1
|
Umashankar P, Nygård Y. Filamentous fungi as emerging cell factories for the production of aromatic compounds. Fungal Biol Biotechnol 2024; 11:19. [PMID: 39543771 PMCID: PMC11566741 DOI: 10.1186/s40694-024-00188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Microbial production of aromatic compounds from renewable feedstocks has gained increasing interest as a means towards sustainable production of chemicals. The potential of filamentous fungi for production of aromatic compounds has nonetheless not yet been widely exploited. Notably, many filamentous fungi can naturally break down lignin and metabolize lignin-derived aromatic compounds. A few examples where a fungal cell factory, often of Aspergillus spp., is used to produce an aromatic compound, typically through the conversion of one compound to another, have already been reported. In this review, we summarize fungal biosynthesis of biotechnologically interesting aromatic compounds. The focus is on compounds produced from the shikimate pathway. Biorefinery-relevant efforts for valorizing residual biomass or lignin derived compounds are also discussed. The advancement in engineering tools combined with the increasing amounts of data supporting the discovery of new enzymes and development of new bioprocesses has led to an increased range of potential production hosts and products. This is expected to translate into a wider utilization of fungal cell factories for production of aromatic compounds.
Collapse
Affiliation(s)
- Pavithra Umashankar
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Yvonne Nygård
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland.
| |
Collapse
|
2
|
Gao J, Ali MY, Kamaraj Y, Zhang Z, Weike L, Sethupathy S, Zhu D. A comprehensive review on biological funnel mechanism in lignin valorization: Pathways and enzyme dynamics. Microbiol Res 2024; 287:127835. [PMID: 39032264 DOI: 10.1016/j.micres.2024.127835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Lignin, a significant byproduct of the paper and pulp industry, is attracting interest due to its potential utilization in biomaterial-based sectors and biofuel production. Investigating biological methods for converting lignin into valuable products is crucial for effective utilization and has recently gained growing attention. Several microorganisms effectively decomposed low molecular weight lignins, transforming them into intermediate compounds via upper and lower metabolic pathways. This review focuses on assessing bacterial metabolic pathways involved in the breakdown of lignin into aromatic compounds and their subsequent utilization by different bacteria through various metabolic pathways. Understanding these pathways is essential for developing efficient synthetic metabolic systems to valorize lignin and obtain valuable industrial aromatic chemicals. The concept of "biological funneling," which involves examining key enzymes, their interactions, and the complex metabolic pathways associated with lignin conversion, is crucial in lignin valorization. By manipulating lignin metabolic pathways and utilizing biological routes, many aromatic compounds can be synthesized within cellular factories. Although there is insufficient evidence regarding the complete metabolism of polyaromatic hydrocarbons by particular microorganisms, understanding lignin-degrading enzymes, regulatory mechanisms, and interactions among various enzyme systems is essential for optimizing lignin valorization. This review highlights recent advancements in lignin valorization, bio-funneling, multi-omics, and analytical characterization approaches for aromatic utilization. It provides up-to-date information and insights into the latest research findings and technological innovations. The review offers valuable insights into the future potential of biological routes for lignin valorization.
Collapse
Affiliation(s)
- Jiayue Gao
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mohamed Yassin Ali
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Yoganathan Kamaraj
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Zhang
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Weike
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
de Oliveira TC, Freyria NJ, Sarmiento-Villamil JL, Porth I, Tanguay P, Bernier L. Unraveling the transcriptional features and gene expression networks of pathogenic and saprotrophic Ophiostoma species during the infection of Ulmus americana. Microbiol Spectr 2024; 12:e0369423. [PMID: 38230934 PMCID: PMC10845970 DOI: 10.1128/spectrum.03694-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
American elm (Ulmus americana), highly prized for its ornamental value, has suffered two successive outbreaks of Dutch elm disease (DED) caused by ascomycete fungi belonging to the genus Ophiostoma. To identify the genes linked to the pathogenicity of different species and lineages of Ophiostoma, we inoculated 2-year-old U. americana saplings with six strains representing three species of DED fungi, and one strain of the saprotroph Ophiostoma quercus. Differential expression analyses were performed following RNA sequencing of fungal transcripts recovered at 3- and 10-days post-infection. Based on a total of 8,640 Ophiostoma genes, we observed a difference in fungal gene expression depending on the strain inoculated and the time of incubation in host tissue. Some genes overexpressed in the more virulent strains of Ophiostoma encode hydrolases that possibly act synergistically. A mutant of Ophiostoma novo-ulmi in which the gene encoding the ogf1 transcription factor had been deleted did not produce transcripts for the gene encoding the hydrophobin cerato-ulmin and was less virulent. Weighted gene correlation network analyses identified several candidate pathogenicity genes distributed among 13 modules of interconnected genes.IMPORTANCEOphiostoma is a genus of cosmopolitan fungi that belongs to the family Ophiostomataceae and includes the pathogens responsible for two devastating pandemics of Dutch elm disease (DED). As the mechanisms of action of DED agents remain unclear, we carried out the first comparative transcriptomic study including representative strains of the three Ophiostoma species causing DED, along with the phylogenetically close saprotrophic species Ophiostoma quercus. Statistical analyses of the fungal transcriptomes recovered at 3 and 10 days following infection of Ulmus americana saplings highlighted several candidate genes associated with virulence and host-pathogen interactions wherein each strain showed a distinct transcriptome. The results of this research underscore the importance of investigating the transcriptional behavior of different fungal taxa to understand their pathogenicity and virulence in relation to the timeline of infection.
Collapse
Affiliation(s)
- Thais C. de Oliveira
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
- Centre d’étude de la Forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, Québec, Quebec, Canada
| | - Nastasia J. Freyria
- Department of Natural Resource Sciences, McGill University, St. Anne-de-Bellevue, Quebec, Quebec, Canada
| | - Jorge Luis Sarmiento-Villamil
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
- Centre d’étude de la Forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, Québec, Quebec, Canada
- Instituto de Hortofruticultura Subtropical y Mediterránea, Consejo Superior de Investigaciones Científicas-Universidad de Málaga (IHSM-CSIC-UMA), Estación Experimental “La Mayora”, Málaga, Spain
| | - Ilga Porth
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
- Centre d’étude de la Forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, Québec, Quebec, Canada
| | - Philippe Tanguay
- Canadian Forest Service, Natural Resources Canada, Laurentian Forestry Centre, Québec, Quebec, Canada
| | - Louis Bernier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
- Centre d’étude de la Forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
4
|
Martins TM, Bento A, Martins C, Tomé AS, Moreira CJS, Silva Pereira C. Bringing up to date the toolkit for the catabolism of aromatic compounds in fungi: The unexpected 1,2,3,5-tetrahydroxybenzene central pathway. Microb Biotechnol 2024; 17:e14371. [PMID: 38064205 PMCID: PMC10832562 DOI: 10.1111/1751-7915.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 02/03/2024] Open
Abstract
Saprophytic fungi are able to catabolize many plant-derived aromatics, including, for example, gallate. The catabolism of gallate in fungi is assumed to depend on the five main central pathways, i.e., of the central intermediates' catechol, protocatechuate, hydroxyquinol, homogentisate and gentisate, but a definitive demonstration is lacking. To shed light on this process, we analysed the transcriptional reprogramming of the growth of Aspergillus terreus on gallate compared with acetate as the control condition. Surprisingly, the results revealed that the five main central pathways did not exhibit significant positive regulation. Instead, an in-depth analysis identified four highly expressed and upregulated genes that are part of a conserved gene cluster found in numerous species of fungi, though not in Aspergilli. The cluster comprises a monooxygenase gene and a fumarylacetoacetate hydrolase-like gene, which are recognized as key components of catabolic pathways responsible for aromatic compound degradation. The other two genes encode proteins with no reported enzymatic activities. Through functional analyses of gene deletion mutants in Aspergillus nidulans, the conserved short protein with no known domains could be linked to the conversion of the novel metabolite 5-hydroxydienelatone, whereas the DUF3500 gene likely encodes a ring-cleavage enzyme for 1,2,3,5-tetrahydroxybenzene. These significant findings establish the existence of a new 1,2,3,5-tetrahydroxybenzene central pathway for the catabolism of gallate and related compounds (e.g. 2,4,6-trihydroxybenzoate) in numerous fungi where this catabolic gene cluster was observed.
Collapse
Affiliation(s)
- Tiago M. Martins
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| | - Artur Bento
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| | - Celso Martins
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
- Present address:
Center for Integrative Genomics, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Ana S. Tomé
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| | - Carlos J. S. Moreira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa (ITQB NOVA)OeirasPortugal
| |
Collapse
|
5
|
Polyak YM, Bakina LG, Mayachkina NV, Chugunova MV, Bityutskii NP, Yakkonen KL, Shavarda AL. Long-term effects of oil contamination on soil quality and metabolic function. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:13. [PMID: 38147148 DOI: 10.1007/s10653-023-01779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/08/2023] [Indexed: 12/27/2023]
Abstract
Widespread soil contamination with oil and the toxicity of petroleum hydrocarbons to soil biota make it extremely important to study microbial responses to oil stress. Soil metabolites reflect the main metabolic pathways in the soil microbial community. The examination of changes in the soil metabolic profile and metabolic function is essential for a better understanding of the nature of the pollution and restoration of the disturbed soils. The present study aimed to assess the long-term effect of oil on the ecological state of the soil, evaluate quantitative and qualitative differences in metabolite composition between soil contaminated with oil and non-contaminated soil, and reveal biologically active metabolites that are related to oil contamination and can be used for contamination assessment. A long-term field experiment was conducted to examine the effects of various oil concentrations on the biochemical properties and metabolic profile of the soil. Podzolic soil contaminated with oil demonstrated the long-term inhibition of soil biological activity and vegetation. Oil affected the metabolic activity of soil fungi increasing the production of toxic metabolites. A metabolomic approach was employed to determine soil metabolites. The metabolite profile was found to vary greatly between oil-contaminated and non-contaminated soils. Carbohydrates had the largest number of metabolites negatively affected by oil, while the content of organic acids, phenolic compounds, and terpenoids was mainly increased in oil-contaminated soil. The evaluation of the long-term impact of oil on microbial metabolism can make a valuable contribution to the assessment of soil quality and the activity of soil microorganisms being under stress from oil pollution. The results contribute to a further understanding of the role of microorganisms in the ecological functions of contaminated soil, which can be useful in the development of rehabilitation strategies for disturbed sites.
Collapse
Affiliation(s)
- Yulia M Polyak
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, St. Petersburg Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg, Russia.
| | - Lyudmila G Bakina
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, St. Petersburg Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalya V Mayachkina
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, St. Petersburg Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina V Chugunova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, St. Petersburg Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | - Alexey L Shavarda
- Saint Petersburg State University, St. Petersburg, Russia
- Komarov Botanical Institute, Saint Petersburg, Russia
| |
Collapse
|
6
|
Sgro M, Chow N, Olyaei F, Arentshorst M, Geoffrion N, Ram AFJ, Powlowski J, Tsang A. Functional analysis of the protocatechuate branch of the β-ketoadipate pathway in Aspergillus niger. J Biol Chem 2023; 299:105003. [PMID: 37399977 PMCID: PMC10406623 DOI: 10.1016/j.jbc.2023.105003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023] Open
Abstract
Bacteria and fungi catabolize plant-derived aromatic compounds by funneling into one of seven dihydroxylated aromatic intermediates, which then undergo ring fission and conversion to TCA cycle intermediates. Two of these intermediates, protocatechuic acid and catechol, converge on β-ketoadipate which is further cleaved to succinyl-CoA and acetyl-CoA. These β-ketoadipate pathways have been well characterized in bacteria. The corresponding knowledge of these pathways in fungi is incomplete. Characterization of these pathways in fungi would expand our knowledge and improve the valorization of lignin-derived compounds. Here, we used homology to characterize bacterial or fungal genes to predict the genes involved in the β-ketoadipate pathway for protocatechuate utilization in the filamentous fungus Aspergillus niger. We further used the following approaches to refine the assignment of the pathway genes: whole transcriptome sequencing to reveal genes upregulated in the presence of protocatechuic acid; deletion of candidate genes to observe their ability to grow on protocatechuic acid; determination by mass spectrometry of metabolites accumulated by deletion mutants; and enzyme assays of the recombinant proteins encoded by candidate genes. Based on the aggregate experimental evidence, we assigned the genes for the five pathway enzymes as follows: NRRL3_01405 (prcA) encodes protocatechuate 3,4-dioxygenase; NRRL3_02586 (cmcA) encodes 3-carboxy-cis,cis-muconate cyclase; NRRL3_01409 (chdA) encodes 3-carboxymuconolactone hydrolase/decarboxylase; NRRL3_01886 (kstA) encodes β-ketoadipate:succinyl-CoA transferase; and NRRL3_01526 (kctA) encodes β-ketoadipyl-CoA thiolase. Strain carrying ΔNRRL3_00837 could not grow on protocatechuic acid, suggesting that it is essential for protocatechuate catabolism. Its function is unknown as recombinant NRRL3_00837 did not affect the in vitro conversion of protocatechuic acid to β-ketoadipate.
Collapse
Affiliation(s)
- Michael Sgro
- Department of Biology, Concordia University, Montreal, Quebec, Canada; Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Nicholas Chow
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Farnaz Olyaei
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, The Netherlands
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Arthur F J Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Leiden, The Netherlands
| | - Justin Powlowski
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada; Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Department of Biology, Concordia University, Montreal, Quebec, Canada; Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Moreno-Perlin T, Valdés-Muñoz G, Jiménez-Gómez I, Gunde-Cimerman N, Yarzábal Rodríguez LA, Sánchez-Carbente MDR, Vargas-Fernández A, Gutiérrez-Cepeda A, Batista-García RA. Extremely chaotolerant and kosmotolerant Aspergillus atacamensis - a metabolically versatile fungus suitable for recalcitrant biosolid treatment. Front Microbiol 2023; 14:1191312. [PMID: 37455742 PMCID: PMC10338856 DOI: 10.3389/fmicb.2023.1191312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
Obligate halophily is extremely rare in fungi. Nevertheless, Aspergillus atacamensis (strain EXF-6660), isolated from a salt water-exposed cave in the Coastal Range hills of the hyperarid Atacama Desert in Chile, is an obligate halophile, with a broad optimum range from 1.5 to 3.4 M of NaCl. When we tested its ability to grow at varied concentrations of both kosmotropic (NaCl, KCl, and sorbitol) and chaotropic (MgCl2, LiCl, CaCl2, and glycerol) solutes, stereoscopy and laser scanning microscopy revealed the formation of phialides and conidia. A. atacamensis EXF-6660 grew up to saturating levels of NaCl and at 2.0 M concentration of the chaotropic salt MgCl2. Our findings confirmed that A. atacamensis is an obligate halophile that can grow at substantially higher MgCl2 concentrations than 1.26 M, previously considered as the maximum limit supporting prokaryotic life. To assess the fungus' metabolic versatility, we used the phenotype microarray technology Biolog FF MicroPlates. In the presence of 2.0 M NaCl concentration, strain EXF-6660 metabolism was highly versatile. A vast repertoire of organic molecules (~95% of the substrates present in Biolog FF MicroPlates) was metabolized when supplied as sole carbon sources, including numerous polycyclic aromatic hydrocarbons, benzene derivatives, dyes, and several carbohydrates. Finally, the biotechnological potential of A. atacamensis for xenobiotic degradation and biosolid treatment was investigated. Interestingly, it could remove biphenyls, diphenyl ethers, different pharmaceuticals, phenols, and polyaromatic hydrocarbons. Our combined findings show that A. atacamensis EXF-6660 is a highly chaotolerant, kosmotolerant, and xerotolerant fungus, potentially useful for xenobiotic and biosolid treatments.
Collapse
Affiliation(s)
- Tonatiuh Moreno-Perlin
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Gisell Valdés-Muñoz
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Alfaniris Vargas-Fernández
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Adrián Gutiérrez-Cepeda
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
8
|
Assessment of chitosan/pectin-rich vegetable waste composites for the active packaging of dry foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Grey A, Costeira R, Lorenzo E, O’Kane S, McCaul MV, McCarthy T, Jordan SF, Allen CCR, Kelleher BP. Biogeochemical properties of blue carbon sediments influence the distribution and monomer composition of bacterial polyhydroxyalkanoates (PHA). BIOGEOCHEMISTRY 2023; 162:359-380. [PMID: 36873379 PMCID: PMC9971093 DOI: 10.1007/s10533-022-01008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Coastal wetlands are highly efficient 'blue carbon' sinks which contribute to mitigating climate change through the long-term removal of atmospheric CO2 and capture of carbon (C). Microorganisms are integral to C sequestration in blue carbon sediments and face a myriad of natural and anthropogenic pressures yet their adaptive responses are poorly understood. One such response in bacteria is the alteration of biomass lipids, specifically through the accumulation of polyhydroxyalkanoates (PHAs) and alteration of membrane phospholipid fatty acids (PLFA). PHAs are highly reduced bacterial storage polymers that increase bacterial fitness in changing environments. In this study, we investigated the distribution of microbial PHA, PLFA profiles, community structure and response to changes in sediment geochemistry along an elevation gradient from intertidal to vegetated supratidal sediments. We found highest PHA accumulation, monomer diversity and expression of lipid stress indices in elevated and vegetated sediments where C, nitrogen (N), PAH and heavy metals increased, and pH was significantly lower. This was accompanied by a reduction in bacterial diversity and a shift to higher abundances of microbial community members favouring complex C degradation. Results presented here describe a connection between bacterial PHA accumulation, membrane lipid adaptation, microbial community composition and polluted C rich sediments. Graphical Abstract Geochemical, microbiological and polyhydroxyalkanoate (PHA) gradient in a blue carbon zone. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-022-01008-5.
Collapse
Affiliation(s)
- Anthony Grey
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ricardo Costeira
- The School of Biological Sciences, Queen’s University Belfast, Belfast, Northern Ireland
| | - Emmaline Lorenzo
- Department of Chemistry, University of Kansas, Lawrence, 66045 USA
| | - Sean O’Kane
- National Centre for Geocomputation, Maynooth University, Maynooth, Ireland
| | - Margaret V. McCaul
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin 4, Ireland
| | - Tim McCarthy
- National Centre for Geocomputation, Maynooth University, Maynooth, Ireland
| | - Sean F. Jordan
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin 4, Ireland
| | | | - Brian P. Kelleher
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
10
|
Arentshorst M, Reijngoud J, van Tol DJC, Reid ID, Arendsen Y, Pel HJ, van Peij NNME, Visser J, Punt PJ, Tsang A, Ram AFJ. Utilization of ferulic acid in Aspergillus niger requires the transcription factor FarA and a newly identified Far-like protein (FarD) that lacks the canonical Zn(II) 2Cys 6 domain. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:978845. [PMID: 37746181 PMCID: PMC10512302 DOI: 10.3389/ffunb.2022.978845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/17/2022] [Indexed: 09/26/2023]
Abstract
The feruloyl esterase B gene (faeB) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in faeB induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 Aspergillus niger strains for mutants unable to utilize ferulic acid as a carbon source. The ΔfarA transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express faeB. For this screen a PfaeB-amdS and PfaeB-lux613 dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces amdS (acetamidase) expression via the faeB promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce faeB are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the farA mutant and sequencing the farA gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the farA mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)2Cys6 domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)2Cys6 domain and possesses only the fungal specific transcription factor domain.
Collapse
Affiliation(s)
- Mark Arentshorst
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jos Reijngoud
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Daan J. C. van Tol
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ian D. Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Yvonne Arendsen
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | - Herman J. Pel
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | | | - Jaap Visser
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Fungal Genetics and Technology Consultancy, Wageningen, AJ, Netherlands
| | - Peter J. Punt
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Arthur F. J. Ram
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
11
|
Li G, Wang Y, Zhu P, Zhao G, Liu C, Zhao H. Functional Characterization of Laccase Isozyme (PoLcc1) from the Edible Mushroom Pleurotus ostreatus Involved in Lignin Degradation in Cotton Straw. Int J Mol Sci 2022; 23:13545. [PMID: 36362331 PMCID: PMC9658089 DOI: 10.3390/ijms232113545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Fungal laccases play important roles in the degradation of lignocellulose. In this study, the laccase producing cotton straw medium for Pleurotus ostreatus was optimized by single-factor and orthogonal experiments, and to investigate the role of Lacc1 gene, one of the laccase-encoding genes, in the degradation of cotton straw lignin, an overexpression strain of Lacc1 gene was constructed, which was analyzed for the characteristics of lignin degradation. The results demonstrated that the culture conditions with the highest lignin degradation efficiency of the P. ostreatus were the cotton straw particle size of 0.75 mm, a solid-liquid ratio of 1:3 and containing 0.25 g/L of Tween in the medium, as well as an incubation temperature of 26 °C. Two overexpression strains (OE L1-1 and OE L1-4) of Lacc1 gene were obtained, and the gene expression increased 12.08- and 33.04-fold, respectively. The results of 1H-NMR and FTIR analyses of significant changes in lignin structure revealed that Lacc1 gene accelerated the degradation of lignin G-units and involved in the cleavage of β-O-4 linkages and the demethylation of lignin units. These findings will help to improve the efficiency of biodelignification and expand our understanding of its mechanism.
Collapse
Affiliation(s)
- Guoqing Li
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- College of Life Science, Anhui Agricultural University, Hefei 230036, China
- Provincial Resource Database of Wood Rot Edible Mushrooms in Anhui Province, Hefei 230031, China
| | - Yahui Wang
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Peilei Zhu
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Guiyun Zhao
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Caiyu Liu
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Hongyuan Zhao
- State Key Laboratory of Horticultural Crop Germplasm Resources Creation and Utilization of Ministry of Agriculture and Rural Affairs, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
12
|
Arabinoxylans Release from Brewers’ Spent Grain Using Extrusion and Solid-State Fermentation with Fusarium oxysporum and the Antioxidant Capacity of the Extracts. Foods 2022; 11:foods11101415. [PMID: 35626985 PMCID: PMC9140831 DOI: 10.3390/foods11101415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Brewers’ spent grain (BSG) is the most abundant byproduct generated from the beer-brewing process. BSG is a material rich in hemicellulose, composed of arabinoxylans (AX). However, the high crosslinking of this material causes low availability of AX, for which it is necessary to apply different treatments. The objective of this research is to increase the release of arabinoxylans through solid-state fermentation with Fusarium oxysporum f. sp. lycopersici using extruded brewery spent grain. First, the BSG is subjected to two types of physical treatments: extrusion at 20% moisture, 200 rpm and 50 °C (BSGe), and blade milling (BSGm). The chemical composition is determined for each sample (BSG, BSGe and BSGm). Subsequently, the solid-state fermentation process (SSF) is carried out on each sample. The fermentation kinetics at 30 °C are monitored for 7 days. Once the SSF concludes, AX are extracted, and the purity of AX is determined by the phloroglucinol colorimetric assay. Finally, the total phenolic compounds, phenolic acids and antioxidant capacity by DPPH are quantified. No significant differences (p ≥ 0.05) in the protein, lipid, ash or total dietary fiber contents are found among the samples. No significant difference (p ≥ 0.05) in the content of soluble fiber is found, although BSGe and BSGm have higher values than BSG. On the other hand, the yields of soluble AX exhibit significant differences (p ≤ 0.05) among nonfermented samples (BSG, 0.03%; BSGm, 0.53%; BSGe, 0.70%) and with SSF (BSG, 2.95%; BSGm, 6.24%; and BSGe, 9.58%). In addition, the contents of free phenolic compounds and free phenolic acids and the percent inhibition of free extracts by 2,2-diphenyl-1-picrylhydrazyl (DPPH) differ significantly (p ≤ 0.05) between samples subjected to SSF and nonfermented samples. Therefore, extrusion and SSF treatment increase AX release from BSG as well as the antioxidant capacity of the extracts.
Collapse
|
13
|
Ali SS, Al-Tohamy R, Mohamed TM, Mahmoud YAG, Ruiz HA, Sun L, Sun J. Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:35. [PMID: 35379342 PMCID: PMC8981686 DOI: 10.1186/s13068-022-02131-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
Abstract
Biodiesel is a renewable fuel that can be produced from a range of organic and renewable feedstock including fresh or vegetable oils, animal fats, and oilseed plants. In recent years, the lignin-based aromatic wastes, such as various aromatic waste polymers from agriculture, or organic dye wastewater from textile industry, have attracted much attention in academia, which can be uniquely selected as a potential renewable feedstock for biodiesel product converted by yeast cell factory technology. This current investigation indicated that the highest percentage of lipid accumulation can be achieved as high as 47.25% by an oleaginous yeast strain, Meyerozyma caribbica SSA1654, isolated from a wood-feeding termite gut system, where its synthetic oil conversion ability can reach up to 0.08 (g/l/h) and the fatty acid composition in yeast cells represents over 95% of total fatty acids that are similar to that of vegetable oils. Clearly, the use of oleaginous yeasts, isolated from wood-feeding termites, for synthesizing lipids from aromatics is a clean, efficient, and competitive path to achieve "a sustainable development" towards biodiesel production. However, the lacking of potent oleaginous yeasts to transform lipids from various aromatics, and an unknown metabolic regulation mechanism presented in the natural oleaginous yeast cells are the fundamental challenge we have to face for a potential cell factory development. Under this scope, this review has proposed a novel concept and approach strategy in utilization of oleaginous yeasts as the cell factory to convert aromatic wastes to lipids as the substrate for biodiesel transformation. Therefore, screening robust oleaginous yeast strain(s) from wood-feeding termite gut system with a set of the desirable specific tolerance characteristics is essential. In addition, to reconstruct a desirable metabolic pathway/network to maximize the lipid transformation and accumulation rate from the aromatic wastes with the applications of various "omics" technologies or a synthetic biology approach, where the work agenda will also include to analyze the genome characteristics, to develop a new base mutation gene editing technology, as well as to clarify the influence of the insertion position of aromatic compounds and other biosynthetic pathways in the industrial chassis genome on the expressional level and genome stability. With these unique designs running with a set of the advanced biotech approaches, a novel metabolic pathway using robust oleaginous yeast developed as a cell factory concept can be potentially constructed, integrated and optimized, suggesting that the hypothesis we proposed in utilizing aromatic wastes as a feedstock towards biodiesel product is technically promising and potentially applicable in the near future.
Collapse
Affiliation(s)
- Sameh S. Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| | - Tarek M. Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila Mexico
| | - Lushan Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
14
|
Di Lella S, La Porta N, Tognetti R, Lombardi F, Nardin T, Larcher R. White rot fungal impact on the evolution of simple phenols during decay of silver fir wood by UHPLC-HQOMS. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:170-183. [PMID: 34322910 PMCID: PMC9290616 DOI: 10.1002/pca.3077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Silver fir (Abies alba Mill.) is one of the most valuable conifer wood species in Europe. Among the main opportunistic pathogens that cause root and butt rot on silver fir are Armillaria ostoyae and Heterobasidion abietinum. Due to the different enzymatic pools of these wood-decay fungi, different strategies in metabolizing the phenols were available. OBJECTIVE This work explores the changes in phenolic compounds during silver fir wood degradation. METHODOLOGY Phenols were analyzed before and after fungus inoculation in silver fir macerated wood after 2, 4 and 6 months. All samples were analyzed using high-performance liquid chromatography coupled to a hybrid quadrupole-orbitrap mass spectrometer. RESULTS Thirteen compounds, including simple phenols, alkylphenyl alcohols, hydroxybenzoketones, hydroxycinnamaldehydes, hydroxybenzaldehydes, hydroxyphenylacetic acids, hydroxycinnamic acids, hydroxybenzoic acids and hydroxycoumarins, were detected. Pyrocatechol, coniferyl alcohol, acetovanillone, vanillin, benzoic acid, 4-hydroxybenzoic acid and vanillic acid contents decreased during the degradation process. Methyl vanillate, ferulic acid and p-coumaric were initially produced and then degraded. Scopoletin was accumulated. Pyrocatechol, acetovanillone and methyl vanillate were found for the first time in both degrading and non-degrading wood of silver fir. CONCLUSIONS Despite differences in the enzymatic pool, both fungi caused a significant decrease in the amounts of phenolic compounds with the accumulation of the only scopoletin. Principal component analysis revealed an initial differentiation between the degradation activity of the two fungal species during degradation, but similar phenolic contents at the end of wood degradation.
Collapse
Affiliation(s)
- Stefania Di Lella
- Department of Biosciences and TerritoryUniversity of MolisePescheItaly
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- Department of Agricultural, Environmental and Food SciencesUniversity of MoliseCampobassoItaly
| | - Nicola La Porta
- Research and Innovation CentreFondazione Edmund MachSan Michele all'AdigeItaly
- The EFI Project Centre on Mountain Forests (MOUNTFOR)Edmund Mach FoundationTrentoItaly
| | - Roberto Tognetti
- Department of Agricultural, Environmental and Food SciencesUniversity of MoliseCampobassoItaly
- The EFI Project Centre on Mountain Forests (MOUNTFOR)Edmund Mach FoundationTrentoItaly
| | - Fabio Lombardi
- Department of AgrariaUniversity Mediterranea of Reggio CalabriaReggio CalabriaItaly
| | - Tiziana Nardin
- Technology Transfer CentreFondazione Edmund MachSan Michele all'AdigeItaly
| | - Roberto Larcher
- Technology Transfer CentreFondazione Edmund MachSan Michele all'AdigeItaly
| |
Collapse
|
15
|
Ghodke VM, Punekar NS. Environmental role of aromatic carboxylesterases. Environ Microbiol 2021; 24:2657-2668. [PMID: 34528362 DOI: 10.1111/1462-2920.15774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
The carboxylesterases (EC 3.1.1.x) are widely distributed and form an important yet diverse group of hydrolases catalysing the ester bond cleavage in a variety of substrates. Besides acting on plant cell wall components like cutin, tannin and feruloyl esters, they are often the first line of defence to metabolize drugs, xenobiotics, pesticides, insecticides and plastic. But for the promiscuity of some carboxylesterases and cutinases, very few enzymes act exclusively on aromatic carboxylic acid esters. Infrequent occurrence of aromatic carboxylesterases suggests that aromatic carboxylesters are inherently more difficult to hydrolyse than the regular carboxylesters because of both steric and polar effects. Naturally occurring aromatic carboxylesters were rare before the anthropogenic activity augmented their environmental presence and diversity. An appraisal of the literature shows that the hydrolysis of aromatic carboxylic esters is a uniquely difficult endeavour and hence deserves special attention. Enzymes to hydrolyse such esters are evolving rapidly in nature. Very few such enzymes are known and they often display much lower catalytic efficiencies. Obviously, the esters of aromatic carboxylic acids, including polyethylene terephthalate waste, pose an environmental challenge. In this review, we highlight the uniqueness of aromatic carboxylesters and then underscore the importance of relevant carboxylesterases.
Collapse
Affiliation(s)
- Venkatesh M Ghodke
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Narayan S Punekar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
16
|
Poirier W, Ravenel K, Bouchara JP, Giraud S. Lower Funneling Pathways in Scedosporium Species. Front Microbiol 2021; 12:630753. [PMID: 34276578 PMCID: PMC8283699 DOI: 10.3389/fmicb.2021.630753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Lignin, a natural polyaromatic macromolecule, represents an essential component of the lignocellulose biomass. Due to its complexity, the natural degradation of this molecule by microorganisms still remains largely misunderstood. Extracellular oxidative degradation is followed by intracellular metabolic degradation of conserved aromatic intermediate compounds (protocatechuate, catechol, hydroxyquinol, and gentisic acid) that are used as carbon and energy sources. The lower funneling pathways are characterized by the opening of the aromatic ring of these molecules through dioxygenases, leading to degradation products that finally enter into the tricarboxylic acid (TCA) cycle. In order to better understand the adaptation mechanisms of Scedosporium species to their environment, these specific catabolism pathways were studied. Genes encoding ring-cleaving dioxygenases were identified in Scedosporium genomes by sequence homology, and a bioinformatic analysis of the organization of the corresponding gene clusters was performed. In addition, these predictions were confirmed by evaluation of the expression level of the genes of the gentisic acid cluster. When the fungus was cultivated in the presence of lignin or gentisic acid as sole carbon source, experiments revealed that the genes of the gentisic acid cluster were markedly overexpressed in the two Scedosporium species analyzed (Scedosporium apiospermum and Scedosporium aurantiacum). Only the gene encoding a membrane transporter was not overexpressed in the gentisic acid-containing medium. Together, these data suggest the involvement of the lower funneling pathways in Scedosporium adaptation to their environment.
Collapse
Affiliation(s)
- Wilfried Poirier
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Kevin Ravenel
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Jean-Philippe Bouchara
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| | - Sandrine Giraud
- UNIV Angers, UNIV Brest, Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), SFR ICAT, Angers, France
| |
Collapse
|
17
|
Miyauchi S, Hage H, Drula E, Lesage-Meessen L, Berrin JG, Navarro D, Favel A, Chaduli D, Grisel S, Haon M, Piumi F, Levasseur A, Lomascolo A, Ahrendt S, Barry K, LaButti KM, Chevret D, Daum C, Mariette J, Klopp C, Cullen D, de Vries RP, Gathman AC, Hainaut M, Henrissat B, Hildén KS, Kües U, Lilly W, Lipzen A, Mäkelä MR, Martinez AT, Morel-Rouhier M, Morin E, Pangilinan J, Ram AFJ, Wösten HAB, Ruiz-Dueñas FJ, Riley R, Record E, Grigoriev IV, Rosso MN. Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus. DNA Res 2021; 27:5856740. [PMID: 32531032 PMCID: PMC7406137 DOI: 10.1093/dnares/dsaa011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.
Collapse
Affiliation(s)
- Shingo Miyauchi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Hayat Hage
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Elodie Drula
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Laurence Lesage-Meessen
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Jean-Guy Berrin
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - David Navarro
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Anne Favel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Delphine Chaduli
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Sacha Grisel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Mireille Haon
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - François Piumi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | | | - Anne Lomascolo
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Steven Ahrendt
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kurt M LaButti
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Didier Chevret
- INRAE, UMR1319, Micalis, Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Chris Daum
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Jérôme Mariette
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | - Christophe Klopp
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Allen C Gathman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Matthieu Hainaut
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | | | - Ursula Kües
- Department of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, Göttingen, Germany.,Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Walt Lilly
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Anna Lipzen
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | | | - Mélanie Morel-Rouhier
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Emmanuelle Morin
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Jasmyn Pangilinan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Han A B Wösten
- Microbiology, Utrecht University, Utrecht, The Netherlands
| | | | - Robert Riley
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Eric Record
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Marie-Noëlle Rosso
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| |
Collapse
|
18
|
Lubbers RJM, Dilokpimol A, Visser J, de Vries RP. Aspergillus niger uses the peroxisomal CoA-dependent β-oxidative genes to degrade the hydroxycinnamic acids caffeic acid, ferulic acid, and p-coumaric acid. Appl Microbiol Biotechnol 2021; 105:4199-4211. [PMID: 33950281 PMCID: PMC8140964 DOI: 10.1007/s00253-021-11311-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Abstract Aromatic compounds are important molecules which are widely applied in many industries and are mainly produced from nonrenewable sources. Renewable sources such as plant biomass are interesting alternatives for the production of aromatic compounds. Ferulic acid and p-coumaric acid, a precursor for vanillin and p-vinyl phenol, respectively, can be released from plant biomass by the fungus Aspergillus niger. The degradation of hydroxycinnamic acids such as caffeic acid, ferulic acid, and p-coumaric acid has been observed in many fungi. In A. niger, multiple metabolic pathways were suggested for the degradation of hydroxycinnamic acids. However, no genes were identified for these hydroxycinnamic acid metabolic pathways. In this study, several pathway genes were identified using whole-genome transcriptomic data of A. niger grown on different hydroxycinnamic acids. The genes are involved in the CoA-dependent β-oxidative pathway in fungi. This pathway is well known for the degradation of fatty acids, but not for hydroxycinnamic acids. However, in plants, it has been shown that hydroxycinnamic acids are degraded through this pathway. We identified genes encoding hydroxycinnamate-CoA synthase (hcsA), multifunctional β-oxidation hydratase/dehydrogenase (foxA), 3-ketoacyl CoA thiolase (katA), and four thioesterases (theA-D) of A. niger, which were highly induced by all three tested hydroxycinnamic acids. Deletion mutants revealed that these genes were indeed involved in the degradation of several hydroxycinnamic acids. In addition, foxA and theB are also involved in the degradation of fatty acids. HcsA, FoxA, and KatA contained a peroxisomal targeting signal and are therefore predicted to be localized in peroxisomes. Key points • Metabolism of hydroxycinnamic acid was investigated in Aspergillus niger • Using transcriptome data, multiple CoA-dependent β-oxidative genes were identified. • Both foxA and theB are involved in hydroxycinnamate but also fatty acid metabolism. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11311-0.
Collapse
Affiliation(s)
- R J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - J Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - R P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Clocchiatti A, Hannula SE, van den Berg M, Hundscheid MPJ, de Boer W. Evaluation of Phenolic Root Exudates as Stimulants of Saptrophic Fungi in the Rhizosphere. Front Microbiol 2021; 12:644046. [PMID: 33936001 PMCID: PMC8079663 DOI: 10.3389/fmicb.2021.644046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
The rhizosphere microbial community of crop plants in intensively managed arable soils is strongly dominated by bacteria, especially in the initial stages of plant development. In order to establish more diverse and balanced rhizosphere microbiomes, as seen for wild plants, crop variety selection could be based on their ability to promote growth of saprotrophic fungi in the rhizosphere. We hypothesized that this can be achieved by increasing the exudation of phenolic acids, as generally higher fungal abundance is observed in environments with phenolic-rich inputs, such as exudates of older plants and litter leachates. To test this, a rhizosphere simulation microcosm was designed to establish gradual diffusion of root exudate metabolites from sterile sand into arable soil. With this system, we tested the fungus-stimulating effect of eight phenolic acids alone or in combination with primary root metabolites. Ergosterol-based fungal biomass measurements revealed that most phenolic acids did not increase fungal abundance in the arable soil layer. These results were supported by comparison of fungal biomass in the rhizosphere of wild type Arabidopsis thaliana plants and mutants with altered phenolic acid metabolism. Salicylic acid was the only phenolic acid that stimulated a higher fungal biomass in the arable soil layer of microcosms, but only when combined with a background of primary root metabolites. However, such effect on rhizosphere fungi was not confirmed for a salicylic acid-impaired A. thaliana mutant. For three phenolic acid treatments (chlorogenic acid, salicylic acid, vanillic acid) fungal and bacterial community compositions were analyzed using amplicon sequencing. Despite having little effect on fungal biomass, phenolic acids combined with primary metabolites promoted a higher relative abundance of soil-borne fungi with the ability to invade plant roots (Fusarium, Trichoderma and Fusicolla spp.) in the simulated rhizosphere. Bacterial community composition was also affected by these phenolic acids. Although this study indicates that phenolic acids do not increase fungal biomass in the rhizosphere, we highlight a potential role of phenolic acids as attractants for root-colonizing fungi.
Collapse
Affiliation(s)
- Anna Clocchiatti
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Soil Biology Group, Wageningen University, Wageningen, Netherlands
| | - S Emilia Hannula
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | | | | - Wietse de Boer
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Soil Biology Group, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
20
|
Beltrame G, Hemming J, Yang H, Han Z, Yang B. Effects of supplementation of sea buckthorn press cake on mycelium growth and polysaccharides of Inonotus obliquus in submerged cultivation. J Appl Microbiol 2021; 131:1318-1330. [PMID: 33556214 DOI: 10.1111/jam.15028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
AIMS Investigation of the influence of cultivation time and sea buckthorn press cake (Hippophaë rhamnoides) dosage on mycelium yield of Inonotus obliquus in submerged cultivation and on the yield, monomer composition, and macromolecular properties of the exopolysaccharides (EPS) from culture media and intracellular polysaccharides (IPS) extracted from mycelia. METHODS AND RESULTS Supplementation at 5 g l-1 combined with cultivation time of 250 h granted highest yield increase in mycelia (by 122%). The supplementation reduced extraction yield and decreased the molecular weight of the main IPS population. The supplementation increased production and molecular weight of EPS. The relative content of arabinose and rhamnose in EPS positively correlated with dosage of the press cake. The press cake supplementation increased the content of galacturonic acid in IPS, but not in EPS. CONCLUSION Sea buckthorn press cake is a food industry fibrous side stream with high oil content. It increases the cultivation yield of Inonotus obliquus mycelium and influences the produced polysaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY Mycelium is a resource of bioactive polysaccharides, attracting the interest of nutraceutical companies. Sea buckthorn press cake is a promising supplement for increasing mycelium production. The utilization of this agricultural side stream would therefore favour circular economy.
Collapse
Affiliation(s)
- G Beltrame
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - J Hemming
- Wood and Paper Chemistry, Åbo Akademi University, Turku, Finland
| | - H Yang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Z Han
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - B Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
21
|
Zhao W, Huang P, Zhu Z, Chen C, Xu X. Production of phenolic compounds and antioxidant activity via bioconversion of wheat straw by Inonotus obliquus under submerged fermentation with the aid of a surfactant. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1021-1029. [PMID: 32761948 DOI: 10.1002/jsfa.10710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND This study investigated the effect of surfactants on wheat straw biodegradation and the growth-associated generation of exo- and endo-phenolic compounds (EPC and IPC) and antioxidant activity expression by liquid-cultured Inonotus obliquus, an edible and medicinal mushroom, also known as a white rot fungus. Changes in the chemical composition and multiscale structure of wheat straw, in the production and activity of EPC and IPC and in individual flavonoids were analyzed. RESULTS Fungal pretreatment decreased significantly the contents of all lignocellulose components, increased and enlarged substrate porosity and caused changes in the structure of wheat straw with the aid of Triton X-100. A gradual increase in EPC and IPC production was observed up to 6.4- and 1.5-fold for 9 days. The EPC obtained on day 9 showed the highest antioxidant activity (IC50 of 30.96 mg L-1 ) against 2,2-diphenyl-1-picrylhydrazyl radicals. High-performance liquid chromatographic results indicated the presence of high amounts of epicatechin-3-gallate (ECG; (374.9 mg g-1 ) and epigallocatechin-3-gallate (EGCG; 447.2 mg g-1 ) in the EPC; other polyphenols were also enhanced but to a lesser extent. Surfactant supplementation was effective in enhancing flavonoid production and in increasing antioxidant activity in EPC. CONCLUSIONS The results indicated enhanced accumulation of phenolic compounds, particularly ECG and EGCG in Inonotus obliquus via biodegradation and bioconversion of lignocellulose residues. They also indicated enhancement in the production of several flavonoids and also an increase in antioxidant activity in the product by a surfactant-treated process, which may be a useful way of exploiting underused lignocellulosic residues to various high-added-value functional ingredients. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Panpan Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenduo Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cui Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiangqun Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
22
|
Storage temperature and time and its influence on feed quality of fungal treated wheat straw. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2020.114749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Mycoremediation Through Redox Mechanisms of Organic Pollutants. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Westrick NM, Smith DL, Kabbage M. Disarming the Host: Detoxification of Plant Defense Compounds During Fungal Necrotrophy. FRONTIERS IN PLANT SCIENCE 2021; 12:651716. [PMID: 33995447 PMCID: PMC8120277 DOI: 10.3389/fpls.2021.651716] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
While fungal biotrophs are dependent on successfully suppressing/subverting host defenses during their interaction with live cells, necrotrophs, due to their lifestyle are often confronted with a suite of toxic metabolites. These include an assortment of plant defense compounds (PDCs) which can demonstrate broad antifungal activity. These PDCs can be either constitutively present in plant tissue or induced in response to infection, but are nevertheless an important obstacle which needs to be overcome for successful pathogenesis. Fungal necrotrophs have developed a number of strategies to achieve this goal, from the direct detoxification of these compounds through enzymatic catalysis and modification, to the active transport of various PDCs to achieve toxin sequestration and efflux. Studies have shown across multiple pathogens that the efficient detoxification of host PDCs is both critical for successful infection and often a determinant factor in pathogen host range. Here, we provide a broad and comparative overview of the various mechanisms for PDC detoxification which have been identified in both fungal necrotrophs and fungal pathogens which depend on detoxification during a necrotrophic phase of infection. Furthermore, the effect that these mechanisms have on fungal host range, metabolism, and disease control will be discussed.
Collapse
|
25
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme Microb Technol 2020; 141:109669. [DOI: 10.1016/j.enzmictec.2020.109669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
27
|
Molecular engineering to improve lignocellulosic biomass based applications using filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:73-109. [PMID: 33934853 DOI: 10.1016/bs.aambs.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lignocellulosic biomass is an abundant and renewable resource, and its utilization has become the focus of research and biotechnology applications as a very promising raw material for the production of value-added compounds. Filamentous fungi play an important role in the production of various lignocellulolytic enzymes, while some of them have also been used for the production of important metabolites. However, wild type strains have limited efficiency in enzyme production or metabolic conversion, and therefore many efforts have been made to engineer improved strains. Examples of this are the manipulation of transcriptional regulators and/or promoters of enzyme-encoding genes to increase gene expression, and protein engineering to improve the biochemical characteristics of specific enzymes. This review provides and overview of the applications of filamentous fungi in lignocellulosic biomass based processes and the development and current status of various molecular engineering strategies to improve these processes.
Collapse
|
28
|
Effect of solid-state fungal fermentation on the non-volatiles content and volatiles composition of Coffea canephora (Robusta) coffee beans. Food Chem 2020; 337:128023. [PMID: 32920275 DOI: 10.1016/j.foodchem.2020.128023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022]
Abstract
In this study, the effects of fungal fermentation on green canephora coffee beans were evaluated by observing the changes to selected non-volatile parameters before roasting, and subsequently the volatile profile after roasting. Solid-state fermentation (SSF) by Aspergillus spp. and Mucor spp. on green canephora coffee beans was shown to modulate the contents of free sugars, free amino acids and polyphenolic compounds such as caffeoylquinic acids (CQAs). Significant strain-specific differences were observed in the contents of aroma compounds after roasting. A significant increase in pyrazines was observed in the Aspergillus oryzae-fermented samples, while higher levels of furans were detected in the Mucor plumbeus-fermented samples. The present work shows that fungal fermentation of green canephora coffee beans is a potentially promising method for the modulation and improvement of coffee flavour and aroma.
Collapse
|
29
|
Korzeniewicz R, Baranowska M, Kwaśna H, Niedbała G, Behnke-Borowczyk J. Communities of Fungi in Black Cherry Stumps and Effects of Herbicide. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1126. [PMID: 32878134 PMCID: PMC7570310 DOI: 10.3390/plants9091126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
So far, there have been no studies on fungal communities in Prunus serotina (black cherry) wood. Our objectives were to characterize fungal communities from P. serotina wood and to evaluate effects of glyphosate (Glifocyd 360 SL) used on P. serotina stumps on abundance, species richness and diversity of those communities. In August 2016, in the Podanin Forest District, stumps of black cherry trees left after felling were treated with the herbicide. Control stumps were treated with water. Wood discs were cut from the surface of the stumps in May and July-August 2017. Eight treatment combinations (2 herbicide treatments × 2 disc sizes × 2 sample times) were tested. Sub-samples were pooled and ground in an acryogenic mill. Environmental DNA was extracted with a Plant Genomic DNA Purification Kit. The ITS1, 5.8S rDNA region was used to identify fungal species, using primers ITS1FI2 5'-GAACCWGCGGARGGATCA-3' and 5.8S 5'-CGCTGCGTT CTTCATCG-3'. The amplicons were sequenced using the Illumina system. The results were subjected to bioinformatic analysis. Sequences were compared with reference sequences from the NCBI database using the BLASTn 2.8.0 algorithm. Abundance of fungi was defined as the number of Operational Taxonomic Units (OTUs), and diversity as the number of species in a sample. Differences between the number of OTUs and taxa were analyzed using the chi-squared test (χ2). Diversity in microbial communities was compared using diversity indices. A total of 54,644 OTUs were obtained. Culturable fungi produced 49,808 OTUs (91.15%), fungi not known from culture had 2571 OTUs (4.70%), non-fungal organisms had 1333 (2.44%) and organisms with no reference sequence in NCBI, 934 OTUs (1.71%). The total number of taxa ranged from 120 to 319. Fungi in stump wood were significantly more abundant in July-August than in May, in stumps >5 cm diameter than in stumps <5 cm diameter, in glyphosate-treated than in untreated stumps when sampled in May, and in untreated than in glyphosate-treated stumps when sampled in July-August. Species richness was significantly greater in July-August than in May, and in stumps >5 cm diameter than in stumps <5 cm diameter, either treated or untreated, depending on size. Herbicides can therefore affect the abundance and diversity of fungal communities in deciduous tree wood. The greater frequency of Ascomycota in herbicide-treated than in untreated stumps indicates their greater tolerance of glyphosate.
Collapse
Affiliation(s)
- Robert Korzeniewicz
- Department of Silviculture, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625 Poznań, Poland; (R.K.); (M.B.)
| | - Marlena Baranowska
- Department of Silviculture, Poznań University of Life Sciences, Wojska Polskiego 71a, 60-625 Poznań, Poland; (R.K.); (M.B.)
| | - Hanna Kwaśna
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (H.K.); (J.B.-B.)
| | - Gniewko Niedbała
- Institute of Biosystems Engineering, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
| | - Jolanta Behnke-Borowczyk
- Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland; (H.K.); (J.B.-B.)
| |
Collapse
|
30
|
Kadowaki MAS, Higasi PMR, de Godoy MO, de Araújo EA, Godoy AS, Prade RA, Polikarpov I. Enzymatic versatility and thermostability of a new aryl-alcohol oxidase from Thermothelomyces thermophilus M77. Biochim Biophys Acta Gen Subj 2020; 1864:129681. [PMID: 32653619 DOI: 10.1016/j.bbagen.2020.129681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023]
Abstract
Background Fungal aryl-alcohol oxidases (AAOx) are extracellular flavoenzymes that belong to glucose-methanol-choline oxidoreductase family and are responsible for the selective conversion of primary aromatic alcohols into aldehydes and aromatic aldehydes to their corresponding acids, with concomitant production of hydrogen peroxide (H2O2) as by-product. The H2O2 can be provided to lignin degradation pathway, a biotechnological property explored in biofuel production. In the thermophilic fungus Thermothelomyces thermophilus (formerly Myceliophthora thermophila), just one AAOx was identified in the exo-proteome. Methods The glycosylated and non-refolded crystal structure of an AAOx from T. thermophilus at 2.6 Å resolution was elucidated by X-ray crystallography combined with small-angle X-ray scattering (SAXS) studies. Moreover, biochemical analyses were carried out to shed light on enzyme substrate specificity and thermostability. Results This flavoenzyme harbors a flavin adenine dinucleotide as a cofactor and is able to oxidize aromatic substrates and 5-HMF. Our results also show that the enzyme has similar oxidation rates for bulky or simple aromatic substrates such as cinnamyl and veratryl alcohols. Moreover, the crystal structure of MtAAOx reveals an open active site, which might explain observed specificity of the enzyme. Conclusions MtAAOx shows previously undescribed structural differences such as a fully accessible catalytic tunnel, heavy glycosylation and Ca2+ binding site providing evidences for thermostability and activity of the enzymes from AA3_2 subfamily. General significance Structural and biochemical analyses of MtAAOx could be important for comprehension of aryl-alcohol oxidases structure-function relationships and provide additional molecular tools to be used in future biotechnological applications.
Collapse
Affiliation(s)
- Marco Antonio Seiki Kadowaki
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| | - Paula Miwa Rabelo Higasi
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Mariana Ortiz de Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Evandro Ares de Araújo
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Andre Schutzer Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil
| | - Rolf Alexander Prade
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Oklahoma State University, OK, USA
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São-carlense, 400, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
31
|
Monaco P, Toumi M, Sferra G, Tóth E, Naclerio G, Bucci A. The bacterial communities of Tuber aestivum: preliminary investigations in Molise region, Southern Italy. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01586-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
32
|
Abstract
Eutypella parasitica R.W. Davidson & R.C. Lorenz is the causative agent of Eutypella canker of maple, a destructive disease of maples in Europe and North America. The fungus E. parasitica is known to cause wood stain and decay. However, it is not known how effectively it decomposes the wood of the most widespread maple species in Europe. Wood samples of Acer pseudoplatanus L., A. platanoides L., and A. campestre L. were exposed to four isolates of E. parasitica and nine other fungal species for comparison, according to the modified EN 113 standard. After 15 weeks of incubation, mass loss and microscopical analysis of samples showed evidence of colonization and different wood decay potentials among fungal species. A highly significant positive correlation was found between mass loss and moisture content for all fungal species. Similarly, the measured cell wall thickness correlated well with the calculated mass loss of the samples. On average, the fungal species caused the lowest mass loss in A. pseudoplatanus (10.0%) and the highest in A. campestre (12.6%) samples. Among the samples exposed to E. parasitica isolates, the highest mass loss was recorded in A. pseudoplatanus (6.6%). Statistical analysis showed significant differences in mass loss and moisture content between different E. parasitica isolates. Based on the results of staining, we discuss the type of decay caused by E. parasitica. Although E. parasitica isolates caused smaller mass loss of samples compared to other more effective decay species, we should not disregard its capability of degrading maple wood. Because E. parasitica usually infects the lower portion of the trunk, which is the largest and most valuable part of the tree, any damage can cause significant economic and resource loss.
Collapse
|
33
|
Havelcová M, Machovič V, Novák F, Lapčák L, Mizera J, Hendrych J. Chemical characterization of mountain forest soils: impact of long-term atmospheric deposition loadings (Czech-Polish-German border region). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20344-20357. [PMID: 32239414 DOI: 10.1007/s11356-020-08558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The composition of lipids in soil offers clues to soil degradation processes due their persistency and selectivity in soil, and close relation to long-term processes in the ecosystem, thanks to their role in cell membranes of organisms. Organic solvent-extractable compounds were recovered from soils collected at two sites differing in the degree of forest damage. Gas chromatography/mass spectroscopy and Fourier transform infrared spectroscopy were applied in order to characterize solvent-extractable lipids. Raman spectroscopy was also applied as it provides distinct advantages for determining the structural order of carbonaceous materials. The organic matter measurement techniques were combined with an established simultaneous multi-element measurement technique. Variations in individual soil horizons from the sites were reflected in the crystallinity of epicuticular waxes, presence of long-chain aliphatic hydrocarbons, concentrations of n-alkanes, saturated and unsaturated fatty acids, dicarboxylic acids, and in the content of aromatic structures, hydroxyl, ester, and carboxylic acid groups. The results are explained by differently transformed organic matter. The concentrations of elements in the soils were also affected by atmospheric depositions, including higher accumulations of arsenic and antimony, and lower contents of natural nutrients. These data have potential to be used as sensitive biogenic indicators of ecosystem damage by long-term atmospheric depositions.
Collapse
Affiliation(s)
- Martina Havelcová
- Institute of Rock Structure and Mechanics, AS CR V Holešovičkách 41, 182 09, Prague, Czech Republic.
| | - Vladimír Machovič
- Institute of Rock Structure and Mechanics, AS CR V Holešovičkách 41, 182 09, Prague, Czech Republic
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - František Novák
- Technopark Kralupy, University of Chemistry and Technology Prague, 278 01, Kralupy nad Vltavou, Czech Republic
| | - Ladislav Lapčák
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jiří Mizera
- Institute of Nuclear Physic, Řež 130, 250 68, Řež, Czech Republic
| | - Jiří Hendrych
- University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
34
|
Op De Beeck M, Troein C, Siregar S, Gentile L, Abbondanza G, Peterson C, Persson P, Tunlid A. Regulation of fungal decomposition at single-cell level. THE ISME JOURNAL 2020; 14:896-905. [PMID: 31896790 PMCID: PMC7082364 DOI: 10.1038/s41396-019-0583-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022]
Abstract
Filamentous fungi play a key role as decomposers in Earth's nutrient cycles. In soils, substrates are heterogeneously distributed in microenvironments. Hence, individual hyphae of a mycelium may experience very different environmental conditions simultaneously. In the current work, we investigated how fungi cope with local environmental variations at single-cell level. We developed a method based on infrared spectroscopy that allows the direct, in-situ chemical imaging of the decomposition activity of individual hyphal tips. Colonies of the ectomycorrhizal Basidiomycete Paxillus involutus were grown on liquid media, while parts of colonies were allowed to colonize lignin patches. Oxidative decomposition of lignin by individual hyphae growing under different conditions was followed for a period of seven days. We identified two sub-populations of hyphal tips: one with low decomposition activity and one with much higher activity. Active cells secreted more extracellular polymeric substances and oxidized lignin more strongly. The ratio of active to inactive hyphae strongly depended on the environmental conditions in lignin patches, but was further mediated by the decomposition activity of entire mycelia. Phenotypic heterogeneity occurring between genetically identical hyphal tips may be an important strategy for filamentous fungi to cope with heterogeneous and constantly changing soil environments.
Collapse
Affiliation(s)
- Michiel Op De Beeck
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden.
| | - Carl Troein
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, SE-223 62, Lund, Sweden
| | - Syahril Siregar
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, SE-223 62, Lund, Sweden
| | - Luigi Gentile
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Department of Chemistry and CSGI, University of Bari Aldo Moro, IT- 701 21, Bari, Italy
| | - Giuseppe Abbondanza
- Department of Physics, Synchrotron Radiation Research, Lund University, SE- 223 62, Lund, Sweden
| | - Carsten Peterson
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, SE-223 62, Lund, Sweden
| | - Per Persson
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Environmental and Climate Research (CEC), Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
35
|
Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. Fine-Tuning of Physicochemical Properties and Growth Dynamics of Mycelium-Based Materials. ACS APPLIED BIO MATERIALS 2020; 3:1044-1051. [DOI: 10.1021/acsabm.9b01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Elena Antinori
- Smart Materials, Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
- DIBRIS, University of Genoa, Genoa 16145, Italy
| | - Luca Ceseracciu
- Smart Materials, Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | - Giorgio Mancini
- Smart Materials, Istituto Italiano di Tecnologia Via Morego 30, Genova 16163, Italy
| | | | | |
Collapse
|
36
|
Mäkelä MR, Hildén K, Kowalczyk JE, Hatakka A. Progress and Research Needs of Plant Biomass Degradation by Basidiomycete Fungi. GRAND CHALLENGES IN FUNGAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-29541-7_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Mathé C, Fawal N, Roux C, Dunand C. In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style. Sci Rep 2019; 9:20373. [PMID: 31889110 PMCID: PMC6937255 DOI: 10.1038/s41598-019-56774-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
Ligninolytic peroxidases are microbial enzymes involved in depolymerisation of lignin, a plant cell wall polymer found in land plants. Among fungi, only Dikarya were found to degrade lignin. The increase of available fungal genomes allows performing an expert annotation of lignin-degrading peroxidase encoding sequences with a particular focus on Class II peroxidases (CII Prx). In addition to the previously described LiP, MnP and VP classes, based on sequence similarity, six new sub-classes have been defined: three found in plant pathogen ascomycetes and three in basidiomycetes. The presence of CII Prxs could be related to fungal life style. Typically, necrotrophic or hemibiotrophic fungi, either ascomycetes or basidiomycetes, possess CII Prxs while symbiotic, endophytic or biotrophic fungi do not. CII Prxs from ascomycetes are rarely subjected to duplications unlike those from basidiomycetes, which can form large recent duplicated families. Even if these CII Prxs classes form two well distinct clusters with divergent gene structures (intron numbers and positions), they share the same key catalytic residues suggesting that they evolved independently from similar ancestral sequences with few or no introns. The lack of CII Prxs encoding sequences in early diverging fungi, together with the absence of duplicated class I peroxidase (CcP) in fungi containing CII Prxs, suggests the potential emergence of an ancestral CII Prx sequence from the duplicated CcP after the separation between ascomycetes and basidiomycetes. As some ascomycetes and basidiomycetes did not possess CII Prx, late gene loss could have occurred.
Collapse
Affiliation(s)
- Catherine Mathé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nizar Fawal
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
38
|
Lubbers RJM, Liwanag AJ, Peng M, Dilokpimol A, Benoit-Gelber I, de Vries RP. Evolutionary adaptation of Aspergillus niger for increased ferulic acid tolerance. J Appl Microbiol 2019; 128:735-746. [PMID: 31674709 PMCID: PMC7027748 DOI: 10.1111/jam.14505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023]
Abstract
AIMS To create an Aspergillus niger mutant with increased tolerance against ferulic acid using evolutionary adaptation. METHODS AND RESULTS Evolutionary adaptation of A. niger N402 was performed by consecutive growth on increasing concentrations of ferulic acid in the presence of 25 mmol l-1 d-fructose, starting from 0·5 mmol l-1 and ending with 5 mmol l-1 ferulic acid. The A. niger mutant obtained after six months, named Fa6, showed increased ferulic acid tolerance compared to the parent. In addition, Fa6 has increased ferulic acid consumption and a higher conversion rate, suggesting that the mutation affects aromatic metabolism of this species. Transcriptome analysis of the evolutionary mutant on ferulic acid revealed a distinct gene expression profile compared to the wild type. Further analysis of this mutant and the parent strain provided the first experimental confirmation that A. niger converts coniferyl alcohol to ferulic acid. CONCLUSIONS The evolutionary adaptive A. niger mutant Fa6 has beneficial mutations that increase the tolerance, conversion rate and uptake of ferulic acid. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that evolutionary adaptation is a powerful tool to modify micro-organisms towards increased tolerance to harsh conditions, which is beneficial for various industrial applications.
Collapse
Affiliation(s)
- R J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A J Liwanag
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - M Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - A Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - I Benoit-Gelber
- Centre for Structural and Functional Genomics, Concordia University, Montréal, Canada
| | - R P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
39
|
Kowalczyk JE, Peng M, Pawlowski M, Lipzen A, Ng V, Singan V, Wang M, Grigoriev IV, Mäkelä MR. The White-Rot Basidiomycete Dichomitus squalens Shows Highly Specific Transcriptional Response to Lignocellulose-Related Aromatic Compounds. Front Bioeng Biotechnol 2019; 7:229. [PMID: 31616664 PMCID: PMC6763618 DOI: 10.3389/fbioe.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic plant biomass is an important feedstock for bio-based economy. In particular, it is an abundant renewable source of aromatic compounds, which are present as part of lignin, as side-groups of xylan and pectin, and in other forms, such as tannins. As filamentous fungi are the main organisms that modify and degrade lignocellulose, they have developed a versatile metabolism to convert the aromatic compounds that are toxic at relatively low concentrations to less toxic ones. During this process, fungi form metabolites some of which represent high-value platform chemicals or important chemical building blocks, such as benzoic, vanillic, and protocatechuic acid. Especially basidiomycete white-rot fungi with unique ability to degrade the recalcitrant lignin polymer are expected to perform highly efficient enzymatic conversions of aromatic compounds, thus having huge potential for biotechnological exploitation. However, the aromatic metabolism of basidiomycete fungi is poorly studied and knowledge on them is based on the combined results of studies in variety of species, leaving the overall picture in each organism unclear. Dichomitus squalens is an efficiently wood-degrading white-rot basidiomycete that produces a diverse set of extracellular enzymes targeted for lignocellulose degradation, including oxidative enzymes that act on lignin. Our recent study showed that several intra- and extracellular aromatic compounds were produced when D. squalens was cultivated on spruce wood, indicating also versatile aromatic metabolic abilities for this species. In order to provide the first molecular level systematic insight into the conversion of plant biomass derived aromatic compounds by basidiomycete fungi, we analyzed the transcriptomes of D. squalens when grown with 10 different lignocellulose-related aromatic monomers. Significant differences for example with respect to the expression of lignocellulose degradation related genes, but also putative genes encoding transporters and catabolic pathway genes were observed between the cultivations supplemented with the different aromatic compounds. The results demonstrate that the transcriptional response of D. squalens is highly dependent on the specific aromatic compounds present suggesting that instead of a common regulatory system, fine-tuned regulation is needed for aromatic metabolism.
Collapse
Affiliation(s)
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Megan Pawlowski
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Mei Wang
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Metabolite Transformation and Enzyme Activities of Hainan Vanilla Beans During Curing to Improve Flavor Formation. Molecules 2019; 24:molecules24152781. [PMID: 31370187 PMCID: PMC6696495 DOI: 10.3390/molecules24152781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 11/17/2022] Open
Abstract
This paper compares the differences in metabolites of vanilla beans at five different curing stages. Key vanilla flavors, vanillin precursors and main enzymes during the curing process of Hainan vanilla beans were also analyzed. Hundreds of metabolites were detected based on metabolic analyses of a widely targeted metabolome technique, compared with blanched vanilla beans (BVB), sweating vanilla beans (SVB) and drying vanilla beans (DVB), the total peak intensity of cured vanilla beans (CVB) is on the rise. The score plots of principal component analysis indicated that the metabolites were generally similar at the same curing stages, but for the different curing stages, they varied substantially. During processing, vanillin content increased while glucovanillin content decreased, and vanillic acid was present in sweating beans, but its content was reduced in drying beans. Both p-hydroxybenzaldehyde and p-hydroxybenzoic acid showed the maximum contents in cured beans. Ferulic acid was mainly produced in drying beans and reduced in cured beans. p-coumaric acid increased during the curing process. Vanillyl alcohol in drying beans (0.22%) may be formed by the hydrolysis of glucoside, whose conversion into vanillin may explain its decrease during the curing stage. β-Glucosidase enzymatic activity was not detected in blanched and sweating beans, but was observed after drying. Peroxidase activity decreased during curing by 94% in cured beans. Polyphenol oxidase activity was low in earlier stages, whereas cellulase activity in processed beans was higher than in green beans, except for cured beans. This study contributes to revealing the formation of flavor components and the biosynthesis pathway of vanillin.
Collapse
|
41
|
Lubbers RJM, Dilokpimol A, Visser J, Mäkelä MR, Hildén KS, de Vries RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi. Biotechnol Adv 2019; 37:107396. [PMID: 31075306 DOI: 10.1016/j.biotechadv.2019.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.
Collapse
Affiliation(s)
- Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Kristiina S Hildén
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland.
| |
Collapse
|
42
|
Brink DP, Ravi K, Lidén G, Gorwa-Grauslund MF. Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 2019; 103:3979-4002. [PMID: 30963208 PMCID: PMC6486533 DOI: 10.1007/s00253-019-09692-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
Abstract
Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database ( www.elignindatabase.com ), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings.
Collapse
Affiliation(s)
- Daniel P Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden.
| | - Krithika Ravi
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Marie F Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
43
|
Gluck‐Thaler E, Vijayakumar V, Slot JC. Fungal adaptation to plant defences through convergent assembly of metabolic modules. Mol Ecol 2018; 27:5120-5136. [DOI: 10.1111/mec.14943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Emile Gluck‐Thaler
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| | - Vinod Vijayakumar
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| | - Jason C. Slot
- Department of Plant Pathology, College of Food, Agricultural, and Environmental Sciences The Ohio State University Columbus Ohio
| |
Collapse
|
44
|
Daly P, López SC, Peng M, Lancefield CS, Purvine SO, Kim Y, Zink EM, Dohnalkova A, Singan VR, Lipzen A, Dilworth D, Wang M, Ng V, Robinson E, Orr G, Baker SE, Bruijnincx PCA, Hildén KS, Grigoriev IV, Mäkelä MR, de Vries RP. Dichomitus squalens
partially tailors its molecular responses to the composition of solid wood. Environ Microbiol 2018; 20:4141-4156. [DOI: 10.1111/1462-2920.14416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Paul Daly
- Fungal Physiology Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University Utrecht The Netherlands
| | - Sara Casado López
- Fungal Physiology Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University Utrecht The Netherlands
| | - Mao Peng
- Fungal Physiology Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University Utrecht The Netherlands
| | - Christopher S. Lancefield
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA USA
| | - Young‐Mo Kim
- Biological Sciences Division Pacific Northwest National Laboratory Richland WA USA
| | - Erika M. Zink
- Biological Sciences Division Pacific Northwest National Laboratory Richland WA USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA USA
| | | | - Anna Lipzen
- US Department of Energy Joint Genome Institute Walnut Creek CA USA
| | - David Dilworth
- US Department of Energy Joint Genome Institute Walnut Creek CA USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute Walnut Creek CA USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute Walnut Creek CA USA
| | - Errol Robinson
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA USA
| | - Scott E. Baker
- Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA USA
| | - Pieter C. A. Bruijnincx
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science Utrecht University Utrecht The Netherlands
| | | | | | - Miia R. Mäkelä
- Department of Microbiology University of Helsinki Helsinki Finland
| | - Ronald P. de Vries
- Fungal Physiology Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University Utrecht The Netherlands
- Department of Microbiology University of Helsinki Helsinki Finland
| |
Collapse
|
45
|
Marinović M, Nousiainen P, Dilokpimol A, Kontro J, Moore R, Sipilä J, de Vries RP, Mäkelä MR, Hildén K. Selective Cleavage of Lignin β- O-4 Aryl Ether Bond by β-Etherase of the White-Rot Fungus Dichomitus squalens. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:2878-2882. [PMID: 30271687 PMCID: PMC6156110 DOI: 10.1021/acssuschemeng.7b03619] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/19/2018] [Indexed: 05/06/2023]
Abstract
Production of value-added compounds from a renewable aromatic polymer, lignin, has proven to be challenging. Chemical procedures, involving harsh reaction conditions, are costly and often result in nonselective degradation of lignin linkages. Therefore, enzymatic catalysis with selective cleavage of lignin bonds provides a sustainable option for lignin valorization. In this study, we describe the first functionally characterized fungal intracellular β-etherase from the wood-degrading white-rot basidiomycete Dichomitus squalens. This enzyme, Ds-GST1, from the glutathione-S-transferase superfamily selectively cleaved the β-O-4 aryl ether bond of a dimeric lignin model compound in a glutathione-dependent reaction. Ds-GST1 also demonstrated activity on polymeric synthetic lignin fractions, shown by a decrease in molecular weight distribution of the laccase-oxidized guaiacyl dehydrogenation polymer. In addition to a possible role of Ds-GST1 in intracellular catabolism of lignin-derived aromatic compounds, the cleavage of the most abundant linkages in lignin under mild reaction conditions makes this biocatalyst an attractive green alternative in biotechnological applications.
Collapse
Affiliation(s)
- Mila Marinović
- Division
of Microbiology and Biotechnology, Department of Food and Environmental
Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Paula Nousiainen
- Department
of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, A.I. Virtasen aukio 1, FI-00014 Helsinki, Finland
| | - Adiphol Dilokpimol
- Fungal
Physiology, Westerdijk Fungal Biodiversity Institute & Fungal
Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jussi Kontro
- Department
of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, A.I. Virtasen aukio 1, FI-00014 Helsinki, Finland
| | - Robin Moore
- Department
of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, A.I. Virtasen aukio 1, FI-00014 Helsinki, Finland
| | - Jussi Sipilä
- Department
of Chemistry, Laboratory of Organic Chemistry, University of Helsinki, A.I. Virtasen aukio 1, FI-00014 Helsinki, Finland
| | - Ronald P. de Vries
- Division
of Microbiology and Biotechnology, Department of Food and Environmental
Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
- Fungal
Physiology, Westerdijk Fungal Biodiversity Institute & Fungal
Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miia R. Mäkelä
- Division
of Microbiology and Biotechnology, Department of Food and Environmental
Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Kristiina Hildén
- Division
of Microbiology and Biotechnology, Department of Food and Environmental
Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| |
Collapse
|
46
|
Ravi K, García-Hidalgo J, Nöbel M, Gorwa-Grauslund MF, Lidén G. Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea. AMB Express 2018; 8:32. [PMID: 29500726 PMCID: PMC5834416 DOI: 10.1186/s13568-018-0563-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 11/10/2022] Open
Abstract
Bacterial strains were isolated from the sediments of the Baltic Sea using ferulic acid, guaiacol or a lignin-rich softwood waste stream as substrate. In total nine isolates were obtained, five on ferulic acid, two on guaiacol and two on a lignin-rich softwood stream as a carbon source. Three of the isolates were found to be Pseudomonas sp. based on 16S rRNA sequencing. Among them, isolate 9.1, which showed the fastest growth in defined M9 medium, was tentatively identified as a Pseudomonas deceptionensis strain based on the gyrB sequencing. The growth of isolate 9.1 was further examined on six selected lignin model compounds (ferulate, p-coumarate, benzoate, syringate, vanillin and guaiacol) from different upper funneling aromatic pathways and was found able to grow on four out of these six compounds. No growth was detected on syringate and guaiacol. The highest specific growth and uptake rates were observed for benzoate (0.3 h-1 and 4.2 mmol g CDW-1 h-1) whereas the lowest were for the compounds from the coniferyl branch. Interestingly, several pathway intermediates were excreted during batch growth. Vanillyl alcohol was found to be excreted during growth on vanillin. Several other intermediates like cis,cis-muconate, catechol, vanillate and 4-hydroxybenzoate from the known bacterial catabolic pathways were excreted during growth on the model compounds.
Collapse
Affiliation(s)
- Krithika Ravi
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Javier García-Hidalgo
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Matthias Nöbel
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Marie F. Gorwa-Grauslund
- Department of Chemistry, Applied Microbiology, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
47
|
Specialized plant biochemistry drives gene clustering in fungi. ISME JOURNAL 2018; 12:1694-1705. [PMID: 29463891 DOI: 10.1038/s41396-018-0075-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 01/31/2023]
Abstract
The fitness and evolution of prokaryotes and eukaryotes are affected by the organization of their genomes. In particular, the physical clustering of genes can coordinate gene expression and can prevent the breakup of co-adapted alleles. Although clustering may thus result from selection for phenotype optimization and persistence, the impact of environmental selection pressures on eukaryotic genome organization has rarely been systematically explored. Here, we investigated the organization of fungal genes involved in the degradation of phenylpropanoids, a class of plant-produced secondary metabolites that mediate many ecological interactions between plants and fungi. Using a novel gene cluster detection method, we identified 1110 gene clusters and many conserved combinations of clusters in a diverse set of fungi. We demonstrate that congruence in genome organization over small spatial scales is often associated with similarities in ecological lifestyle. Additionally, we find that while clusters are often structured as independent modules with little overlap in content, certain gene families merge multiple modules into a common network, suggesting they are important components of phenylpropanoid degradation strategies. Together, our results suggest that phenylpropanoids have repeatedly selected for gene clustering in fungi, and highlight the interplay between genome organization and ecological evolution in this ancient eukaryotic lineage.
Collapse
|
48
|
Kulik T, Stuper-Szablewska K, Bilska K, Buśko M, Ostrowska-Kołodziejczak A, Załuski D, Perkowski J. Sinapic Acid Affects Phenolic and Trichothecene Profiles of F. culmorum and F. graminearum Sensu Stricto. Toxins (Basel) 2017; 9:E264. [PMID: 28846647 PMCID: PMC5618197 DOI: 10.3390/toxins9090264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 01/04/2023] Open
Abstract
Plant-derived compounds for reducing the mycotoxin load in food and feed have become a rapidly developing research field of importance for plant breeding efforts and in the search for natural fungicides. In this study, toxigenic strains of Fusarium culmorum and F. graminearum sensu stricto were exposed to sinapic acid on solid YES media at levels close to those reported in wheat bran. Fusaria produced phenolic acids, whose accumulation was decreased by exogenous sinapic acid. Strains exposed to the lowest doses of sinapic acid showed more efficient reduction of phenolic acid production than fungi kept at higher concentrations of this compound. Fungi reduced exogenous sinapic acid, leading to the formation of syringic aldehyde. Treatment with sinapic acid led to a dramatic accumulation of its parent compound ferulic acid, presumably due to inhibition of the further conversion of this phenolic compound. Exogenous sinapic acid decreased the production of trichothecenes by fungi. Higher doses of sinapic acid resulted in more efficient reduction of mycotoxin accumulation in the media. Gene expression studies of Tri genes responsible for trichothecene biosynthesis (Tri4, Tri5 and Tri10) proved that the inhibition of mycotoxin production by sinapic acid occurred at the transcriptional level. Fusaria respond to sinapic acid by stimulation of ergosterol biosynthesis.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Kinga Stuper-Szablewska
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland.
| | - Maciej Buśko
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| | | | - Dariusz Załuski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland.
| | - Juliusz Perkowski
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-637 Poznan, Poland.
| |
Collapse
|
49
|
Abstract
The global push toward an efficient and economical biobased economy has driven research to develop more cost-effective applications for the entirety of plant biomass, including lignocellulosic crops. As discussed elsewhere (Karlsson M, Atanasova L, Funck Jensen D, Zeilinger S, in Heitman J et al. [ed], Tuberculosis and the Tubercle Bacillus, 2nd ed, in press), significant progress has been made in the use of polysaccharide fractions from lignocellulose, cellulose, and various hemicellulose types. However, developing processes for use of the lignin fraction has been more challenging. In this chapter, we discuss characteristics of lignolytic enzymes and the fungi that produce them as well as potential and current uses of lignin-derived products.
Collapse
|
50
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|