1
|
Tang Y, Wu X, Li J, Li Y, Xu X, Li G, Zhang P, Qin C, Wu LJ, Tang Z, Tian DS. The Emerging Role of Microglial Hv1 as a Target for Immunomodulation in Myelin Repair. Aging Dis 2024; 15:1176-1203. [PMID: 38029392 PMCID: PMC11081154 DOI: 10.14336/ad.2023.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
In the central nervous system (CNS), the myelin sheath ensures efficient interconnection between neurons and contributes to the regulation of the proper function of neuronal networks. The maintenance of myelin and the well-organized subtle process of myelin plasticity requires cooperation among myelin-forming cells, glial cells, and neural networks. The process of cooperation is fragile, and the balance is highly susceptible to disruption by microenvironment influences. Reactive microglia play a critical and complicated role in the demyelination and remyelination process. Recent studies have shown that the voltage-gated proton channel Hv1 is selectively expressed in microglia in CNS, which regulates intracellular pH and is involved in the production of reactive oxygen species, underlying multifaceted roles in maintaining microglia function. This paper begins by examining the molecular mechanisms of demyelination and emphasizes the crucial role of the microenvironment in demyelination. It focuses specifically on the role of Hv1 in myelin repair and its therapeutic potential in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Zhang Z, Zhou H, Zhou J. Heterogeneity and Proliferative and Differential Regulators of NG2-glia in Physiological and Pathological States. Curr Med Chem 2021; 27:6384-6406. [PMID: 31333083 DOI: 10.2174/0929867326666190717112944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
NG2-glia, also called Oligodendrocyte Precursor Cells (OPCs), account for approximately 5%-10% of the cells in the developing and adult brain and constitute the fifth major cell population in the central nervous system. NG2-glia express receptors and ion channels involved in rapid modulation of neuronal activities and signaling with neuronal synapses, which have functional significance in both physiological and pathological states. NG2-glia participate in quick signaling with peripheral neurons via direct synaptic touches in the developing and mature central nervous system. These distinctive glia perform the unique function of proliferating and differentiating into oligodendrocytes in the early developing brain, which is critical for axon myelin formation. In response to injury, NG2-glia can proliferate, migrate to the lesions, and differentiate into oligodendrocytes to form new myelin sheaths, which wrap around damaged axons and result in functional recovery. The capacity of NG2-glia to regulate their behavior and dynamics in response to neuronal activity and disease indicate their critical role in myelin preservation and remodeling in the physiological state and in repair in the pathological state. In this review, we provide a detailed summary of the characteristics of NG2-glia, including their heterogeneity, the regulators of their proliferation, and the modulators of their differentiation into oligodendrocytes.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, the Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
3
|
Extrinsic Factors Driving Oligodendrocyte Lineage Cell Progression in CNS Development and Injury. Neurochem Res 2020; 45:630-642. [PMID: 31997102 PMCID: PMC7058689 DOI: 10.1007/s11064-020-02967-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes (OLs) generate myelin membranes for the rapid propagation of electrical signals along axons in the central nervous system (CNS) and provide metabolites to support axonal integrity and function. Differentiation of OLs from oligodendrocyte progenitor cells (OPCs) is orchestrated by a multitude of intrinsic and extrinsic factors in the CNS. Disruption of this process, or OL loss in the developing or adult brain, as observed in various neurological conditions including hypoxia/ischemia, stroke, and demyelination, results in axonal dystrophy, neuronal dysfunction, and severe neurological impairments. While much is known regarding the intrinsic regulatory signals required for OL lineage cell progression in development, studies from pathological conditions highlight the importance of the CNS environment and external signals in regulating OL genesis and maturation. Here, we review the recent findings in OL biology in the context of the CNS physiological and pathological conditions, focusing on extrinsic factors that facilitate OL development and regeneration.
Collapse
|
4
|
Marin MA, Carmichael ST. Mechanisms of demyelination and remyelination in the young and aged brain following white matter stroke. Neurobiol Dis 2019; 126:5-12. [DOI: 10.1016/j.nbd.2018.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 01/01/2023] Open
|
5
|
Yousefi F, Lavi Arab F, Saeidi K, Amiri H, Mahmoudi M. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol 2018; 328:20-34. [PMID: 30557687 DOI: 10.1016/j.jneuroim.2018.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which predominantly affect young adults and undergo heavy socioeconomic burdens. Conventional therapeutic modalities for MS mostly downregulate aggressive immune responses and are almost insufficient for management of progressive course of the disease. Mesenchymal stem cells (MSCs), due to both immunomodulatory and neuroprotective properties have been known as practical cells for treatment of neurodegenerative diseases like MS. However, clinical translation of MSCs is associated with some limitations such as short-life engraftment duration, little in vivo trans-differentiation and restricted accessibility into damaged sites. Therefore, laboratory manipulation of MSCs can improve efficacy of MSCs transplantation in MS patients. In this review, we discuss several novel approaches, which can potentially enhance MSCs capabilities for treating MS.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kolsoum Saeidi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Collar occupancy: A new quantitative imaging tool for morphometric analysis of oligodendrocytes. J Neurosci Methods 2017; 294:122-135. [PMID: 29174019 DOI: 10.1016/j.jneumeth.2017.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oligodendrocytes (OL) are the myelinating cells of the central nervous system. OL differentiation from oligodendrocyte progenitor cells (OPC) is accompanied by characteristic stereotypical morphological changes. Quantitative imaging of those morphological alterations during OPC differentiation is commonly used for characterization of new molecules in cell differentiation and myelination and screening of new pro-myelinating drugs. Current available imaging analysis methods imply a non-automated morphology assessment, which is time-consuming and prone to user subjective evaluation. NEW METHOD Here, we describe an automated high-throughput quantitative image analysis method entitled collar occupancy that allows morphometric ranking of different stages of in vitro OL differentiation in a high-content analysis format. Collar occupancy is based on the determination of the percentage of area occupied by OPC/OL cytoplasmic protrusions within a defined region that contains the protrusion network, the collar. RESULTS We observed that more differentiated cells have higher collar occupancy and, therefore, this parameter correlates with the degree of OL differentiation. COMPARISON WITH EXISTING METHODS In comparison with the method of manual categorization, we found the collar occupancy to be more robust and unbiased. Moreover, when coupled with myelin basic protein (MBP) staining to quantify the percentage of myelinating cells, we were able to evaluate the role of new molecules in OL differentiation and myelination, such as Dusp19 and Kank2. CONCLUSIONS Altogether, we have successfully developed an automated and quantitative method to morphologically characterize OL differentiation in vitro that can be used in multiple studies of OL biology.
Collapse
|
8
|
Song FE, Huang JL, Lin SH, Wang S, Ma GF, Tong XP. Roles of NG2-glia in ischemic stroke. CNS Neurosci Ther 2017; 23:547-553. [PMID: 28317272 DOI: 10.1111/cns.12690] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that a widely distributed class of glial cells, termed NG2-glia, engages in rapid signaling with surrounding neurons through direct synaptic contacts in the developing and mature central nervous system (CNS). This unique glial cell group has a typical function of proliferating and differentiating into oligodendrocytes during early development of the brain, which is crucial to axon myelin formation. Therefore, NG2-glia are also called oligodendrocyte precursor cells (OPCs). In vitro and in vivo studies reveal that NG2-glia expressing receptors and ion channels demonstrate functional significance for rapid signaling with neuronal synapses and modulation of neuronal activities in both physiological and pathological conditions. Although it is well known that NG2-glia play an important role in demyelinating diseases such as multiple sclerosis, little is known about how NG2-glia or OPCs impact neurons and brain function following ischemic injury. This review summarizes recent progress on the roles of NG2-glia in ischemic stroke and illustrates new approaches for targeting NG2-glia in the brain to treat this disease.
Collapse
Affiliation(s)
- Fei-Er Song
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Lv Huang
- Department of Clinical Medicine, Research-Based Learning training program (RBL2015-29), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Si-Han Lin
- Department of Clinical Medicine, Research-Based Learning training program (RBL2015-29), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuo Wang
- Department of Clinical Medicine, Research-Based Learning training program (RBL2015-29), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Fen Ma
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Tong
- Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Chamberlain KA, Chapey KS, Nanescu SE, Huang JK. Creatine Enhances Mitochondrial-Mediated Oligodendrocyte Survival After Demyelinating Injury. J Neurosci 2017; 37:1479-1492. [PMID: 28069926 PMCID: PMC5299567 DOI: 10.1523/jneurosci.1941-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/03/2016] [Accepted: 12/28/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase (Gamt) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt-deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination.SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by oligodendrocyte death, including multiple sclerosis.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Department of Biology and
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia 20057
| | | | | | - Jeffrey K Huang
- Department of Biology and
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia 20057
| |
Collapse
|
10
|
Chu T, Shields LBE, Zhang YP, Feng SQ, Shields CB, Cai J. CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist 2017; 23:627-648. [PMID: 29283028 DOI: 10.1177/1073858416685690] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The chemokine CXCL12 plays a vital role in regulating the development of the central nervous system (CNS) by binding to its receptors CXCR4 and CXCR7. Recent studies reported that the CXCL12/CXCR4/CXCR7 axis regulates both embryonic and adult oligodendrocyte precursor cells (OPCs) in their proliferation, migration, and differentiation. The changes in the expression and distribution of CXCL12 and its receptors are tightly associated with the pathological process of demyelination in multiple sclerosis (MS), suggesting that modulating the CXCL12/CXCR4/CXCR7 axis may benefit myelin repair by enhancing OPC recruitment and differentiation. This review aims to integrate the current findings of the CXCL12/CXCR4/CXCR7 signaling pathway in the CNS and to highlight its role in oligodendrocyte development and demyelinating diseases. Furthermore, this review provides potential therapeutic strategies for myelin repair by analyzing the relevance between the pathological changes and the regulatory roles of CXCL12/CXCR4/CXCR7 during MS.
Collapse
Affiliation(s)
- Tianci Chu
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lisa B E Shields
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Yi Ping Zhang
- 2 Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, USA
| | - Shi-Qing Feng
- 3 Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | | | - Jun Cai
- 1 Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.,4 Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
11
|
Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice. Proc Natl Acad Sci U S A 2016; 113:E8453-E8462. [PMID: 27956620 DOI: 10.1073/pnas.1615322113] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
White matter stroke is a distinct stroke subtype, accounting for up to 25% of stroke and constituting the second leading cause of dementia. The biology of possible tissue repair after white matter stroke has not been determined. In a mouse stroke model, white matter ischemia causes focal damage and adjacent areas of axonal myelin disruption and gliosis. In these areas of only partial damage, local white matter progenitors respond to injury, as oligodendrocyte progenitors (OPCs) proliferate. However, OPCs fail to mature into oligodendrocytes (OLs) even in regions of demyelination with intact axons and instead divert into an astrocytic fate. Local axonal sprouting occurs, producing an increase in unmyelinated fibers in the corpus callosum. The OPC maturation block after white matter stroke is in part mediated via Nogo receptor 1 (NgR1) signaling. In both aged and young adult mice, stroke induces NgR1 ligands and down-regulates NgR1 inhibitors during the peak OPC maturation block. Nogo ligands are also induced adjacent to human white matter stroke in humans. A Nogo signaling blockade with an NgR1 antagonist administered after stroke reduces the OPC astrocytic transformation and improves poststroke oligodendrogenesis in mice. Notably, increased white matter repair in aged mice is translated into significant poststroke motor recovery, even when NgR1 blockade is provided during the chronic time points of injury. These data provide a perspective on the role of NgR1 ligand function in OPC fate in the context of a specific and common type of stroke and show that it is amenable to systemic intervention to promote recovery.
Collapse
|
12
|
Psachoulia K, Chamberlain KA, Heo D, Davis SE, Paskus JD, Nanescu SE, Dupree JL, Wynn TA, Huang JK. IL4I1 augments CNS remyelination and axonal protection by modulating T cell driven inflammation. Brain 2016; 139:3121-3136. [PMID: 27797811 PMCID: PMC5382940 DOI: 10.1093/brain/aww254] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023] Open
Abstract
SEE PLUCHINO AND PERUZZOTTI-JAMETTI DOI101093/AWW266 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Myelin regeneration (remyelination) is a spontaneous process that occurs following central nervous system demyelination. However, for reasons that remain poorly understood, remyelination fails in the progressive phase of multiple sclerosis. Emerging evidence indicates that alternatively activated macrophages in central nervous system lesions are required for oligodendrocyte progenitor differentiation into remyelinating oligodendrocytes. Here, we show that an alternatively activated macrophage secreted enzyme, interleukin-four induced one (IL4I1), is upregulated at the onset of inflammation resolution and remyelination in mouse central nervous system lesions after lysolecithin-induced focal demyelination. Focal demyelination in mice lacking IL4I1 or interleukin 4 receptor alpha (IL4Rα) results in increased proinflammatory macrophage density, remyelination impairment, and axonal injury in central nervous system lesions. Conversely, recombinant IL4I1 administration into central nervous system lesions reduces proinflammatory macrophage density, enhances remyelination, and rescues remyelination impairment in IL4Rα deficient mice. We find that IL4I1 does not directly affect oligodendrocyte differentiation, but modulates inflammation by reducing interferon gamma and IL17 expression in lesioned central nervous system tissues, and in activated T cells from splenocyte cultures. Remarkably, intravenous injection of IL4I1 into mice with experimental autoimmune encephalomyelitis at disease onset significantly reversed disease severity, resulting in recovery from hindlimb paralysis. Analysis of post-mortem tissues reveals reduced axonal dystrophy in spinal cord, and decreased CD4+ T cell populations in spinal cord and spleen tissues. These results indicate that IL4I1 modulates inflammation by regulating T cell expansion, thereby permitting the formation of a favourable environment in the central nervous system tissue for remyelination. Therefore, IL4I1 is a potentially novel therapeutic for promoting central nervous system repair in multiple sclerosis.
Collapse
Affiliation(s)
| | | | - Dongeun Heo
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Stephanie E Davis
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Jeremiah D Paskus
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Sonia E Nanescu
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Jeffrey L Dupree
- 2 Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas A Wynn
- 3 Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey K Huang
- 1 Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
13
|
Moyon S, Liang J, Casaccia P. Epigenetics in NG2 glia cells. Brain Res 2016; 1638:183-198. [PMID: 26092401 PMCID: PMC4683112 DOI: 10.1016/j.brainres.2015.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022]
Abstract
The interplay of transcription and epigenetic marks is essential for oligodendrocyte progenitor cell (OPC) proliferation and differentiation during development. Here, we review the recent advances in this field and highlight mechanisms of transcriptional repression and activation involved in OPC proliferation, differentiation and plasticity. We also describe how dysregulation of these epigenetic events may affect demyelinating disorders, and consider potential ways to manipulate NG2 cell behavior through modulation of the epigenome. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Sarah Moyon
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
14
|
Curbing Inflammation in Multiple Sclerosis and Endometriosis: Should Mast Cells Be Targeted? Int J Inflam 2015; 2015:452095. [PMID: 26550518 PMCID: PMC4624887 DOI: 10.1155/2015/452095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Inflammatory diseases and conditions can arise due to responses to a variety of external and internal stimuli. They can occur acutely in response to some stimuli and then become chronic leading to tissue damage and loss of function. While a number of cell types can be involved, mast cells are often present and can be involved in the acute and chronic processes. Recent studies in porcine and rabbit models have supported the concept of a central role for mast cells in a “nerve-mast cell-myofibroblast axis” in some inflammatory processes leading to fibrogenic outcomes. The current review is focused on the potential of extending aspects of this paradigm into treatments for multiple sclerosis and endometriosis, diseases not usually thought of as having common features, but both are reported to have activation of mast cells involved in their respective disease processes. Based on the discussion, it is proposed that targeting mast cells in these diseases, particularly the early phases, may be a fruitful avenue to control the recurring inflammatory exacerbations of the conditions.
Collapse
|
15
|
Mallucci G, Peruzzotti-Jametti L, Bernstock JD, Pluchino S. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis. Prog Neurobiol 2015; 127-128:1-22. [PMID: 25802011 PMCID: PMC4578232 DOI: 10.1016/j.pneurobio.2015.02.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/24/2014] [Accepted: 02/27/2015] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis is one of the most common causes of chronic neurological disability beginning in early to middle adult life. Multiple sclerosis is idiopathic in nature, yet increasing correlative evidence supports a strong association between one's genetic predisposition, the environment and the immune system. Symptoms of multiple sclerosis have primarily been shown to result from a disruption in the integrity of myelinated tracts within the white matter of the central nervous system. However, recent research has also highlighted the hitherto underappreciated involvement of gray matter in multiple sclerosis disease pathophysiology, which may be especially relevant when considering the accumulation of irreversible damage and progressive disability. This review aims at providing a comprehensive overview of the interplay between inflammation, glial/neuronal damage and regeneration throughout the course of multiple sclerosis via the analysis of both white and gray matter lesional pathology. Further, we describe the common pathological mechanisms underlying both relapsing and progressive forms of multiple sclerosis, and analyze how current (as well as future) treatments may interact and/or interfere with its pathology. Understanding the putative mechanisms that drive disease pathogenesis will be key in helping to develop effective therapeutic strategies to prevent, mitigate, and treat the diverse morbidities associated with multiple sclerosis.
Collapse
Affiliation(s)
- Giulia Mallucci
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
- Department of Brain and Behavioural Sciences, National Neurological Institute C. Mondino, University of Pavia, 27100 Pavia, Italy
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
| | - Joshua D. Bernstock
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bldg10/Rm5B06, MSC 1401, 10 Center Drive, Bethesda, MD 20892, USA
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Wellcome Trust-MRC Stem Cell Institute and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY, UK
| |
Collapse
|
16
|
Mikkers HM, Freund C, Mummery CL, Hoeben RC. Cell replacement therapies: is it time to reprogram? Hum Gene Ther 2014; 25:866-74. [PMID: 25141889 DOI: 10.1089/hum.2014.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hematopoietic stem cell transplantations have become a very successful therapeutic approach to treat otherwise life-threatening blood disorders. It is thought that stem cell transplantation may also become a feasible treatment option for many non-blood-related diseases. So far, however, the limited availability of human leukocyte antigen-matched donors has hindered development of some cell replacement therapies. The Nobel-prize rewarded finding that pluripotency can be induced in somatic cells via expression of a few transcription factors has led to a revolution in stem cell biology. The possibility to change the fate of somatic cells by expressing key transcription factors has been used not only to generate pluripotent stem cells, but also for directly converting somatic cells into fully differentiated cells of another lineage or more committed progenitor cells. These approaches offer the prospect of generating cell types with a specific genotype de novo, which would circumvent the problems associated with allogeneic cell transplantations. This technology has generated a plethora of new disease-specific research efforts, from studying disease pathogenesis to therapeutic interventions. Here we will discuss the opportunities in this booming field of cell biology and summarize how the scientists in the Netherlands have joined efforts in one area to exploit the new technology.
Collapse
Affiliation(s)
- Harald M Mikkers
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , 2300RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
17
|
Matthews PM, Geraghty OC. Understanding the pharmacology of stroke and multiple sclerosis through imaging. Curr Opin Pharmacol 2014; 14:34-41. [PMID: 24565010 DOI: 10.1016/j.coph.2013.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 01/09/2023]
Abstract
Stroke and multiple sclerosis (MS) illustrate how clinical imaging can facilitate early phase drug development and most effective medicine use in the clinic. Imaging has enhanced understanding of the dynamics of evolution of disease pathophysiology, better defining treatment targets. Imaging measures can enable stratification of patients for clinical trials and for most cost-effective use in the clinic. In MS, imaging has allowed smaller Phase II clinical trials and contributed to medicine differentiation. It also has led to consideration of suppression of inflammation and neurodegeneration as meaningfully distinct pharmacodynamic concepts. Similar imaging measures can be used in preclinical and clinical studies. Testing translational pharmacological hypotheses using clinical imaging more explicitly could improve the success of the next generation of stroke therapeutics.
Collapse
Affiliation(s)
- Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK; Neurosciences Therapeutic Area Unit, GlaxoSmithKline Research and Development, Brentford, UK.
| | - Olivia C Geraghty
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK
| |
Collapse
|
18
|
de la Pena I, Pabon M, Acosta S, Sanberg PR, Tajiri N, Kaneko Y, Borlongan CV. Oligodendrocytes engineered with migratory proteins as effective graft source for cell transplantation in multiple sclerosis. CELL MEDICINE 2014; 6:123-127. [PMID: 24999443 DOI: 10.3727/215517913x674144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Multiple sclerosis (MS) is characterized by widespread immunomodulatory demyelination of the CNS resulting in nerve cell dysfunction. Accordingly, treatment strategies have been centered on immunodulation and remyelination, with the former primarily focused on reducing the pathology rather than enhancing myelin repair which the latter targets. While conceding to the emerging view of heterogeneity in the pathology of MS, which precludes variations in degree of immune response (i.e., inflammation) and demyelination, the concept of enhancing myelin repair is appealing since it is likely to provide both disease-reducing and disease-inhibiting therapeutic approach to MS. In this regard, we and several others, have proposed that cell replacement therapy is an effective strategy to repair the myelin in MS. Here, we hypothesize that transplantation of mouse bone marrow-derived oligodendrocytes (BMDOs) and BMDOs transfected with Ephrin proteins (BMDO+Ephrin), which are known to enhance cell and axonal migratory capacity, may produce therapeutic benefits in animal models of MS.
Collapse
Affiliation(s)
- Ike de la Pena
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair. University of South Florida, Morsani College of Medicine 12901 Bruce B. Downs Blvd., Tampa, FL 33612
| | - Mibel Pabon
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair. University of South Florida, Morsani College of Medicine 12901 Bruce B. Downs Blvd., Tampa, FL 33612
| | - Sandra Acosta
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair. University of South Florida, Morsani College of Medicine 12901 Bruce B. Downs Blvd., Tampa, FL 33612
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair. University of South Florida, Morsani College of Medicine 12901 Bruce B. Downs Blvd., Tampa, FL 33612
| | - Naoki Tajiri
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair. University of South Florida, Morsani College of Medicine 12901 Bruce B. Downs Blvd., Tampa, FL 33612
| | - Yuji Kaneko
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair. University of South Florida, Morsani College of Medicine 12901 Bruce B. Downs Blvd., Tampa, FL 33612
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair. University of South Florida, Morsani College of Medicine 12901 Bruce B. Downs Blvd., Tampa, FL 33612
| |
Collapse
|
19
|
Johnson RA, Mitchell GS. Common mechanisms of compensatory respiratory plasticity in spinal neurological disorders. Respir Physiol Neurobiol 2013; 189:419-28. [PMID: 23727226 PMCID: PMC3812344 DOI: 10.1016/j.resp.2013.05.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/11/2022]
Abstract
In many neurological disorders that disrupt spinal function and compromise breathing (e.g. ALS, cervical spinal injury, MS), patients often maintain ventilatory capacity well after the onset of severe CNS pathology. In progressive neurodegenerative diseases, patients ultimately reach a point where compensation is no longer possible, leading to catastrophic ventilatory failure. In this brief review, we consider evidence that common mechanisms of compensatory respiratory plasticity preserve breathing capacity in diverse clinical disorders, despite the onset of severe pathology (e.g. respiratory motor neuron denervation and/or death). We propose that a suite of mechanisms, operating at distinct sites in the respiratory control system, underlies compensatory respiratory plasticity, including: (1) increased (descending) central respiratory drive, (2) motor neuron plasticity, (3) plasticity at the neuromuscular junction or spared respiratory motor neurons, and (4) shifts in the balance from more to less severely compromised respiratory muscles. To establish this framework, we contrast three rodent models of neural dysfunction, each posing unique problems for the generation of adequate inspiratory motor output: (1) respiratory motor neuron death, (2) de- or dysmyelination of cervical spinal pathways, and (3) cervical spinal cord injury, a neuropathology with components of demyelination and motor neuron death. Through this contrast, we hope to understand the multilayered strategies used to "fight" for adequate breathing in the face of mounting pathology.
Collapse
Affiliation(s)
- Rebecca A Johnson
- Department of Surgical Sciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, United States.
| | | |
Collapse
|
20
|
Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 2013; 3:1282-324. [PMID: 24961530 PMCID: PMC4061877 DOI: 10.3390/brainsci3031282] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination.
Collapse
|