1
|
Temgire P, Arthur R, Upadhayay S, Arora S, Kapatia G, Kumar R, Navik US, Kumar P. Elucidating the neuroprotective potential of arbutin in 3-NPA induced HD-like pathology: Insights from in silico, in vitro, and in vivo models. Behav Brain Res 2025; 483:115475. [PMID: 39929340 DOI: 10.1016/j.bbr.2025.115475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/24/2024] [Accepted: 02/06/2025] [Indexed: 02/16/2025]
Abstract
Huntington's disease (HD) is an inherited, hyperkinetic condition manifested by a triad of motor abnormalities, progressive cognitive impairment, and psychiatric disturbances. Oxidative stress has been implicated among other cellular processes in the pathogenesis of HD. Arbutin, a hydroquinone antioxidant, is reportedly neuroprotective in several animal models of neurodegenerative diseases. Hence, this research aimed to investigate the neuroprotective effect of arbutin against HD using in silico, in vitro, and in vivo experimental approaches. Schrodinger software was used for the in-silico studies, while SH-SY5Y cells were used for in-vitro studies. In the in vivo studies, adult Wistar rats were divided into five groups and 3-nitro propionic acid (3-NPA) (10 mg/kg/day,i.p) alone, and with arbutin (50 and 100 mg/kg/day,i.p.) was administered for 21 days. The body weight and behavioral parameters, including locomotor activity and motor coordination, were assessed on the 1st, 7th, 14th & 21st days. On the 22nd day, animals were sacrificed; the striatum was harvested for biochemical, neurochemical, and histopathological assessment. In silico, results indicated that arbutin showed a good binding affinity for target proteins like Akt and Nrf2. Further, arbutin prevented cell death and oxidative stress in SH-SY5Y cells induced by 3-NPA. In addition, arbutin ameliorated the 3-NPA induced motor impairments, purine nucleoside imbalances (adenosine levels and its metabolites hypoxanthine, xanthine, adenine), oxidative stress, and histological alterations in the experimental animals. In conclusion, the present findings indicate that arbutin could be used as an adjuvant for the management of Huntington's disease.
Collapse
Affiliation(s)
- Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Sahil Arora
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Gargi Kapatia
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Uma Shanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
2
|
Feragen KJB, Egedal S, Kjolaas SH. Navigating competing needs: a qualitative study on parenthood with a partner with Huntington's disease. Health Psychol Behav Med 2025; 13:2465614. [PMID: 39968157 PMCID: PMC11834796 DOI: 10.1080/21642850.2025.2465614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Huntington's disease (HD) is a rare neurodegenerative condition characterised by progressive symptoms affecting motricity, cognition, neuropsychiatric function and behaviour. HD develops during a period of life in which many live in partnership and have children. HD impacts all family members through its cognitive and psychological symptoms, mid-life onset, long disease trajectory and genetic risk. The aim of the study was to explore how parents without HD experience and manage parenthood when their partner is affected by HD. Methods Qualitative interviews with 14 caregivers were analysed using reflexive thematic analysis. Results Three main themes with corresponding subthemes were identified, followed by an underlying theme: Genetic risk: An underlying layer of complexity. The first theme, Balancing competing demands, describes the challenges involved when attempting to attend to conflicting needs within the family. Theme 2, Needing a shoulder to lean on, covers participants' feelings of loneliness and their need to be seen by others, whereas Theme 3, Restoring and building strength, encompasses coping strategies used by caregivers to protect themselves and their children from potential negative experiences. The underlying theme describes how the genetic aspect of the disease permeates the participants' experiences across all other themes. Conclusion Support providers may be unaware of the extensive repercussions HD can have on a family. Acknowledging the central role of partners without HD and their risk of psychological distress is crucial. Exhausted partners may struggle to support their children, which may lead to childhoods overshadowed by HD. For family members to prioritise their own needs, tailored support must be set in place for parents with HD.
Collapse
Affiliation(s)
- Kristin J. Billaud Feragen
- Centre for Rare Disorders, Division of Paediatric and Adolescent Medicine, Oslo University Hospital HF, Oslo, Norway
| | - Sidsel Egedal
- Centre for Rare Disorders, Division of Paediatric and Adolescent Medicine, Oslo University Hospital HF, Oslo, Norway
| | - Siri Hagen Kjolaas
- Centre for Rare Disorders, Division of Paediatric and Adolescent Medicine, Oslo University Hospital HF, Oslo, Norway
| |
Collapse
|
3
|
Temgire P, Arthur R, Kumar P. Neuroinflammation and the role of epigenetic-based therapies for Huntington's disease management: the new paradigm. Inflammopharmacology 2024; 32:1791-1804. [PMID: 38653938 DOI: 10.1007/s10787-024-01477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Huntington's disease (HD) is an inherited, autosomal, neurodegenerative ailment that affects the striatum of the brain. Despite its debilitating effect on its patients, there is no proven cure for HD management as of yet. Neuroinflammation, excitotoxicity, and environmental factors have been reported to influence the regulation of gene expression by modifying epigenetic mechanisms. Aside focusing on the etiology, changes in epigenetic mechanisms have become a crucial factor influencing the interaction between HTT protein and epigenetically transcribed genes involved in neuroinflammation and HD. This review presents relevant literature on epigenetics with special emphasis on neuroinflammation and HD. It summarizes pertinent research on the role of neuroinflammation and post-translational modifications of chromatin, including DNA methylation, histone modification, and miRNAs. To achieve this about 1500 articles were reviewed via databases like PubMed, ScienceDirect, Google Scholar, and Web of Science. They were reduced to 534 using MeSH words like 'epigenetics, neuroinflammation, and HD' coupled with Boolean operators. Results indicated that major contributing factors to the development of HD such as mitochondrial dysfunction, excitotoxicity, neuroinflammation, and apoptosis are affected by epigenetic alterations. However, the association between neuroinflammation-altered epigenetics and the reported transcriptional changes in HD is unknown. Also, the link between epigenetically dysregulated genomic regions and specific DNA sequences suggests the likelihood that transcription factors, chromatin-remodeling proteins, and enzymes that affect gene expression are all disrupted simultaneously. Hence, therapies that target pathogenic pathways in HD, including neuroinflammation, transcriptional dysregulation, triplet instability, vesicle trafficking dysfunction, and protein degradation, need to be developed.
Collapse
Affiliation(s)
- Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
4
|
Kim H, Serbin M, Hansen R, Lee K, Haubenberger D, Klepitskaya O, Hinton SC, Jen E. The impact of diagnosing provider type on longitudinal care for patients with newly diagnosed Huntington's disease. J Med Econ 2024; 27:1348-1357. [PMID: 39373538 DOI: 10.1080/13696998.2024.2412470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
AIMS This study evaluated the association between provider types for patients with newly diagnosed Huntington's disease (HD) and healthcare resource utilization (HCRU), costs, and treatment patterns. MATERIALS AND METHODS This retrospective analysis used MarketScan databases (1 January 2017-31 December 2021) to identify provider types who diagnosed and managed US adult patients with HD. Patients with continuous enrollment 6 months pre- and 12 months post-diagnosis were included. Outcomes evaluated over 12 months post-diagnosis included hospitalizations, outpatient visits, antipsychotic or vesicular monoamine transporter 2 (VMAT2) inhibitor use, and total healthcare costs. RESULTS Three hundred and forty eligible patients had a mean age at diagnosis of 49 years. 56.5% were female; 71.5% had a Charlson Comorbidity Index of 0. Patients were diagnosed by neurologists (48.5%), primary care providers (PCPs) (35.6%), psychiatrists (3.5%), or other providers (12.4%). Patients diagnosed by PCPs or neurologists received significantly more follow-ups by the same diagnosing provider type (p < 0.05). All-cause and HD-related outpatient visits at 12-month follow-up had more patients diagnosed by PCPs (23.9, 5.1) than neurologists (18.0, 2.4), psychiatrists (16.7, 1.67), or others (15.3, 2.4). HD-related mean costs totaled $2,489 ($1,179 inpatient and $1,310 outpatient). Patients diagnosed by neurologists had significantly lower HD-related total non-medication costs vs. those diagnosed by PCPs (-$2,256; p < 0.05). Among patients diagnosed by neurologists vs. PCPs, similar proportions received antipsychotics within the first year (55 vs. 52%, respectively); more patients managed by neurologists received VMAT2 inhibitors (12 vs. 7%, respectively). LIMITATIONS Our study includes limitations inherent to retrospective claims studies. CONCLUSIONS Patients with HD are most often diagnosed by neurologists or PCPs; the same diagnosing provider type typically manages follow-up. Patients diagnosed by neurologists had significantly fewer HD-related outpatient visits, lower HD-related non-drug costs, and more frequently received VMAT2 inhibitors vs. those diagnosed by PCPs. Our findings show an integrated care team may provide evidence-based, personalized care for patients with HD.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Neurocrine Biosciences, Inc., San Diego, CA, USA
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, USA
| | | | - Ryan Hansen
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, USA
| | - Kyueun Lee
- The Comparative Health Outcomes, Policy, and Economics (CHOICE) Institute, University of Washington, Seattle, WA, USA
| | | | | | | | - Eric Jen
- Neurocrine Biosciences, Inc., San Diego, CA, USA
| |
Collapse
|
5
|
Candelise N, Santilli F, Fabrizi J, Caissutti D, Spinello Z, Moliterni C, Lancia L, Delle Monache S, Mattei V, Misasi R. The Importance of Stem Cells Isolated from Human Dental Pulp and Exfoliated Deciduous Teeth as Therapeutic Approach in Nervous System Pathologies. Cells 2023; 12:1686. [PMID: 37443720 PMCID: PMC10340170 DOI: 10.3390/cells12131686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Despite decades of research, no therapies are available to halt or slow down the course of neuro-degenerative disorders. Most of the drugs developed to fight neurodegeneration are aimed to alleviate symptoms, but none has proven adequate in altering the course of the pathologies. Cell therapy has emerged as an intriguing alternative to the classical pharmacological approach. Cell therapy consists of the transplantation of stem cells that can be obtained from various embryonal and adult tissues. Whereas the former holds notable ethical issue, adult somatic stem cells can be obtained without major concerns. However, most adult stem cells, such as those derived from the bone marrow, are committed toward the mesodermal lineage, and hence need to be reprogrammed to induce the differentiation into the neurons. The discovery of neural crest stem cells in the dental pulp, both in adults' molar and in baby teeth (dental pulp stem cells and stem cells from human exfoliated deciduous teeth, respectively) prompted researchers to investigate their utility as therapy in nervous system disorders. In this review, we recapitulate the advancements on the application of these stem cells in preclinical models of neurodegenerative diseases, highlighting differences and analogies in their maintenance, differentiation, and potential clinical application.
Collapse
Affiliation(s)
- Niccolò Candelise
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (F.S.); (J.F.); (V.M.)
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (F.S.); (J.F.); (V.M.)
- Department Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (D.C.); (Z.S.); (R.M.)
| | - Daniela Caissutti
- Department Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (D.C.); (Z.S.); (R.M.)
| | - Zaira Spinello
- Department Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (D.C.); (Z.S.); (R.M.)
| | - Camilla Moliterni
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), “Sapienza” University of Rome, 00189 Rome, Italy;
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.L.); (S.D.M.)
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.L.); (S.D.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy; (F.S.); (J.F.); (V.M.)
| | - Roberta Misasi
- Department Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (D.C.); (Z.S.); (R.M.)
| |
Collapse
|
6
|
Bai D, Zhu L, Jia Q, Duan X, Chen L, Wang X, Hou J, Jiang G, Yang S, Li S, Li XJ, Yin P. Loss of TDP-43 promotes somatic CAG repeat expansion in Huntington's disease knock-in mice. Prog Neurobiol 2023:102484. [PMID: 37315918 DOI: 10.1016/j.pneurobio.2023.102484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/26/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
TAR binding protein 43 (TDP-43) is normally present in the nucleus but mislocalized in the cytoplasm in a number of neurodegenerative diseases including Huntington's disease (HD). The nuclear loss of TDP-43 impairs gene transcription and regulation. However, it remains to be investigated whether loss of TDP-43 influences trinucleotide CAG repeat expansion in the HD gene, a genetic cause for HD. Here we report that CRISPR/Cas9 mediated-knock down of endogenous TDP-43 in the striatum of HD knock-in mice promoted CAG repeat expansion, accompanied by the increased expression of the DNA mismatch repair genes, Msh3 and Mlh1, which have been reported to increase trinucleotide repeat instability. Furthermore, suppressing Msh3 and Mlh1 by CRISPR/Cas9 targeting diminished the CAG repeat expansion. These findings suggest that nuclear TDP-43 deficiency may dysregulate the expression of DNA mismatch repair genes, leading to CAG repeat expansion and contributing to the pathogenesis of CAG repeat diseases. DATA AVAILABILITY: The key data supporting the findings of this study are presented within the article and the Supplemental Information. The RNA sequencing reported in this paper can be found at https://doi.org/10.6084/m9.figshare.22639429.
Collapse
Affiliation(s)
- Dazhang Bai
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632; Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of neurological diseases, North Sichuan Medical College, Nanchong, China, 637000
| | - Longhong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Qingqing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xuezhi Duan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Laiqiang Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xiang Wang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Junqi Hou
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Guohui Jiang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632; Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of neurological diseases, North Sichuan Medical College, Nanchong, China, 637000
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632.
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632.
| |
Collapse
|
7
|
Mühlbӓck A, van Walsem M, Nance M, Arnesen A, Page K, Fisher A, van Kampen M, Nuzzi A, Limpert R, Fossmo HL, Cruickshank T, Veenhuizen R. What we don't need to prove but need to do in multidisciplinary treatment and care in Huntington's disease: a position paper. Orphanet J Rare Dis 2023; 18:19. [PMID: 36717864 PMCID: PMC9887752 DOI: 10.1186/s13023-023-02622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Huntington's disease is a complex neurodegenerative hereditary disease with symptoms in all domains of a person's functioning. It begins after a healthy start in life and leads through the relentless progression over many years to complete care dependency and finally death. To date, the disease is incurable. The long progressive complex nature of the disease demands multiple disciplines for treatment and care of patient and family. These health care providers need inter- and multidisciplinary collaboration to persevere and be efficacious in this devastating disease trajectory. DISCUSSION The position paper outlines current knowledge and experience alongside the experience and consensus of a recognised group of HD multidisciplinary experts. Additionally the patient's voice is clear and calls for health care providers with a holistic view on patient and family. Building long-term trust is a cornerstone of the network around the patient. This paper describes a managed care network comprising all the needed professionals and services. In the health care system, the role of a central coordinator or case manager is of key importance but lacks an appropriate guideline. Other disciplines currently without guidelines are general practitioners, nurses, psychologists, and social workers. Guidelines for neurologists, psychiatrists, geneticists, occupational therapists, speech and language therapists, physiotherapists, dieticians, and dentists are being discussed. Apart from all these profession-specific guidelines, distinctive inter- and multidisciplinary collaboration requirements must be met. CONCLUSIONS AND RECOMMENDATIONS The complex nature of Huntington's disease demands multidisciplinary treatment and care endorsed by international regulations and the lay association. Available guidelines as reviewed in this paper should be used, made available by a central body, and updated every 3-5 years. Time needs to be invested in developing missing guidelines but the lack of this 'proof' should not prevent the 'doing' of good care.
Collapse
Affiliation(s)
- Alzbeta Mühlbӓck
- grid.6582.90000 0004 1936 9748Department of Neurology, University Ulm, Ulm, Germany ,Department of Neuropsychiatry, Huntington Center South, Kbo-Isar-Amper-Klinikum Taufkirchen, Taufkirchen, Germany ,grid.411798.20000 0000 9100 9940Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marleen van Walsem
- grid.55325.340000 0004 0389 8485Department of Neurorehabilitation, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Department of Neurology, Oslo University, Oslo, Norway
| | - Martha Nance
- Struthers Parkinson’s Center, Golden Valley, Minneapolis, MN USA ,grid.414021.20000 0000 9206 4546Hennepin County Medical Center, Minneapolis, MN USA
| | - Astri Arnesen
- European Huntington Association (EHA), Moerbeke Waas, Belgium
| | | | - Alexandra Fisher
- West Midlands Huntington’s Disease Team, Neuropsychiatry, The Barberry, Birmingham, UK
| | | | | | - Roy Limpert
- Department of Neuropsychiatry, Huntington Center South, Kbo-Isar-Amper-Klinikum Taufkirchen, Taufkirchen, Germany
| | - Hanne Ludt Fossmo
- grid.55325.340000 0004 0389 8485Unit for Congenital and Hereditary Neuromuscular Disorders (EMAN), Department of Neurology, Oslo University Hospital, Oslo, Norway ,Vikersund Rehabilitation Centre, Vikersund, Norway
| | - Travis Cruickshank
- grid.1038.a0000 0004 0389 4302Centre for Precision Health, Edith Cowan University, Perth, Australia
| | - Ruth Veenhuizen
- Huntington Expert Centre Atlant, Apeldoorn, The Netherlands. .,Department of Medicine for Older People, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. .,Amsterdam Public Health, Aging and Later Life, Amsterdam, The Netherlands.
| | | |
Collapse
|
8
|
Bhat AA, Gupta G, Afzal O, Kazmi I, Al-Abbasi FA, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Singh SK, Dua K. Neuropharmacological effect of risperidone: From chemistry to medicine. Chem Biol Interact 2023; 369:110296. [PMID: 36496108 DOI: 10.1016/j.cbi.2022.110296] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
As the second-oldest atypical antipsychotic, risperidone has a long history of off-label usage for treating behavioural and psychological signs and symptoms of dementia (BPSD), such as agitation, aggressiveness, and psychosis. Risperidone has been shown in several trials to have a statistically significant benefit when used in a therapeutic context. Several lines of evidence suggest a possible role of risperidone via the antagonistic effect of Dopamine D2 and 5HT-receptor in different neurological diseases like cognitive dysfunction of schizophrenia, neuroinflammation, Huntington's disease, and sleep cycle management. Therefore, the pharmacological interactions of risperidone in all these diseases were investigated. Some reports on the use of risperidone in the treatment of dopaminergic psychosis have been slightly conflicting. However, more research is needed to evaluate the role of risperidone in the treatment of these neurological diseases.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| |
Collapse
|
9
|
Mani S, Jindal D, Singh M. Gene Therapy, A Potential Therapeutic Tool for Neurological and Neuropsychiatric Disorders: Applications, Challenges and Future Perspective. Curr Gene Ther 2023; 23:20-40. [PMID: 35345999 DOI: 10.2174/1566523222666220328142427] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Neurological and neuropsychiatric disorders are the main risks for the health care system, exhibiting a huge socioeconomic load. The available range of pharmacotherapeutics mostly provides palliative consequences and fails to treat such conditions. The molecular etiology of various neurological and neuropsychiatric disorders is mostly associated with a change in genetic background, which can be inherited/triggered by other environmental factors. To address such conditions, gene therapy is considered a potential approach claiming a permanent cure of the disease primarily by deletion, silencing, or edition of faulty genes and by insertion of healthier genes. In gene therapy, vectors (viral/nonvial) play an important role in delivering the desired gene to a specific region of the brain. Targeted gene therapy has unraveled opportunities for the treatment of many neurological and neuropsychiatric disorders. For improved gene delivery, the current techniques mainly focus on designing a precise viral vector, plasmid transfection, nanotechnology, microRNA, and in vivo clustered regulatory interspaced short palindromic repeats (CRISPR)-based therapy. These latest techniques have great benefits in treating predominant neurological and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, as well as rarer diseases. Nevertheless, all these delivery methods have their limitations, including immunogenic reactions, off-target effects, and a deficiency of effective biomarkers to appreciate the effectiveness of therapy. In this review, we present a summary of the current methods in targeted gene delivery, followed by the limitations and future direction of gene therapy for the cure of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| | - Divya Jindal
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| | - Manisha Singh
- Department of Biotechnology, Centre for Emerging Diseases, Jaypee Institute of Information Technology, Noida, U.P., India
| |
Collapse
|
10
|
Cvetanovic M, Gray M. Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models. Neurotherapeutics 2023; 20:48-66. [PMID: 37020152 PMCID: PMC10119372 DOI: 10.1007/s13311-023-01357-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/07/2023] Open
Abstract
Neurodegenerative diseases are broadly characterized neuropathologically by the degeneration of vulnerable neuronal cell types in a specific brain region. The degeneration of specific cell types has informed on the various phenotypes/clinical presentations in someone suffering from these diseases. Prominent neurodegeneration of specific neurons is seen in polyglutamine expansion diseases including Huntington's disease (HD) and spinocerebellar ataxias (SCA). The clinical manifestations observed in these diseases could be as varied as the abnormalities in motor function observed in those who have Huntington's disease (HD) as demonstrated by a chorea with substantial degeneration of striatal medium spiny neurons (MSNs) or those with various forms of spinocerebellar ataxia (SCA) with an ataxic motor presentation primarily due to degeneration of cerebellar Purkinje cells. Due to the very significant nature of the degeneration of MSNs in HD and Purkinje cells in SCAs, much of the research has centered around understanding the cell autonomous mechanisms dysregulated in these neuronal cell types. However, an increasing number of studies have revealed that dysfunction in non-neuronal glial cell types contributes to the pathogenesis of these diseases. Here we explore these non-neuronal glial cell types with a focus on how each may contribute to the pathogenesis of HD and SCA and the tools used to evaluate glial cells in the context of these diseases. Understanding the regulation of supportive and harmful phenotypes of glia in disease could lead to development of novel glia-focused neurotherapeutics.
Collapse
Affiliation(s)
- Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|
12
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
13
|
Al-Wardat M, Schirinzi T, Hadoush H, Kassab M, Yabroudi MA, Opara J, Nawrat-Szołtysik A, Khalil H, Etoom M. Home-Based Exercise to Improve Motor Functions, Cognitive Functions, and Quality of Life in People with Huntington's Disease: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14915. [PMID: 36429634 PMCID: PMC9690643 DOI: 10.3390/ijerph192214915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Exercise in different settings has become a fundamental part of Huntington's disease (HD) management. The aim of this systematic review and meta-analysis was to investigate the effectiveness of home-based exercises (HBE) in HD. Randomized controlled trials (RCTs) investigating the effect of HBE on motor, cognitive, or health-related quality of life (QoL) outcomes in HD were included. Standardized mean difference (SMD), the 95% confidence interval, and p-values were calculated by comparing the outcomes change between HBE and control groups. Seven RCTs met the inclusion criteria. The included RCTs prescribed different types of HBEs, i.e., aerobic strengthening, walking, balance, and fine motor exercises. The HBE protocol length was between 6 and 36 weeks. The meta-analyses showed a significant effect of HBE intervention on motor function measure by Unified Huntington Disease Rating and overall QoL measure by Short Form-36 post-treatment respectively, [SMD = 0.481, p = 0.048], [SMD = 0.378, p = 0.003]. The pooled analysis did not detect significant changes in cognition, gait characteristics, or functional balance scales. The current study shows the positive effect of HBE in HD, especially on motor function and QoL. No significant adverse events were reported. The current results support the clinical effect of HBE intervention on motor function and QoL in HD patients. However, these results should be taken with caution due to the limited available evidence. Well-designed clinical studies that consider the disease severity and stages are required in the future.
Collapse
Affiliation(s)
- Mohammad Al-Wardat
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid P.O. Box 3030, Jordan
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Hikmat Hadoush
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid P.O. Box 3030, Jordan
| | - Manal Kassab
- Department of Maternal and Child Health, Faculty of Nursing, Jordan University of Science and Technology, Irbid P.O. Box 3030, Jordan
| | - Mohammad A. Yabroudi
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid P.O. Box 3030, Jordan
| | - Józef Opara
- Department of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland
| | | | - Hanan Khalil
- Department of Physical Therapy and Rehabilitation Sciences, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammad Etoom
- Physical Therapy Department, Aqaba University of Technology, Aqaba 77110, Jordan
| |
Collapse
|
14
|
Kakoti BB, Bezbaruah R, Ahmed N. Therapeutic drug repositioning with special emphasis on neurodegenerative diseases: Threats and issues. Front Pharmacol 2022; 13:1007315. [PMID: 36263141 PMCID: PMC9574100 DOI: 10.3389/fphar.2022.1007315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Drug repositioning or repurposing is the process of discovering leading-edge indications for authorized or declined/abandoned molecules for use in different diseases. This approach revitalizes the traditional drug discovery method by revealing new therapeutic applications for existing drugs. There are numerous studies available that highlight the triumph of several drugs as repurposed therapeutics. For example, sildenafil to aspirin, thalidomide to adalimumab, and so on. Millions of people worldwide are affected by neurodegenerative diseases. According to a 2021 report, the Alzheimer's disease Association estimates that 6.2 million Americans are detected with Alzheimer's disease. By 2030, approximately 1.2 million people in the United States possibly acquire Parkinson's disease. Drugs that act on a single molecular target benefit people suffering from neurodegenerative diseases. Current pharmacological approaches, on the other hand, are constrained in their capacity to unquestionably alter the course of the disease and provide patients with inadequate and momentary benefits. Drug repositioning-based approaches appear to be very pertinent, expense- and time-reducing strategies for the enhancement of medicinal opportunities for such diseases in the current era. Kinase inhibitors, for example, which were developed for various oncology indications, demonstrated significant neuroprotective effects in neurodegenerative diseases. This review expounds on the classical and recent examples of drug repositioning at various stages of drug development, with a special focus on neurodegenerative disorders and the aspects of threats and issues viz. the regulatory, scientific, and economic aspects.
Collapse
Affiliation(s)
- Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | | | | |
Collapse
|
15
|
Assessing the state of care for Huntington disease in the United States: Results from a survey of practices treating Huntington disease patients. Clin Park Relat Disord 2022; 7:100165. [PMID: 36262527 PMCID: PMC9574766 DOI: 10.1016/j.prdoa.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
This research study of 156 US healthcare practices is the first of its kind to include non-specialty neurologists and primary care physician practices, as well as academic practices surveyed about their treatment of Huntington disease patients. One-half of HD practices surveyed saw 2 or less patients per month, while about one quarter of practices saw 1 or more patients per week. HD care appears to be inconsistently applied across the US. Differences were noted in a practice’s ability to provide care navigators, genetic counselors, or psychologists/psychiatrists, or to conduct pre-visit screening of their patients, or routinely monitor weight. Practices seeing a higher volume of HD patients and ones led by movement disorder-trained neurologists, tended to be better equipped to provide a broader range of multi-disciplinary care.
Background No study to date has thoroughly examined US Huntington disease (HD) care delivery in a variety of clinic settings by HD specialists and non-specialists. Objective To obtain a clearer understanding of current care structure and delivery of care through a survey of representative US physicians treating HD patients. Methods We designed and fielded a survey of 40 closed-ended evaluative items and one open-ended item to a sample of 339 US practices. Unique to this survey was the inclusion of non-specialists. Results Responses were received from 156 practices (overall response rate 46.02 %), with 52.6 % from academic sites, 35.3 % from private practices, and 12.2 % from the VA. More than half (63.5 %) of the practice leads were movement disorder trained or Directors of HDSA Centers of Excellence and 58.3 % had an HD or multidisciplinary care clinic. However, 48.7 % of the practices saw 1–25 HD patients, 28.2 % saw 26–100 HD patients, and 23.1 % served over 100 HD patients annually. Most practices (>69 %) reported having difficulty providing social work, genetic counseling, care coordination and psychologists/psychiatrists. Increased HD practice size was associated with higher rates of pre-visit screenings, care navigator/care coordinators, routine monitoring of weight, and provision of genetic counseling by genetic counselors. Conclusions Not surprisingly, we found that HD care was inconsistently applied across the US. Practices led by neurologists trained in movement disorders, and higher HD volume practices, tended to be better equipped to provide multi-disciplinary staffing and procedures as compared to those with fewer numbers of HD patients.
Collapse
|
16
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
18
|
Goldoni R, Dolci C, Boccalari E, Inchingolo F, Paghi A, Strambini L, Galimberti D, Tartaglia GM. Salivary biomarkers of neurodegenerative and demyelinating diseases and biosensors for their detection. Ageing Res Rev 2022; 76:101587. [PMID: 35151849 DOI: 10.1016/j.arr.2022.101587] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 02/07/2022] [Indexed: 01/08/2023]
Abstract
Salivary analysis is gaining increasing interest as a novel and promising field of research for the diagnosis of neurodegenerative and demyelinating diseases related to aging. The collection of saliva offers several advantages, being noninvasive, stress-free, and repeatable. Moreover, the detection of biomarkers directly in saliva could allow an early diagnosis of the disease, leading to timely treatments. The aim of this manuscript is to highlight the most relevant researchers' findings relatively to salivary biomarkers of neurodegenerative and demyelinating diseases, and to describe innovative and advanced biosensing strategies for the detection of salivary biomarkers. This review is focused on five relevant aging-related neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Multiple Sclerosis) and the salivary biomarkers most commonly associated with them. Advanced biosensors enabling molecular diagnostics for the detection of salivary biomarkers are presented, in order to stimulate future research in this direction and pave the way for their clinical application.
Collapse
Affiliation(s)
- Riccardo Goldoni
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Carolina Dolci
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Elisa Boccalari
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy
| | - Alessandro Paghi
- Dipartimento di Ingegneria dell'Informazione, Università di Pisa, Via G. Caruso 16, Pisa, Italy
| | - Lucanos Strambini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche, Via G. Caruso 16, Pisa, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy; Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, Italy; UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, 20100 Milan, Italy.
| |
Collapse
|
19
|
Shah S, Dooms MM, Amaral-Garcia S, Igoillo-Esteve M. Current Drug Repurposing Strategies for Rare Neurodegenerative Disorders. Front Pharmacol 2022; 12:768023. [PMID: 34992533 PMCID: PMC8724568 DOI: 10.3389/fphar.2021.768023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Rare diseases are life-threatening or chronically debilitating low-prevalent disorders caused by pathogenic mutations or particular environmental insults. Due to their high complexity and low frequency, important gaps still exist in their prevention, diagnosis, and treatment. Since new drug discovery is a very costly and time-consuming process, leading pharmaceutical companies show relatively low interest in orphan drug research and development due to the high cost of investments compared to the low market return of the product. Drug repurposing–based approaches appear then as cost- and time-saving strategies for the development of therapeutic opportunities for rare diseases. In this article, we discuss the scientific, regulatory, and economic aspects of the development of repurposed drugs for the treatment of rare neurodegenerative disorders with a particular focus on Huntington’s disease, Friedreich’s ataxia, Wolfram syndrome, and amyotrophic lateral sclerosis. The role of academia, pharmaceutical companies, patient associations, and foundations in the identification of candidate compounds and their preclinical and clinical evaluation will also be discussed.
Collapse
Affiliation(s)
- Sweta Shah
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | |
Collapse
|
20
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
21
|
Vega OM, Cepeda C. Converging evidence in support of omega-3 polyunsaturated fatty acids as a potential therapy for Huntington's disease symptoms. Rev Neurosci 2021; 32:871-886. [PMID: 33818039 PMCID: PMC10017201 DOI: 10.1515/revneuro-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Huntington's disease (HD) is a genetic, inexorably fatal neurodegenerative disease. Patient average survivability is up to 20 years after the onset of symptoms. Those who suffer from the disease manifest motor, cognitive, and psychiatric impairments. There is indirect evidence suggesting that omega-3 polyunsaturated fatty acids (ω-3 PUFA) could have alleviating effects on most of HD symptoms. These include beneficial effects against cachexia and weight loss, decrease of cognitive impairment over time, and improvement of psychiatric symptoms such as depression and irritability. Furthermore, there is a positive correlation between consumption of ω-3 PUFAs in diets and prevalence of HD, as well as direct effects on the disease via release of serotonin. Unfortunately, to date, very few studies have examined the effects of ω-3 PUFAs in HD, both on the symptoms and on disease progression. This paper reviews evidence in the literature suggesting that ω-3 PUFAs can be used in neurodegenerative disorders. This information can be extrapolated to support further research of ω-3 PUFAs and their potential use for HD treatment.
Collapse
Affiliation(s)
- Owen M Vega
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Razavi SM, Khayatan D, Arab ZN, Momtaz S, Zare K, Jafari RM, Dehpour AR, Abdolghaffari AH. Licofelone, a potent COX/5-LOX inhibitor and a novel option for treatment of neurological disorders. Prostaglandins Other Lipid Mediat 2021; 157:106587. [PMID: 34517113 DOI: 10.1016/j.prostaglandins.2021.106587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders result in disability and morbidity. Neuroinflammation is a key factor involved in progression or resolution of a series of neurological disorders like Huntington disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), Spinal Cord Injury (SCI), and Seizure. Thereby, anti-inflammatory drugs have been developed to improve the neurodegenerative impairments. Licofelone is an approved osteoarthritis drug that inhibits both the COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways. Licofelone has pain-relieving and anti-inflammatory effects and it was shown to have neuroprotective properties in the central nervous system, which is implicated in its regulatory effect on the COX/5-LOX pathway, inflammatory cytokines, and immune responses. In this study, we briefly review the various features of neurological disorders and the function of COX/LOX in their flare up and current pharmacological products for their management. Moreover, this review attempts to summarize potential therapeutics that target the immune responses within the central nervous system. A better understanding of the interactions between Licofelone and the nervous systems will be crucial to demonstrate the possible efficacy of Licofelone in neurological disorders.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Zare
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
23
|
Mukherjee S. Immune gene network of neurological diseases: Multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Heliyon 2021; 7:e08518. [PMID: 34926857 PMCID: PMC8649734 DOI: 10.1016/j.heliyon.2021.e08518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Neurological diseases, such as MS, AD, PD and HD, are a major health concern of the elderly population, but still therapeutic options are limited. Recent advances in genomic sequencing and bioinformatics, present an opportunity to understand mechanisms of these diseases for identification of therapeutic targets. Several studies have shown association of immune dysfunction with immune system mediated neurological disease, MS, as well as neurodegenerative diseases (AD, PD and HD). However, similarities and differences in role of the immune system, immune pathways and immune cell types in these diseases remains unknown. In this study, immune cell type signature genes in gene networks associated with neurological diseases, MS, AD, PD and HD was investigated using meta-analysis and bioinformatics methods. Application of Weighted Gene Co-expression Network Analysis (WGCNA) on publicly available gene expression datasets (microarray and RNA-seq) revealed a ModArray_04 module (microarray) or ModRNAseq_06 module (RNA-seq), significantly associated with MS, AD, PD and HD. Hypergeometric enrichment test revealed significant enrichment of immune cell type genes in these neurological disease modules. This study demonstrates that immune system mediated neurological disease, MS and neurodegenerative diseases (AD, PD and HD), share a common gene network characterized by immune cell type signature genes (microglia, monocytes and macrophages) and are probable targets for therapeutic intervention. In summary, this work shows a connection between MS, a disease where the role of the immune system and inflammation is established, and neurodegenerative diseases (AD, PD and HD) where the role of inflammation is still a hypothesis.
Collapse
|
24
|
Tapella L, Dematteis G, Ruffinatti FA, Ponzoni L, Fiordaliso F, Corbelli A, Albanese E, Pistolato B, Pagano J, Barberis E, Marengo E, Balducci C, Forloni G, Verpelli C, Sala C, Distasi C, Sala M, Manfredi M, Genazzani AA, Lim D. Deletion of calcineurin from astrocytes reproduces proteome signature of Alzheimer's disease and epilepsy and predisposes to seizures. Cell Calcium 2021; 100:102480. [PMID: 34607180 DOI: 10.1016/j.ceca.2021.102480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Calcineurin (CaN), acting downstream of intracellular calcium signals, orchestrates cellular remodeling in many cellular types. In astrocytes, major homeostatic players in the central nervous system (CNS), CaN is involved in neuroinflammation and gliosis, while its role in healthy CNS or in early neuro-pathogenesis is poorly understood. Here we report that in mice with conditional deletion of CaN in GFAP-expressing astrocytes (astroglial calcineurin KO, ACN-KO), at 1 month of age, transcription was largely unchanged, while the proteome was deranged in the hippocampus and cerebellum. Gene ontology analysis revealed overrepresentation of annotations related to myelin sheath, mitochondria, ribosome and cytoskeleton. Over-represented pathways were related to protein synthesis, oxidative phosphorylation, mTOR and neurological disorders, including Alzheimer's disease (AD) and seizure disorder. Comparison with published proteomic datasets showed significant overlap with the proteome of a familial AD mouse model and of human subjects with drug-resistant seizures. ACN-KO mice showed no alterations of motor activity, equilibrium, anxiety or depressive state. However, in Barnes maze ACN-KO mice learned the task but adopted serial search strategy. Strikingly, beginning from about 5 months of age ACN-KO mice developed spontaneous tonic-clonic seizures with an inflammatory signature of epileptic brains. Altogether, our data suggest that the deletion of astroglial CaN produces features of neurological disorders and predisposes mice to seizures. We suggest that calcineurin in astrocytes may serve as a novel Ca2+-sensitive switch which regulates protein expression and homeostasis in the central nervous system.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Federico Alessandro Ruffinatti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Luisa Ponzoni
- BIOMETRA, University of Milan and Fondazione Zardi-Gori, Milan, Italy
| | - Fabio Fiordaliso
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Albanese
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | - Beatrice Pistolato
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | | | - Elettra Barberis
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy; Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale, Alessandria, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy
| | | | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Via Bovio 6, 28100, Novara, Italy.
| |
Collapse
|
25
|
Oh SL, Chen CM, Wu YR, Valdes Hernandez M, Tsai CC, Cheng JS, Chen YL, Wu YM, Lin YC, Wang JJ. Fixel-Based Analysis Effectively Identifies White Matter Tract Degeneration in Huntington's Disease. Front Neurosci 2021; 15:711651. [PMID: 34588947 PMCID: PMC8473742 DOI: 10.3389/fnins.2021.711651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Microstructure damage in white matter might be linked to regional and global atrophy in Huntington's Disease (HD). We hypothesize that degeneration of subcortical regions, including the basal ganglia, is associated with damage of white matter tracts linking these affected regions. We aim to use fixel-based analysis to identify microstructural changes in the white matter tracts. To further assess the associated gray matter damage, diffusion tensor-derived indices were measured from regions of interest located in the basal ganglia. Diffusion weighted images were acquired from 12 patients with HD and 12 healthy unrelated controls using a 3 Tesla scanner. Reductions in fixel-derived metrics occurs in major white matter tracts, noticeably in corpus callosum, internal capsule, and the corticospinal tract, which were closely co-localized with the regions of increased diffusivity in basal ganglia. These changes in diffusion can be attributed to potential axonal degeneration. Fixel-based analysis is effective in studying white matter tractography and fiber changes in HD.
Collapse
Affiliation(s)
- Sher Li Oh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Maria Valdes Hernandez
- Row Fogo Centre for Research into Ageing and the Brain, Department of Neuroimaging Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Jur-Shan Cheng
- Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yao-Liang Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Ming Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chun Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jiun-Jie Wang
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.,Medical Imaging Research Center, Institute for Radiological Research, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
26
|
Rosato M, Hoelscher B, Lin Z, Agwu C, Xu F. Transcriptome analysis provides genome annotation and expression profiles in the central nervous system of Lymnaea stagnalis at different ages. BMC Genomics 2021; 22:637. [PMID: 34479505 PMCID: PMC8414863 DOI: 10.1186/s12864-021-07946-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The pond snail, Lymnaea stagnalis (L. stagnalis), has served as a valuable model organism for neurobiology studies due to its simple and easily accessible central nervous system (CNS). L. stagnalis has been widely used to study neuronal networks and recently gained popularity for study of aging and neurodegenerative diseases. However, previous transcriptome studies of L. stagnalis CNS have been exclusively carried out on adult L. stagnalis only. As part of our ongoing effort studying L. stagnalis neuronal growth and connectivity at various developmental stages, we provide the first age-specific transcriptome analysis and gene annotation of young (3 months), adult (6 months), and old (18 months) L. stagnalis CNS. RESULTS Using the above three age cohorts, our study generated 55-69 millions of 150 bp paired-end RNA sequencing reads using the Illumina NovaSeq 6000 platform. Of these reads, ~ 74% were successfully mapped to the reference genome of L. stagnalis. Our reference-based transcriptome assembly predicted 42,478 gene loci, of which 37,661 genes encode coding sequences (CDS) of at least 100 codons. In addition, we provide gene annotations using Blast2GO and functional annotations using Pfam for ~ 95% of these sequences, contributing to the largest number of annotated genes in L. stagnalis CNS so far. Moreover, among 242 previously cloned L. stagnalis genes, we were able to match ~ 87% of them in our transcriptome assembly, indicating a high percentage of gene coverage. The expressional differences for innexins, FMRFamide, and molluscan insulin peptide genes were validated by real-time qPCR. Lastly, our transcriptomic analyses revealed distinct, age-specific gene clusters, differentially expressed genes, and enriched pathways in young, adult, and old CNS. More specifically, our data show significant changes in expression of critical genes involved in transcription factors, metabolisms (e.g. cytochrome P450), extracellular matrix constituent, and signaling receptor and transduction (e.g. receptors for acetylcholine, N-Methyl-D-aspartic acid, and serotonin), as well as stress- and disease-related genes in young compared to either adult or old snails. CONCLUSIONS Together, these datasets are the largest and most updated L. stagnalis CNS transcriptomes, which will serve as a resource for future molecular studies and functional annotation of transcripts and genes in L. stagnalis.
Collapse
Affiliation(s)
- Martina Rosato
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Brittany Hoelscher
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Zhenguo Lin
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA
| | - Chidera Agwu
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA. .,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA. .,Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol 2021; 47:897-909. [PMID: 34318515 PMCID: PMC9291277 DOI: 10.1111/nan.12757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023]
Abstract
Neurodegenerative movement disorders (NMDs) are age‐dependent disorders that are characterised by the degeneration and loss of neurons, typically accompanied by pathological accumulation of different protein aggregates in the brain, which lead to motor symptoms. NMDs include Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, and Huntington's disease, among others. Epigenetic modifications are responsible for functional gene regulation during development, adult life and ageing and have progressively been implicated in complex diseases such as cancer and more recently in neurodegenerative diseases, such as NMDs. DNA methylation is by far the most widely studied epigenetic modification and consists of the reversible addition of a methyl group to the DNA without changing the DNA sequence. Although this research field is still in its infancy in relation to NMDs, an increasing number of studies point towards a role for DNA methylation in disease processes. This review addresses recent advances in epigenetic and epigenomic research in NMDs, with a focus on human brain DNA methylation studies. We discuss the current understanding of the DNA methylation changes underlying these disorders, the potential for use of these DNA modifications in peripheral tissues as biomarkers in early disease detection, classification and progression as well as a promising role in future disease management and therapy.
Collapse
Affiliation(s)
- Megha Murthy
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Yun Yung Cheng
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
28
|
Mitochondria and Antibiotics: For Good or for Evil? Biomolecules 2021; 11:biom11071050. [PMID: 34356674 PMCID: PMC8301944 DOI: 10.3390/biom11071050] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
The discovery and application of antibiotics in the common clinical practice has undeniably been one of the major medical advances in our times. Their use meant a drastic drop in infectious diseases-related mortality and contributed to prolonging human life expectancy worldwide. Nevertheless, antibiotics are considered by many a double-edged sword. Their extensive use in the past few years has given rise to a global problem: antibiotic resistance. This factor and the increasing evidence that a wide range of antibiotics can damage mammalian mitochondria, have driven a significant sector of the medical and scientific communities to advise against the use of antibiotics for purposes other to treating severe infections. Notwithstanding, a notorious number of recent studies support the use of these drugs to treat very diverse conditions, ranging from cancer to neurodegenerative or mitochondrial diseases. In this context, there is great controversy on whether the risks associated to antibiotics outweigh their promising beneficial features. The aim of this review is to provide insight in the topic, purpose for which the most relevant findings regarding antibiotic therapies have been discussed.
Collapse
|
29
|
Differential Diagnosis of Chorea-HIV Infection Delays Diagnosis of Huntington's Disease by Years. Brain Sci 2021; 11:brainsci11060710. [PMID: 34071882 PMCID: PMC8229235 DOI: 10.3390/brainsci11060710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/16/2023] Open
Abstract
Background: There is a broad range of potential differential diagnoses for chorea. Besides rare, inherited neurodegenerative diseases such as Huntington’s disease (HD) chorea can accompany basal ganglia disorders due to vasculitis or infections, e.g., with the human immunodeficiency virus (HIV). The clinical picture is complicated by the rare occurrence of HIV infection and HD. Methods: First, we present a case suffering simultaneously from HIV and HD (HIV/HD) focusing on clinical manifestation and disease onset. We investigated cross-sectional data regarding molecular genetic, motoric, cognitive, functional, and psychiatric disease manifestation of HIV/HD in comparison to motor-manifest HD patients without HIV infection (nonHIV/HD) in the largest cohort of HD patients worldwide using the registry study ENROLL-HD. Data were analyzed using ANCOVA analyses controlling for covariates of age and CAG repeat length between groups in IBM SPSS Statistics V.25. Results: The HD diagnosis in our case report was delayed by approximately nine years due to the false assumption that the HIV infection might have been the cause of chorea. Out of n = 21,116 participants in ENROLL-HD, we identified n = 10,125 motor-manifest HD patients. n = 23 male participants were classified as suffering from HIV infection as a comorbidity, compared to n = 4898 male non-HIV/HD patients. Except for age, with HIV/HD being significantly younger (p < 0.050), we observed no group differences regarding sociodemographic, genetic, educational, motoric, functional, and cognitive parameters. Male HIV/HD patients reported about a 5.3-year-earlier onset of HD symptoms noticed by themselves compared to non-HIV/HD (p < 0.050). Moreover, patients in the HIV/HD group had a longer diagnostic delay of 1.8 years between onset of symptoms and HD diagnosis and a longer time regarding assessment of first symptoms by the rater and judgement of the patient (all p < 0.050). Unexpectedly, HIV/HD patients showed less irritability in the Hospital Anxiety and Depression Scale (all p < 0.05). Conclusions: The HD diagnosis in HIV-infected male patients is secured with a diagnostic delay between first symptoms noticed by the patient and final diagnosis. Treating physicians therefore should be sensitized to think of potential alternative diagnoses in HIV-infected patients also afflicted by movement disorders, especially if there is evidence of subcortical atrophy and a history of hyperkinesia, even without a clear HD-family history. Those patients should be transferred for early genetic testing to avoid further unnecessary diagnostics and improve sociomedical care.
Collapse
|
30
|
Chen S, Liang T, Xue T, Xue S, Xue Q. Pridopidine for the Improvement of Motor Function in Patients With Huntington's Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Neurol 2021; 12:658123. [PMID: 34054700 PMCID: PMC8159155 DOI: 10.3389/fneur.2021.658123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Huntington's disease (HD) is a progressive neurodegenerative disorder. Generally, it is characterized by deficits in cognition, behavior, and movement. Recent studies have shown that pridopidine is a potential and effective drug candidate for the treatment of HD. In the present study, we performed a meta-analysis to evaluate the efficacy and safety of pridopidine in HD. Methods: The MEDLINE, EMBASE, CENTRAL, and Clinicaltrials.gov databases were searched for randomized controlled trials (RCTs) which had that evaluated pridopidine therapy in HD patients. Results: We pooled data from 1,119 patients across four RCTs. Patients in the pridopidine group had a significantly lower Unified Huntington's Disease Rating Scale (UHDRS)-modified Motor Score (mMS) (MD −0.79, 95% CI = −1.46 to −0.11, p = 0.02) than those in the placebo group. Additionally, no differences were observed in the UHDRS-Total Motor Score (TMS) (MD −0.91. 95% CI = −2.03 to 0.21, p = 0.11) or adverse events (RR 1.06, 95% CI = 0.96 to 1.16, p = 0.24) in the pridopidine and placebo groups. In the subgroup analysis, the short-term (≤12 weeks) and long-term (>12 weeks) subgroups exhibited similar efficacy and safety with no statistical significance in TMS, mMS, or adverse events. However, TMS (MD −1.50, 95% CI = −2.87 to −0.12, p = 0.03) and mMS (MD −1.03, 95% CI = −1.87 to −0.19, p = 0.02) were observed to be improved significantly when the dosage of pridopidine ≥90 mg/day. Additionally, pridopidine (≥90 mg/day) increased total adverse events (RR 1.11, 95% CI = 1.00 to 1.22, p = 0.04) compared with placebo. On this basis, we analyzed the incidence of various adverse events when the dosage was ≥90 mg/day. Nonetheless, these results were within the acceptable threshold, although patients developed symptoms, such as nasopharyngitis and insomnia. Conclusion: Pridopidine improved mMS and had no statistical significance in association with TMS or adverse events. Pridopidine (≥90 mg/day) improved TMS and mMS but increased adverse events, such as nasopharyngitis and insomnia. More RCTs were expected to assess pridopidine in HD.
Collapse
Affiliation(s)
- Shujun Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyu Liang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shouru Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Shah R, Lee SC, Strasser RB, Grossman C. An Australian Neuro-Palliative perspective on Huntington's disease: a case report. BMC Palliat Care 2021; 20:53. [PMID: 33794853 PMCID: PMC8017854 DOI: 10.1186/s12904-021-00744-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Huntington's Disease (HD) is an incurable, progressive neuro-degenerative disease. For patients with HD access to palliative care services is limited, with dedicated Neuro-Palliative Care Services rare in Australia. We discuss the experiences of and benefits to a patient with late-stage HD admitted to our Neuro-Palliative Care service. CASE PRESENTATION We present the case of a patient with a 16-year history of HD from time of initial genetic testing to admission to our Neuro-Palliative Care service with late-stage disease. CONCLUSIONS Given the prolonged, fluctuating and heterogenous HD trajectory, measures need to be implemented to improve earlier access to multi-specialty integrative palliative care services. Given the good outcomes of our case, we strongly advocate for the role of specialised Neuro-Palliative Care services to bridge the gap between clinical need and accessibility.
Collapse
Affiliation(s)
- Rajvi Shah
- Calvary Health Care Bethlehem, Melbourne, Australia.
| | - Sarah Cm Lee
- Calvary Health Care Bethlehem, Melbourne, Australia
| | | | | |
Collapse
|
32
|
Afewerky HK, Ayodeji AE, Tiamiyu BB, Orege JI, Okeke ES, Oyejobi AO, Bate PNN, Adeyemi SB. Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:176. [PMID: 34697529 PMCID: PMC8529567 DOI: 10.1186/s42269-021-00635-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Withania somnifera (L.) Dunal (W. somnifera) is a herb commonly known by its English name as Winter Cherry. Africa is indigenous to many medicinal plants and natural products. However, there is inadequate documentation of medicinal plants, including W. somnifera, in Africa. There is, therefore, a need for a comprehensive compilation of research outcomes of this reviewed plant as used in traditional medicine in different regions of Africa. METHODOLOGY Scientific articles and publications were scooped and sourced from high-impact factor journals and filtered with relevant keywords on W. somnifera. Scientific databases, including GBIF, PubMed, NCBI, Google Scholar, Research Gate, Science Direct, SciFinder, and Web of Science, were accessed to identify the most influential articles and recent breakthroughs published on the contexts of ethnography, ethnomedicinal uses, phytochemistry, pharmacology, and commercialization of W. somnifera. RESULTS This critical review covers the W. somnifera ethnography, phytochemistry, and ethnomedicinal usage to demonstrate the use of the plant in Africa and elsewhere to prevent or alleviate several pathophysiological conditions, including cardiovascular, neurodegenerative, reproductive impotence, as well as other chronic diseases. CONCLUSION W. somnifera is reportedly safe for administration in ethnomedicine as several research outcomes confirmed its safety status. The significance of commercializing this plant in Africa for drug development is herein thoroughly covered to provide the much-needed highlights towards its cultivations economic benefit to Africa.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- School of Allied Health Professions, Asmara College of Health Sciences, 00291 Asmara, Eritrea
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
| | - Ayeni Emmanuel Ayodeji
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Pharmacognosy and Drug Development, Ahmadu Bello University Zaria, PMB 1044, Kaduna, 800211 Nigeria
| | - Bashir Bolaji Tiamiyu
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
| | - Joshua Iseoluwa Orege
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Industrial Chemistry, Ekiti State University, PMB 5363, Ado-Ekiti, 362001 Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Biochemistry, FBS and Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001 Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Aanuoluwapo Opeyemi Oyejobi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Petuel Ndip Ndip Bate
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Guangzhou Institute of Biomedicine and Health, Guangzhou, 510530 China
| | - Sherif Babatunde Adeyemi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli-Mahuva Road, Bardoli, Surat, Gujarat 394350 India
| |
Collapse
|
33
|
Kukkle P, Raju S. Huntington’s disease: The Indian perspective. ANNALS OF MOVEMENT DISORDERS 2021. [DOI: 10.4103/aomd.aomd_47_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat Rev Neurol 2021; 17:381-392. [PMID: 33658662 PMCID: PMC7928200 DOI: 10.1038/s41582-021-00465-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) were first generated in 2007, but the full translational potential of this valuable tool has yet to be realized. The potential applications of hiPSCs are especially relevant to neurology, as brain cells from patients are rarely available for research. hiPSCs from individuals with neuropsychiatric or neurodegenerative diseases have facilitated biological and multi-omics studies as well as large-scale screening of chemical libraries. However, researchers are struggling to improve the scalability, reproducibility and quality of this descriptive disease modelling. Addressing these limitations will be the first step towards a new era in hiPSC research - that of predictive disease modelling - involving the correlation and integration of in vitro experimental data with longitudinal clinical data. This approach is a key element of the emerging precision medicine paradigm, in which hiPSCs could become a powerful diagnostic and prognostic tool. Here, we consider the steps necessary to achieve predictive modelling of neurodegenerative disease with hiPSCs, using Huntington disease as an example.
Collapse
|
35
|
Lesinskienė S, Rojaka D, Praninskienė R, Morkūnienė A, Matulevičienė A, Utkus A. Juvenile Huntington's disease: two case reports and a review of the literature. J Med Case Rep 2020; 14:173. [PMID: 32998776 PMCID: PMC7528384 DOI: 10.1186/s13256-020-02494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/11/2020] [Indexed: 12/02/2022] Open
Abstract
Background Huntington’s disease is a rare, autosomal dominant neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Usually, the disease symptoms first appear around the age of 40, but in 5–10% of cases, they manifest before the age of 21. This is then referred to as juvenile Huntington’s disease. According to the small number of cases reported in the literature, the course of juvenile Huntington’s disease significantly differs from adult onset and shows significant interpatient variability, making every case unique. Case presentation Our study aims to highlight the complexity and diversity of rare juvenile Huntington’s disease. We report cases of two Caucasian patients with chronic tics referred to the Huntington’s Disease Competence Center of Vilnius University Hospital Santaros Klinikos with suspicion of juvenile Huntington’s disease due to the appearance of chronic motor tics, and behavior problems. The diagnosis of juvenile Huntington’s disease was confirmed on both clinical and genetic grounds. In both cases described, the patients developed symptoms in all three main groups: motor, cognitive, and psychiatric. However, the first patient was experiencing more severe psychiatric symptoms; in the second case, motor symptoms (rigidity, tremor) were more prominent. In both cases, apathy was one of the first symptoms and affected patients’ motivation to participate in treatment actively. These two case descriptions serve as an important message for clinicians seeing patients with chronic tics and gradually worsening mood and behavior, indicating the need to investigate them for rare genetic disorders. Conclusions Description of these two clinical cases of juvenile Huntington’s disease provides insight into how differently it manifests and progresses in young patients and the difficulties the patients and their families face. There were different but painful ways for families to accept the diagnosis. Because the disease inevitably affects the patient’s closest ones, it is crucial to also provide adequate psychological and social support to all the family members. Establishment of multidisciplinary specialist centers for Huntington’s disease, as demonstrated by our experience, not only allows timely diagnosis and treatment plans but also ensures thorough disease management and care for patients and systematic support for their families.
Collapse
Affiliation(s)
- Sigita Lesinskienė
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M.K. Čiurlionio 21/27, LT-03101, Vilnius, Lithuania.
| | - Darja Rojaka
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Rūta Praninskienė
- Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Morkūnienė
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Member of the European Reference Network for Rare Neurological Diseases, Vilnius, Lithuania.,Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aušra Matulevičienė
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Member of the European Reference Network for Rare Neurological Diseases, Vilnius, Lithuania.,Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
36
|
Pruijn IMJ, van Herpen CML, Pegge SAH, van Engen van Grunsven ACH, Ligtenberg MJ, van den Hoogen FJA. Myotonic dystrophy and recurrent pleomorphic adenomas: Case report and association hypothesis. Neuromuscul Disord 2020; 30:925-929. [PMID: 33077317 DOI: 10.1016/j.nmd.2020.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/23/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
We report a case of a patient with concurrent myotonic dystrophy and recurrent pleomorphic adenoma and hypothesize the association between both diseases. A 58-year-old man with classic myotonic dystrophy type 1 was diagnosed with pleomorphic adenoma. Appropriate treatment was commenced. Massive recurrences occurred within 15, 28 and 22 months respectively, after repeated surgical removal. Three case reports on similar occurrences of synchronous myotonic dystrophy and pleomorphic adenoma are discussed and an association between both disease entities is hypothesized. A conceivable association between myotonic dystrophy and pleomorphic adenoma is hypothesized by upregulation of the Wnt/Beta-catenin signaling pathway, initiated by a decreased expression of microRNA, pleomorphic adenoma gene 1 induced Beta-catenin accumulations and alterations in tumor suppressor genes and oncogenes due to RNA processing defects induced by the expanded repeat in the DMPK gene.
Collapse
Affiliation(s)
- Ineke M J Pruijn
- Department of Otolaryngology and Head and Neck Surgery, Radboud university medical center, Postbus 9101, 6500 Nijmegen, the Netherlands.
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud university medical center, Nijmegen, the Netherlands
| | - Sjoert A H Pegge
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | | | - Marjolijn J Ligtenberg
- Department of Human Genetics and Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Frank J A van den Hoogen
- Department of Otolaryngology and Head and Neck Surgery, Radboud university medical center, Postbus 9101, 6500 Nijmegen, the Netherlands
| |
Collapse
|
37
|
CRISPR/Cas9 novel therapeutic road for the treatment of neurodegenerative diseases. Life Sci 2020; 259:118165. [PMID: 32735884 DOI: 10.1016/j.lfs.2020.118165] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/19/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic Repeats)/Cas9 is a new genetic editing technology that can be a beneficial method to advance gene therapy. CRISPR technology is a defense system of some bacteria against invading viruses. Genome editing based on the CRISPR/Cas9 system is an efficient and potential technology that can be a viable alternative to traditional methods. This system is a compound of a short guide RNAs (gRNAs) for identifying the target DNA sequence and Cas9 protein as nuclease for breaking and cutting of DNA. In this review, recent advances in the CRISPR/Cas9-mediated genome editing tools are presented as well as their use in gene therapy strategies for the treatment of neurological disorders including Parkinson's disease, Alzheimer's disease, and Huntington's disease.
Collapse
|
38
|
The longevity-associated variant of BPIFB4 improves a CXCR4-mediated striatum-microglia crosstalk preventing disease progression in a mouse model of Huntington's disease. Cell Death Dis 2020; 11:546. [PMID: 32683420 PMCID: PMC7368858 DOI: 10.1038/s41419-020-02754-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/10/2023]
Abstract
The longevity-associated variant (LAV) of the bactericidal/permeability-increasing fold-containing family B member 4 (BPIFB4) has been found significantly enriched in long-living individuals. Neuroinflammation is a key player in Huntington's disease (HD), a neurodegenerative disorder caused by neural death due to expanded CAG repeats encoding a long polyglutamine tract in the huntingtin protein (Htt). Herein, we showed that striatal-derived cell lines with expanded Htt (STHdh Q111/111) expressed and secreted lower levels of BPIFB4, when compared with Htt expressing cells (STHdh Q7/7), which correlated with a defective stress response to proteasome inhibition. Overexpression of LAV-BPIFB4 in STHdh Q111/111 cells was able to rescue both the BPIFB4 secretory profile and the proliferative/survival response. According to a well-established immunomodulatory role of LAV-BPIFB4, conditioned media from LAV-BPIFB4-overexpressing STHdh Q111/111 cells were able to educate Immortalized Human Microglia-SV40 microglial cells. While STHdh Q111/111 dying cells were ineffective to induce a CD163 + IL-10high pro-resolving microglia compared to normal STHdh Q7/7, LAV-BPIFB4 transduction promptly restored the central immune control through a mechanism involving the stromal cell-derived factor-1. In line with the in vitro results, adeno-associated viral-mediated administration of LAV-BPIFB4 exerted a CXCR4-dependent neuroprotective action in vivo in the R6/2 HD mouse model by preventing important hallmarks of the disease including motor dysfunction, body weight loss, and mutant huntingtin protein aggregation. In this view, LAV-BPIFB4, due to its pleiotropic ability in both immune compartment and cellular homeostasis, may represent a candidate for developing new treatment for HD.
Collapse
|
39
|
Khair Md AM, Kabrt DO J, Falchek Md S. Drug-Resistant Epilepsy in Children with Juvenile Huntington's Disease: A Challenging Case and Brief Review. Qatar Med J 2020; 2020:18. [PMID: 32699773 PMCID: PMC7359632 DOI: 10.5339/qmj.2020.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/27/2020] [Indexed: 11/21/2022] Open
Abstract
Huntington's Disease (HD) is an autosomal dominant neurodegenerative disorder with a progressive decline in cognitive, motor, and psychological function. Chorea tends to be the most common associated movement disorder, although other variants of several abnormal movements are also seen. Adult-onset HD is the most common subtype. Juvenile Huntington's disease (JHD) accounts for 5%–10% of all HD cases and presents as a rapidly progressive disorder with a multitude of characteristics. We report on a 9-year-old male with JHD who presented with refractory epilepsy. His EEG findings, seizure type, and antiepileptic drug usage are discussed with a brief review of the currently available relevant literature. The currently reported case sheds light on antiepileptic drugs that proved effective in our patient and the importance of screening for JHD when a child presents with seizures that are difficult to control.
Collapse
Affiliation(s)
- Abdulhafeez M Khair Md
- Pediatric Neurology Fellow. Ai.I. Dupont Hospital for Children - Thomas Jefferson University. 1600 Rockland Rd, Wilington DE 19809, United States
| | - Jessica Kabrt DO
- Osteopathic medical student, Rowan University. 42 e Laurel Rd, Stratford NJ 08084, United States
| | - Stephen Falchek Md
- Division chief of neurology- A.I Dupont Hospital for Children Wilmington DE. Assistant professor-Thomas Jefferson University-Philadelphia PA, United States
| |
Collapse
|
40
|
Chang KH, Chen CM. The Role of Oxidative Stress in Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070597. [PMID: 32650609 PMCID: PMC7402083 DOI: 10.3390/antiox9070597] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Parkinson’s disease (PD) is caused by progressive neurodegeneration of dopaminergic (DAergic) neurons with abnormal accumulation of α-synuclein in substantia nigra (SN). Studies have suggested the potential involvement of dopamine, iron, calcium, mitochondria and neuroinflammation in contributing to overwhelmed oxidative stress and neurodegeneration in PD. Function studies on PD-causative mutations of SNCA, PRKN, PINK1, DJ-1, LRRK2, FBXO7 and ATP13A2 further indicate the role of oxidative stress in the pathogenesis of PD. Therefore, it is reasonable that molecules involved in oxidative stress, such as DJ-1, coenzyme Q10, uric acid, 8-hydroxy-2’-deoxyguanosin, homocysteine, retinoic acid/carotenes, vitamin E, glutathione peroxidase, superoxide dismutase, xanthine oxidase and products of lipid peroxidation, could be candidate biomarkers for PD. Applications of antioxidants to modulate oxidative stress could be a strategy in treating PD. Although a number of antioxidants, such as creatine, vitamin E, coenzyme Q10, pioglitazone, melatonin and desferrioxamine, have been tested in clinical trials, none of them have demonstrated conclusive evidence to ameliorate the neurodegeneration in PD patients. Difficulties in clinical studies may be caused by the long-standing progression of neurodegeneration, lack of biomarkers for premotor stage of PD and inadequate drug delivery across blood–brain barrier. Solutions for these challenges will be warranted for future studies with novel antioxidative treatment in PD patients.
Collapse
Affiliation(s)
| | - Chiung-Mei Chen
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8347); Fax: +886-3-3288849
| |
Collapse
|
41
|
Salamon A, Maszlag-Török R, Veres G, Boros FA, Vágvölgyi-Sümegi E, Somogyi A, Vécsei L, Klivényi P, Zádori D. Cerebellar Predominant Increase in mRNA Expression Levels of Sirt1 and Sirt3 Isoforms in a Transgenic Mouse Model of Huntington's Disease. Neurochem Res 2020; 45:2072-2081. [PMID: 32524313 PMCID: PMC7423862 DOI: 10.1007/s11064-020-03069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 01/28/2023]
Abstract
The potential role of Sirt1 and Sirt2 subtypes of Sirtuins (class III NAD+-dependent deacetylases) in the pathogenesis of Huntington’s disease (HD) has been extensively studied yielding some controversial results. However, data regarding the involvement of Sirt3 and their variants in HD are considerably limited. The aim of this study was to assess the expression pattern of Sirt1 and three Sirt3 mRNA isoforms (Sirt3-M1/2/3) in the striatum, cortex and cerebellum in respect of the effect of gender, age and the presence of the transgene using the N171-82Q transgenic mouse model of HD. Striatal, cortical and cerebellar Sirt1-Fl and Sirt3-M1/2/3 mRNA levels were measured in 8, 12 and 16 weeks old N171-82Q transgenic mice and in their wild-type littermates. Regarding the striatum and cortex, the presence of the transgene resulted in a significant increase in Sirt3-M3 and Sirt1 mRNA levels, respectively, whereas in case of the cerebellum the transgene resulted in increased expression of all the assessed subtypes and isoforms. Aging exerted minor influence on Sirt mRNA expression levels, both in transgene carriers and in their wild-type littermates, and there was no interaction between the presence of the transgene and aging. Furthermore, there was no difference between genders. The unequivocal cerebellar Sirtuin activation with presumed compensatory role suggests that the cerebellum might be another key player in HD in addition to the most severely affected striatum. The mitochondrially acting Sirt3 may serve as an interesting novel therapeutic target in this deleterious condition.
Collapse
Affiliation(s)
- Andras Salamon
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Rita Maszlag-Török
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Gábor Veres
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Fanni Annamária Boros
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Evelin Vágvölgyi-Sümegi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Anett Somogyi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
- MTA-SZTE Neuroscience Research Group of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary.
| |
Collapse
|
42
|
Majothi N, Lee HY, Nagarajan P, Vutla R. Treatment of psychosis in Huntington's disease with clozapine. PROGRESS IN NEUROLOGY AND PSYCHIATRY 2020. [DOI: 10.1002/pnp.664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Naeema Majothi
- Dr Majothi is Senior Clinical Pharmacist, Independent Prescriber in Psychiatry with Specialist Interest in Public Health at Fieldhead Hospital, South West Yorkshire Partnership Trust UK
| | - Hean Yeung Lee
- Dr Lee is Pre‐registration Pharmacist at Fieldhead Hospital, South West Yorkshire Partnership Trust UK
| | - Pankajam Nagarajan
- Dr Nagarajan is Specialty Doctor in Psychiatry at Fieldhead Hospital, South West Yorkshire Partnership Trust UK
| | - Raghu Vutla
- Dr Vutla is Consultant Psychiatrist at Fieldhead Hospital, South West Yorkshire Partnership Trust UK
| |
Collapse
|
43
|
The Dichotomic Role of Macrophage Migration Inhibitory Factor in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21083023. [PMID: 32344747 PMCID: PMC7216212 DOI: 10.3390/ijms21083023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine expressed by different cell types and exerting multiple biological functions. It has been shown that MIF may be involved in several disorders, including neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), and Huntington disease (HD), that represent an unmet medical need. Therefore, further studies are needed to identify novel pathogenetic mechanisms that may translate into tailored therapeutic approaches so to improve patients’ survival and quality of life. Here, we reviewed the preclinical and clinical studies investigating the role of MIF in ALS, PD, and HD. The emerging results suggest that MIF might play a dichotomic role in these disorders, exerting a protective action in ALS, a pathogenetic action in HD, and a yet undefined and debated role in PD. The better understanding of the role of MIF in these diseases could allow its use as a novel diagnostic and therapeutic tool for the monitoring and treatment of the patients and for eventual biomarker-driven therapeutic approaches.
Collapse
|
44
|
Rojas NG, Ziliani JE, Cesarini ME, Etcheverry JL, Da Prat GA, McCusker E, Gatto EM. Late Onset Huntington Disease: Phenotypic and Genotypic Characteristics of 10 Cases in Argentina. J Huntingtons Dis 2020; 8:195-198. [PMID: 31045517 DOI: 10.3233/jhd-180330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a neurodegenerative disorder that includes motor, psychiatric and cognitive manifestations with typical onset of symptoms is in the forties. A percentage of patients (4.4% - 11.5%) may be exceptions to this and manifest symptoms later (>60 years old). Diagnosis of Late onset HD (LoHD) can be a challenge, due to the low suspicion of the disease at this age. OBJECTIVE To review the genotype and phenotype of LoHD in an Argentinian cohort. METHODS We reviewed the medical records and genetic testing of a total of 95 individuals with clinical and molecular diagnosis of Huntington's disease, based on 2 institution's registry. RESULTS Among our HD cohort, 10 patients (10.52%) had LoHD, with variable results regarding family history. The average of repetitions of the expanded allele was 40 (range 38-44). All cases had mild motor symptoms at onset. CONCLUSIONS Late onset HD can be a diagnostic challenge, due to its slow progression, unawareness of manifestations among patients and in many cases, mild symptomatology that does not warrant medical attention.
Collapse
Affiliation(s)
| | | | | | | | - Gustavo Andrés Da Prat
- Instituto Neurociencias Buenos Aires (INEBA), Buenos Aires, Argentina.,Sanatorio de La Trinidad Mitre, Buenos Aires, Argentina
| | - Elizabeth McCusker
- The University of Sydney, School of Medicine Westmead and Neurology Department, Westmead Hospital, Sydney, NSW, Australia
| | - Emilia Mabel Gatto
- Instituto Neurociencias Buenos Aires (INEBA), Buenos Aires, Argentina.,Sanatorio de La Trinidad Mitre, Buenos Aires, Argentina
| |
Collapse
|
45
|
Gutierrez A, Corey-Bloom J, Thomas EA, Desplats P. Evaluation of Biochemical and Epigenetic Measures of Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker in Huntington's Disease Patients. Front Mol Neurosci 2020; 12:335. [PMID: 32038165 PMCID: PMC6989488 DOI: 10.3389/fnmol.2019.00335] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative movement disorder that presents with prominent cognitive and psychiatric dysfunction. Brain-derived neurotrophic factor (BDNF) plays an important role in the pathophysiology of HD, as well as other neurodegenerative and psychiatric disorders, and epigenetic alterations in the complex BDNF promoter have been associated with its deregulation in pathological conditions. BDNF has gained increased attention as a potential biomarker of disease; but currently, the conflicting results from measurements of BDNF in different biofluids difficult the assessment of its utility as a biomarker for HD. Here, we measured BDNF protein levels in plasma (n = 85) and saliva (n = 81) samples from premanifest and manifest HD patients and normal controls using ELISA assays. We further examined DNA methylation levels of BDNF promoter IV using DNA derived from whole blood of HD patients and healthy controls (n = 40) using pyrosequencing. BDNF protein levels were not significantly different in plasma samples across diagnostic groups. Plasma BDNF was significantly correlated with age in control subjects but not in HD patients, nor were significant gender effects observed. Similar to plasma, salivary BDNF was correlated with age only in control subjects, with no gender effects observed. Importantly, we detected significantly lower levels of salivary BDNF in premanifest and manifest HD patients compared to control subjects, with lower BDNF levels being observed in premanifest patients within a predicted 10 years to disease onset. Salivary and plasma BDNF levels were not significantly correlated with one another, suggesting different origins. DNA methylation at four out of the 12 CpG sites studied in promoter IV were significantly altered in HD patients in comparison to controls. Interestingly, methylation at three of these CpG sites was inversely correlated to the Hospital Anxiety and Depression Scale (HADS) scores. BDNF promoter methylation was not correlated with motor or cognitive scores in HD patients, and was not associated with sex or age in neither disease nor control groups. Conclusion: Our studies show that BDNF protein levels are decreased in saliva; and BDNF promoter methylation increased in blood in HD subjects when compared to controls. These findings suggest that salivary BDNF measures may represent an early marker of disease onset and DNA methylation at the BDNF promoter IV, could represent a biomarker of psychiatric symptoms in HD patients.
Collapse
Affiliation(s)
- Ashley Gutierrez
- Department of Neuroscience, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jody Corey-Bloom
- Department of Neuroscience, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Elizabeth A. Thomas
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - Paula Desplats
- Department of Neuroscience, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
- Department of Pathology, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
46
|
Kumar A, Kumar V, Singh K, Kumar S, Kim YS, Lee YM, Kim JJ. Therapeutic Advances for Huntington's Disease. Brain Sci 2020; 10:brainsci10010043. [PMID: 31940909 PMCID: PMC7016861 DOI: 10.3390/brainsci10010043] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease (HD) is a progressive neurological disease that is inherited in an autosomal fashion. The cause of disease pathology is an expansion of cytosine-adenine-guanine (CAG) repeats within the huntingtin gene (HTT) on chromosome 4 (4p16.3), which codes the huntingtin protein (mHTT). The common symptoms of HD include motor and cognitive impairment of psychiatric functions. Patients exhibit a representative phenotype of involuntary movement (chorea) of limbs, impaired cognition, and severe psychiatric disturbances (mood swings, depression, and personality changes). A variety of symptomatic treatments (which target glutamate and dopamine pathways, caspases, inhibition of aggregation, mitochondrial dysfunction, transcriptional dysregulation, and fetal neural transplants, etc.) are available and some are in the pipeline. Advancement in novel therapeutic approaches include targeting the mutant huntingtin (mHTT) protein and the HTT gene. New gene editing techniques will reduce the CAG repeats. More appropriate and readily tractable treatment goals, coupled with advances in analytical tools will help to assess the clinical outcomes of HD treatments. This will not only improve the quality of life and life span of HD patients, but it will also provide a beneficial role in other inherited and neurological disorders. In this review, we aim to discuss current therapeutic research approaches and their possible uses for HD.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Genetics, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, UP, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (Y.-S.K.); (Y.-M.L.)
- Correspondence: (V.K.); (J.-J.K.)
| | - Kritanjali Singh
- Central Research Station, Subharti Medical College, Swami Vivekanand Subharti University, Meerut 250002, India;
| | - Sukesh Kumar
- PG Department of Botany, Nalanda College, Bihar Sharif, Magadh University, Bihar 824234, India;
| | - You-Sam Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (Y.-S.K.); (Y.-M.L.)
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (Y.-S.K.); (Y.-M.L.)
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea; (Y.-S.K.); (Y.-M.L.)
- Correspondence: (V.K.); (J.-J.K.)
| |
Collapse
|
47
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1046] [Impact Index Per Article: 209.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
48
|
Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. The Role of Microglia and Astrocytes in Huntington's Disease. Front Mol Neurosci 2019; 12:258. [PMID: 31708741 PMCID: PMC6824292 DOI: 10.3389/fnmol.2019.00258] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease. HD patients present with movement disorders, behavioral and psychiatric symptoms and cognitive decline. This review summarizes the contribution of microglia and astrocytes to HD pathophysiology. Neuroinflammation in the HD brain is characterized by a reactive morphology in these glial cells. Microglia and astrocytes are critical in regulating neuronal activity and maintaining an optimal milieu for neuronal function. Previous studies provide evidence that activated microglia and reactive astrocytes contribute to HD pathology through transcriptional activation of pro-inflammatory genes to perpetuate a chronic inflammatory state. Reactive astrocytes also display functional changes in glutamate and ion homeostasis and energy metabolism. Astrocytic and microglial changes may further contribute to the neuronal death observed with the progression of HD. Importantly, the degree to which these neuroinflammatory changes are detrimental to neurons and contribute to the progression of HD pathology is not well understood. Furthermore, recent observations provide compelling evidence that activated microglia and astrocytes exert a variety of beneficial functions that are essential for limiting tissue damage and preserving neuronal function in the HD brain. Therefore, a better understanding of the neuroinflammatory environment in the brain in HD may lead to the development of targeted and innovative therapeutic opportunities.
Collapse
Affiliation(s)
- Thulani H Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Huffman C. Exercise Interventions for the Management of Huntington's Disease. Strength Cond J 2019. [DOI: 10.1519/ssc.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Yalinca H, Gehin CJC, Oleinikovas V, Lashuel HA, Gervasio FL, Pastore A. The Role of Post-translational Modifications on the Energy Landscape of Huntingtin N-Terminus. Front Mol Biosci 2019; 6:95. [PMID: 31632982 PMCID: PMC6779701 DOI: 10.3389/fmolb.2019.00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Huntington disease is a neurodegenerative disease characterized by a polymorphic tract of polyglutamine repeats in exon 1 of the huntingtin protein, which is thought to be responsible for protein aggregation and neuronal death. The polyglutamine tract is preceded by a 17-residue sequence that is intrinsically disordered. This region is subject to phosphorylation, acetylation and other post-translational modifications in vivo, which modulate its secondary structure, aggregation and, subcellular localization. We used Molecular Dynamics simulations with a novel Hamiltonian-replica-exchange-based enhanced sampling method, SWISH, and an optimal combination of water and protein force fields to study the effects of phosphorylation and acetylation as well as cross-talk between these modifications on the huntingtin N-terminus. The simulations, validated by circular dichroism, were used to formulate a mechanism by which the modifications influence helical conformations. Our findings have implications for understanding the structural basis underlying the effect of PTMs in the aggregation and cellular properties of huntingtin.
Collapse
Affiliation(s)
- Havva Yalinca
- Department of Chemistry, University College London, London, United Kingdom
| | - Charlotte Julie Caroline Gehin
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | | | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London, United Kingdom.,Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | | |
Collapse
|