1
|
Stewart JA, Hillegass MB, Oberlitner JH, Younkin EM, Wasserman BF, Casper AM. Noncanonical outcomes of break-induced replication produce complex, extremely long-tract gene conversion events in yeast. G3 (BETHESDA, MD.) 2021; 11:jkab245. [PMID: 34568913 PMCID: PMC8473981 DOI: 10.1093/g3journal/jkab245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Long-tract gene conversions (LTGC) can result from the repair of collapsed replication forks, and several mechanisms have been proposed to explain how the repair process produces this outcome. We studied LTGC events produced from repair collapsed forks at yeast fragile site FS2. Our analysis included chromosome sizing by contour-clamped homogeneous electric field electrophoresis, next-generation whole-genome sequencing, and Sanger sequencing across repair event junctions. We compared the sequence and structure of LTGC events in our cells to the expected qualities of LTGC events generated by proposed mechanisms. Our evidence indicates that some LTGC events arise from half-crossover during BIR, some LTGC events arise from gap repair, and some LTGC events can be explained by either gap repair or "late" template switch during BIR. Also based on our data, we propose that models of collapsed replication forks be revised to show not a one-end double-strand break (DSB), but rather a two-end DSB in which the ends are separated in time and subject to gap repair.
Collapse
Affiliation(s)
- Joseph A Stewart
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Joseph H Oberlitner
- Department of Biology, Interdisciplinary Graduate Program in Genetics, The University of Iowa, Iowa City, IA 52242, USA
| | - Ellen M Younkin
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Beth F Wasserman
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Anne M Casper
- Department of Biology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| |
Collapse
|
2
|
Harnessing DNA Replication Stress for Novel Cancer Therapy. Genes (Basel) 2020; 11:genes11090990. [PMID: 32854236 PMCID: PMC7564951 DOI: 10.3390/genes11090990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
DNA replication is the fundamental process for accurate duplication and transfer of genetic information. Its fidelity is under constant stress from endogenous and exogenous factors which can cause perturbations that lead to DNA damage and defective replication. This can compromise genomic stability and integrity. Genomic instability is considered as one of the hallmarks of cancer. In normal cells, various checkpoints could either activate DNA repair or induce cell death/senescence. Cancer cells on the other hand potentiate DNA replicative stress, due to defective DNA damage repair mechanism and unchecked growth signaling. Though replicative stress can lead to mutagenesis and tumorigenesis, it can be harnessed paradoxically for cancer treatment. Herein, we review the mechanism and rationale to exploit replication stress for cancer therapy. We discuss both established and new approaches targeting DNA replication stress including chemotherapy, radiation, and small molecule inhibitors targeting pathways including ATR, Chk1, PARP, WEE1, MELK, NAE, TLK etc. Finally, we review combination treatments, biomarkers, and we suggest potential novel methods to target DNA replication stress to treat cancer.
Collapse
|
3
|
Ngoi NY, Sundararajan V, Tan DS. Exploiting replicative stress in gynecological cancers as a therapeutic strategy. Int J Gynecol Cancer 2020; 30:1224-1238. [PMID: 32571890 PMCID: PMC7418601 DOI: 10.1136/ijgc-2020-001277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
Elevated levels of replicative stress in gynecological cancers arising from uncontrolled oncogenic activation, loss of key tumor suppressors, and frequent defects in the DNA repair machinery are an intrinsic vulnerability for therapeutic exploitation. The presence of replication stress activates the DNA damage response and downstream checkpoint proteins including ataxia telangiectasia and Rad3 related kinase (ATR), checkpoint kinase 1 (CHK1), and WEE1-like protein kinase (WEE1), which trigger cell cycle arrest while protecting and restoring stalled replication forks. Strategies that increase replicative stress while lowering cell cycle checkpoint thresholds may allow unrepaired DNA damage to be inappropriately carried forward in replicating cells, leading to mitotic catastrophe and cell death. Moreover, the identification of fork protection as a key mechanism of resistance to chemo- and poly (ADP-ribose) polymerase inhibitor therapy in ovarian cancer further increases the priority that should be accorded to the development of strategies targeting replicative stress. Small molecule inhibitors designed to target the DNA damage sensors, such as inhibitors of ataxia telangiectasia-mutated (ATM), ATR, CHK1 and WEE1, impair smooth cell cycle modulation and disrupt efficient DNA repair, or a combination of the above, have demonstrated interesting monotherapy and combinatorial activity, including the potential to reverse drug resistance and have entered developmental pipelines. Yet unresolved challenges lie in balancing the toxicity profile of these drugs in order to achieve a suitable therapeutic index while maintaining clinical efficacy, and selective biomarkers are urgently required. Here we describe the premise for targeting of replicative stress in gynecological cancers and discuss the clinical advancement of this strategy.
Collapse
Affiliation(s)
| | | | - David Sp Tan
- National University Cancer Institute, Singapore
- Cancer Science Institute, National University of Singapore, Singapore
| |
Collapse
|
4
|
Tumor treating fields cause replication stress and interfere with DNA replication fork maintenance: Implications for cancer therapy. Transl Res 2020; 217:33-46. [PMID: 31707040 DOI: 10.1016/j.trsl.2019.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022]
Abstract
Tumor treating fields (TTFields) is a noninvasive physical modality of cancer therapy that applies low-intensity, intermediate frequency, and alternating electric fields to a tumor. Interference with mitosis was the first mechanism describing the effects of TTFields on cancer cells; however, TTFields was shown to not only reduce the rejoining of radiation-induced DNA double-strand breaks (DSBs), but to also induce DNA DSBs. The mechanism(s) by which TTFields generates DNA DSBs is related to the generation of replication stress including reduced expression of the DNA replication complex genes MCM6 and MCM10 and the Fanconi's Anemia pathway genes. When markers of DNA replication stress as a result of TTFields exposure were examined, newly replicated DNA length was reduced with TTFields exposure time and there was increased R-loop formation. Furthermore, as cells were exposed to TTFields a conditional vulnerability environment developed which rendered cells more susceptible to DNA damaging agents or agents that interfere with DNA repair or replication fork maintenance. The effect of TTFields exposure with concomitant exposure to cisplatin or PARP inhibition, the combination of TTFields plus concomitant PARP inhibition followed by radiation, or radiation alone at the end of a TTFields exposure were all synergistic. Finally, gene expression analysis of 47 key mitosis regulator genes suggested that TTFields-induced mitotic aberrations and DNA damage/replication stress events, although intimately linked to one another, are likely initiated independently of one another. This suggests that enhanced replication stress and reduced DNA repair capacity are also major mechanisms of TTFields effects, effects for which there are therapeutic implications.
Collapse
|
5
|
Bowry A, Piberger AL, Rojas P, Saponaro M, Petermann E. BET Inhibition Induces HEXIM1- and RAD51-Dependent Conflicts between Transcription and Replication. Cell Rep 2019; 25:2061-2069.e4. [PMID: 30463005 PMCID: PMC6280123 DOI: 10.1016/j.celrep.2018.10.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
BET bromodomain proteins are required for oncogenic transcription activities, and BET inhibitors have been rapidly advanced into clinical trials. Understanding the effects of BET inhibition on processes such as DNA replication will be important for future clinical applications. Here, we show that BET inhibition, and specifically inhibition of BRD4, causes replication stress through a rapid overall increase in RNA synthesis. We provide evidence that BET inhibition acts by releasing P-TEFb from its inhibitor HEXIM1, promoting interference between transcription and replication. Unusually, these transcription-replication conflicts do not activate the ATM/ATR-dependent DNA damage response but recruit the homologous recombination factor RAD51. Both HEXIM1 and RAD51 promote BET inhibitor-induced fork slowing but also prevent a DNA damage response. Our data suggest that BET inhibitors slow replication through concerted action of transcription and recombination machineries and shed light on the importance of replication stress in the action of this class of experimental cancer drugs.
Collapse
Affiliation(s)
- Akhil Bowry
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Ann Liza Piberger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Patricia Rojas
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
Jiménez M, Urtasun R, Elizalde M, Azkona M, Latasa MU, Uriarte I, Arechederra M, Alignani D, Bárcena-Varela M, Álvarez-Sola G, Colyn L, Santamaría E, Sangro B, Rodriguez-Ortigosa C, Fernández-Barrena MG, Ávila MA, Berasain C. Splicing events in the control of genome integrity: role of SLU7 and truncated SRSF3 proteins. Nucleic Acids Res 2019; 47:3450-3466. [PMID: 30657957 PMCID: PMC6468163 DOI: 10.1093/nar/gkz014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
Genome instability is related to disease development and carcinogenesis. DNA lesions are caused by genotoxic compounds but also by the dysregulation of fundamental processes like transcription, DNA replication and mitosis. Recent evidence indicates that impaired expression of RNA-binding proteins results in mitotic aberrations and the formation of transcription-associated RNA-DNA hybrids (R-loops), events strongly associated with DNA injury. We identify the splicing regulator SLU7 as a key mediator of genome stability. SLU7 knockdown results in R-loops formation, DNA damage, cell-cycle arrest and severe mitotic derangements with loss of sister chromatid cohesion (SCC). We define a molecular pathway through which SLU7 keeps in check the generation of truncated forms of the splicing factor SRSF3 (SRp20) (SRSF3-TR). Behaving as dominant negative, or by gain-of-function, SRSF3-TR impair the correct splicing and expression of the splicing regulator SRSF1 (ASF/SF2) and the crucial SCC protein sororin. This unique function of SLU7 was found in cancer cells of different tissue origin and also in the normal mouse liver, demonstrating a conserved and fundamental role of SLU7 in the preservation of genome integrity. Therefore, the dowregulation of SLU7 and the alterations of this pathway that we observe in the cirrhotic liver could be involved in the process of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Maddalen Jiménez
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - Raquel Urtasun
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain
| | - María Elizalde
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - María Azkona
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - M Ujue Latasa
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - María Arechederra
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - Diego Alignani
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,Cytometry Unit, CIMA, University of Navarra, Pamplona 31008, Spain
| | | | - Gloria Álvarez-Sola
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Leticia Colyn
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain
| | - Eva Santamaría
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Bruno Sangro
- Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain.,Hepatology Unit, Navarra University Clinic, Pamplona 31008, Spain
| | - Carlos Rodriguez-Ortigosa
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Matías A Ávila
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, University of Navarra, Pamplona 31008, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona 31008, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
7
|
Perl AL, O'Connor CM, Fa P, Mayca Pozo F, Zhang J, Zhang Y, Narla G. Protein phosphatase 2A controls ongoing DNA replication by binding to and regulating cell division cycle 45 (CDC45). J Biol Chem 2019; 294:17043-17059. [PMID: 31562245 DOI: 10.1074/jbc.ra119.010432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Indexed: 11/06/2022] Open
Abstract
Genomic replication is a highly regulated process and represents both a potential benefit and liability to rapidly dividing cells; however, the precise post-translational mechanisms regulating genomic replication are incompletely understood. Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that regulates a diverse array of cellular processes. Here, utilizing both a gain-of-function chemical biology approach and loss-of-function genetic approaches to modulate PP2A activity, we found that PP2A regulates DNA replication. We demonstrate that increased PP2A activity can interrupt ongoing DNA replication, resulting in a prolonged S phase. The impaired replication resulted in a collapse of replication forks, inducing dsDNA breaks, homologous recombination, and a PP2A-dependent replication stress response. Additionally, we show that during replication, PP2A exists in complex with cell division cycle 45 (CDC45) and that increased PP2A activity caused dissociation of CDC45 and polymerase α from the replisome. Furthermore, we found that individuals harboring mutations in the PP2A Aα gene have a higher fraction of genomic alterations, suggesting that PP2A regulates ongoing replication as a mechanism for maintaining genomic integrity. These results reveal a new function for PP2A in regulating ongoing DNA replication and a potential role for PP2A in the intra-S-phase checkpoint.
Collapse
Affiliation(s)
- Abbey L Perl
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Caitlin M O'Connor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Pengyan Fa
- Department of Radiation Oncology, Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, Ohio 43210
| | - Franklin Mayca Pozo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Junran Zhang
- Department of Radiation Oncology, Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, Ohio 43210
| | - Youwei Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Goutham Narla
- Department of Internal Medicine, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 .,Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan 48105
| |
Collapse
|
8
|
Zhang Y, Yang WK, Wen GM, Tang H, Wu CA, Wu YX, Jing ZL, Tang MS, Liu GL, Li DZ, Li YH, Deng YJ. High expression of PRKDC promotes breast cancer cell growth via p38 MAPK signaling and is associated with poor survival. Mol Genet Genomic Med 2019; 7:e908. [PMID: 31513357 PMCID: PMC6825841 DOI: 10.1002/mgg3.908] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/14/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA-Dependent Protein Kinase Catalytic Subunit (PRKDC), a key component of the DNA damage repair pathway, is associated with chemotherapy resistance and tumor progression. METHODS Here we analyzed transcriptome data of ~2,000 breast cancer patients and performed functional studies in vitro to investigate the function of PRKDC in breast cancer. RESULTS Our results revealed overexpression of PRKDC in multiple breast cancer subtypes. Consistent with patients' data, overexpression of PRKDC was also observed in breast cancer cell lines compared to normal breast epithelial cells. Knockdown of PRKDC in MCF-7 and T47D breast cancer cell lines resulted in proliferation inhibition, reduced colony formation and G2/M cell cycle arrest. Furthermore, we showed that PRKDC knockdown induced proliferation inhibition through activation of p38 MAPK, but not ERK MAPK, signaling pathway in breast cancer cells. Blockage of p38 MAPK signaling could largely rescue proliferation inhibition and cell cycle arrest induced by PRKDC knockdown. Moreover, we analyzed gene expression and clinical data from six independent breast cancer cohorts containing ~1,000 patients. In all cohorts, our results consistently showed that high expression of PRKDC was significantly associated with poor survival in both treated and untreated breast cancer patients. CONCLUSION Together, our results suggest that high expression of PRKDC facilitates breast cancer cell growth via regulation of p38 MAPK signaling, and is a prognostic marker for poor survival in breast cancer patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China.,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Wei-Kang Yang
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Guo-Ming Wen
- Department of Outpatient, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Hongping Tang
- Department of Pathology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Chuan-An Wu
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Yan-Xia Wu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhi-Liang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Min-Shan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Guang-Long Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Da-Zhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Yan-Hua Li
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, P.R. China
| | - Yong-Jian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
9
|
Zhang Y, Wen GM, Wu CA, Jing ZL, Li DZ, Liu GL, Wei XX, Tang MS, Li YH, Zhong Y, Deng YJ, Yang WK. PRKDC is a prognostic marker for poor survival in gastric cancer patients and regulates DNA damage response. Pathol Res Pract 2019; 215:152509. [PMID: 31255330 DOI: 10.1016/j.prp.2019.152509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/27/2019] [Accepted: 06/20/2019] [Indexed: 01/01/2023]
Abstract
A hallmark of gastric cancer is the high rate of genomic instability associated with deregulation of DNA damage repair pathways. DNA-Dependent Protein Kinase Catalytic Subunit (PRKDC) is a key component of the non-homologous end-joining (NHEJ) pathway. By reanalyzing transcriptome data of 80 pairs of gastric cancer tumors and the adjacent normal tissues from non-treated patients, we identified PRKDC as the top upregulated DNA damage repair genes in gastric cancer. High expression of PRKDC is associated with poor survival of gastric cancer patients, and genomic amplification of the gene is frequently observed across most gastric cancer subtypes. Knockdown of PRKDC in gastric cell lines resulted in reduced proliferation and cell cycle arrest. Furthermore, we showed that loss of PRKDC induced DNA damage and enhanced gastric cancer cell chemosensitivity to DNA-damaging reagents. Together, our results suggest that PRKDC is a prognostic marker of poor survival and is a putative target to overcome chemoresistance in gastric cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China.
| | - Guo-Ming Wen
- Department of Outpatient, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Chuan-An Wu
- Department of Prevention and health care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Zhi-Liang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Da-Zhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Guang-Long Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xu-Xuan Wei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Min-Shan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Yan-Hua Li
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Yan Zhong
- Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China
| | - Yong-Jian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China.
| | - Wei-Kang Yang
- Department of Prevention and health care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, PR China.
| |
Collapse
|
10
|
Muntel J, Gandhi T, Verbeke L, Bernhardt OM, Treiber T, Bruderer R, Reiter L. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics 2019; 15:348-360. [DOI: 10.1039/c9mo00082h] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optimization of chromatography and data analysis resulted in more than 10 000 proteins in a single shot at a validated FDR of 1% (two-species test) and revealed deep insights into the testis cancer physiology.
Collapse
|
11
|
Kotsantis P, Petermann E, Boulton SJ. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov 2018; 8:537-555. [PMID: 29653955 DOI: 10.1158/2159-8290.cd-17-1461] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022]
Abstract
Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication-transcription collisions, reactive oxygen species, and defective nucleotide metabolism.Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress. Cancer Discov; 8(5); 537-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
12
|
Abstract
Cellular chromosomal DNA is the principal target through which ionising radiation exerts it diverse biological effects. This chapter summarises the relevant DNA damage signalling and repair pathways used by normal and tumour cells in response to irradiation. Strategies for tumour radiosensitisation are reviewed which exploit tumour-specific DNA repair deficiencies or signalling pathway addictions, with a special focus on growth factor signalling, PARP, cancer stem cells, cell cycle checkpoints and DNA replication. This chapter concludes with a discussion of DNA repair-related candidate biomarkers of tumour response which are of crucial importance for implementing precision medicine in radiation oncology.
Collapse
|
13
|
WEE1 inhibition targets cell cycle checkpoints for triple negative breast cancers to overcome cisplatin resistance. Sci Rep 2017; 7:43517. [PMID: 28262781 PMCID: PMC5338009 DOI: 10.1038/srep43517] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is one of the most commonly used therapeutic drugs for cancer therapy, yet prolonged cisplatin treatment frequently results in drug resistance. To enhance therapeutic effect of cisplatin, we conducted a high throughput screening using a kinase library containing 704 kinases against triple negative breast cancer (TNBC) cells. We demonstrated that cisplatin activates ATR, CHK1 and WEE1, which shut down DNA replication and attenuate cisplatin induced-lethality. WEE1 inhibition sensitizes TNBCs and cisplatin resistant cancer cells to cisplatin-induced lethality, because it not only impairs DNA replication checkpoint more profoundly than inhibition of ATR or CHK1, but also defects G2-M cell cycle checkpoint. Finally, we demonstrated that combined cisplatin treatment and WEE1 inhibition synergistically inhibits xenograft cancer growth accompanied by markedly reduced expression of TNBC signature genes. Thus targeting DNA replication and G2-M cell cycle checkpoint simultaneously by cisplatin and WEE1 inhibition is promising for TNBCs treatment, and for overcoming their cisplatin resistance.
Collapse
|
14
|
Quantitative global proteome and lysine succinylome analyses provide insights into metabolic regulation and lymph node metastasis in gastric cancer. Sci Rep 2017; 7:42053. [PMID: 28165029 PMCID: PMC5292683 DOI: 10.1038/srep42053] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/06/2017] [Indexed: 12/23/2022] Open
Abstract
With the rapid development of high-throughput quantitative proteomic and transcriptomic approaches, the molecular mechanisms of cancers have been comprehensively explored. However, cancer is a multi-dimensional disease with sophisticated regulations, and few studies focus on the crosstalk among multiomics. In order to explore the molecular mechanisms of gastric cancer (GC), particularly in the process of lymph node metastasis (LNM), we investigated dynamic profiling changes as well as crosstalk between long non-coding RNAs (lncRNAs), the proteome, and the lysine succinylome. Our study reports the first qualitative and quantitative profile of lysine succinylation in GC. We identified a novel mechanism through which the TCA cycle and pentose phosphate pathway might be regulated through lysine succinylation in their core enzymes. We then examined the potential of using lysine succinylation as a biomarker for GC and successfully developed a succinylation-dependent antibody for the K569 site in Caldesmon as putative biomarker. Finally, we investigated the relationship between the lysine succinylome and lncRNAs, identifying potential crosstalks between two lncRNAs and one succinylation site. These results expand our understanding of the mechanisms of tumorigenesis and provide new information for the diagnosis and prognosis of GC.
Collapse
|
15
|
Effects of Replication and Transcription on DNA Structure-Related Genetic Instability. Genes (Basel) 2017; 8:genes8010017. [PMID: 28067787 PMCID: PMC5295012 DOI: 10.3390/genes8010017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Many repetitive sequences in the human genome can adopt conformations that differ from the canonical B-DNA double helix (i.e., non-B DNA), and can impact important biological processes such as DNA replication, transcription, recombination, telomere maintenance, viral integration, transposome activation, DNA damage and repair. Thus, non-B DNA-forming sequences have been implicated in genetic instability and disease development. In this article, we discuss the interactions of non-B DNA with the replication and/or transcription machinery, particularly in disease states (e.g., tumors) that can lead to an abnormal cellular environment, and how such interactions may alter DNA replication and transcription, leading to potential conflicts at non-B DNA regions, and eventually result in genetic stability and human disease.
Collapse
|
16
|
Kotsantis P, Silva LM, Irmscher S, Jones RM, Folkes L, Gromak N, Petermann E. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun 2016; 7:13087. [PMID: 27725641 PMCID: PMC5062618 DOI: 10.1038/ncomms13087] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/31/2016] [Indexed: 12/28/2022] Open
Abstract
Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRASV12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRASV12, elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer. Cancer cells proliferate at high rates and incur replication stress. Here, the authors show that this can be the consequence of oncogene-induced higher transcriptional activity, which, through increased RNA synthesis and R-loop accumulation, results in replication fork slowing and DNA damage.
Collapse
Affiliation(s)
- Panagiotis Kotsantis
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lara Marques Silva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sarah Irmscher
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Rebecca M Jones
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lisa Folkes
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
17
|
Nicolas E, Golemis EA, Arora S. POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene 2016; 590:128-41. [PMID: 27320729 PMCID: PMC4969162 DOI: 10.1016/j.gene.2016.06.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5′–3′ DNA polymerase and 3′–5′ exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests that POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sanjeevani Arora
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
18
|
Desplancq D, Freund G, Conic S, Sibler AP, Didier P, Stoessel A, Oulad-Abdelghani M, Vigneron M, Wagner J, Mély Y, Chatton B, Tora L, Weiss E. Targeting the replisome with transduced monoclonal antibodies triggers lethal DNA replication stress in cancer cells. Exp Cell Res 2016; 342:145-58. [PMID: 26968636 DOI: 10.1016/j.yexcr.2016.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
Although chemical inhibition of the DNA damage response (DDR) in cancer cells triggers cell death, it is not clear if the fork blockade achieved with inhibitors that neutralise proteins of the replisome is sufficient on its own to overcome the DDR. Monoclonal antibodies to PCNA, which block the DNA elongation process in vitro, have been developed. When these antibodies were transduced into cancer cells, they are able to inhibit the incorporation of nucleoside analogues. When co-delivered with anti-PCNA siRNA, the cells were flattened and the size of their nuclei increased by up to 3-fold, prior to cell death. Analysis of these nuclei by super-resolution microscopy revealed the presence of large numbers of phosphorylated histone H2AX foci. A senescence-like phenotype of the transduced cells was also observed upon delivery of the corresponding Fab molecules or following PCNA gene disruption or when the Fab fragment of an antibody that neutralises DNA polymerase alpha was used. Primary melanoma cells and leukaemia cells that are resistant to chemical inhibitors were similarly affected by these antibody treatments. These results demonstrate that transduced antibodies can trigger a lethal DNA replication stress, which kills cancer cells by abolishing the biological activity of several constituents of the replisome.
Collapse
Affiliation(s)
- Dominique Desplancq
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Guillaume Freund
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Sascha Conic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Annie-Paule Sibler
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Pascal Didier
- Faculté de Pharmacie, UMR 7213, CNRS/Université de Strasbourg, route du Rhin, 67401 Illkirch, France
| | - Audrey Stoessel
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Marc Vigneron
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Jérôme Wagner
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Yves Mély
- Faculté de Pharmacie, UMR 7213, CNRS/Université de Strasbourg, route du Rhin, 67401 Illkirch, France
| | - Bruno Chatton
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Etienne Weiss
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France.
| |
Collapse
|
19
|
Ramcharan R, Aleksic T, Kamdoum WP, Gao S, Pfister SX, Tanner J, Bridges E, Asher R, Watson AJ, Margison GP, Woodcock M, Repapi E, Li JL, Middleton MR, Macaulay VM. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget 2015; 6:39877-90. [PMID: 26497996 PMCID: PMC4741867 DOI: 10.18632/oncotarget.5631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prior studies implicate type 1 IGF receptor (IGF-1R) in mediating chemo-resistance. Here, we investigated whether IGF-1R influences response to temozolomide (TMZ), which generates DNA adducts that are removed by O6-methylguanine-DNA methyltransferase (MGMT), or persist causing replication-associated double-strand breaks (DSBs). Initial assessment in 10 melanoma cell lines revealed that TMZ resistance correlated with MGMT expression (r = 0.79, p = 0.009), and in MGMT-proficient cell lines, with phospho-IGF-1R (r = 0.81, p = 0.038), suggesting that TMZ resistance associates with IGF-1R activation. Next, effects of IGF-1R inhibitors (IGF-1Ri) AZ3801 and linsitinib (OSI-906) were tested on TMZ-sensitivity, cell cycle progression and DSB induction. IGF-1Ri sensitized BRAF wild-type and mutant melanoma cells to TMZ in vitro, an effect that was independent of MGMT. Cells harboring wild-type p53 were more sensitive to IGF-1Ri, and showed schedule-dependent chemo-sensitization that was most effective when IGF-1Ri followed TMZ. This sequence sensitized to clinically-achievable TMZ concentrations and enhanced TMZ-induced apoptosis. Simultaneous or prior IGF-1Ri caused less effective chemo-sensitization, associated with increased G1 population and reduced accumulation of TMZ-induced DSBs. Clinically relevant sequential (TMZ → IGF-1Ri) treatment was tested in mice bearing A375M (V600E BRAF, wild-type p53) melanoma xenografts, achieving peak plasma/tumor IGF-1Ri levels comparable to clinical Cmax, and inducing extensive intratumoral apoptosis. TMZ or IGF-1Ri caused minor inhibition of tumor growth (gradient reduction 13%, 25% respectively), while combination treatment caused supra-additive growth delay (72%) that was significantly different from control (p < 0.01), TMZ (p < 0.01) and IGF-1Ri (p < 0.05) groups. These data highlight the importance of scheduling when combining IGF-1Ri and other targeted agents with drugs that induce replication-associated DNA damage.
Collapse
Affiliation(s)
- Roger Ramcharan
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Tamara Aleksic
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | | | - Shan Gao
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Sophia X. Pfister
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Jordan Tanner
- Biomedical Services, John Radcliffe Hospital, Oxford, UK
| | - Esther Bridges
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Ruth Asher
- Department of Pathology, John Radcliffe Hospital, Oxford, UK
| | - Amanda J. Watson
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Manchester, UK
| | - Geoffrey P. Margison
- Cancer Research UK Carcinogenesis Group, Paterson Institute for Cancer Research, Manchester, UK
| | - Mick Woodcock
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Ji-Liang Li
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
| | | | - Valentine M. Macaulay
- Department of Oncology, Old Road Campus Research Building, Oxford, UK
- Oxford Cancer Centre, Churchill Hospital, Oxford, UK
| |
Collapse
|