: 10.1126/sciadv.abo6333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | - Jerome Ezan
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | | | - Julie De Neve
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
| | | | - Francis Castets
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Amélie Fréal
- Department of Functional Genomics, Vrije Universiteit (VU), Amsterdam, Netherlands
| | - Arne Battefeld
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Nathalie Sans
- Univ. Bordeaux, INSERM, Magendie, U1215, F-33077 Bordeaux, France
- Corresponding author.
| | | |
Collapse
|
23
|
Bodenschatz JFE, Ajmail K, Skamrahl M, Vache M, Gottwald J, Nehls S, Janshoff A. Epithelial cells sacrifice excess area to preserve fluidity in response to external mechanical stress. Commun Biol 2022; 5:855. [PMID: 35995827 PMCID: PMC9395404 DOI: 10.1038/s42003-022-03809-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Viscoelastic properties of epithelial cells subject to shape changes were monitored by indentation-retraction/relaxation experiments. MDCK II cells cultured on extensible polydimethylsiloxane substrates were laterally stretched and, in response, displayed increased cortex contractility and loss of excess surface area. Thereby, the cells preserve their fluidity but inevitably become stiffer. We found similar behavior in demixed cell monolayers of ZO-1/2 double knock down (dKD) cells, cells exposed to different temperatures and after removal of cholesterol from the plasma membrane. Conversely, the mechanical response of single cells adhered onto differently sized patches displays no visible rheological change. Sacrificing excess surface area allows the cells to respond to mechanical challenges without losing their ability to flow. They gain a new degree of freedom that permits resolving the interdependence of fluidity β on stiffness [Formula: see text]. We also propose a model that permits to tell apart contributions from excess membrane area and excess cell surface area.
Collapse
Affiliation(s)
- Jonathan F E Bodenschatz
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Karim Ajmail
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Mark Skamrahl
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Marian Vache
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Jannis Gottwald
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Stefan Nehls
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany
| | - Andreas Janshoff
- Georg-August Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, 37077, Göttingen, Germany.
| |
Collapse
|
24
|
He L, Jiang W, Li J, Wang C. Crystal structure of Ankyrin-G in complex with a fragment of Neurofascin reveals binding mechanisms required for integrity of the axon initial segment. J Biol Chem 2022; 298:102272. [PMID: 35850303 PMCID: PMC9396398 DOI: 10.1016/j.jbc.2022.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
The axon initial segment (AIS) has characteristically dense clustering of voltage-gated sodium channels (Nav), cell adhesion molecule Neurofascin 186 (Nfasc), and neuronal scaffold protein Ankyrin-G (AnkG) in neurons, which facilitates generation of an action potential and maintenance of axonal polarity. However, the mechanisms underlying AIS assembly, maintenance, and plasticity remain poorly understood. Here, we report the high-resolution crystal structure of the AnkG ankyrin repeat (ANK repeat) domain in complex with its binding site in the Nfasc cytoplasmic tail that shows, in conjunction with binding affinity assays with serial truncation variants, the molecular basis of AnkG–Nfasc binding. We confirm AnkG interacts with the FIGQY motif in Nfasc, and we identify another region required for their high affinity binding. Our structural analysis revealed that ANK repeats form 4 hydrophobic or hydrophilic layers in the AnkG inner groove that coordinate interactions with essential Nfasc residues, including F1202, E1204, and Y1212. Moreover, we show disruption of the AnkG–Nfasc complex abolishes Nfasc enrichment at the AIS in cultured mouse hippocampal neurons. Finally, our structural and biochemical analysis indicated that L1 syndrome-associated mutations in L1CAM, a member of the L1 immunoglobulin family proteins including Nfasc, L1CAM, NrCAM, and CHL1, compromise binding with ankyrins. Taken together, these results define the mechanisms underlying AnkG–Nfasc complex formation and show that AnkG-dependent clustering of Nfasc is required for AIS integrity.
Collapse
Affiliation(s)
- Liping He
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wenli Jiang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Jianchao Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, P. R. China.
| | - Chao Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
25
|
Zhou R, Han B, Nowak R, Lu Y, Heller E, Xia C, Chishti AH, Fowler VM, Zhuang X. Proteomic and functional analyses of the periodic membrane skeleton in neurons. Nat Commun 2022; 13:3196. [PMID: 35680881 PMCID: PMC9184744 DOI: 10.1038/s41467-022-30720-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. The molecular composition and functions of the MPS remain incompletely understood. Here, using co-immunoprecipitation and mass spectrometry, we identified hundreds of potential candidate MPS-interacting proteins that span diverse functional categories. We examined representative proteins in several of these categories using super-resolution imaging, including previously unknown MPS structural components, as well as motor proteins, cell adhesion molecules, ion channels, and signaling proteins, and observed periodic distributions characteristic of the MPS along the neurites for ~20 proteins. Genetic perturbations of the MPS and its interacting proteins further suggested functional roles of the MPS in axon-axon and axon-dendrite interactions and in axon diameter regulation, and implicated the involvement of MPS interactions with cell adhesion molecules and non-muscle myosin in these roles. These results provide insights into the interactome of the MPS and suggest previously unknown functions of the MPS in neurons.
Collapse
Affiliation(s)
- Ruobo Zhou
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Boran Han
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Roberta Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92307, USA
| | - Yunzhe Lu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Evan Heller
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Chenglong Xia
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92307, USA
- Department of Biological Sciences, The University of Delaware, Newark, DE, 19716, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
26
|
Eichel K, Shen K. The function of the axon initial segment in neuronal polarity. Dev Biol 2022; 489:47-54. [DOI: 10.1016/j.ydbio.2022.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
27
|
Bonacossa-Pereira I, Coakley S, Hilliard MA. Neuron-epidermal attachment protects hyper-fragile axons from mechanical strain. Cell Rep 2022; 38:110501. [PMID: 35263583 DOI: 10.1016/j.celrep.2022.110501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 11/03/2022] Open
Abstract
Axons experience significant strain caused by organismal development and movement. A combination of intrinsic mechanical resistance and external shielding by surrounding tissues prevents axonal damage, although the precise mechanisms are unknown. Here, we reveal a neuroprotective function of neuron-epidermal attachment in Caenorhabditis elegans. We show that a gain-of-function mutation in the epidermal hemidesmosome component LET-805/myotactin, in combination with a loss-of-function mutation in UNC-70/β-spectrin, disrupts the uniform attachment and subsequent embedment of sensory axons within the epidermis during development. This generates regions of high tension within axons, leading to spontaneous axonal breaks and degeneration. Completely preventing attachment, by disrupting HIM-4/hemicentin or MEC-5/collagen, eliminates tension and alleviates damage. Finally, we demonstrate that progressive neuron-epidermal attachment via LET-805/myotactin is induced by the axon during development, as well as during regeneration after injury. Together, these results reveal that establishment of uniform neuron-epidermal attachment is critical to protect axons from mechanical strain during development.
Collapse
Affiliation(s)
- Igor Bonacossa-Pereira
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sean Coakley
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
28
|
Namløs HM, Skårn M, Ahmed D, Grad I, Andresen K, Kresse SH, Munthe E, Serra M, Scotlandi K, Llombart-Bosch A, Myklebost O, Lind GE, Meza-Zepeda LA. miR-486-5p expression is regulated by DNA methylation in osteosarcoma. BMC Genomics 2022; 23:142. [PMID: 35172717 PMCID: PMC8851731 DOI: 10.1186/s12864-022-08346-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Background Osteosarcoma is the most common primary malignant tumour of bone occurring in children and young adolescents and is characterised by complex genetic and epigenetic changes. The miRNA miR-486-5p has been shown to be downregulated in osteosarcoma and in cancer in general. Results To investigate if the mir-486 locus is epigenetically regulated, we integrated DNA methylation and miR-486-5p expression data using cohorts of osteosarcoma cell lines and patient samples. A CpG island in the promoter of the ANK1 host gene of mir-486 was shown to be highly methylated in osteosarcoma cell lines as determined by methylation-specific PCR and direct bisulfite sequencing. High methylation levels were seen for osteosarcoma patient samples, xenografts and cell lines based on quantitative methylation-specific PCR. 5-Aza-2′-deoxycytidine treatment of osteosarcoma cell lines caused induction of miR-486-5p and ANK1, indicating common epigenetic regulation in osteosarcoma cell lines. When overexpressed, miR-486-5p affected cell morphology. Conclusions miR-486-5p represents a highly cancer relevant, epigenetically regulated miRNA in osteosarcoma, and this knowledge contributes to the understanding of osteosarcoma biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08346-6.
Collapse
Affiliation(s)
- Heidi M Namløs
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Magne Skårn
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Deeqa Ahmed
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Iwona Grad
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kim Andresen
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Stine H Kresse
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Else Munthe
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Massimo Serra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Ola Myklebost
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Department for Clinical Science, University of Bergen, Bergen, Norway
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway. .,Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
29
|
Nowak RB, Alimohamadi H, Pestonjamasp K, Rangamani P, Fowler VM. Nanoscale Dynamics of Actin Filaments in the Red Blood Cell Membrane Skeleton. Mol Biol Cell 2022; 33:ar28. [PMID: 35020457 PMCID: PMC9250383 DOI: 10.1091/mbc.e21-03-0107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Red blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes (∼37 nm length, 15–18 subunits) interconnected by long spectrin strands at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modeling of forces controlling RBC shape, membrane curvature, and deformation, yet the nanoscale organization and dynamics of the F-actin nodes in situ are not well understood. We examined F-actin distribution and dynamics in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200–300 nm apart interspersed with dimmer F-actin staining regions. Single molecule stochastic optical reconstruction microscopy imaging of Alexa 647-phalloidin-labeled F-actin and computational analysis also indicates an irregular, nonrandom distribution of F-actin nodes. Treatment of RBCs with latrunculin A and cytochalasin D indicates that F-actin foci distribution depends on actin polymerization, while live cell imaging reveals dynamic local motions of F-actin foci, with lateral movements, appearance and disappearance. Regulation of F-actin node distribution and dynamics via actin assembly/disassembly pathways and/or via local extension and retraction of spectrin strands may provide a new mechanism to control spectrin-F-actin network connectivity, RBC shape, and membrane deformability.
Collapse
Affiliation(s)
- Roberta B Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037.,Department of Biological Sciences, University of Delaware, Newark, DE 19716
| |
Collapse
|
30
|
Stevens SR, van der Heijden ME, Ogawa Y, Lin T, Sillitoe RV, Rasband MN. Ankyrin-R Links Kv3.3 to the Spectrin Cytoskeleton and Is Required for Purkinje Neuron Survival. J Neurosci 2022; 42:2-15. [PMID: 34785580 PMCID: PMC8741159 DOI: 10.1523/jneurosci.1132-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
Ankyrin scaffolding proteins are critical for membrane domain organization and protein stabilization in many different cell types including neurons. In the cerebellum, Ankyrin-R (AnkR) is highly enriched in Purkinje neurons, granule cells, and in the cerebellar nuclei (CN). Using male and female mice with a floxed allele for Ank1 in combination with Nestin-Cre and Pcp2-Cre mice, we found that ablation of AnkR from Purkinje neurons caused ataxia, regional and progressive neurodegeneration, and altered cerebellar output. We show that AnkR interacts with the cytoskeletal protein β3 spectrin and the potassium channel Kv3.3. Loss of AnkR reduced somatic membrane levels of β3 spectrin and Kv3.3 in Purkinje neurons. Thus, AnkR links Kv3.3 channels to the β3 spectrin-based cytoskeleton. Our results may help explain why mutations in β3 spectrin and Kv3.3 both cause spinocerebellar ataxia.SIGNIFICANCE STATEMENT Ankyrin scaffolding proteins localize and stabilize ion channels in the membrane by linking them to the spectrin-based cytoskeleton. Here, we show that Ankyrin-R (AnkR) links Kv3.3 K+ channels to the β3 spectrin-based cytoskeleton in Purkinje neurons. Loss of AnkR causes Purkinje neuron degeneration, altered cerebellar physiology, and ataxia, which is consistent with mutations in Kv3.3 and β3 spectrin causing spinocerebellar ataxia.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Lin
- Department Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Department Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
31
|
Rao S, Yang X, Ohshiro K, Zaidi S, Wang Z, Shetty K, Xiang X, Hassan I, Mohammad T, Latham PS, Nguyen BN, Wong L, Yu H, Al-Abed Y, Mishra B, Vacca M, Guenigault G, Allison MED, Vidal-Puig A, Benhammou JN, Alvarez M, Pajukanta P, Pisegna JR, Mishra L. β2-spectrin (SPTBN1) as a therapeutic target for diet-induced liver disease and preventing cancer development. Sci Transl Med 2021; 13:eabk2267. [PMID: 34910547 PMCID: PMC8941321 DOI: 10.1126/scitranslmed.abk2267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) and liver cancer is increasing. De novo lipogenesis and fibrosis contribute to disease progression and cancerous transformation. Here, we found that β2-spectrin (SPTBN1) promotes sterol regulatory element (SRE)–binding protein (SREBP)–stimulated lipogenesis and development of liver cancer in mice fed a high-fat diet (HFD) or a western diet (WD). Either hepatocyte-specific knockout of SPTBN1 or siRNA-mediated therapy protected mice from HFD/WD-induced obesity and fibrosis, lipid accumulation, and tissue damage in the liver. Biochemical analysis suggested that HFD/WD induces SPTBN1 and SREBP1 cleavage by CASPASE-3 and that the cleaved products interact to promote expression of genes with sterol response elements. Analysis of human NASH tissue revealed increased SPTBN1 and CASPASE-3 expression. Thus, our data indicate that SPTBN1 represents a potential target for therapeutic intervention in NASH and liver cancer.
Collapse
Affiliation(s)
- Shuyun Rao
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| | - Xiaochun Yang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Kazufumi Ohshiro
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Sobia Zaidi
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Zhanhuai Wang
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kirti Shetty
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, 21201, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Patricia S. Latham
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
- Department of Pathology, The George Washington University, DC, 20037, USA
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| | - Linda Wong
- Cancer Biology department, University of Hawaii Cancer Center, HI, 96813, USA
- Dept of Surgery, University of Hawaii John A. Burns School of Medicine, HI, 96813, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, HI, 96813, USA
| | - Yousef Al-Abed
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Bibhuti Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Department of Neurology, Northwell Health, Manhasset, NY, 11030, USA
| | - Michele Vacca
- TVP Lab, Metabolic Research Laboratories, WT/MRC Institute of Metabolic Science Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | | | - Michael ED Allison
- Liver Unit, Cambridge Biomedical Research Centre, Cambridge University Hospitals, CB2 0QQ, United Kingdom
| | - Antonio Vidal-Puig
- TVP Lab, Metabolic Research Laboratories, WT/MRC Institute of Metabolic Science Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
- Welcome Trust Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, 210000, China
| | - Jihane N Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases and Gastroenterology, Hepatology and Parenteral Nutrition, David Geffen School of Medicine at UCLA and VA Greater Los Angeles HCS, Los Angeles, CA, 90095, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joseph R. Pisegna
- Department of Medicine and Human Genetics, Division of Gastroenterology, Hepatology and Parenteral Nutrition, David Geffen School of Medicine at UCLA and VA Greater Los Angeles HCS, Los Angeles, CA, 90095, USA
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| |
Collapse
|
32
|
Creighton BA, Afriyie S, Ajit D, Casingal CR, Voos KM, Reger J, Burch AM, Dyne E, Bay J, Huang JK, Anton ES, Fu MM, Lorenzo DN. Giant ankyrin-B mediates transduction of axon guidance and collateral branch pruning factor sema 3A. eLife 2021; 10:69815. [PMID: 34812142 PMCID: PMC8610419 DOI: 10.7554/elife.69815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Variants in the high confident autism spectrum disorder (ASD) gene ANK2 target both ubiquitously expressed 220 kDa ankyrin-B and neurospecific 440 kDa ankyrin-B (AnkB440) isoforms. Previous work showed that knock-in mice expressing an ASD-linked Ank2 variant yielding a truncated AnkB440 product exhibit ectopic brain connectivity and behavioral abnormalities. Expression of this variant or loss of AnkB440 caused axonal hyperbranching in vitro, which implicated AnkB440 microtubule bundling activity in suppressing collateral branch formation. Leveraging multiple mouse models, cellular assays, and live microscopy, we show that AnkB440 also modulates axon collateral branching stochastically by reducing the number of F-actin-rich branch initiation points. Additionally, we show that AnkB440 enables growth cone (GC) collapse in response to chemorepellent factor semaphorin 3 A (Sema 3 A) by stabilizing its receptor complex L1 cell adhesion molecule/neuropilin-1. ASD-linked ANK2 variants failed to rescue Sema 3A-induced GC collapse. We propose that impaired response to repellent cues due to AnkB440 deficits leads to axonal targeting and branch pruning defects and may contribute to the pathogenicity of ANK2 variants.
Collapse
Affiliation(s)
- Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Simone Afriyie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Deepa Ajit
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Cristine R Casingal
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kayleigh M Voos
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Joan Reger
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States.,Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - April M Burch
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Eric Dyne
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Julia Bay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, United States
| | - E S Anton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Carolina Institute for Developmental Disabilities, Chapel Hill, United States
| |
Collapse
|
33
|
Jaiswal S, Nandi S, Iquebal MA, Jasrotia RS, Patra S, Mishra G, Udit UK, Sahu DK, Angadi UB, Meher PK, Routray P, Sundaray JK, Verma DK, Das P, Jayasankar P, Rai A, Kumar D. Revelation of candidate genes and molecular mechanism of reproductive seasonality in female rohu (Labeo rohita Ham.) by RNA sequencing. BMC Genomics 2021; 22:685. [PMID: 34548034 PMCID: PMC8456608 DOI: 10.1186/s12864-021-08001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Carp fish, rohu (Labeo rohita Ham.) is important freshwater aquaculture species of South-East Asia having seasonal reproductive rhythm. There is no holistic study at transcriptome level revealing key candidate genes involved in such circannual rhythm regulated by biological clock genes (BCGs). Seasonality manifestation has two contrasting phases of reproduction, i.e., post-spawning resting and initiation of gonadal activity appropriate for revealing the associated candidate genes. It can be deciphered by RNA sequencing of tissues involved in BPGL (Brain-Pituitary-Gonad-Liver) axis controlling seasonality. How far such BCGs of this fish are evolutionarily conserved across different phyla is unknown. Such study can be of further use to enhance fish productivity as seasonality restricts seed production beyond monsoon season. RESULT A total of ~ 150 Gb of transcriptomic data of four tissues viz., BPGL were generated using Illumina TruSeq. De-novo assembled BPGL tissues revealed 75,554 differentially expressed transcripts, 115,534 SSRs, 65,584 SNPs, 514 pathways, 5379 transcription factors, 187 mature miRNA which regulates candidate genes represented by 1576 differentially expressed transcripts are available in the form of web-genomic resources. Findings were validated by qPCR. This is the first report in carp fish having 32 BCGs, found widely conserved in fish, amphibian, reptile, birds, prototheria, marsupials and placental mammals. This is due to universal mechanism of rhythmicity in response to environment and earth rotation having adaptive and reproductive significance. CONCLUSION This study elucidates evolutionary conserved mechanism of photo-periodism sensing, neuroendocrine secretion, metabolism and yolk synthesis in liver, gonadal maturation, muscular growth with sensory and auditory perception in this fish. Study reveals fish as a good model for research on biological clock besides its relevance in reproductive efficiency enhancement.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Samiran Nandi
- ICAR- Central Institute of Freshwater Aquaculture, Bhubaneswar, Odhisa India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rahul Singh Jasrotia
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sunita Patra
- ICAR- Central Institute of Freshwater Aquaculture, Bhubaneswar, Odhisa India
| | - Gayatri Mishra
- ICAR- Central Institute of Freshwater Aquaculture, Bhubaneswar, Odhisa India
| | - Uday Kumar Udit
- ICAR- Central Institute of Freshwater Aquaculture, Bhubaneswar, Odhisa India
| | - Dinesh Kumar Sahu
- ICAR- Central Institute of Freshwater Aquaculture, Bhubaneswar, Odhisa India
| | - U. B. Angadi
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Prem Kumar Meher
- ICAR- Central Institute of Freshwater Aquaculture, Bhubaneswar, Odhisa India
| | - Padmanav Routray
- ICAR- Central Institute of Freshwater Aquaculture, Bhubaneswar, Odhisa India
| | | | | | - Paramananda Das
- ICAR- Central Institute of Freshwater Aquaculture, Bhubaneswar, Odhisa India
| | | | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
34
|
The rs45454496 (E1813K) variant in the adiposity gene ANK2 doesn't associate with obesity in Southern European subjects. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Fujitani M, Otani Y, Miyajima H. Pathophysiological Roles of Abnormal Axon Initial Segments in Neurodevelopmental Disorders. Cells 2021; 10:2110. [PMID: 34440880 PMCID: PMC8392614 DOI: 10.3390/cells10082110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/17/2022] Open
Abstract
The 20-60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative to the cell body, which allows low thresholds for the initiation of action potential (AP). Molecular and physiological studies have shown that the AIS is also a key domain for the control of neuronal excitability by homeostatic mechanisms. The AIS has high plasticity in normal developmental processes and pathological activities, such as injury, neurodegeneration, and neurodevelopmental disorders (NDDs). In the first half of this review, we provide an overview of the molecular, structural, and ion-channel characteristics of AIS, AIS regulation through axo-axonic synapses, and axo-glial interactions. In the second half, to understand the relationship between NDDs and AIS, we discuss the activity-dependent plasticity of AIS, the human mutation of AIS regulatory genes, and the pathophysiological role of an abnormal AIS in NDD model animals and patients. We propose that the AIS may provide a potentially valuable structural biomarker in response to abnormal network activity in vivo as well as a new treatment concept at the neural circuit level.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
36
|
Quistgaard EM, Nissen JD, Hansen S, Nissen P. Mind the Gap: Molecular Architecture of the Axon Initial Segment - From Fold Prediction to a Mechanistic Model of Function? J Mol Biol 2021; 433:167176. [PMID: 34303720 DOI: 10.1016/j.jmb.2021.167176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/28/2022]
Abstract
The axon initial segment (AIS) is a distinct neuronal domain, which is responsible for initiating action potentials, and therefore of key importance to neuronal signaling. To determine how it functions, it is necessary to establish which proteins reside there, how they are organized, and what the dynamic features are. Great strides have been made in recent years, and it is now clear that several AIS cytoskeletal and membrane proteins interact to form a higher-order periodic structure. Here we briefly describe AIS function, protein composition and molecular architecture, and discuss perspectives for future structural characterization, and if structure predictions will be able to model complex higher-order assemblies.
Collapse
Affiliation(s)
- Esben M Quistgaard
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Josephine Dannersø Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Sean Hansen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark
| | - Poul Nissen
- DANDRITE - Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Dept. Molecular Biology and Genetics, DK - 8000 Aarhus C, Denmark.
| |
Collapse
|
37
|
Cousin MA, Creighton BA, Breau KA, Spillmann RC, Torti E, Dontu S, Tripathi S, Ajit D, Edwards RJ, Afriyie S, Bay JC, Harper KM, Beltran AA, Munoz LJ, Falcon Rodriguez L, Stankewich MC, Person RE, Si Y, Normand EA, Blevins A, May AS, Bier L, Aggarwal V, Mancini GMS, van Slegtenhorst MA, Cremer K, Becker J, Engels H, Aretz S, MacKenzie JJ, Brilstra E, van Gassen KLI, van Jaarsveld RH, Oegema R, Parsons GM, Mark P, Helbig I, McKeown SE, Stratton R, Cogne B, Isidor B, Cacheiro P, Smedley D, Firth HV, Bierhals T, Kloth K, Weiss D, Fairley C, Shieh JT, Kritzer A, Jayakar P, Kurtz-Nelson E, Bernier RA, Wang T, Eichler EE, van de Laar IMBH, McConkie-Rosell A, McDonald MT, Kemppainen J, Lanpher BC, Schultz-Rogers LE, Gunderson LB, Pichurin PN, Yoon G, Zech M, Jech R, Winkelmann J, Beltran AS, Zimmermann MT, Temple B, Moy SS, Klee EW, Tan QKG, Lorenzo DN. Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome. Nat Genet 2021; 53:1006-1021. [PMID: 34211179 PMCID: PMC8273149 DOI: 10.1038/s41588-021-00886-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
SPTBN1 encodes βII-spectrin, the ubiquitously expressed β-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal βII-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays; mild to severe intellectual disability; autistic features; seizures; behavioral and movement abnormalities; hypotonia; and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect βII-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of βII-spectrin in the central nervous system.
Collapse
Affiliation(s)
- Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| | - Blake A Creighton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C Spillmann
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | | | - Sruthi Dontu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Swarnendu Tripathi
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deepa Ajit
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Reginald J Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Simone Afriyie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julia C Bay
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathryn M Harper
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alvaro A Beltran
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorena J Munoz
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liset Falcon Rodriguez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Yue Si
- GeneDx, Gaithersburg, MD, USA
| | | | | | - Alison S May
- Department of Neurology, Columbia University, New York, NY, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Vimla Aggarwal
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Laboratory of Personalized Genomic Medicine, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | | | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | | | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Paul Mark
- Spectrum Health Medical Genetics, Grand Rapids, MI, USA
| | - Ingo Helbig
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah E McKeown
- Division of Neurology, Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert Stratton
- Genetics, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Benjamin Cogne
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- Université de Nantes, CNRS, INSERM, L'Institut du Thorax, Nantes, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- Université de Nantes, CNRS, INSERM, L'Institut du Thorax, Nantes, France
| | - Pilar Cacheiro
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Damian Smedley
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Kloth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Deike Weiss
- Neuropediatrics, Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecilia Fairley
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Joseph T Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - Evangeline Kurtz-Nelson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ingrid M B H van de Laar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Allyn McConkie-Rosell
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Marie T McDonald
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Jennifer Kemppainen
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Brendan C Lanpher
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Laura E Schultz-Rogers
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Lauren B Gunderson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Pavel N Pichurin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Grace Yoon
- Divisions of Clinical/Metabolic Genetics and Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Adriana S Beltran
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Queenie K-G Tan
- Department of Pediatrics, Duke University Medical Center, Duke University, Durham, NC, USA
| | - Damaris N Lorenzo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
38
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
39
|
Stevens SR, Longley CM, Ogawa Y, Teliska LH, Arumanayagam AS, Nair S, Oses-Prieto JA, Burlingame AL, Cykowski MD, Xue M, Rasband MN. Ankyrin-R regulates fast-spiking interneuron excitability through perineuronal nets and Kv3.1b K + channels. eLife 2021; 10:66491. [PMID: 34180393 PMCID: PMC8257253 DOI: 10.7554/elife.66491] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Neuronal ankyrins cluster and link membrane proteins to the actin and spectrin-based cytoskeleton. Among the three vertebrate ankyrins, little is known about neuronal Ankyrin-R (AnkR). We report AnkR is highly enriched in Pv+ fast-spiking interneurons in mouse and human. We identify AnkR-associated protein complexes including cytoskeletal proteins, cell adhesion molecules (CAMs), and perineuronal nets (PNNs). We show that loss of AnkR from forebrain interneurons reduces and disrupts PNNs, decreases anxiety-like behaviors, and changes the intrinsic excitability and firing properties of Pv+ fast-spiking interneurons. These changes are accompanied by a dramatic reduction in Kv3.1b K+ channels. We identify a novel AnkR-binding motif in Kv3.1b, and show that AnkR is both necessary and sufficient for Kv3.1b membrane localization in interneurons and at nodes of Ranvier. Thus, AnkR regulates Pv+ fast-spiking interneuron function by organizing ion channels, CAMs, and PNNs, and linking these to the underlying β1 spectrin-based cytoskeleton.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Colleen M Longley
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | | | - Supna Nair
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, United States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
40
|
Liu J, Liao X, Zhou J, Li B, Xu L, Liu S, Li Y, Yuan D, Hu C, Jiang W, Yan J. A Rare Variant of ANK3 Is Associated With Intracranial Aneurysm. Front Neurol 2021; 12:672570. [PMID: 34248821 PMCID: PMC8267376 DOI: 10.3389/fneur.2021.672570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 12/04/2022] Open
Abstract
Intracranial aneurysm (IA) is a cerebrovascular disorder in which abnormal dilation of a blood vessel results from weakening of the blood vessel wall. The aneurysm may rupture, leading to subarachnoid hemorrhage with severe outcomes. This study was conducted to identify the genetic factors involved in the etiology of IA. Whole-exome sequencing was performed in three IA-aggregate families to identify candidate variants. Further association studies of candidate variants were performed among sporadic cases and controls. Bioinformatic analysis was used to predict the functions of candidate genes and variants. Twenty variants were identified after whole-exome sequencing, among which eight were selected for replicative association studies. ANK3 c.4403G>A (p.R1468H) was significantly associated with IA (odds ratio 4.77; 95% confidence interval 1.94–11.67; p-value = 0.00019). Amino acid R1468 in ANK3 was predicted to be located in the spectrin-binding domain of ankyrin-G and may regulate the migration of vascular endothelial cells and affect cell–cell junctions. Therefore, the variation p.R1468H may cause weakening of the artery walls, thereby accelerating the formation of IA. Thus, ANK3 is a candidate gene highly related to IA.
Collapse
Affiliation(s)
- Junyu Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jilin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Bingyang Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lu Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Songlin Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People's Hospital, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
41
|
Deubiquitylating enzymes in neuronal health and disease. Cell Death Dis 2021; 12:120. [PMID: 33483467 PMCID: PMC7822931 DOI: 10.1038/s41419-020-03361-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Ubiquitylation and deubiquitylation play a pivotal role in protein homeostasis (proteostasis). Proteostasis shapes the proteome landscape in the human brain and its impairment is linked to neurodevelopmental and neurodegenerative disorders. Here we discuss the emerging roles of deubiquitylating enzymes in neuronal function and survival. We provide an updated perspective on the genetics, physiology, structure, and function of deubiquitylases in neuronal health and disease. ![]()
Collapse
|
42
|
Kalafatakis I, Savvaki M, Velona T, Karagogeos D. Implication of Contactins in Demyelinating Pathologies. Life (Basel) 2021; 11:life11010051. [PMID: 33451101 PMCID: PMC7828632 DOI: 10.3390/life11010051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways.
Collapse
|
43
|
Patel NJ, Nassal DM, Gratz D, Hund TJ. Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function. Expert Opin Ther Targets 2020; 25:63-73. [PMID: 33170045 DOI: 10.1080/14728222.2021.1849145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction : Cardiac fibrosis contributes to the development of cardiovascular disease (CVD) and arrhythmia. Cardiac fibroblasts (CFs) are collagen-producing cells that regulate extracellular matrix (ECM) homeostasis. A complex signaling network has been defined linking environmental stress to changes in CF function and fibrosis. Signal Transducer and Activator of Transcription 3 (STAT3) has emerged as a critical integrator of pro-fibrotic signals in CFs downstream of several established signaling networks. Areas covered : This article provides an overview of STAT3 function in CFs and its involvement in coordinating a vast web of intracellular pro-fibrotic signaling molecules and transcription factors. We highlight recent work elucidating a critical role for the fibroblast cytoskeleton in maintaining spatial and temporal control of STAT3-related signaling . Finally, we discuss potential opportunities and obstacles for therapeutic targeting of STAT3 to modulate cardiac fibrosis and arrhythmias. Relevant publications on the topic were identified through Pubmed. Expert opinion : Therapeutic targeting of STAT3 for CVD and arrhythmias presents unique challenges and opportunities. Thus, it is critical to consider the multimodal and dynamic nature of STAT3 signaling. Going forward, it will be beneficial to consider ways to maintain balanced STAT3 function, rather than large-scale perturbations in STAT3 function.
Collapse
Affiliation(s)
- Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, OH, USA
| |
Collapse
|
44
|
Stone MC, Kothe GO, Rolls MM, Jegla T. Cytoskeletal and synaptic polarity of LWamide-like+ ganglion neurons in the sea anemone Nematostella vectensis. J Exp Biol 2020; 223:jeb233197. [PMID: 32968001 PMCID: PMC7673360 DOI: 10.1242/jeb.233197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
The centralized nervous systems of bilaterian animals rely on directional signaling facilitated by polarized neurons with specialized axons and dendrites. It is not known whether axo-dendritic polarity is exclusive to bilaterians or was already present in early metazoans. We therefore examined neurite polarity in the starlet sea anemone Nematostella vectensis (Cnidaria). Cnidarians form a sister clade to bilaterians and share many neuronal building blocks characteristic of bilaterians, including channels, receptors and synaptic proteins, but their nervous systems comprise a comparatively simple net distributed throughout the body. We developed a tool kit of fluorescent polarity markers for live imaging analysis of polarity in an identified neuron type, large ganglion cells of the body column nerve net that express the LWamide-like neuropeptide. Microtubule polarity differs in bilaterian axons and dendrites, and this in part underlies polarized distribution of cargo to the two types of processes. However, in LWamide-like+ neurons, all neurites had axon-like microtubule polarity suggesting that they may have similar contents. Indeed, presynaptic and postsynaptic markers trafficked to all neurites and accumulated at varicosities where neurites from different neurons often crossed, suggesting the presence of bidirectional synaptic contacts. Furthermore, we could not identify a diffusion barrier in the plasma membrane of any of the neurites like the axon initial segment barrier that separates the axonal and somatodendritic compartments in bilaterian neurons. We conclude that at least one type of neuron in Nematostella vectensis lacks the axo-dendritic polarity characteristic of bilaterian neurons.
Collapse
Affiliation(s)
- Michelle C Stone
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory O Kothe
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy Jegla
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
45
|
Nelson AD, Caballero-Florán RN, Rodríguez Díaz JC, Hull JM, Yuan Y, Li J, Chen K, Walder KK, Lopez-Santiago LF, Bennett V, McInnis MG, Isom LL, Wang C, Zhang M, Jones KS, Jenkins PM. Ankyrin-G regulates forebrain connectivity and network synchronization via interaction with GABARAP. Mol Psychiatry 2020; 25:2800-2817. [PMID: 30504823 PMCID: PMC6542726 DOI: 10.1038/s41380-018-0308-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022]
Abstract
GABAergic circuits are critical for the synchronization and higher order function of brain networks. Defects in this circuitry are linked to neuropsychiatric diseases, including bipolar disorder, schizophrenia, and autism. Work in cultured neurons has shown that ankyrin-G plays a key role in the regulation of GABAergic synapses on the axon initial segment and somatodendritic domain of pyramidal neurons, where it interacts directly with the GABAA receptor-associated protein (GABARAP) to stabilize cell surface GABAA receptors. Here, we generated a knock-in mouse model expressing a mutation that abolishes the ankyrin-G/GABARAP interaction (Ank3 W1989R) to understand how ankyrin-G and GABARAP regulate GABAergic circuitry in vivo. We found that Ank3 W1989R mice exhibit a striking reduction in forebrain GABAergic synapses resulting in pyramidal cell hyperexcitability and disruptions in network synchronization. In addition, we identified changes in pyramidal cell dendritic spines and axon initial segments consistent with compensation for hyperexcitability. Finally, we identified the ANK3 W1989R variant in a family with bipolar disorder, suggesting a potential role of this variant in disease. Our results highlight the importance of ankyrin-G in regulating forebrain circuitry and provide novel insights into how ANK3 loss-of-function variants may contribute to human disease.
Collapse
Affiliation(s)
- A D Nelson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - R N Caballero-Florán
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - J C Rodríguez Díaz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - J M Hull
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Y Yuan
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - J Li
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K Chen
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K K Walder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - L F Lopez-Santiago
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - V Bennett
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Departments of Biochemistry, Neurobiology, and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - M G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - L L Isom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - C Wang
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - M Zhang
- Division of Life Sciences, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - K S Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - P M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
46
|
Kelley CA, Triplett O, Mallick S, Burkewitz K, Mair WB, Cram EJ. FLN-1/filamin is required to anchor the actomyosin cytoskeleton and for global organization of sub-cellular organelles in a contractile tissue. Cytoskeleton (Hoboken) 2020; 77:379-398. [PMID: 32969593 DOI: 10.1002/cm.21633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use the C. elegans spermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN-1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss of fln-1 results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.
Collapse
Affiliation(s)
- Charlotte A Kelley
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Olivia Triplett
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Samyukta Mallick
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
47
|
LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell 2020; 52:88-103.e18. [PMID: 31910362 DOI: 10.1016/j.devcel.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Collapse
Affiliation(s)
- Matthew L LaBella
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Edward J Hujber
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Randi L Rawson
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean A Merrill
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Patrick D Allaire
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
48
|
Accumulation of Neurofascin at Nodes of Ranvier Is Regulated by a Paranodal Switch. J Neurosci 2020; 40:5709-5723. [PMID: 32554548 DOI: 10.1523/jneurosci.0830-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
The paranodal junctions flank mature nodes of Ranvier and provide a barrier between ion channels at the nodes and juxtaparanodes. These junctions also promote node assembly and maintenance by mechanisms that are poorly understood. Here, we examine their role in the accumulation of NF186, a key adhesion molecule of PNS and CNS nodes. We previously showed that NF186 is initially targeted/accumulates via its ectodomain to forming PNS (hemi)nodes by diffusion trapping, whereas it is later targeted to mature nodes by a transport-dependent mechanism mediated by its cytoplasmic segment. To address the role of the paranodes in this switch, we compared accumulation of NF186 ectodomain and cytoplasmic domain constructs in WT versus paranode defective (i.e., Caspr-null) mice. Both pathways are affected in the paranodal mutants. In the PNS of Caspr-null mice, diffusion trapping mediated by the NF186 ectodomain aberrantly persists into adulthood, whereas the cytoplasmic domain/transport-dependent targeting is impaired. In contrast, accumulation of NF186 at CNS nodes does not undergo a switch; it is predominantly targeted to both forming and mature CNS nodes via its cytoplasmic domain and requires intact paranodes. Fluorescence recovery after photobleaching analysis indicates that the paranodes provide a membrane diffusion barrier that normally precludes diffusion of NF186 to nodes. Linkage of paranodal proteins to the underlying cytoskeleton likely contributes to this diffusion barrier based on 4.1B and βII spectrin expression in Caspr-null mice. Together, these results implicate the paranodes as membrane diffusion barriers that regulate targeting to nodes and highlight differences in the assembly of PNS and CNS nodes.SIGNIFICANCE STATEMENT Nodes of Ranvier are essential for effective saltatory conduction along myelinated axons. A major question is how the various axonal proteins that comprise the multimeric nodal complex accumulate at this site. Here we examine how targeting of NF186, a key nodal adhesion molecule, is regulated by the flanking paranodal junctions. We show that the transition from diffusion-trapping to transport-dependent accumulation of NF186 requires the paranodal junctions. We also demonstrate that these junctions are a barrier to diffusion of axonal proteins into the node and highlight differences in PNS and CNS node assembly. These results provide new insights into the mechanism of node assembly and the pathophysiology of neurologic disorders in which impaired paranodal function contributes to clinical disability.
Collapse
|
49
|
Li J, Chen K, Zhu R, Zhang M. Structural Basis Underlying Strong Interactions between Ankyrins and Spectrins. J Mol Biol 2020; 432:3838-3850. [DOI: 10.1016/j.jmb.2020.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/18/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023]
|
50
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|