1
|
Chaqour B, Rossman JB, Meng M, Dine KE, Ross AG, Shindler KS. SIRT1-based therapy targets a gene program involved in mitochondrial turnover in a model of retinal neurodegeneration. Sci Rep 2025; 15:13585. [PMID: 40253451 PMCID: PMC12009334 DOI: 10.1038/s41598-025-97456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/04/2025] [Indexed: 04/21/2025] Open
Abstract
Neurodegenerative diseases of the eye such as optic neuritis (ON) are hallmarked by retinal ganglion cell (RGC) loss and optic nerve degeneration leading to irreversible blindness. Therapeutic interventions enhancing expression or activity of SIRT1, an NAD+-dependent deacetylase, support, at least in part, survival of RGCs in the face of injury. Herein, we used mice with experimental autoimmune encephalomyelitis (EAE) which recapitulates axonal and neuronal damages characteristic of ON to identify gene regulatory networks affected by constitutive ubiquitous Sirt1 expression in SIRT1 knock-in mice and wild-type mice upon targeted adeno-associated virus (AAV)-mediated SIRT1 expression in RGCs. RNA seq data analysis showed that the most upregulated genes in EAE mouse retinas include those involved in inflammation, immune response, apoptosis, and mitochondrial turnover. The latter includes genes regulating mitophagy (e.g., Atg4), mitochondrial transport (e.g., Ipo- 6, Xpo- 6), and mitochondrial localization (e.g., Chrna4, Scn9a). The constitutive or RGC-targeted SIRT1 overexpression in EAE mice upregulated the expression of non-mitochondrial genes such as Ecel1 and downregulated the expression of mitophagy genes (e.g., Atg2b, Arifip1) which were upregulated by EAE alone. Thus, SIRT1 induces neuroprotection by, at least in part, balancing mitochondrial biogenesis and mitophagy and/or enhancing mitochondrial self-repair to preserve the bioenergetic capacity of RGCs.
Collapse
MESH Headings
- Animals
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Mice
- Mitochondria/metabolism
- Mitochondria/genetics
- Retinal Ganglion Cells/metabolism
- Retinal Ganglion Cells/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Retinal Degeneration/genetics
- Retinal Degeneration/therapy
- Retinal Degeneration/pathology
- Retinal Degeneration/metabolism
- Mitophagy/genetics
- Mice, Inbred C57BL
- Genetic Therapy
- Gene Regulatory Networks
- Female
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Jacob B Rossman
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Miranda Meng
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimberly E Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Oeverhaus M, Knetsch M, Chen Y, Jabbarli L, Nolden C, Eckstein A, Bechrakis NE, Rating P. Alterations in ganglion cell and nerve fiber layer in Leber hereditary optic neuropathy across clinical stages. BMC Ophthalmol 2025; 25:183. [PMID: 40200205 PMCID: PMC11977937 DOI: 10.1186/s12886-025-03991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
PURPOSE LHON leads to gradual, painless, and permanent vision loss in both eyes, often associated with central scotomas. As the condition progresses, there is a decline in visual function, accompanied by noticeable structural alterations. This study focused on evaluating the clinical characteristics of patients with differing LHON stages, with a specific emphasis on optical coherence tomography (OCT) imaging results. METHODS This analysis included 22 individuals with LHON. Patients underwent thorough clinical ophthalmologic assessments, including SD-OCT, Visual evoked potentials, and perimetry. When LHON was suspected, blood samples were obtained to test for the three major mitochondrial mutations (G1178A, T14484C, G3460A), with further sequencing to identify additional known mutations. The data were subsequently examined through descriptive statistical methods. RESULTS The clinical characteristics of 22 individuals (median age 33, range 9-68) were examined. All participants carried a mutation linked to LHON. The most prevalent mutation was G11778A (55%), followed by G3460A (23%), T14484C (14%), with one instance each of the rare G13042A and C3461T mutations. Fourteen participants experienced acute vision loss (average duration: 5.2 ± 5 months), while eight had chronic LHON. There was no significant difference in visual acuity (VA, logMAR) between the two groups (0.9 vs. 0.9, p = 0.91). However, chronic patients exhibited significantly reduced the retinal nerve fiber layer (RNFL), especially in the temporal region (32 μm vs. 56 μm, p < 0.0001), but not in the nasal region. Ganglion cell layer (GCL) thickness was also notably thinner in the temporal area for chronic patients compared to those with acute LHON (22 μm vs. 28 μm, p = 0.04). Linear regression analysis showed correlations between RNFL and GCL and visual acuity (R² = 0.18, p = 0.007 and R² = 0.1, p = 0.05). CONCLUSION In our analysis, we observed an unusual pattern in the genetic mutations, with G3460A being the second most frequent, rather than T14484C, which may be attributed to the limited sample size. 14 patients experienced acute or subacute vision loss, while eight were assessed for chronic disease. Those with chronic LHON demonstrated significantly thinner GCL and RNFL. These results underscore the importance of accelerating both diagnosis and treatment to facilitate prompt intervention for patients.
Collapse
MESH Headings
- Humans
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/physiopathology
- Optic Atrophy, Hereditary, Leber/diagnosis
- Optic Atrophy, Hereditary, Leber/pathology
- Male
- Retinal Ganglion Cells/pathology
- Female
- Tomography, Optical Coherence/methods
- Nerve Fibers/pathology
- Middle Aged
- Adult
- Young Adult
- Aged
- Adolescent
- Child
- Evoked Potentials, Visual/physiology
- Visual Fields/physiology
- Visual Field Tests
- Visual Acuity/physiology
- Mutation
- DNA, Mitochondrial/genetics
Collapse
Affiliation(s)
- Michael Oeverhaus
- Department of Ophthalmology, University Hospital Essen, Essen, Germany.
- Medical Practice Dres. Oeverhaus, Rietberg, Germany.
| | - Mareile Knetsch
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Ying Chen
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Leyla Jabbarli
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Carmen Nolden
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | | | - Philipp Rating
- Department of Ophthalmology, University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Newman NJ, Biousse V, Yu-Wai-Man P, Carelli V, Vignal-Clermont C, Montestruc F, Taiel M, Sahel JA. Meta-analysis of treatment outcomes for patients with m.11778G>A MT-ND4 Leber hereditary optic neuropathy. Surv Ophthalmol 2025; 70:283-295. [PMID: 39419122 DOI: 10.1016/j.survophthal.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Our aim was to assess the visual outcomes of patients with Leber hereditary optic neuropathy (LHON) harboring the m.11778G>A MT-ND4 mutation who had no treatment (natural history) or received idebenone or lenadogene nolparvovec. Efficacy outcomes included clinically relevant recovery (CRR) from nadir and final best-corrected visual acuity (BCVA). For the natural history and idebenone groups, we performed a systematic review of the literature and available clinical/regulatory reports. For the lenadogene nolparvovec group, all data from phase 3 studies were included. The overall effect and its 95 % confidence interval (CI) were estimated using a random effects model. For each meta-analysis, patients had a mean age of approximately 30 years at vision loss and were mostly (≥78 %) men. The CRR from nadir [95 % CI] at eye level was 17 % [7 %; 30 %] (n=316 eyes), 31 % [24 %; 40 %] (n=313) and 59 % [54 %; 64 %] (n=348) in untreated, idebenone-treated and lenadogene nolparvovec-treated patients, respectively. This gradient of efficacy was also observed with CRR at the patient level and final BCVA. There was a gradient of efficacy in all assessed visual outcomes, more marked for CRR than for final BCVA, with lenadogene nolparvovec gene therapy superior to idebenone treatment, and both superior to the natural history of the disease.
Collapse
Affiliation(s)
- Nancy J Newman
- Departments of Ophthalmology and Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Valérie Biousse
- Departments of Ophthalmology and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Catherine Vignal-Clermont
- Department of Neuro Ophthalmology and Emergencies, Rothschild Foundation Hospital, Paris, France; Centre Hospitalier National D'Ophtalmologie des Quinze Vingts, Paris, France
| | | | | | - José-Alain Sahel
- Centre Hospitalier National D'Ophtalmologie des Quinze Vingts, Paris, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Fondation Ophtalmologique A. de Rothschild, Paris, France; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Bulduk BK, Tortajada J, Torres‐Egurrola L, Valiente‐Pallejà A, Martínez‐Leal R, Vilella E, Torrell H, Muntané G, Martorell L. High frequency of mitochondrial DNA rearrangements in the peripheral blood of adults with intellectual disability. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2025; 69:137-152. [PMID: 39506491 PMCID: PMC11735882 DOI: 10.1111/jir.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) rearrangements are recognised factors in mitochondrial disorders and ageing, but their involvement in neurodevelopmental disorders, particularly intellectual disability (ID) and autism spectrum disorder (ASD), remains poorly understood. Previous studies have reported mitochondrial dysfunction in individuals with both ID and ASD. The aim of this study was to investigate the prevalence of large-scale mtDNA rearrangements in ID and ID with comorbid ASD (ID-ASD). METHOD We used mtDNA-targeted next-generation sequencing and the MitoSAlt high-throughput computational pipeline in peripheral blood samples from 76 patients with ID (mean age 52.5 years, 37% female), 59 patients with ID-ASD (mean age 41.3 years, 46% female) and 32 healthy controls (mean age 42.4 years, 47% female) from Catalonia. RESULTS The study revealed a high frequency of mtDNA rearrangements in patients with ID, with 10/76 (13.2%) affected individuals. However, the prevalence was significantly lower in patients with ID-ASD 1/59 (1.7%) and in HC 1/32 (3.1%). Among the mtDNA rearrangements, six were identified as deletions (median size 6937 bp and median heteroplasmy level 2.3%) and six as duplications (median size 10 455 bp and median heteroplasmy level 1.9%). One of the duplications, MT-ATP6 m.8765-8793dup (29 bp), was present in four individuals with ID with a median heteroplasmy level of 3.9%. CONCLUSIONS Our results show that mtDNA rearrangements are frequent in patients with ID, but not in those with ID-ASD, when compared to HC. Additionally, MitoSAlt has demonstrated high sensitivity and accuracy in detecting mtDNA rearrangements, even at very low heteroplasmy levels in blood samples. While the high frequency of mtDNA rearrangements in ID is noteworthy, the role of these rearrangements is currently unclear and needs to be confirmed with further data, particularly in post-mitotic tissues and through age-matched control studies.
Collapse
Affiliation(s)
- B. K. Bulduk
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - J. Tortajada
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - L. Torres‐Egurrola
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
| | - A. Valiente‐Pallejà
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| | - R. Martínez‐Leal
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Genètica i Ambient en PsiquiatriaIntellectual Disability and Developmental Disorders Research Unit (UNIVIDD), Fundació VillablancaReusCataloniaSpain
| | - E. Vilella
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| | - H. Torrell
- Centre for Omic Sciences (COS)Joint Unit Universitat Rovira i Virgili‐EURECAT Technology Centre of Catalonia, Unique Scientific and Technical InfrastructuresReusCataloniaSpain
| | - G. Muntané
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
- Institut de Biologia Evolutiva (UPF‐CSIC), Department of Medicine and Life SciencesUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaCataloniaSpain
| | - L. Martorell
- Àrea de RecercaHospital Universitari Institut Pere Mata (HUIPM)ReusCataloniaSpain
- Institut d'Investigació Sanitària Pere Virgili (IISPV‐CERCA)Universitat Rovira i Virgili (URV)ReusCataloniaSpain
- CIBER de Salud Mental (CIBERSAM)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
5
|
Wang L, Yu T, Wang R, Fu L, Dong F, Zhao S, Sun H, Gao Y. A bibliometric analysis of optic atrophy from 2003 to 2023: research trends and hot spots. Front Med (Lausanne) 2025; 11:1497446. [PMID: 39835089 PMCID: PMC11743512 DOI: 10.3389/fmed.2024.1497446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Background Optic atrophy (OA) is primarily caused by damage to the retinal pathway system, including widespread degeneration of retinal ganglion cells and axons, leading to visual impairment and blindness. Despite its clinical significance and diverse etiological factors, there is currently a lack of comprehensive bibliometric analyses exploring research trends and hotspots within this field. Method This study retrieved relevant literature on OA published between 2003 and 2023 from the Web of Science Core Collection database. We conducted a bibliometric analysis using tools such as CiteSpace, VOSviewer, and SCImago Graphica to examine annual publication trends, co-occurrence patterns, collaborative networks among countries and institutions, and the evolution of research hotspots of OA. Results A total of 5,274 publications were included in the bibliometric analysis, comprising 4,561 research articles and 713 review articles. The United States emerged as the leading country in OA research, followed by Germany and China. Over the past two decades, the primary research hotspots focused on "mitochondrial dysfunction," "hereditary optic neuropathy," "ocular hypertension" and "diagnostic techniques." Future research trends are likely to revolve around "molecular mechanisms" and "therapeutic targets." Conclusion This bibliometric analysis provides an overview of research developments in OA over the past 20 years, highlighting the emphasis on the pathological basis of OA and advancements in diagnostic and therapeutic approaches. Future studies should continue to explore the molecular basis of mitochondrial dysfunction to identify potential gene therapy targets for treating OA.
Collapse
Affiliation(s)
- Liyuan Wang
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Graduate School, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Tianyang Yu
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runze Wang
- Department of Rehabilitation Medicine, Qingdao Eighth People’s Hospital, Harbin, China
| | - Lijuan Fu
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feixue Dong
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuang Zhao
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Sun
- School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Ophthalmology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Gao
- Department of Acupuncture, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
6
|
D’Esposito F, Zeppieri M, Cordeiro MF, Capobianco M, Avitabile A, Gagliano G, Musa M, Barboni P, Gagliano C. Insights on the Genetic and Phenotypic Complexities of Optic Neuropathies. Genes (Basel) 2024; 15:1559. [PMID: 39766826 PMCID: PMC11675667 DOI: 10.3390/genes15121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Optic neuropathies are a category of illnesses that ultimately cause damage to the optic nerve, leading to vision impairment and possible blindness. Disorders such as dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), and glaucoma demonstrate intricate genetic foundations and varied phenotypic manifestations. This narrative review study seeks to consolidate existing knowledge on the genetic and molecular mechanisms underlying ocular neuropathies, examine genotype-phenotype correlations, and assess novel therapeutic options to improve diagnostic and treatment methodologies. Methods: A systematic literature review was performed in October 2024, utilizing PubMed, Medline, the Cochrane Library, and ClinicalTrials.gov. Search terms encompassed "optic neuropathy", "genetic variants", "LHON", "DOA", "glaucoma", and "molecular therapies". Studies were chosen according to established inclusion criteria, concentrating on the genetic and molecular dimensions of optic neuropathies and their therapeutic ramifications. Results: The results indicate that DOA and LHON are mostly associated with the mitochondrial dysfunction resulting from pathogenic variants in nuclear genes, mainly OPA1, and mitochondrial DNA (mtDNA) genes, respectively. Glaucoma, especially its intricate variants, is linked to variants in genes like MYOC, OPTN, and TBK1. Molecular mechanisms, such as oxidative stress and inflammatory modulation, are pivotal in disease progression. Innovative therapeutics, including gene therapy, RNA-based treatments, and antioxidants such as idebenone, exhibit promise for alleviating optic nerve damage and safeguarding vision. Conclusions: Genetic and molecular investigations have markedly enhanced our comprehension of ocular neuropathies. The amalgamation of genetic and phenotypic data is essential for customized medical strategies. Additional research is required to enhance therapeutic strategies and fill the gaps in our understanding of the underlying pathophysiology. This interdisciplinary approach shows potential for enhancing patient outcomes in ocular neuropathies.
Collapse
MESH Headings
- Humans
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/therapy
- Optic Atrophy, Hereditary, Leber/pathology
- Phenotype
- Glaucoma/genetics
- Glaucoma/therapy
- Glaucoma/pathology
- Optic Nerve Diseases/genetics
- Optic Atrophy, Autosomal Dominant/genetics
- Optic Atrophy, Autosomal Dominant/therapy
- Optic Atrophy, Autosomal Dominant/pathology
- DNA, Mitochondrial/genetics
- Genetic Association Studies
Collapse
Affiliation(s)
- Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| | - Maria Francesca Cordeiro
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK; (F.D.)
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London NW1 5QH, UK
| | - Matteo Capobianco
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Alessandro Avitabile
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Giuseppe Gagliano
- Eye Clinic, Catania University San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Piero Barboni
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
- Studio Oculistico d’Azeglio, 40123 Bologna, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
| |
Collapse
|
7
|
Wang C, Zhang L, Nie Z, Liang M, Liu H, Yi Q, Wang C, Ai C, Zhang J, Gao Y, Ji Y, Guan MX. Mutation of CRYAB encoding a conserved mitochondrial chaperone and antiapoptotic protein causes hereditary optic atrophy. JCI Insight 2024; 10:e182209. [PMID: 39561005 PMCID: PMC11721302 DOI: 10.1172/jci.insight.182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
The degeneration of retinal ganglion cells (RGC) due to mitochondrial dysfunctions manifests optic neuropathy. However, the molecular components of RGC linked to optic neuropathy manifestations remain largely unknown. Here, we identified a potentially novel optic atrophy-causative CRYAB gene encoding a highly conserved major lens protein acting as mitochondrial chaperone and possessing antiapoptotic activities. The heterozygous CRYAB mutation (c.313G>A, p. Glu105Lys) was cosegregated with autosomal dominant inheritance of optic atrophy in 3 Chinese families. The p.E105K mutation altered the structure and function of CRYAB, including decreased stability, reduced formation of oligomers, and decreased chaperone activity. Coimmunoprecipitation indicated that the p.E105K mutation reduced the interaction of CRYAB with apoptosis-associated cytochrome c and voltage-dependent anion channel protein. The cell lines carrying the p.E105K mutation displayed promotion of apoptosis and defective assembly, stability, and activities of oxidative phosphorylation system as well as imbalance of mitochondrial dynamics. Involvement of CRYAB in optic atrophy was confirmed by phenotypic evaluations of Cryabp.E105K-knockin mice. These mutant mice exhibited ocular lesions that included alteration of intraretinal layers, degeneration of RGCs, photoreceptor deficits, and abnormal retinal vasculature. Furthermore, Cryab-deficient mice displayed elevated apoptosis and mitochondrial dysfunctions. Our findings provide insight of pathophysiology of optic atrophy arising from RGC degeneration caused by CRYAB deficiency-induced elevated apoptosis and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Chenghui Wang
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | | | - Zhipeng Nie
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Min Liang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | - Cheng Ai
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinglong Gao
- Department of Genetics, and
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Department of Genetics, and
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Villalaín J. Location and interaction of idebenone and mitoquinone in a membrane similar to the inner mitochondrial membrane. Comparison with ubiquinone 10. Free Radic Biol Med 2024; 222:211-222. [PMID: 38908803 DOI: 10.1016/j.freeradbiomed.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Oxygen is essential for aerobic life on earth but it is also the origin of harmful reactive oxygen species (ROS). Ubiquinone is par excellence the endogenous cellular antioxidant, but a very hydrophobic one. Because of that, other molecules have been envisaged, such as idebenone (IDE) and mitoquinone (MTQ), molecules having the same redox active benzoquinone moiety but higher solubility. We have used molecular dynamics to determine the location and interaction of these molecules, both in their oxidized and reduced forms, with membrane lipids in a membrane similar to that of the mitochondria. Both IDE and reduced IDE (IDOL) are situated near the membrane interface, whereas both MTQ and reduced MTQ (MTQOL) locate in a position adjacent to the phospholipid hydrocarbon chains. The quinone moieties of both ubiquinone 10 (UQ10) and reduced UQ10 (UQOL10) in contraposition to the same moieties of IDE, IDOL, MTQ and MTQOL, located near the membrane interphase, whereas the isoprenoid chains remained at the middle of the hydrocarbon chains. These molecules do not aggregate and their functional quinone moieties are located in the membrane at different depths but near the hydrophobic phospholipid chains whereby protecting them from ROS harmful effects.
Collapse
Affiliation(s)
- José Villalaín
- Institute of Research, Development, and Innovation in Healthcare Biotechnology (IDiBE), Universidad "Miguel Hernández", E-03202, Elche, Alicante, Spain.
| |
Collapse
|
9
|
Zhang J, Li W, Liu Z, Chen Y, Wei X, Peng L, Xu M, Ji Y. Defective post-transcriptional modification of tRNA disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy. J Biol Chem 2024; 300:107728. [PMID: 39214298 PMCID: PMC11421333 DOI: 10.1016/j.jbc.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is a rare, maternally inherited eye disease, predominantly due to the degeneration of retinal ganglion cells (RGCs). It is associated with a mitochondrial DNA (mtDNA) point mutation. Our previous study identified that the m.15927G > A homoplasmic mutation damaged the highly conserved base pairing (28C-42G) in anticodon stem of tRNAThr, caused deficient t6A modification and significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr, and led to mitochondrial dysfunction. Meanwhile, mechanisms underlying mtDNA mutations regulate intracellular signaling related to mitochondrial and cellular integrity are less explored. Here, we manifested that defective nucleotide modification induced by the m.15927G > A mutation interfered with the expression of nuclear genes involved in cytoplasmic proteins essential for oxidative phosphorylation system (OXPHOS), thereby impacting the assemble and integrity of OXPHOS complexes. As a result of these mitochondrial dysfunctions, there was an imbalance in mitochondrial dynamics, particularly distinguished by an increased occurrence of mitochondrial fission. Excessive fission compromised the autophagy process, including the initiation phase, formation, and maturation of autophagosomes. Both Parkin-mediated mitophagy and receptor-dependent mitophagy were significantly impaired in cybrids haboring the m.15927G > A mutation. These changes facilitated intrinsic apoptosis, as indicated by increased cytochrome c release and elevated levels of apoptosis-associated proteins (e.g., BAK, BAX, cleaved caspase 9, cleaved caspase 3, and cleaved PARP) in the mutant cybrids. This study demonstrates that the m.15927G > A mutation contributes to LHON by dysregulating OXPHOS biogenesis, aberrant quality control, increased autophagy, inhibited mitophagy, and abnormal apoptosis.
Collapse
MESH Headings
- Optic Atrophy, Hereditary, Leber/metabolism
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Humans
- Mitochondria/metabolism
- Mitochondria/genetics
- Mitochondria/pathology
- Mitophagy
- Homeostasis
- RNA Processing, Post-Transcriptional
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/genetics
- Oxidative Phosphorylation
- RNA, Transfer, Thr/metabolism
- RNA, Transfer, Thr/genetics
- Mitochondrial Dynamics
- Apoptosis
- Point Mutation
- Autophagy
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenxu Li
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Liu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingqi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyang Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Peng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Masuda Y, Ishikawa H, Ishikawa H, Kezuka T, Miyazaki A, Matsumoto K, Gomi F, Mimura O, Shikishima K, Nakano T, Terao M. Assessment of objective visual function following idebenone administration in patients with leber hereditary optic neuropathy. Jpn J Ophthalmol 2024; 68:548-555. [PMID: 38967874 DOI: 10.1007/s10384-024-01077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE To objectively assess visual function in Leber's Hereditary Optic Neuropathy (LHON) patients; this study evaluated pre- and post-idebenone treatment changes in primary visual cortical (V1) responses using functional magnetic resonance imaging (fMRI), given the challenges in subjective testing due to central retinal ganglion cell damage. STUDY DESIGN A descriptive study involving four confirmed LHON patients. METHODS Four patients received 900 mg/day of oral idebenone for 24 weeks. Baseline and post-treatment visual acuity, visual fields, and BOLD fMRI responses while passively viewed drifting contrast pattern visual stimuli were compared with self-reported symptoms. RESULTS Post-idebenone, one patient showed positive trends across subjective tests, reported symptoms, and fMRI. Two patients had stable symptoms and fMRI responses; one improved on subjective tests, and another worsened slightly. Another patient improved in visual field tests despite worsening symptoms and fMRI trends. CONCLUSION fMRI may offer a valuable objective measure of visual functions in LHON and appears to be more relevant in assessing symptoms. Further research with more participants is needed to ascertain fMRI's role in developing objective visual assessments and treatment evaluation.
Collapse
Affiliation(s)
- Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi Minato-ku, Tokyo, 105-8461, Japan.
| | - Hiroto Ishikawa
- Department of Ophthalmology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
- Department of Ophthalmology, Mirai Eye and Skin Clinic, Joto-ku, Osaka, Japan
| | - Hitoshi Ishikawa
- Department of Ophthalmology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeshi Kezuka
- Department of Ophthalmology, Tokyo Medical University, Nishi‑Shinjuku, Shinjuku‑ku, Tokyo, Japan
| | | | | | - Fumi Gomi
- Department of Ophthalmology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Osamu Mimura
- Department of Ophthalmology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Keigo Shikishima
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi Minato-ku, Tokyo, 105-8461, Japan
| | - Masahiko Terao
- Research Institute for Time Studies, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
11
|
Burr SP, Chinnery PF. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease. Hum Mol Genet 2024; 33:R3-R11. [PMID: 38779777 PMCID: PMC11112380 DOI: 10.1093/hmg/ddae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
12
|
Emperador S, Habbane M, López-Gallardo E, Del Rio A, Llobet L, Mateo J, Sanz-López AM, Fernández-García MJ, Sánchez-Tocino H, Benbunan-Ferreiro S, Calabuig-Goena M, Narvaez-Palazón C, Fernández-Vega B, González-Iglesias H, Urreizti R, Artuch R, Pacheu-Grau D, Bayona-Bafaluy P, Montoya J, Ruiz-Pesini E. Identification and characterization of a new pathologic mutation in a large Leber hereditary optic neuropathy pedigree. Orphanet J Rare Dis 2024; 19:148. [PMID: 38582886 PMCID: PMC10999093 DOI: 10.1186/s13023-024-03165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/30/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Most patients suffering from Leber hereditary optic neuropathy carry one of the three classic pathologic mutations, but not all individuals with these genetic alterations develop the disease. There are different risk factors that modify the penetrance of these mutations. The remaining patients carry one of a set of very rare genetic variants and, it appears that, some of the risk factors that modify the penetrance of the classical pathologic mutations may also affect the phenotype of these other rare mutations. RESULTS We describe a large family including 95 maternally related individuals, showing 30 patients with Leber hereditary optic neuropathy. The mutation responsible for the phenotype is a novel transition, m.3734A > G, in the mitochondrial gene encoding the ND1 subunit of respiratory complex I. Molecular-genetic, biochemical and cellular studies corroborate the pathogenicity of this genetic change. CONCLUSIONS With the study of this family, we confirm that, also for this very rare mutation, sex and age are important factors modifying penetrance. Moreover, this pedigree offers an excellent opportunity to search for other genetic or environmental factors that additionally contribute to modify penetrance.
Collapse
Affiliation(s)
- Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mouna Habbane
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Laboratoire Biologie Et Santé, Faculté Des Sciences Ben M'Sick, Hassan II University of Casablanca, 20670, Casablanca, Morocco
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Alejandro Del Rio
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
| | - Laura Llobet
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Certest Biotec, 50840-San Mateo de Gállego, Zaragoza, Spain
| | - Javier Mateo
- Servicio de Oftalmología, Hospital Clínico Universitario Lozano Blesa, 50009, Zaragoza, Spain
| | - Ana María Sanz-López
- Servicio de Oftalmología, Hospital Universitario de Toledo, 45004, Toledo, Spain
| | | | | | - Sol Benbunan-Ferreiro
- Servicio de Oftalmología. Hospital Universitario Río Hortega, 47012, Valladolid, Spain
| | - María Calabuig-Goena
- Servicio de Oftalmología. Hospital Universitario Río Hortega, 47012, Valladolid, Spain
| | | | | | - Hector González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300-Villaviciosa, Asturias, Spain
| | - Roser Urreizti
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departament de Bioquímica Clínica, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Departament de Bioquímica Clínica, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain
| | - David Pacheu-Grau
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain.
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013, Zaragoza, Spain.
- Instituto de Investigación Sanitaria (IIS) de Aragón, 50009, Zaragoza, Spain.
- Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
13
|
O'Neill KA, Dugue A, Abreu NJ, Balcer LJ, Branche M, Galetta S, Graves J, Kister I, Magro C, Miller C, Newsome SD, Pappas J, Rucker J, Steigerwald C, William CM, Zamvil SS, Grossman SN, Krupp LB. Relapsing White Matter Disease and Subclinical Optic Neuropathy: From the National Multiple Sclerosis Society Case Conference Proceedings. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200194. [PMID: 38181317 DOI: 10.1212/nxi.0000000000200194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
A 16-year-old adolescent boy presented with recurrent episodes of weakness and numbness. Brain MRI demonstrated subcortical, juxtacortical, and periventricular white matter T2 hyperintensities with gadolinium enhancement. CSF was positive for oligoclonal bands that were not present in serum. Despite treatment with steroids, IV immunoglobulins, plasmapheresis, and rituximab, he continued to have episodes of weakness and numbness and new areas of T2 hyperintensity on imaging. Neuro-ophthalmologic examination revealed a subclinical optic neuropathy with predominant involvement of the papillomacular bundle. Genetic evaluation and brain biopsy led to an unexpected diagnosis.
Collapse
Affiliation(s)
- Kimberly A O'Neill
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Andrew Dugue
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Nicolas J Abreu
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Laura J Balcer
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Marc Branche
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Steven Galetta
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Jennifer Graves
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Ilya Kister
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Cynthia Magro
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Claire Miller
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Scott D Newsome
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - John Pappas
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Janet Rucker
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Connolly Steigerwald
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Christopher M William
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Scott S Zamvil
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Scott N Grossman
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| | - Lauren B Krupp
- From the Department of Neurology (K.A.O., A.D., N.J.A., L.J.B., S.G., I.K., C.M., J.R., C.M.W., S.N.G., L.B.K.); Department of Ophthalmology (A.D.); Division of Neurogenetics (NJA, CS); Department of Ophthalmology (L.J.B., S.G., S.N.G.); Department of Population Health (L.J.B.); Department of Radiology (M.B.), NYU Grossman School of Medicine, New York, NY; Department of Neurosciences (J.G.), University of California, San Diego; Department of Pathology (C.M.), Weill Cornell Medicine, New York, NY; Department of Neurology (S.D.N.), Johns Hopkins University, Baltimore, MD; Departments of Pediatrics (J.P.) and Pathology (C.M.W.), NYU Grossman School of Medicine, New York, NY; and Department of Neurology (S.S.Z.), University of California, San Francisco
| |
Collapse
|
14
|
Ladero M, Reche-Sainz JA, Gallardo ME. Hereditary Optic Neuropathies: A Systematic Review on the Interplay between Biomaterials and Induced Pluripotent Stem Cells. Bioengineering (Basel) 2024; 11:52. [PMID: 38247929 PMCID: PMC10813088 DOI: 10.3390/bioengineering11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Hereditary optic neuropathies (HONs) such as dominant optic atrophy (DOA) and Leber Hereditary Optic Neuropathy (LHON) are mitochondrial diseases characterized by a degenerative loss of retinal ganglion cells (RGCs) and are a cause of blindness worldwide. To date, there are only limited disease-modifying treatments for these disorders. The discovery of induced pluripotent stem cell (iPSC) technology has opened several promising opportunities in the field of HON research and the search for therapeutic approaches. This systematic review is focused on the two most frequent HONs (LHON and DOA) and on the recent studies related to the application of human iPSC technology in combination with biomaterials technology for their potential use in the development of RGC replacement therapies with the final aim of the improvement or even the restoration of the vision of HON patients. To this purpose, the combination of natural and synthetic biomaterials modified with peptides, neurotrophic factors, and other low- to medium-molecular weight compounds, mimicking the ocular extracellular matrices, with human iPSC or iPSC-derived cell retinal progenitors holds enormous potential to be exploited in the near future for the generation of transplantable RGC populations.
Collapse
Affiliation(s)
- Miguel Ladero
- FQPIMA Group, Materials and Chemical Engineering Department, Chemical Sciences School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jose Alberto Reche-Sainz
- Ophthalmology Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Translational Research with iPS Cells Group, Research Institute of Hospital 12 de Octubre, imas12, 28041 Madrid, Spain
| | - M. Esther Gallardo
- Translational Research with iPS Cells Group, Research Institute of Hospital 12 de Octubre, imas12, 28041 Madrid, Spain
| |
Collapse
|
15
|
Piano I, Votta A, Colucci P, Corsi F, Vitolo S, Cerri C, Puppi D, Lai M, Maya-Vetencourt JF, Leigheb M, Gabellini C, Ferraro E. Anti-inflammatory reprogramming of microglia cells by metabolic modulators to counteract neurodegeneration; a new role for Ranolazine. Sci Rep 2023; 13:20138. [PMID: 37978212 PMCID: PMC10656419 DOI: 10.1038/s41598-023-47540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Microglia chronic activation is a hallmark of several neurodegenerative diseases, including the retinal ones, possibly contributing to their etiopathogenesis. However, some microglia sub-populations have anti-inflammatory and neuroprotective functions, thus making arduous deciphering the role of these cells in neurodegeneration. Since it has been proposed that functionally different microglia subsets also rely on different metabolic routes, we hypothesized that modulating microglia metabolism might be a tool to enhance their anti-inflammatory features. This would have a preventive and therapeutic potential in counteracting neurodegenerative diseases. For this purpose, we tested various molecules known to act on cell metabolism, and we revealed the anti-inflammatory effect of the FDA-approved piperazine derivative Ranolazine on microglia cells, while confirming the one of the flavonoids Quercetin and Naringenin, both in vitro and in vivo. We also demonstrated the synergistic anti-inflammatory effect of Quercetin and Idebenone, and the ability of Ranolazine, Quercetin and Naringenin to counteract the neurotoxic effect of LPS-activated microglia on 661W neuronal cells. Overall, these data suggest that using the selected molecules -also in combination therapies- might represent a valuable approach to reduce inflammation and neurodegeneration while avoiding long term side effects of corticosteroids.
Collapse
Affiliation(s)
- Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Arianna Votta
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Sara Vitolo
- Department of Biology, University of Pisa, Pisa, Italy
| | - Chiara Cerri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Michele Lai
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Italian Institute of Technology (IIT), Genova, Italy
| | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, "Maggiore della Carità" Hospital, Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | | | | |
Collapse
|
16
|
Chen C, Guan MX. Induced pluripotent stem cells: ex vivo models for human diseases due to mitochondrial DNA mutations. J Biomed Sci 2023; 30:82. [PMID: 37737178 PMCID: PMC10515435 DOI: 10.1186/s12929-023-00967-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Mitochondria are essential organelles for cellular metabolism and physiology in eukaryotic cells. Human mitochondria have their own genome (mtDNA), which is maternally inherited with 37 genes, encoding 13 polypeptides for oxidative phosphorylation, and 22 tRNAs and 2 rRNAs for translation. mtDNA mutations are associated with a wide spectrum of degenerative and neuromuscular diseases. However, the pathophysiology of mitochondrial diseases, especially for threshold effect and tissue specificity, is not well understood and there is no effective treatment for these disorders. Especially, the lack of appropriate cell and animal disease models has been significant obstacles for deep elucidating the pathophysiology of maternally transmitted diseases and developing the effective therapy approach. The use of human induced pluripotent stem cells (iPSCs) derived from patients to obtain terminally differentiated specific lineages such as inner ear hair cells is a revolutionary approach to deeply understand pathogenic mechanisms and develop the therapeutic interventions of mitochondrial disorders. Here, we review the recent advances in patients-derived iPSCs as ex vivo models for mitochondrial diseases. Those patients-derived iPSCs have been differentiated into specific targeting cells such as retinal ganglion cells and eventually organoid for the disease modeling. These disease models have advanced our understanding of the pathophysiology of maternally inherited diseases and stepped toward therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Chao Chen
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Institute of Genetics, Zhejiang University International School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.
- Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Wang J, Ji Y, Ai C, Chen JR, Gan D, Zhang J, Mo JQ, Guan MX. Optimized allotopic expression of mitochondrial ND6 transgene restored complex I and apoptosis deficiencies caused by LHON-linked ND6 14484T > C mutation. J Biomed Sci 2023; 30:63. [PMID: 37537557 PMCID: PMC10399063 DOI: 10.1186/s12929-023-00951-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mutations in mitochondrial DNA. However, there is no effective treatment for this disease. LHON-linked ND6 14484T > C (p.M64V) mutation caused complex I deficiency, diminished ATP production, increased production of reactive oxygen species (ROS), elevated apoptosis, and impaired mitophagy. Here, we investigated if the allotopic expression of human mitochondrial ND6 transgene corrected the mitochondrial dysfunctions due to LHON-associated m.14484T > C mutation. METHODS Nucleus-versions of ND6 was generated by changing 6 non-universal codons with universal codons and added to mitochondrial targeting sequence of COX8. Stable transfectants were generated by transferring human ND6 cDNA expressed in a pCDH-puro vector into mutant cybrids carrying the m.14484T > C mutation and control cybrids. The effect of allotopic expression of ND6 on oxidative phosphorylation (OXPHOS) was evaluated using Blue Native gel electrophoresis and extracellular flux analyzer. Assessment of ROS production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analyses for apoptosis and mitophagy were undertaken via flow cytometry, TUNEL and immunofluorescence assays. RESULTS The transfer of human ND6 into the cybrids carrying the m.14484T > C mutation raised the levels of ND6, ND1 and ND4L but did not change the levels of other mitochondrial proteins. The overexpression of ND6 led to 20~23% increases in the assembly and activity of complex I, and ~ 53% and ~ 33% increases in the levels of mitochondrial ATP and ΔΨm in the mutant cybrids bearing m.14484T > C mutation. Furthermore, mutant cybrids with overexpression of ND6 exhibited marked reductions in the levels of mitochondrial ROS. Strikingly, ND6 overexpression markedly inhibited the apoptosis process and restored impaired mitophagy in the cells carrying m.14484T > C mutation. However, overexpression of ND6 did not affect the ND6 level and mitochondrial functions in the wild-type cybrids, indicating that this ND6 level appeared to be the maximum threshold level to maintain the normal cell function. CONCLUSION We demonstrated that allotopic expression of nucleus-versions of ND6 restored complex I, apoptosis and mitophagy deficiencies caused by the m.14484T > C mutation. The restoration of m.14484T > C mutation-induced mitochondrial dysfunctions by overexpression of ND6 is a step toward therapeutic interventions for LHON and mitochondrial diseases.
Collapse
Affiliation(s)
- Jing Wang
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Cheng Ai
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Jia-Rong Chen
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Dingyi Gan
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California, USA
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.
- Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|