1
|
Sakai K, Narazaki T, Mori M, Matsumoto T, Aoki K, Fahlman A, Sakamoto KQ. Respiratory flow and tidal volume scale with body mass in sea turtles but not breath duration. Comp Biochem Physiol A Mol Integr Physiol 2025; 305:111855. [PMID: 40189095 DOI: 10.1016/j.cbpa.2025.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
The ventilatory capacity of sea turtles is an important factor in their diving ability because they spend most of their time submerged. However, there is limited information on the relationship between the ventilatory capacity and body mass of sea turtles. To investigate the allometric scaling of the functional ventilatory capacity, we measured respiratory flow, tidal volume, and breath duration of spontaneous breaths in 40 sea turtles from 3 species (loggerhead, Caretta caretta; green, Chelonia mydas; hawksbill, Eretmochelys imbricata) of various body sizes (range: 0.7-120.6 kg) on land and in water. The results showed that the ventilatory capacity did not differ on land or in water. The respiratory flow and tidal volume increased with body mass with an allometric exponent of 0.76-0.80 and 0.87-0.89, respectively. In contrast, the breath duration and the ratio of tidal volume to the maximum lung volume were constant. These results suggest that sea turtles increase respiratory flow by increasing tidal volume with increasing body mass rather than prolonging breath duration, which may allow them to reduce the surface interval to breathe. This study improves the understanding of the ventilatory capacity of sea turtles.
Collapse
Affiliation(s)
- Kino Sakai
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
| | - Tomoko Narazaki
- Faculty of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Masanori Mori
- Port of Nagoya Public Aquarium, Nagoya Port Foundation, Aichi 455-0033, Japan
| | - Tomomi Matsumoto
- Port of Nagoya Public Aquarium, Nagoya Port Foundation, Aichi 455-0033, Japan
| | - Kagari Aoki
- Faculty of Life and Environmental Sciences, Teikyo University of Science, Yamanashi 409-0193, Japan
| | - Andreas Fahlman
- Fundación Oceanogràfic, Gran Vıa Marques del Turia 19, 46005 Valencia, Spain; Global Diving Research, 11540 San Lucar de Barrameda, Spain; Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Kentaro Q Sakamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
2
|
MacMillan S, Burns DP, O'Halloran KD, Evans AM. SubSol-HIe is an AMPK-dependent hypoxia-responsive subnucleus of the nucleus tractus solitarius that coordinates the hypoxic ventilatory response and protects against apnoea in mice. Pflugers Arch 2024; 476:1087-1107. [PMID: 38635058 PMCID: PMC11166843 DOI: 10.1007/s00424-024-02957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/19/2024]
Abstract
Functional magnetic resonance imaging (fMRI) suggests that the hypoxic ventilatory response is facilitated by the AMP-activated protein kinase (AMPK), not at the carotid bodies, but within a subnucleus (Bregma -7.5 to -7.1 mm) of the nucleus tractus solitarius that exhibits right-sided bilateral asymmetry. Here, we map this subnucleus using cFos expression as a surrogate for neuronal activation and mice in which the genes encoding the AMPK-α1 (Prkaa1) and AMPK-α2 (Prkaa2) catalytic subunits were deleted in catecholaminergic cells by Cre expression via the tyrosine hydroxylase promoter. Comparative analysis of brainstem sections, relative to controls, revealed that AMPK-α1/α2 deletion inhibited, with right-sided bilateral asymmetry, cFos expression in and thus activation of a neuronal cluster that partially spanned three interconnected anatomical nuclei adjacent to the area postrema: SolDL (Bregma -7.44 mm to -7.48 mm), SolDM (Bregma -7.44 mm to -7.48 mm) and SubP (Bregma -7.48 mm to -7.56 mm). This approximates the volume identified by fMRI. Moreover, these nuclei are known to be in receipt of carotid body afferent inputs, and catecholaminergic neurons of SubP and SolDL innervate aspects of the ventrolateral medulla responsible for respiratory rhythmogenesis. Accordingly, AMPK-α1/α2 deletion attenuated hypoxia-evoked increases in minute ventilation (normalised to metabolism), reductions in expiration time, and increases sigh frequency, but increased apnoea frequency during hypoxia. The metabolic response to hypoxia in AMPK-α1/α2 knockout mice and the brainstem and spinal cord catecholamine levels were equivalent to controls. We conclude that within the brainstem an AMPK-dependent, hypoxia-responsive subnucleus partially spans SubP, SolDM and SolDL, namely SubSol-HIe, and is critical to coordination of active expiration, the hypoxic ventilatory response and defence against apnoea.
Collapse
Affiliation(s)
- Sandy MacMillan
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - A Mark Evans
- Centre for Discovery Brain Sciences, College of Medicine and Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
3
|
Burggren W, Fahlman A, Milsom W. Breathing patterns and associated cardiovascular changes in intermittently breathing animals: (Partially) correcting a semantic quagmire. Exp Physiol 2024; 109:1051-1065. [PMID: 38502538 PMCID: PMC11215480 DOI: 10.1113/ep091784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Many animal species do not breathe in a continuous, rhythmic fashion, but rather display a variety of breathing patterns characterized by prolonged periods between breaths (inter-breath intervals), during which the heart continues to beat. Examples of intermittent breathing abound across the animal kingdom, from crustaceans to cetaceans. With respect to human physiology, intermittent breathing-also termed 'periodic' or 'episodic' breathing-is associated with a variety of pathologies. Cardiovascular phenomena associated with intermittent breathing in diving species have been termed 'diving bradycardia', 'submersion bradycardia', 'immersion bradycardia', 'ventilation tachycardia', 'respiratory sinus arrhythmia' and so forth. An examination across the literature of terminology applied to these physiological phenomena indicates, unfortunately, no attempt at standardization. This might be viewed as an esoteric semantic problem except for the fact that many of the terms variously used by different authors carry with them implicit or explicit suggestions of underlying physiological mechanisms and even human-associated pathologies. In this article, we review several phenomena associated with diving and intermittent breathing, indicate the semantic issues arising from the use of each term, and make recommendations for best practice when applying specific terms to particular cardiorespiratory patterns. Ultimately, we emphasize that the biology-not the semantics-is what is important, but also stress that confusion surrounding underlying mechanisms can be avoided by more careful attention to terms describing physiological changes during intermittent breathing and diving.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Group, Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - Andreas Fahlman
- Fundación OceanogràficValenciaSpain
- Kolmården Wildlife ParkKolmårdenSweden
- IFMLinkoping UniversityLinkopingSweden
| | - William Milsom
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Karlen-Amarante M, Bassi M, Barbosa RM, Sá JM, Menani JV, Colombari E, Zoccal DB, Colombari DSA. Maternal high-fat diet changes breathing pattern and causes excessive sympathetic discharge in juvenile offspring rat. Am J Physiol Lung Cell Mol Physiol 2023; 325:L662-L674. [PMID: 37786934 DOI: 10.1152/ajplung.00013.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/28/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Early life over-nutrition, as experienced in maternal obesity, is a risk factor for developing cardiorespiratory and metabolic diseases. Here we investigated the effects of high-fat diet (HFD) consumption on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD (O-HFD). Adult female Holtzman rats were given a standard diet (SD) or HFD from 6 wk before gestation to weaning. At weaning (P21), the male offspring from SD dams (O-SD) and O-HFD received SD until the experimental day (P28-P45). Nerve recordings performed in decerebrated in situ preparations demonstrated that O-HFD animals presented abdominal expiratory hyperactivity under resting conditions and higher vasoconstrictor sympathetic activity levels. The latter was associated with blunted respiratory-related oscillations in sympathetic activity, especially in control animals. When exposed to elevated hypercapnia or hypoxia levels, the O-HFD animals mounted similar ventilatory and respiratory motor responses as the control animals. Hypercapnia and hypoxia exposure also increased sympathetic activity in both groups but did not reinstate the respiratory-sympathetic coupling in the O-HFD rats. In freely behaving conditions, O-HFD animals exhibited higher resting pulmonary ventilation and larger variability of arterial pressure levels than the O-SD animals due to augmented sympathetic modulation of blood vessel diameter. Maternal obesity modified the functioning of cardiorespiratory systems in offspring at a young age, inducing active expiration and sympathetic overactivity under resting conditions. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.NEW & NOTEWORTHY Maternal obesity is a risk factor for developing cardiorespiratory and metabolic diseases. This study highlights the changes on the breathing pattern and sympathetic discharge to blood vessels in juvenile offspring from dams fed with HFD. Maternal obesity modified the functioning of cardiorespiratory systems in offspring, inducing active expiration and sympathetic overactivity. These observations represent new evidence about pregnancy-related complications that lead to the development of respiratory distress and hypertension in children of obese mothers.
Collapse
Affiliation(s)
- Marlusa Karlen-Amarante
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Rafaela Moreira Barbosa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jéssica Matheus Sá
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | |
Collapse
|
5
|
Milsom WK, Kinkead R, Hedrick MS, Gilmour K, Perry S, Gargaglioni L, Wang T. Evolution of vertebrate respiratory central rhythm generators. Respir Physiol Neurobiol 2021; 295:103781. [PMID: 34481078 DOI: 10.1016/j.resp.2021.103781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/03/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Tracing the evolution of the central rhythm generators associated with ventilation in vertebrates is hindered by a lack of information surrounding key transitions. To begin with, central rhythm generation has been studied in detail in only a few species from four vertebrate groups, lamprey, anuran amphibians, turtles, and mammals (primarily rodents). Secondly, there is a lack of information regarding the transition from water breathing fish to air breathing amniotes (reptiles, birds, and mammals). Specifically, the respiratory rhythm generators of fish appear to be single oscillators capable of generating both phases of the respiratory cycle (expansion and compression) and projecting to motoneurons in cranial nerves innervating bucco-pharyngeal muscles. In the amniotes we find oscillators capable of independently generating separate phases of the respiratory cycle (expiration and inspiration) and projecting to pre-motoneurons in the ventrolateral medulla that in turn project to spinal motoneurons innervating thoracic and abdominal muscles (reptiles, birds, and mammals). Studies of the one group of amphibians that lie at this transition (the anurans), raise intriguing possibilities but, for a variety of reasons that we explore, also raise unanswered questions. In this review we summarize what is known about the rhythm generating circuits associated with breathing that arise from the different rhombomeric segments in each of the different vertebrate classes. Assuming oscillating circuits form in every pair of rhombomeres in every vertebrate during development, we trace what appears to be the evolutionary fate of each and highlight the questions that remain to be answered to properly understand the evolutionary transitions in vertebrate central respiratory rhythm generation.
Collapse
Affiliation(s)
- W K Milsom
- Department of Zoology, University of British Columbia, Canada.
| | - R Kinkead
- Département de Pédiatrie, Université Laval, Canada
| | - M S Hedrick
- Department of Biological Sciences, California State University, Hayward, CA, USA
| | - K Gilmour
- Department of Biology, University of Ottawa, Canada
| | - S Perry
- Department of Biology, University of Ottawa, Canada
| | - L Gargaglioni
- Departamento de Morfologia e Fisiologia Animal, UNESP, Jaboticabal, Brazil
| | - T Wang
- Department of Zoophysiology, Aarhus University, Denmark
| |
Collapse
|
6
|
Acute intermittent hypoxia evokes ventilatory long-term facilitation and active expiration in unanesthetized rats. Respir Physiol Neurobiol 2021; 294:103768. [PMID: 34343692 DOI: 10.1016/j.resp.2021.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022]
Abstract
Acute intermittent hypoxia (AIH) modifies the functioning of the respiratory network, causing respiratory motor facilitation in anesthetized animals and a compensatory increase in pulmonary ventilation in freely behaving animals. However, it is still unclear whether the ventilatory facilitation induced by AIH in unanesthetized animals is associated with changes in the respiratory pattern. We found that Holtzman male rats (80-150 g) exposed to AIH (10 × 6% O2 for 30-40 s every 5 min, n = 9) exhibited a prolonged (30 min) increase in baseline minute ventilation (P < 0.05) compared to control animals (n = 13), combined with the occurrence of late expiratory peak flow events, suggesting the presence of active expiration. The increase in ventilation after AIH was also accompanied by reductions in arterial CO2 and body temperature (n = 5-6, P < 0.05). The systemic treatment with ketanserin (a 5-HT2 receptor antagonist) before AIH prevented the changes in ventilation and active expiration (n = 11) but potentiated the hypothermic response (n = 5, P < 0.05) when compared to appropriate control rats (n = 13). Our findings indicate that the ventilatory long-term facilitation elicited by AIH exposure in unanesthetized rats is linked to the generation of active expiration by mechanisms that may depend on the activation of serotonin receptors. In contrast, the decrease in body temperature induced by AIH may not require 5-HT2 receptor activation.
Collapse
|
7
|
Oda GM, Leite CAC, Abe AS, Klein W. Effects of different levels of hypoxia and hypercarbia on ventilation and gas exchange in Boa constrictor amaralis and Crotalus durissus (Squamata: Serpentes). Respir Physiol Neurobiol 2021; 294:103747. [PMID: 34302991 DOI: 10.1016/j.resp.2021.103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Ventilation and gas exchange have been studied in relatively few species of snakes, especially regarding their response to environmental hypoxia or hypercarbia. We exposed Crotalus durissus (N = 6) and Boa constrictor (N = 6) to decreasing levels of oxygen (12, 9, 6, 3 % O2) and increasing levels of carbon dioxide (1.5, 3.0, 4.5, 6.0 % CO2) and analyzed the effect of the different gas mixtures on ventilation and gas exchange using open-flow respirometry. Neither hypoxia nor hypercarbia significantly altered the duration of expiration or inspiration, nor their proportions. Both hypoxia and hypercarbia increased minute ventilation, but the decrease in oxygen had a less pronounced effect on ventilation. Gas exchange under normoxic conditions was low and was not significantly affected by hypoxia, but hypercarbia decreased gas exchange significantly in both species. While B. constrictor maintained its respiratory exchange ratio (RER) under hypercarbia between 0.5 and 1.0, C. durissus showed a RER above 1.0 during hypercarbia, due to a significantly greater CO2 excretion. The overall responses of both species to hypercarbia and especially to hypoxia were very similar, which could be associated to similar lifestyles as ambush hunting sit-and-wait predators that are able to ingest large prey items. The observed differences in gas exchange could be related to respiratory systems with macroscopically different structures, possessing only a tracheal lung in C. durissus, but two functional lungs in B. constrictor.
Collapse
Affiliation(s)
- Gustavo Marega Oda
- Programa de Pós-Graduação em Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, São Paulo, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil
| | - Cléo Alacantara Costa Leite
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil
| | - Augusto Shinya Abe
- Departamento de Zoologia, Universidade Estadual Paulista, 13506-900, Rio Claro, São Paulo, Brazil
| | - Wilfried Klein
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
8
|
Takakura AC, Malheiros-Lima MR, Moreira TS. Excitatory and inhibitory modulation of parafacial respiratory neurons in the control of active expiration. Respir Physiol Neurobiol 2021; 289:103657. [PMID: 33781931 DOI: 10.1016/j.resp.2021.103657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 01/21/2023]
Abstract
In order to increase ventilation, the respiratory system engages active expiration through recruitment of abdominal muscles. Here, we reviewed the new advances in the modulation of parafacial respiratory (pF) region to trigger active expiration. In addition, we also made a comprehensive discussion of experiments indicating that the lateral aspect of the pF (pFL) is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the ventral aspect of the pF (pFV) also named the retrotrapezoid nucleus. Recent evidence suggest a complex network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFL is tonically inhibited by inhibitory inputs and also receives excitatory inputs from chemoreceptors (central x peripheral) as well as from catecholaminergic C1 neurons. Therefore, the modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation.
Collapse
Affiliation(s)
- Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil.
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Leirão IP, Zoccal DB, Gargaglioni LH, da Silva GSF. Differential modulation of active expiration during hypercapnia by the medullary raphe in unanesthetized rats. Pflugers Arch 2020; 472:1563-1576. [PMID: 32914212 DOI: 10.1007/s00424-020-02455-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 11/26/2022]
Abstract
Active expiration represents an important mechanism to improve ventilation in conditions of augmented ventilatory demand, such as hypercapnia. While a rostral ventromedullary region, the parafacial respiratory group (pFRG), has been identified as a conditional expiratory oscillator, little is known about how central chemosensitive sites contribute to modulate active expiration under hypercapnia. In this study, we investigated the influence of the medullary raphe in the emergence of phasic expiratory abdominal activity during hypercapnia in unanesthetized adult male rats, in a state-dependent manner. To do so, reverse microdialysis of muscimol (GABAA receptor agonist, 1 mM) or 8-OH-DPAT (5-HT1A agonist, 1 mM) was applied in the MR during sleep and wakefulness periods, both in normocapnic (room air) and hypercapnic conditions (7% CO2). Electromyography (EMG) of diaphragm and abdominal muscles was performed to measure inspiratory and expiratory motor outputs. We found that active expiration did not occur in room air exposure during wakefulness or sleep. However, hypercapnia did recruit active expiration, and differential effects were observed with the drug dialyses in the medullary raphe. Muscimol increased the diaphragm inspiratory motor output and also increased the amplitude and frequency of abdominal expiratory rhythmic activity during hypercapnia in wakefulness periods. On the other hand, the microdialysis of 8-OH-DPAT attenuated hypercapnia-induced active expiration in a state-dependent manner. Our data suggest that the medullary raphe can either inhibit or potentiate respiratory motor activity during hypercapnia, and the balance of these inhibitory or excitatory outputs may determine the expression of active expiration.
Collapse
Affiliation(s)
- Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry of Araraquara (FOAR), São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara (FOAR), São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics. Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, MG, Brazil.
- Departamento de Fisiologia e Biofísica, ICB/UFMG, Avenida Presidente Antônio Carlos, 6627, Campus UFMG, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
10
|
Flor KC, Barnett WH, Karlen-Amarante M, Molkov YI, Zoccal DB. Inhibitory control of active expiration by the Bötzinger complex in rats. J Physiol 2020; 598:4969-4994. [PMID: 32621515 DOI: 10.1113/jp280243] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/21/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Contraction of abdominal muscles at the end of expiration during metabolic challenges (such as hypercapnia and hypoxia) improves pulmonary ventilation. The emergence of this active expiratory pattern requires the recruitment of the expiratory oscillator located on the ventral surface of the medulla oblongata. Here we show that an inhibitory circuitry located in the Bötzinger complex is an important source of inhibitory drive to the expiratory oscillator. This circuitry, mediated by GABAergic and glycinergic synapses, provides expiratory inhibition that restrains the expiratory oscillator under resting condition and regulates the formation of abdominal expiratory activity during active expiration. By combining experimental and modelling approaches, we propose the organization and connections within the respiratory network that control the changes in the breathing pattern associated with elevated metabolic demand. ABSTRACT The expiratory neurons of the Bötzinger complex (BötC) provide inhibitory inputs to the respiratory network, which, during eupnoea, are critically important for respiratory phase transition and duration control. Here, we investigated how the BötC neurons interact with the expiratory oscillator located in the parafacial respiratory group (pFRG) and control the abdominal activity during active expiration. Using the decerebrated, arterially perfused in situ preparations of juvenile rats, we recorded the activity of expiratory neurons and performed pharmacological manipulations of the BötC and pFRG during hypercapnia or after the exposure to short-term sustained hypoxia - conditions that generate active expiration. The experimental data were integrated in a mathematical model to gain new insights into the inhibitory connectome within the respiratory central pattern generator. Our results indicate that the BötC neurons may establish mutual connections with the pFRG, providing expiratory inhibition during the first stage of expiration and receiving excitatory inputs during late expiration. Moreover, we found that application of GABAergic and glycinergic antagonists in the BötC caused opposing effects on abdominal expiratory activity, suggesting complex inhibitory circuitry within the BötC. Using mathematical modelling, we propose that the BötC network organization and its interactions with the pFRG restrain abdominal activity under resting conditions and contribute to abdominal expiratory pattern formation during active expiration observed during hypercapnia or after the exposure to short-term sustained hypoxia.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - William H Barnett
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA
| | - Marlusa Karlen-Amarante
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
11
|
Baertsch NA, Ramirez JM. Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P. eLife 2019; 8:51350. [PMID: 31804180 PMCID: PMC6957314 DOI: 10.7554/elife.51350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
The rhythm generating network for breathing must continuously adjust to changing metabolic and behavioral demands. Here, we examined network-based mechanisms in the mouse preBötzinger complex using substance P, a potent excitatory modulator of breathing frequency and stability, as a tool to dissect network properties that underlie dynamic breathing. We find that substance P does not alter the balance of excitation and inhibition during breaths or the duration of the resulting refractory period. Instead, mechanisms of recurrent excitation between breaths are enhanced such that the rate that excitation percolates through the network is increased. We propose a conceptual framework in which three distinct phases of inspiration, the burst phase, refractory phase, and percolation phase, can be differentially modulated to control breathing dynamics and stability. Unraveling mechanisms that support this dynamic control may improve our understanding of nervous system disorders that destabilize breathing, many of which involve changes in brainstem neuromodulatory systems.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
12
|
Seasonal variation of hypoxic and hypercarbic ventilatory responses in the lizard Tropidurus torquatus. Comp Biochem Physiol A Mol Integr Physiol 2019; 237:110534. [PMID: 31401309 DOI: 10.1016/j.cbpa.2019.110534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 12/23/2022]
Abstract
Carbon dioxide (CO2) and oxygen (O2) influence the breathing pattern of reptiles, especially when CO2 is in excess or O2 at low concentrations and the effects of these gases on the respiratory response varies according to the species. In addition to respiratory gases, seasonal changes can also modulate breathing pattern and ventilatory responses to hypoxia and hypercarbia. Therefore, the present study investigated the breathing pattern and ventilatory responses to hypercarbia (5% CO2) and hypoxia (5% O2) of the Neotropical lizard Tropidurus torquatus over a period of one year, covering all seasons (summer, autumn, winter and spring). Our data suggest that like other ectothermic sauropsids, Tropidurus torquatus possesses distinct ventilatory responses to hypoxia and hypercarbia, being more sensitive to changes in CO2 than in O2. Additionally, the ventilatory responses to hypoxia were more pronounced during summer and hypercanic and pos-hypercapnic ventilatory response was reduced during spring, suggesting that seasonality modulates the control of ventilation in this species.
Collapse
|
13
|
da Silva MP, Moraes DJA, Bonagamba LGH, Mecawi ADS, Varanda WA, Machado BH. Hyperexcitability and plasticity induced by sustained hypoxia on rectus abdominis motoneurons. J Physiol 2019; 597:1935-1956. [PMID: 30747446 DOI: 10.1113/jp277030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/06/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Acute hypoxia induces active expiration in rectus abdominis (RA) muscles in conscious freely moving rats, although its overall contribution is smaller than in internal oblique (IO) muscles. Tonically active and silent RA motoneurons were identified in in vitro preparations of rat spinal cords. Sustained hypoxia (SH) increased the synaptic strength and induced morphological changes in tonically active RA motoneurons. Expiratory RA motoneurons were recorded in the in situ preparation and SH enhanced both the excitability and the synaptic transmission in those firing during the stage 2 expiration. The present study contributes to a better understanding of the mechanisms involved in SH recruitment of RA motoneurons to induce active expiration in rats. ABSTRACT Rectus abdominis (RA) motoneurons translate the complex respiratory brainstem inputs into effective muscle contractions. Despite their fundamental role in respiration, their functional and morphological properties are not fully understood. In the present study, we investigated for the first time the contribution of RA muscle to active expiration and characterized RA motoneurons regarding their electrical, molecular and morphological profiles in control rats and in rats submitted to sustained hypoxia (SH), which induces chronic recruitment of abdominal muscles. Electromyographic experiments in conscious freely moving control rats and SH rats showed that RA contributes to active expiration induced by acute hypoxia, although its contribution is smaller than in internal oblique muscles. in vitro whole-cell patch clamp recordings from RA motoneurons revealed two populations of cells: tonically active and silent. SH induced hyperexcitability in the tonically active cells by changing their action potential properties, and EPSCs. Three-dimensional morphological reconstructions of these cells showed that SH increased the dendritic complexity, stimulated the appearance of dendrite spines, and increased the somatic area and volume. Physiologically identified RA motoneurons, firing in two distinct phases of expiration, were recorded in the brainstem-spinal cord in situ preparation of rats. SH increased the firing frequency and EPSCs of neurons firing during stage 2 expiration. Taken together, our results show that RA motoneurons reconfigure their biophysical properties, morphology and synaptic strength to produce an appropriate expiratory drive in response to SH in rats.
Collapse
Affiliation(s)
- Melina P da Silva
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi José A Moraes
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Leni G H Bonagamba
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André de Souza Mecawi
- Paulista School of Medicine, Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Wamberto A Varanda
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Lindsey BG, Nuding SC, Segers LS, Morris KF. Carotid Bodies and the Integrated Cardiorespiratory Response to Hypoxia. Physiology (Bethesda) 2019; 33:281-297. [PMID: 29897299 DOI: 10.1152/physiol.00014.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.
Collapse
Affiliation(s)
- Bruce G Lindsey
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Sarah C Nuding
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Lauren S Segers
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida , Tampa, Florida
| |
Collapse
|
15
|
Magalhães KS, Spiller PF, da Silva MP, Kuntze LB, Paton JFR, Machado BH, Moraes DJA. Locus Coeruleus as a vigilance centre for active inspiration and expiration in rats. Sci Rep 2018; 8:15654. [PMID: 30353035 PMCID: PMC6199338 DOI: 10.1038/s41598-018-34047-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/08/2018] [Indexed: 01/05/2023] Open
Abstract
At rest, inspiration is an active process while expiration is passive. However, high chemical drive (hypercapnia or hypoxia) activates central and peripheral chemoreceptors triggering reflex increases in inspiration and active expiration. The Locus Coeruleus contains noradrenergic neurons (A6 neurons) that increase their firing frequency when exposed to hypercapnia and hypoxia. Using recently developed neuronal hyperpolarising technology in conscious rats, we tested the hypothesis that A6 neurons are a part of a vigilance centre for controlling breathing under high chemical drive and that this includes recruitment of active inspiration and expiration in readiness for flight or fight. Pharmacogenetic inhibition of A6 neurons was without effect on resting and on peripheral chemoreceptors-evoked inspiratory, expiratory and ventilatory responses. On the other hand, the number of sighs evoked by systemic hypoxia was reduced. In the absence of peripheral chemoreceptors, inhibition of A6 neurons during hypercapnia did not affect sighing, but reduced both the magnitude and incidence of active expiration, and the frequency and amplitude of inspiration. These changes reduced pulmonary ventilation. Our data indicated that A6 neurons exert a CO2-dependent modulation of expiratory drive. The data also demonstrate that A6 neurons contribute to the CO2-evoked increases in the inspiratory motor output and hypoxia-evoked sighing.
Collapse
Affiliation(s)
- Karolyne S Magalhães
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro F Spiller
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana B Kuntze
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, UK.,Cardiovascular Autonomic Research Cluster, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Benedito H Machado
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- School of Medicine of Ribeirão Preto, Department of Physiology, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Zoccal DB, Silva JN, Barnett WH, Lemes EV, Falquetto B, Colombari E, Molkov YI, Moreira TS, Takakura AC. Interaction between the retrotrapezoid nucleus and the parafacial respiratory group to regulate active expiration and sympathetic activity in rats. Am J Physiol Lung Cell Mol Physiol 2018; 315:L891-L909. [PMID: 30188747 DOI: 10.1152/ajplung.00011.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO2-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO2. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO2/pH.
Collapse
Affiliation(s)
- Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University , São Paulo , Brazil
| | - Josiane N Silva
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - William H Barnett
- Deptartment of Mathematics and Statistics, Georgia State University , Atlanta, Georgia
| | - Eduardo V Lemes
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University , São Paulo , Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University , São Paulo , Brazil
| | - Yaroslav I Molkov
- Deptartment of Mathematics and Statistics, Georgia State University , Atlanta, Georgia.,Neuroscience Institute, Georgia State University , Atlanta, Georgia
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
17
|
Abstract
Rhythmicity is a universal timing mechanism in the brain, and the rhythmogenic mechanisms are generally dynamic. This is illustrated for the neuronal control of breathing, a behavior that occurs as a one-, two-, or three-phase rhythm. Each breath is assembled stochastically, and increasing evidence suggests that each phase can be generated independently by a dedicated excitatory microcircuit. Within each microcircuit, rhythmicity emerges through three entangled mechanisms: ( a) glutamatergic transmission, which is amplified by ( b) intrinsic bursting and opposed by ( c) concurrent inhibition. This rhythmogenic triangle is dynamically tuned by neuromodulators and other network interactions. The ability of coupled oscillators to reconfigure and recombine may allow breathing to remain robust yet plastic enough to conform to nonventilatory behaviors such as vocalization, swallowing, and coughing. Lessons learned from the respiratory network may translate to other highly dynamic and integrated rhythmic systems, if approached one breath at a time.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| |
Collapse
|
18
|
Flor KC, Silva EF, Menezes MF, Pedrino GR, Colombari E, Zoccal DB. Short-Term Sustained Hypoxia Elevates Basal and Hypoxia-Induced Ventilation but Not the Carotid Body Chemoreceptor Activity in Rats. Front Physiol 2018. [PMID: 29535636 PMCID: PMC5835044 DOI: 10.3389/fphys.2018.00134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to chronic sustained hypoxia (SH), as experienced in high altitudes, elicits an increase in ventilation, named ventilatory acclimatization to hypoxia (VAH). We previously showed that rats exposed to short-term (24 h) SH exhibit enhanced abdominal expiratory motor activity at rest, accompanied by augmented baseline sympathetic vasoconstrictor activity. In the present study, we investigated whether the respiratory and sympathetic changes elicited by short-term SH are accompanied by carotid body chemoreceptor sensitization. Juvenile male Holtzman rats (60-80 g) were exposed to SH (10% O2 for 24 h) or normoxia (control) to examine basal and hypoxic-induced ventilatory parameters in unanesthetized conditions, as well as the sensory response of carotid body chemoreceptors in artificially perfused in situ preparations. Under resting conditions (normoxia/normocapnia), SH rats (n = 12) exhibited higher baseline respiratory frequency, tidal volume, and minute ventilation compared to controls (n = 11, P < 0.05). SH group also showed greater hypoxia ventilatory response than control group (P < 0.05). The in situ preparations of SH rats (n = 8) exhibited augmented baseline expiratory and sympathetic activities under normocapnia, with additional bursts in abdominal and thoracic sympathetic nerves during late expiratory phase that were not seen in controls (n = 8, P < 0.05). Interestingly, basal and potassium cyanide-induced afferent activity of carotid sinus nerve (CSN) was similar between SH and control rats. Our findings indicate that the maintenance of elevated resting ventilation, baseline sympathetic overactivity, and enhanced ventilatory responses to hypoxia in rats exposed to 24 h of SH are not dependent on increased basal and sensorial activity of carotid body chemoreceptors.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Pathology, São Paulo State University, Araraquara, Brazil
| | - Elaine F Silva
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Miguel F Menezes
- Department of Physiology and Pathology, São Paulo State University, Araraquara, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, São Paulo State University, Araraquara, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
19
|
Subramanian HH, Huang ZG, Silburn PA, Balnave RJ, Holstege G. The physiological motor patterns produced by neurons in the nucleus retroambiguus in the rat and their modulation by vagal, peripheral chemosensory, and nociceptive stimulation. J Comp Neurol 2017; 526:229-242. [DOI: 10.1002/cne.24318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Hari H. Subramanian
- Queensland Brain Institute, Asia-Pacific Centre for Neuromodulation, The University of Queensland; Brisbane 4072 Australia
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
| | - Zheng-Gui Huang
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
- Department of Pharmacology; Wannan Medical College; Wuhu City Anhui Province 241002 People's Republic of China
| | - Peter A. Silburn
- Queensland Brain Institute, Asia-Pacific Centre for Neuromodulation, The University of Queensland; Brisbane 4072 Australia
| | - Ron J. Balnave
- Discipline of Biomedical Science, The University of Sydney; Lidcombe NSW 1825 Australia
| | - Gert Holstege
- The University of Queensland; Brisbane 4072 Australia
| |
Collapse
|
20
|
Barnett WH, Jenkin SEM, Milsom WK, Paton JFR, Abdala AP, Molkov YI, Zoccal DB. The Kölliker-Fuse nucleus orchestrates the timing of expiratory abdominal nerve bursting. J Neurophysiol 2017; 119:401-412. [PMID: 29070631 DOI: 10.1152/jn.00499.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Coordination of respiratory pump and valve muscle activity is essential for normal breathing. A hallmark respiratory response to hypercapnia and hypoxia is the emergence of active exhalation, characterized by abdominal muscle pumping during the late one-third of expiration (late-E phase). Late-E abdominal activity during hypercapnia has been attributed to the activation of expiratory neurons located within the parafacial respiratory group (pFRG). However, the mechanisms that control emergence of active exhalation, and its silencing in restful breathing, are not completely understood. We hypothesized that inputs from the Kölliker-Fuse nucleus (KF) control the emergence of late-E activity during hypercapnia. Previously, we reported that reversible inhibition of the KF reduced postinspiratory (post-I) motor output to laryngeal adductor muscles and brought forward the onset of hypercapnia-induced late-E abdominal activity. Here we explored the contribution of the KF for late-E abdominal recruitment during hypercapnia by pharmacologically disinhibiting the KF in in situ decerebrate arterially perfused rat preparations. These data were combined with previous results and incorporated into a computational model of the respiratory central pattern generator. Disinhibition of the KF through local parenchymal microinjections of gabazine (GABAA receptor antagonist) prolonged vagal post-I activity and inhibited late-E abdominal output during hypercapnia. In silico, we reproduced this behavior and predicted a mechanism in which the KF provides excitatory drive to post-I inhibitory neurons, which in turn inhibit late-E neurons of the pFRG. Although the exact mechanism proposed by the model requires testing, our data confirm that the KF modulates the formation of late-E abdominal activity during hypercapnia. NEW & NOTEWORTHY The pons is essential for the formation of the three-phase respiratory pattern, controlling the inspiratory-expiratory phase transition. We provide functional evidence of a novel role for the Kölliker-Fuse nucleus (KF) controlling the emergence of abdominal expiratory bursts during active expiration. A computational model of the respiratory central pattern generator predicts a possible mechanism by which the KF interacts indirectly with the parafacial respiratory group and exerts an inhibitory effect on the expiratory conditional oscillator.
Collapse
Affiliation(s)
- William H Barnett
- Department of Mathematics and Statistics, Georgia State University , Atlanta, Georgia
| | - Sarah E M Jenkin
- Department of Zoology, University of British Columbia , Vancouver, British Columbia , Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia , Vancouver, British Columbia , Canada
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol , Bristol , United Kingdom.,Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland , Auckland , New Zealand
| | - Ana P Abdala
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol , Bristol , United Kingdom
| | - Yaroslav I Molkov
- Department of Mathematics and Statistics, Georgia State University , Atlanta, Georgia.,Neuroscience Institute, Georgia State University , Atlanta, Georgia
| | - Daniel B Zoccal
- Department of Physiology and Pathology, São Paulo State University , Araraquara , Brazil
| |
Collapse
|
21
|
Leirão IP, Silva CA, Gargaglioni LH, da Silva GSF. Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats. J Physiol 2017; 596:3271-3283. [PMID: 28776683 DOI: 10.1113/jp274726] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Expiratory muscles (abdominal and thoracic) can be recruited when respiratory drive increases under conditions of increased respiratory demand such as hypercapnia. Studying hypercapnia-induced active expiration in unanaesthetized rats importantly contributes to the understanding of how the control system is integrated in vivo in freely moving animals. In unanaesthetized rats, hypercapnia-induced active expiration was not always recruited either in wakefulness or in sleep, suggesting that additional factors influence the recruitment of active expiration. The pattern of abdominal muscle recruitment varied in a state-dependent manner with active expiration being more predominant in the sleep state than in quiet wakefulness. Pulmonary ventilation was enhanced in periods with active expiration compared to periods without it. ABSTRACT Expiration is passive at rest but becomes active through recruitment of abdominal muscles under increased respiratory drive. Hypercapnia-induced active expiration has not been well explored in unanaesthetized rats. We hypothesized that (i) CO2 -evoked active expiration is recruited in a state-dependent manner, i.e. differently in sleep or wakefulness, and (ii) recruitment of active expiration enhances ventilation, hence having an important functional role in meeting metabolic demand. To test these hypotheses, Wistar rats (280-330 g) were implanted with electrodes for EEG and electromyography EMG of the neck, diaphragm (DIA) and abdominal (ABD) muscles. Active expiratory events were considered as rhythmic ABDEMG activity interposed to DIAEMG . Animals were exposed to room air followed by hypercapnia (7% CO2 ) with EEG, EMG and ventilation ( V̇E ) recorded throughout the experimental protocol. No active expiration was observed during room air exposure. During hypercapnia, CO2 -evoked active expiration was predominantly recruited during non-rapid eye movement sleep. Its increased occurrence during sleep was evidenced by the decreased DIA-to-ADB ratio (1:1 ratio means that each DIA event is followed by an ABD event, indicating a high occurrence of ABD activity). Moreover, V̇E was also enhanced (P < 0.05) in periods with active expiration. V̇E had a positive correlation (P < 0.05) with the peak amplitude of ABDEMG activity. The data demonstrate strongly that hypercapnia-induced active expiration increases during sleep and provides an important functional role to support V̇E in conditions of increased respiratory demand.
Collapse
Affiliation(s)
- Isabela P Leirão
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| | - Carlos A Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| | - Glauber S F da Silva
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinary Sciences, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| |
Collapse
|
22
|
Machado BH, Zoccal DB, Moraes DJA. Neurogenic hypertension and the secrets of respiration. Am J Physiol Regul Integr Comp Physiol 2017; 312:R864-R872. [PMID: 28438764 PMCID: PMC6148211 DOI: 10.1152/ajpregu.00505.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/22/2022]
Abstract
Despite recent advances in the knowledge of the neural control of cardiovascular function, the cause of sympathetic overactivity in neurogenic hypertension remains unknown. Studies from our laboratory point out that rats submitted to chronic intermittent hypoxia (CIH), an experimental model of neurogenic hypertension, present changes in the central respiratory network that impact the pattern of sympathetic discharge and the levels of arterial pressure. In addition to the fine coordination of respiratory muscle contraction and relaxation, which is essential for O2 and CO2 pulmonary exchanges, neurons of the respiratory network are connected precisely to the neurons controlling the sympathetic activity in the brain stem. This respiratory-sympathetic neuronal interaction provides adjustments in the sympathetic outflow to the heart and vasculature during each respiratory phase according to the metabolic demands. Herein, we report that CIH-induced sympathetic over activity and mild hypertension are associated with increased frequency discharge of ventral medullary presympathetic neurons. We also describe that their increased frequency discharge is dependent on synaptic inputs, mostly from neurons of the brain stem respiratory network, rather than changes in their intrinsic electrophysiological properties. In perspective, we are taking into consideration the possibility that changes in the central respiratory rhythm/pattern generator contribute to increased sympathetic outflow and the development of neurogenic hypertension. Our experimental evidence provides support for the hypothesis that changes in the coupling of respiratory and sympathetic networks might be one of the unrevealed secrets of neurogenic hypertension in rats.
Collapse
Affiliation(s)
- Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| |
Collapse
|
23
|
Jenkin SEM, Milsom WK, Zoccal DB. The Kölliker-Fuse nucleus acts as a timekeeper for late-expiratory abdominal activity. Neuroscience 2017; 348:63-72. [PMID: 28188852 PMCID: PMC5759332 DOI: 10.1016/j.neuroscience.2017.01.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
While the transition from the inspiratory to the post-inspiratory (post-I) phase is dependent on the pons, little attention has been paid to understanding the role of the pontine respiratory nuclei, specifically the Kölliker-Fuse nucleus (KF), in transitioning from post-I to the late expiratory (late-E) activity seen with elevated respiratory drive. To elucidate this, we used the in situ working heart-brainstem preparation of juvenile male Holtzman rats and recorded from the vagus (cVN), phrenic (PN) and abdominal nerves (AbN) during baseline conditions and during chemoreflex activation [with potassium cyanide (KCN; n=13) or hypercapnia (8% CO2; n=10)] to recruit active expiration. Chemoreflex activation with KCN increased PN frequency and cVN post-I and AbN activities. The inhibition of KF with isoguvacine microinjections (10mM) attenuated the typical increase in PN frequency and cVN post-I activity, and amplified the AbN response. During hypercapnia, AbN late-E activity emerged in association with a significant reduction in expiratory time. KF inhibition during hypercapnia significantly decreased PN frequency and reduced the duration and amplitude of post-I cVN activity, while the onset of the AbN late-E bursts occurred significantly earlier. Our data reveal a negative relationship between KF-induced post-I and AbN late-E activities, suggesting that the KF coordinates the transition between post-I to late-E activity during conditions of elevated respiratory drive.
Collapse
Affiliation(s)
- Sarah E M Jenkin
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - William K Milsom
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Daniel B Zoccal
- School of Dentistry of Araraquara, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
24
|
Lemes EV, Colombari E, Zoccal DB. Generation of active expiration by serotoninergic mechanisms of the ventral medulla of rats. J Appl Physiol (1985) 2016; 121:1135-1144. [PMID: 27660299 DOI: 10.1152/japplphysiol.00470.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 01/16/2023] Open
Abstract
Abdominal expiratory activity is absent at rest and is evoked during metabolic challenges, such as hypercapnia and hypoxia, or after the exposure to intermittent hypoxia (IH). The mechanisms engaged during this process are not completely understood. In this study, we hypothesized that serotonin (5-HT), acting in the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), is able to generate active expiration. In anesthetized (urethane, ip), tracheostomized, spontaneously-breathing adult male Holtzman rats we microinjected a serotoninergic agonist and antagonist bilaterally in the RTN/pFRG and recorded diaphragm and abdominal muscle activities. We found that episodic (3 times, 5 min apart), but not single microinjections of 5-HT (1 mM) in the RTN/pFRG elicited an enduring (>30 min) increase in abdominal activity. This response was amplified in vagotomized rats and blocked by previous 5-HT receptor antagonism with ketanserin (10 µM). Episodic 5-HT microinjections in the RTN/pFRG also potentiated the inspiratory and expiratory reflex responses to hypercapnia. The antagonism of 5-HT receptors in the RTN/pFRG also prevented the long-term facilitation (>30 min) of abdominal activity in response to acute IH exposure (10 × 6-7% O for 45 s every 5 min). Our findings indicate the activation of serotoninergic mechanisms in the RTN/pFRG is sufficient to increase abdominal expiratory activity at resting conditions and required for the emergence of active expiration after IH in anesthetized animals.
Collapse
Affiliation(s)
- Eduardo V Lemes
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|