1
|
Monteiro-Fernandes D, Charles I, Guerreiro S, Cunha-Garcia D, Pereira-Sousa J, Oliveira S, Teixeira-Castro A, Varney MA, Kleven MS, Newman-Tancredi A, P Sheikh Abdala A, Duarte-Silva S, Maciel P. Rescue of respiratory and cognitive impairments in Rett Syndrome mice using NLX-101, a selective 5-HT 1A receptor biased agonist. Biomed Pharmacother 2025; 186:117989. [PMID: 40121895 DOI: 10.1016/j.biopha.2025.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene encoding the methyl-CpG-binding protein 2 (MECP2). Impaired function of this transcriptional regulator leads to profound neurological defects, among which respiratory distress, motor function and cognitive disorders are prominent. Despite great advances in understanding RTT neurobiology, therapies that can meaningfully improve patients' symptoms are still needed. Here, we focused on 5-HT1A receptor-mediated serotonergic signaling as a potential therapeutical route for RTT. We report the effects of a drug candidate, NLX-101, a highly selective, biased agonist of 5-HT1A post-synaptic receptors at brainstem and cortical regions, on key phenotypes of RTT. Unrestrained whole-body plethysmography studies confirmed and extended the previous observation that single i.p. administration of NLX-101 dose-dependently reduced the occurrence and length of apneic events in Mecp2tm1.1Bird heterozygous female mice and largely corrected respiratory irregularity. Although no preservation of motor function was observed, early onset chronic administration of NLX-101 entirely prevented the cognitive deficits of the Mecp2tm1.1Bird mice both in the short and the long-term memory paradigms of the Novel Object Recognition upon 10 weeks of treatment, an effect that was maintained throughout animals' age. Similar effects were observed in the Fear Conditioning paradigm, with treated Rett mice performing as well as wild-type controls, highlighting the procognitive properties of NLX-101. This work provides compelling evidence of the therapeutic potential of targeting post-synaptic 5-HT1A receptors to improve cognitive function in patients with RTT while supporting its respiratory-rescue properties.
Collapse
Affiliation(s)
- Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Ian Charles
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sara Guerreiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Daniela Cunha-Garcia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Stéphanie Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | | | | | | | - Ana P Sheikh Abdala
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
2
|
Gschwind L, Holst SC, Nobbs D, Lipsmeier F, Buzasi K, Boonsimma P, Rotenberg A, Kolodyazhniy V, Hipp JF. Lower respiratory rate during sleep in children with angelman syndrome compared to age-matched controls. Orphanet J Rare Dis 2025; 20:167. [PMID: 40200228 PMCID: PMC11980168 DOI: 10.1186/s13023-025-03553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/10/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Angelman syndrome (AS) is a rare genetic neurodevelopmental disorder caused by the absence of a functional UBE3A gene, leading to developmental, behavioral, and medical challenges. Sleep disturbances, including sleep-disordered breathing, are common in AS. This study, for the first time, investigates nocturnal respiration in individuals with AS and healthy controls at home in a long term setting. METHODS A non-invasive ballistocardiography-based (BCG) sleep monitoring device ("sleep mat") placed under the participants' mattresses, was used to remotely monitor children with AS aged 1 to 12 years (6.0 ± 3.2 years, n = 40) and age-matched typically developing controls (TDC) (6.2 ± 3.5 years, n = 20) for approximately 12 months. The sleep mat recorded physiological signals during times in bed. We applied fast-Fourier transformation (FFT) to exclude segments without a clear respiratory signal, thereby minimizing the impact of large body movements, wakefulness, or seizure activity. Moreover, polysomnography (PSG) was collected for up to three nights for each participant in their home. Clinical characteristics, genotype, and Bayley Scales of Infant and Toddler Development® (Bayley-III) were also analyzed. RESULTS The average median BCG-derived respiratory rate over the entire study duration was significantly lower in AS compared to TDCs (Cohen's d = 1.31). PSG-derived respiration data corroborated the lower breathing rate in AS (Cohen's d = 0.77) and revealed a strong correlation between BCG and PSG derived respiration (r = 0.85) and thus a strong convergent validity of the sleep mat against "gold standard" measures. Next, we defined two groups of AS individuals based on their respiratory rates: a normal respiration group with rates above the minimum in TDC, and a low respiratory rate group with rates below the TDC group's minimum. A higher prevalence of respiratory abnormalities was observed in deletion carriers (55.2%) versus non-deletion carriers (9.1%). Pulse oximetry data indicated lower oxygen saturation levels in AS individuals (Cohen's d = 1.60). Moreover, lower Bayley-III scores were observed in the low respiration group, suggesting a link between respiratory dysfunction and neurodevelopmental outcomes in AS. Medication use, particularly antiepileptic drugs, was found to suppress respiratory rates, highlighting the complex interplay between concomitant medication use, genotype, and sleep in AS. CONCLUSION Our study provides the first long-term observational evidence of a persistent bradypnea-like phenotype in individuals with AS, which may have significant implications for their clinical management. The successful use of the sleep mat device as a non-invasive physiological ambulatory monitoring tool demonstrates its potential as a digital health technology for detecting respiratory abnormalities in pediatric neurodevelopmental disorders. These findings should be further assessed and may have biomarker and clinical utility in AS, particularly in relation to seizure management and cognitive development.
Collapse
Affiliation(s)
- Leo Gschwind
- Roche Pharma Research and Early Development, Data and Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Sebastian Camillo Holst
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - David Nobbs
- Roche Pharma Research and Early Development, Data and Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Florian Lipsmeier
- Roche Informatics Solutions, Data, Analytics and Research, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Ponghatai Boonsimma
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vitaliy Kolodyazhniy
- Roche Pharma Research and Early Development, Data and Analytics, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Felix Hipp
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
3
|
Kaku H, Liu LD, Gao R, West S, Liao SM, Finkelstein A, Kleinfeld D, Thomas A, Tipparaju SL, Svoboda K, Li N. A brainstem map of orofacial rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635041. [PMID: 39975015 PMCID: PMC11838403 DOI: 10.1101/2025.01.27.635041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Rhythmic orofacial movements, such as eating, drinking, or vocalization, are controlled by distinct premotor oscillator networks in the brainstem. Orofacial movements must be coordinated with rhythmic breathing to avoid aspiration and because they share muscles. Understanding how brainstem circuits coordinate rhythmic motor programs requires neurophysiological measurements in behaving animals. We used Neuropixels probe recordings to map brainstem neural activity related to breathing, licking, and swallowing in mice drinking water. Breathing and licking rhythms were tightly coordinated and phase-locked, whereas intermittent swallowing paused breathing and licking. Multiple clusters of neurons, each recruited during different orofacial rhythms, delineated a lingual premotor network in the intermediate nucleus of the reticular formation (IRN). Local optogenetic perturbation experiments identified a region in the IRN where constant stimulation can drive sustained rhythmic licking, consistent with a central pattern generator for licking. Stimulation to artificially induce licking showed that coupled brainstem oscillators autonomously coordinated licking and breathing. The brainstem oscillators were further patterned by descending inputs at moments of licking initiation. Our results reveal the logic governing interactions of orofacial rhythms during behavior and outline their neural circuit dynamics, providing a model for dissecting multi-oscillator systems controlling rhythmic motor programs.
Collapse
Affiliation(s)
- Heet Kaku
- Department of Neurobiology, Duke University, Durham NC
| | - Liu D. Liu
- Department of Neuroscience, Baylor College of Medicine, Houston TX
- Janelia Research Campus, Ashburn VA
| | - Runbo Gao
- Department of Neurobiology, Duke University, Durham NC
| | - Steven West
- Sainsbury Wellcome Centre, University College London, UK
| | - Song-Mao Liao
- Department of Physics and Neurobiology, University of California, San Diego, La Jolla, CA
| | - Arseny Finkelstein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - David Kleinfeld
- Department of Physics and Neurobiology, University of California, San Diego, La Jolla, CA
| | - Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston TX
| | | | - Karel Svoboda
- Janelia Research Campus, Ashburn VA
- Allen Institute for Neural Dynamics, Seattle WA
| | - Nuo Li
- Department of Neurobiology, Duke University, Durham NC
| |
Collapse
|
4
|
Chi J, Song X, Liu J, Oh EG, Zhang Z, Xu Z, Yang H, Yuan H, Zhang Y. Scoliosis in Rett syndrome: a comparative analysis of postoperative complications. J Pediatr Orthop B 2024:01202412-990000000-00226. [PMID: 39718249 DOI: 10.1097/bpb.0000000000001223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Rett syndrome, a neurodevelopmental disorder primarily affecting females, presents unique challenges in managing associated scoliosis. This study aims to evaluate the efficacy and challenges of posterior spinal fusion (PSF) in Rett syndrome patients by analyzing postoperative complications. A retrospective cohort study was conducted using a large national database. We included Rett syndrome patients aged 10-18 years who underwent PSF between 2010 and 2020. Outcomes such as medical and surgical complications, emergency department visits, readmissions, mortality, and reoperation rates up to 5 years were compared with a matched neuromuscular scoliosis (NMS) group. The study identified 195 Rett syndrome patients and 973 NMS patients. Post-surgery, Rett syndrome patients showed a significantly higher incidence of pneumothorax (56.9%, P < 0.001), respiratory failure (24.6%, P = 0.013), and pneumonia (26.2%, P < 0.001). Additionally, ileus (7.2%, P = 0.041), acute kidney injury (14.9%, P = 0.029), and urinary tract infections (14.9%, P < 0.001) were also significantly more frequent in the Rett syndrome group. Rett syndrome group also had higher rates of transfusion (11.3%, P = 0.004). Interestingly, the incidence of pseudarthrosis, implant complications, junctional failures, and the necessity for reoperation did not significantly differ at postoperative year 2. Mid-term follow-up showed that the reoperation rates over a 5-year period did not significantly differ between the Rett syndrome and NMS groups. Rett syndrome is associated with increased immediate postoperative complications, necessitating tailored preoperative planning, and intensive postoperative care. Despite these challenges, the mid-term surgical outcomes are comparable to those in NMS patients.
Collapse
Affiliation(s)
- Jialun Chi
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Xiangwei Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Ju Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Eunha G Oh
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Zhichang Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Zhiwen Xu
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hanzhi Yang
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hui Yuan
- Department of Anesthesiology, University of California San Francisco, San Francisco, California, USA
| | - Yi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Leoncini S, Boasiako L, Di Lucia S, Beker A, Scandurra V, Vignoli A, Canevini MP, Prato G, Nobili L, Nicotera AG, Di Rosa G, Chiarini MBT, Cutrera R, Grosso S, Lazzeri G, Tongiorgi E, Morano P, Botteghi M, Barducci A, De Felice C. 24-h continuous non-invasive multiparameter home monitoring of vitals in patients with Rett syndrome by an innovative wearable technology: evidence of an overlooked chronic fatigue status. Front Neurol 2024; 15:1388506. [PMID: 38952469 PMCID: PMC11215834 DOI: 10.3389/fneur.2024.1388506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Background Sleep is disturbed in Rett syndrome (RTT), a rare and progressive neurodevelopmental disorder primarily affecting female patients (prevalence 7.1/100,000 female patients) linked to pathogenic variations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene. Autonomic nervous system dysfunction with a predominance of the sympathetic nervous system (SNS) over the parasympathetic nervous system (PSNS) is reported in RTT, along with exercise fatigue and increased sudden death risk. The aim of the present study was to test the feasibility of a continuous 24 h non-invasive home monitoring of the biological vitals (biovitals) by an innovative wearable sensor device in pediatric and adolescent/adult RTT patients. Methods A total of 10 female patients (mean age 18.3 ± 9.4 years, range 4.7-35.5 years) with typical RTT and MECP2 pathogenic variations were enrolled. Clinical severity was assessed by validated scales. Heart rate (HR), respiratory rate (RR), and skin temperature (SkT) were monitored by the YouCare Wearable Medical Device (Accyourate Group SpA, L'Aquila, Italy). The average percentage of maximum HR (HRmax%) was calculated. Heart rate variability (HRV) was expressed by consolidated time-domain and frequency-domain parameters. The HR/LF (low frequency) ratio, indicating SNS activation under dynamic exercise, was calculated. Simultaneous continuous measurement of indoor air quality variables was performed and the patients' contributions to the surrounding water vapor partial pressure [PH2O (pt)] and carbon dioxide [PCO2 (pt)] were indirectly estimated. Results Of the 6,559.79 h of biovital recordings, 5051.03 h (77%) were valid for data interpretation. Sleep and wake hours were 9.0 ± 1.1 h and 14.9 ± 1.1 h, respectively. HRmax % [median: 71.86% (interquartile range 61.03-82%)] and HR/LF [median: 3.75 (interquartile range 3.19-5.05)] were elevated, independent from the wake-sleep cycle. The majority of HRV time- and frequency-domain parameters were significantly higher in the pediatric patients (p ≤ 0.031). The HRV HR/LF ratio was associated with phenotype severity, disease progression, clinical sleep disorder, subclinical hypoxia, and electroencephalographic observations of multifocal epileptic activity and general background slowing. Conclusion Our findings indicate the feasibility of a continuous 24-h non-invasive home monitoring of biovital parameters in RTT. Moreover, for the first time, HRmax% and the HR/LF ratio were identified as potential objective markers of fatigue, illness severity, and disease progression.
Collapse
Affiliation(s)
- Silvia Leoncini
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- U.O.S.A. Programmazione e Ricerca Clinica, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lidia Boasiako
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sofia Di Lucia
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Valeria Scandurra
- Child Neuropsychiatry Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Aglaia Vignoli
- Childhood and Adolescence Neurology and Psychiatry Unit, ASST GOM Niguarda, Milan, Italy
| | - Maria Paola Canevini
- Epilepsy Center – Sleep Medicine Center, Childhood and Adolescence Neuropsychiatry Unit, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Giulia Prato
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | | | - Gabriella Di Rosa
- Child Neuropsychiatry Unit, University Hospital “G. Martino”, Messina, Italy
- Department of Biomedical and Dental Sciences and of Morphological and Functional Imaging (BIOMORF), University of Messina, Messina, Italy
| | - Maria Beatrice Testa Chiarini
- Pneumology and Cystic Fibrosis Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Renato Cutrera
- Pneumology and Cystic Fibrosis Unit, Academic Department of Pediatrics, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Salvatore Grosso
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Pediatrics Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giacomo Lazzeri
- U.O.S.A. Programmazione e Ricerca Clinica, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Matteo Botteghi
- Department of Clinical and Molecular Sciences – Experimental Pathology Research Group, Università Politecnica delle Marche, Ancona, Italy
- Medical Physics Activities Coordination Centre – Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | | | - Claudio De Felice
- Rett Syndrome Trial Center, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Neonatal Intensive Care Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
- Pediatrics Unit, University Hospital Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
6
|
Bhagavan H, Wei AD, Oliveira LM, Aldinger KA, Ramirez JM. Chronic intermittent hypoxia elicits distinct transcriptomic responses among neurons and oligodendrocytes within the brainstem of mice. Am J Physiol Lung Cell Mol Physiol 2024; 326:L698-L712. [PMID: 38591125 PMCID: PMC11380971 DOI: 10.1152/ajplung.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Chronic intermittent hypoxia (CIH) is a prevalent condition characterized by recurrent episodes of oxygen deprivation, linked to respiratory and neurological disorders. Prolonged CIH is known to have adverse effects, including endothelial dysfunction, chronic inflammation, oxidative stress, and impaired neuronal function. These factors can contribute to serious comorbidities, including metabolic disorders and cardiovascular diseases. To investigate the molecular impact of CIH, we examined male C57BL/6J mice exposed to CIH for 21 days, comparing with normoxic controls. We used single-nucleus RNA sequencing to comprehensively examine the transcriptomic impact of CIH on key cell classes within the brainstem, specifically excitatory neurons, inhibitory neurons, and oligodendrocytes. These cell classes regulate essential physiological functions, including autonomic tone, cardiovascular control, and respiration. Through analysis of 10,995 nuclei isolated from pontine-medullary tissue, we identified seven major cell classes, further subdivided into 24 clusters. Our findings among these cell classes, revealed significant differential gene expression, underscoring their distinct responses to CIH. Notably, neurons exhibited transcriptional dysregulation of genes associated with synaptic transmission, and structural remodeling. In addition, we found dysregulated genes encoding ion channels and inflammatory response. Concurrently, oligodendrocytes exhibited dysregulated genes associated with oxidative phosphorylation and oxidative stress. Utilizing CellChat network analysis, we uncovered CIH-dependent altered patterns of diffusible intercellular signaling. These insights offer a comprehensive transcriptomic cellular atlas of the pons-medulla and provide a fundamental resource for the analysis of molecular adaptations triggered by CIH.NEW & NOTEWORTHY This study on chronic intermittent hypoxia (CIH) from pons-medulla provides initial insights into the molecular effects on excitatory neurons, inhibitory neurons, and oligodendrocytes, highlighting our unbiased approach, in comparison with earlier studies focusing on single target genes. Our findings reveal that CIH affects cell classes distinctly, and the dysregulated genes in distinct cell classes are associated with synaptic transmission, ion channels, inflammation, oxidative stress, and intercellular signaling, advancing our understanding of CIH-induced molecular responses.
Collapse
Affiliation(s)
- Hemalatha Bhagavan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Luiz M Oliveira
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Department of Neurology, University of Washington, Seattle, Washington, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States
- Department of Pediatrics, University of Washington, Seattle, Washington, United States
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| |
Collapse
|
7
|
Janes TA, Cardani S, Saini JK, Pagliardini S. Etonogestrel promotes respiratory recovery in an in vivo rat model of central chemoreflex impairment. Acta Physiol (Oxf) 2024; 240:e14093. [PMID: 38258900 DOI: 10.1111/apha.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
AIM The central CO2 chemoreflex is a vital component of respiratory control networks, providing excitatory drive during resting conditions and challenges to blood gas homeostasis. The retrotrapezoid nucleus is a crucial hub for CO2 chemosensitivity; its ablation or inhibition attenuates CO2 chemoreflexes and diminishes restful breathing. Similar phenotypes characterize certain hypoventilation syndromes, suggesting underlying retrotrapezoid nucleus impairment in these disorders. Progesterone stimulates restful breathing and CO2 chemoreflexes. However, its mechanisms and sites of actions remain unknown and the experimental use of synthetic progestins in patients and animal models have been met with mixed respiratory outcomes. METHODS We investigated whether acute or chronic administration of the progestinic drug, etonogestrel, could rescue respiratory chemoreflexes following selective lesion of the retrotrapezoid nucleus with saporin toxin. Adult female Sprague Dawley rats were grouped based on lesion size determined by the number of surviving chemosensitive neurons, and ventilatory responses were measured by whole body plethysmography. RESULTS Ventilatory responses to hypercapnia (but not hypoxia) were compromised in a lesion-dependent manner. Chronic etonogestrel treatment improved CO2 chemosensitivity selectively in rats with moderate lesion, suggesting that a residual number of chemosensitive neurons are required for etonogestrel-induced CO2 chemoreflex recovery. CONCLUSION This study provides new evidence for the use of progestins as respiratory stimulants under conditions of central hypoventilation and provides a new testable model for assessing the mechanism of action of progestins in the respiratory network.
Collapse
Affiliation(s)
- Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jasmeen K Saini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Carrara M, Aubertin G, Khirani S, Massenavette B, Bierme P, Griffon L, Ioan I, Schweitzer C, Binoche A, Lampin ME, Mordacq C, Rubinsztajn R, Debeilleix S, Galode F, Bui S, Hullo E, Becourt A, Lubrano M, Moreau J, Renoux MC, Matecki S, Stremler N, Baravalle-Einaudi M, Mazenq J, Sigur E, Labouret G, Genevois AL, Heyman R, Pomedio M, Masson A, Hangard P, Menetrey C, Le Clainche L, Bokov P, Dudoignon B, Fleurence E, Bergounioux J, Mbieleu B, Breining A, Giovannin-Chami L, Fina A, Ollivier M, Gachelin E, Perisson C, Pervillé A, Barzic A, Cros P, Jokic M, Labbé G, Diaz V, Coutier L, Fauroux B, Taytard J. Pediatric long-term noninvasive respiratory support in children with central nervous system disorders. Pediatr Pulmonol 2024; 59:642-651. [PMID: 38088209 DOI: 10.1002/ppul.26796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024]
Abstract
RATIONALE The use of long-term noninvasive respiratory support is increasing in children along with an extension of indications, in particular in children with central nervous system (CNS) disorders. OBJECTIVE The aim of this study was to describe the characteristics of children with CNS disorders treated with long-term noninvasive respiratory support in France. METHODS Data were collected from 27 French pediatric university centers through an anonymous questionnaire filled for every child treated with noninvasive ventilatory support ≥3 months on 1st June 2019. MAIN RESULTS The data of 182 patients (55% boys, median age: 10.2 [5.4;14.8] years old [range: 0.3-25]) were collected: 35 (19%) patients had nontumoral spinal cord injury, 22 (12%) CNS tumors, 63 (35%) multiple disabilities, 26 (14%) central alveolar hypoventilation and 36 (20%) other CNS disorders. Seventy five percent of the patients were treated with noninvasive ventilation (NIV) and 25% with continuous positive airway pressure (CPAP). The main investigations performed before CPAP/NIV initiation were nocturnal gas exchange recordings, alone or coupled with poly(somno)graphy (in 29% and 34% of the patients, respectively). CPAP/NIV was started in an acute setting in 10% of the patients. Median adherence was 8 [6;10] hours/night, with 12% of patients using treatment <4 h/day. Nasal mask was the most common interface (70%). Airway clearance techniques were used by 31% of patients. CONCLUSION CPAP/NIV may be a therapeutic option in children with CNS disorders. Future studies should assess treatment efficacy and patient reported outcome measures.
Collapse
Affiliation(s)
- Marion Carrara
- Department of Pediatric Pulmonology, AP-HP, Hôpital Armand Trousseau, Paris, France
| | - Guillaume Aubertin
- Department of Pediatric Pulmonology, AP-HP, Hôpital Armand Trousseau, Paris, France
- Sorbonne Université, INSERM UMR-S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Centre de pneumologie de l'enfant, Ramsay Générale de Santé, Paris, France
| | - Sonia Khirani
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- Université Paris Cité, VIFASOM, Paris, France
- ASV Santé, Gennevilliers, France
| | - Bruno Massenavette
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Bron, France
| | - Priscille Bierme
- Pediatric Pulmonology and Allergology Unit, Hospices Civils de Lyon, Bron, France
| | - Lucie Griffon
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- Université Paris Cité, VIFASOM, Paris, France
| | - Iulia Ioan
- Department of Pediatric, University Children's Hospital, CHRU Nancy; Université de Lorraine, DevAH, Nancy, France
| | - Cyril Schweitzer
- Department of Pediatric, University Children's Hospital, CHRU Nancy; Université de Lorraine, DevAH, Nancy, France
| | - Alexandra Binoche
- Pediatric Intensive Care Unit, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Marie-Emilie Lampin
- Pediatric Intensive Care Unit, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Clémence Mordacq
- Pediatic Pulmonology and Allergology Unit, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - Robert Rubinsztajn
- Department of Pediatric orthopedic surgery, Hôpital Necker-Enfants malades, Paris, France
| | | | - François Galode
- Pediatric Pulmonology Unit, Hôpital Pellegrin-Enfants, Bordeaux, France
| | - Stéphanie Bui
- Pediatric Pulmonology Unit, Hôpital Pellegrin-Enfants, Bordeaux, France
| | - Eglantine Hullo
- Pediatric Pulmonology Unit, Hôpital Couple-Enfant, CHU Grenoble, Grenoble, France
| | - Arnaud Becourt
- Pediatric Pulmonology Department, CHU Amiens Picardie, Amiens, France
| | - Marc Lubrano
- Respiratory Diseases, Allergy and CF Unit, Department of Pediatric, University Hospital Charles Nicolle, Rouen, France
| | - Johan Moreau
- Department of Pediatric Cardiology and Pulmonology, Montpellier University Hospital, Montpellier, France
- Physiology and Experimental Biology of Heart and Muscles Laboratory-PHYMEDEXP, UMR CNRS 9214, INSERM U1046, University of Montpellier, Montpellier, France
| | - Marie-Catherine Renoux
- Department of Pediatric Cardiology and Pulmonology, Montpellier University Hospital, Montpellier, France
| | - Stefan Matecki
- Department of Pediatric Cardiology and Pulmonology, Montpellier University Hospital, Montpellier, France
- Functional Exploration Laboratory, University Hospital, Montpellier, France
| | - Nathalie Stremler
- Pediatric Ventilation Unit, Department of Pediatric, AP-HM, Hôpital La Timone, Marseille, France
| | | | - Julie Mazenq
- Pediatric Ventilation Unit, Department of Pediatric, AP-HM, Hôpital La Timone, Marseille, France
| | - Elodie Sigur
- Pediatric Pulmonology and Allergology Unit, Hôpital des Enfants, Toulouse, France
| | - Géraldine Labouret
- Pediatric Pulmonology and Allergology Unit, Hôpital des Enfants, Toulouse, France
| | - Anne-Laure Genevois
- Pediatric Pulmonology and Allergology Unit, Hôpital des Enfants, Toulouse, France
| | - Rachel Heyman
- Pediatric Unit, Department of Physical Medicine and Rehabilitation, Hôpital Pontchaillou, Rennes, France
| | - Michael Pomedio
- Pediatric Intensive Care Unit, American Memorial Hospital, CHU Reims, Reims, France
| | - Alexandra Masson
- Pediatric Unit, Hôpital de la Mère et de l'Enfant, Limoges, France
| | - Pauline Hangard
- Pediatric Unit, Hôpital de la Mère et de l'Enfant, Limoges, France
| | - Céline Menetrey
- Pediatric Unit, Hôpital de la Mère et de l'Enfant, Limoges, France
| | - Laurence Le Clainche
- Pediatric Noninvasive Ventilation Unit, AP-HP, Hôpital Robert Debré, Paris, France
| | - Plamen Bokov
- Pediatric Noninvasive Ventilation Unit, AP-HP, Hôpital Robert Debré, Paris, France
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
| | - Benjamin Dudoignon
- Pediatric Noninvasive Ventilation Unit, AP-HP, Hôpital Robert Debré, Paris, France
| | | | - Jean Bergounioux
- Pediatric Intensive Care Unit, AP-HP, Hôpital Raymond Poincaré, Garches, France
| | - Blaise Mbieleu
- Pediatric Intensive Care Unit, AP-HP, Hôpital Raymond Poincaré, Garches, France
| | | | - Lisa Giovannin-Chami
- Department of Pediatric Pulmonology and Allergology, Hôpitaux pédiatriques de Nice CHU-Lenval, Nice, France
| | - Agnes Fina
- Department of Pediatric Pulmonology and Allergology, Hôpitaux pédiatriques de Nice CHU-Lenval, Nice, France
| | | | - Elsa Gachelin
- Department of Pediatric, CHU Félix Guyon, Saint Denis, La Réunion, France
| | - Caroline Perisson
- Department of Pediatric, CHU Sud Réunion, Saint Pierre, La Réunion, France
| | - Anne Pervillé
- Department of Pédiatrics, Hôpital d'Enfants-ASFA, Saint Denis, La Réunion, France
| | | | | | - Mickaël Jokic
- Pediatric Intensive Care Unit, CHU de Caen Normandie, Caen, France
| | - Guillaume Labbé
- Pediatric Pulmonology and Allergology Unit, CHU d'Estaing, Clermont-Ferrand, France
| | - Véronique Diaz
- Department of Respiratory Physiology, CHU Poitiers, Poitiers, France
| | - Laurianne Coutier
- Pediatric Pulmonology and Allergology Unit, Hospices Civils de Lyon, Bron, France
| | - Brigitte Fauroux
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker-Enfants malades, Paris, France
- Université Paris Cité, VIFASOM, Paris, France
| | - Jessica Taytard
- Department of Pediatric Pulmonology, AP-HP, Hôpital Armand Trousseau, Paris, France
- INSERM UMR-S 1158 "Neurophysiologie Respiratoire Expérimentale et Clinique", Sorbonne Université, Paris, France, Paris, France
| |
Collapse
|
9
|
Sadhu C, Lyons C, Oh J, Jagadeeswaran I, Gray SJ, Sinnett SE. The Efficacy of a Human-Ready mini MECP2 Gene Therapy in a Pre-Clinical Model of Rett Syndrome. Genes (Basel) 2023; 15:31. [PMID: 38254921 PMCID: PMC10815157 DOI: 10.3390/genes15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Inactivating mutations and the duplication of methyl-CpG binding protein 2 (MeCP2), respectively, mediate Rett syndrome (RTT) and MECP2 duplication syndrome. These disorders underscore the conceptual dose-dependent risk posed by MECP2 gene therapy for mosaic RTT patients. Recently, a miRNA-Responsive Autoregulatory Element (miRARE) mitigated the dose-dependent toxicity posed by self-complementary adeno-associated viral vector serotype 9 (AAV9) miniMECP2 gene therapy (scAAV9/miniMECP2-myc) in mice. Here, we report an efficacy assessment for the human-ready version of this regulated gene therapy (TSHA-102) in male Mecp2-/y knockout (KO) mice after intracerebroventricular (ICV) administration at postnatal day 2 (P2) and after intrathecal (IT) administration at P7, P14 (±immunosuppression), and P28 (±immunosuppression). We also report qPCR studies on KO mice treated at P7-P35; protein analyses in KO mice treated at P38; and a survival safety study in female adult Mecp2-/+ mice. In KO mice, TSHA-102 improved respiration, weight, and survival across multiple doses and treatment ages. TSHA-102 significantly improved the front average stance and swing times relative to the front average stride time after P14 administration of the highest dose for that treatment age. Viral genomic DNA and miniMECP2 mRNA were present in the CNS. MiniMeCP2 protein expression was higher in the KO spinal cord compared to the brain. In female mice, TSHA-102 permitted survivals that were similar to those of vehicle-treated controls. In all, these pivotal data helped to support the regulatory approval to initiate a clinical trial for TSHA-102 in RTT patients (clinical trial identifier number NCT05606614).
Collapse
Affiliation(s)
- Chanchal Sadhu
- Formerly of Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Christopher Lyons
- Formerly of the Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Jiyoung Oh
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Indumathy Jagadeeswaran
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| | - Sarah E. Sinnett
- Department of Pediatrics, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center (UTSWMC), Dallas, TX 75390, USA
| |
Collapse
|
10
|
Whitaker-Fornek JR, Jenkins PM, Levitt ES. Inhibitory synaptic transmission is impaired in the Kölliker-Fuse of male, but not female, Rett syndrome mice. J Neurophysiol 2023; 130:1578-1587. [PMID: 37965930 PMCID: PMC11068392 DOI: 10.1152/jn.00327.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that mainly affects females due to silencing mutations in the X-linked MECP2 gene. One of the most troubling symptoms of RTT is breathing irregularity, including apneas, breath-holds, and hyperventilation. Mice with silencing mutations in Mecp2 exhibit breathing abnormalities similar to human patients and serve as useful models for studying mechanisms underlying breathing problems in RTT. Previous work implicated the pontine, respiratory-controlling Kölliker-Fuse (KF) in the breathing problems in RTT. The goal of this study was to test the hypothesis that inhibitory synaptic transmission is deficient in KF neurons from symptomatic male and female RTT mice. We performed whole cell voltage-clamp recordings from KF neurons in acute brain slices to examine spontaneous and electrically evoked inhibitory post-synaptic currents (IPSCs) in RTT mice and age- and sex-matched wild-type mice. The frequency of spontaneous IPSCs was reduced in KF neurons from male RTT mice but surprisingly not in female RTT mice. In addition, electrically evoked IPSCs were less reliable in KF neurons from male, but not female, RTT mice, which was positively correlated with paired-pulse facilitation, indicating decreased probability of release. KF neurons from male RTT mice were also more excitable and exhibited shorter-duration action potentials. Increased excitability of KF neurons from male mice was not explained by changes in axon initial segment length. These findings indicate impaired inhibitory neurotransmission and increased excitability of KF neurons in male but not female RTT mice and suggest that sex-dependent mechanisms contribute to breathing problems in RTT.NEW & NOTEWORTHY Kölliker-Fuse (KF) neurons in acute brain slices from male Rett syndrome (RTT) mice receive reduced inhibitory synaptic inputs compared with wild-type littermates. In female RTT mice, inhibitory transmission was not different in KF neurons compared with controls. The results from this study show that sex-specific alterations in synaptic transmission occur in the KF of RTT mice.
Collapse
Affiliation(s)
- Jessica R Whitaker-Fornek
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Erica S Levitt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
11
|
Czerwonogrodzka-Senczyna A, Milewska M, Kwiecień P, Szczałuba K. Diet and Nutritional Status of Polish Girls with Rett Syndrome-A Case-Control Study. Nutrients 2023; 15:3334. [PMID: 37571271 PMCID: PMC10420679 DOI: 10.3390/nu15153334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: Rett syndrome may be considered a disease strongly associated with nutritional disorders that are likely to require special management strategies, extending beyond what is usually required for children with other developmental disorders. The aim of the study was to assess the nutritional status and diet of Polish girls with Rett syndrome. (2) Methods: Each patient (study group = 49, control group = 22) underwent anthropometric measurements, including body weight and height, waist, hip and arm circumference, and skinfold measurement. The assessment of the diet was based on the analysis of 7-day menus and the Food Frequency Questionnaire (FFQ-6). Data were analyzed using Statistica 13.3. (3) Results: The majority of the girls with Rett syndrome were deficient in weight and height, and consumed fewer calories, less protein, dietary fiber, calcium, and iron than the control group. They also drank less fluid. Soft products that were easy to chew and considered to be high in energy value were significantly more common in the menus. (4) Conclusions: Girls with Rett syndrome are characterized by weight deficiencies, poor growth that deteriorates with age, and are at risk of food shortages. Various nutritional intervention strategies should be explored to reduce and, if possible, prevent malnutrition and cachexia in such patients.
Collapse
Affiliation(s)
| | - Magdalena Milewska
- Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, 01-445 Warsaw, Poland;
| | | | - Krzysztof Szczałuba
- Department of Medical Genetics, 1st Faculty of Medicine, Medical University of Warsaw, 01-445 Warsaw, Poland;
| |
Collapse
|
12
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|