1
|
Pardiñas López S, García-Caro ME, Vallejo JA, Aja-Macaya P, Conde-Pérez K, Nión-Cabeza P, Khouly I, Bou G, Cendal AIR, Díaz-Prado S, Poza M. Anti-inflammatory and antimicrobial efficacy of coconut oil for periodontal pathogens: a triple-blind randomized clinical trial. Clin Oral Investig 2025; 29:182. [PMID: 40085302 PMCID: PMC11909057 DOI: 10.1007/s00784-025-06267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVES To evaluate the effect of coconut oil on the oral bacteriome and inflammatory response in patients with periodontitis by integrating next-generation sequencing analyses of pathogenic bacterial shifts and quantification of inflammatory markers, thereby assessing its potential as a natural adjunct to standard nonsurgical periodontal therapy. MATERIALS AND METHODS A triple-blind clinical trial was conducted with 30 participants diagnosed with periodontitis, randomized into 3 groups: (1) coconut oil, (2) chlorhexidine and (3) placebo. Saliva and gingival crevicular fluid (GCF) samples were collected before treatment, one month after treatment, and one month post-non-surgical periodontal therapy. Bacterial DNA was extracted, and the V3-V4 region of the 16 S rRNA gene was PCR-amplified and sequenced using Illumina MiSeq technologies. Inflammatory biomarkers, including Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), were quantified from GCF samples. RESULTS Coconut oil treatment significantly reduced pathogenic bacterial families such as Spirochaetaceae and Tannerellaceae while promoting beneficial bacteria such as Streptococcaceae. At the genus and species levels, coconut oil reduced pathogens such as Tannerella forsythia and Treponema denticola along with increase in beneficial bacteria such as Streptococcus. The subgingival microbial dysbiosis index improved significantly in both coconut oil and chlorhexidine groups. Furthermore, the coconut oil demonstrated a reduction in IL-6 and TNF-α levels, indicating decreased local inflammation. CONCLUSIONS Coconut oil treatment significantly modulated the oral microbiome and reduced inflammatory markers in patients with periodontitis, suggesting its potential as a natural and effective adjunct in periodontal therapy. CLINICAL RELEVANCE This study highlights coconut oil's potential as a natural adjunct in periodontal therapy, effectively reducing pathogenic bacteria and inflammatory markers (IL-6, TNF-α). It offers a safe alternative to chlorhexidine, promoting microbiome balance and improved periodontal health.
Collapse
Affiliation(s)
- Simón Pardiñas López
- Periodontology and Oral Surgery, Clínica Médico Dental Pardiñas, Real 66, 3, A Coruña, 15003, Spain.
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain.
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain.
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, 10010, USA.
| | - Mónica E García-Caro
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Juan A Vallejo
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain.
| | - Pablo Aja-Macaya
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Kelly Conde-Pérez
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Paula Nión-Cabeza
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Ismael Khouly
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, 10010, USA
- Multidisciplinary Implant and Aesthetic Miami Institute (M.I.A.M.I.), Miami, FL, 33137, USA
| | - Germán Bou
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
| | - Ana Isabel Rodríguez Cendal
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain
| | - Silvia Díaz-Prado
- Grupo de Terapia Celular y Medicina Regenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15003, Spain
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud-Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15701, Spain
| | - Margarita Poza
- Grupo de Investigación en Microbiología, Servicio de Microbiología, Instituto de Investigación Biomédica de A Coruña (INIBIC)- Hospital Universitario de A Coruña (CHUAC)-Universidade da Coruña (UDC)-CIBER de Enfermedades Infecciosas (CIBERINFEC, ISCIII), Hospital Universitario, Coruña, 15006 A, Spain
- Grupo Microbioma y Salud, Facultad de Ciencias- Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña, A Coruña, 15071, Spain
| |
Collapse
|
2
|
Bao K, Silbereisen A, Grossmann J, Nanni P, Gehrig P, Emingil G, Erguz M, Karapinar DY, Pekpinarli B, Belibasakis GN, Tsilingaridis G, Zaura E, Bostanci N. Protein Network Alterations in G-CSF Treated Severe Congenital Neutropenia Patients and Beneficial Effects of Oral Health Intervention. Proteomics Clin Appl 2024; 18:e202400064. [PMID: 39096313 DOI: 10.1002/prca.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE Severe congenital neutropenia (SCN) is a raredisorder characterized by diminished neutrophil levels. Despite granulocytecolony-stimulating factor (G-CSF) treatment, SCN patients remain still prone tosevere infections, including periodontal disease-a significant oral healthrisk. This study investigates the host proteome and metaproteome in saliva andgingival crevicular fluid (GCF) of G-CSF-treated patients. EXPERIMENTAL DESIGN We used label-free quantitative proteomics on saliva and GCF samples from SCN patients before (n = 10, mean age: 10.7 ± 6.6 years) and after a 6-month oral hygiene intervention (n = 9,mean age: 11.6 ± 5.27 years), and from 12 healthy controls. RESULTS We quantified 894 proteins in saliva (648 human,246 bacterial) and 756 proteins in GCF (493 human, 263 bacterial). Predominant bacterial genera included Streptococcus, Veillonella, Selenomonas, Corynebacterium, Porphyromonas, and Prevotella. SCN patients showed reduced antimicrobial peptides (AMPs) and elevated complement proteins compared tohealthy controls. Oral hygiene intervention improved oral epithelial conditionsand reduced both AMPs and complement proteins. CONCLUSIONS AND CLINICAL RELEVANCE SCN patients have aunique proteomic profile with reduced AMPs and increased complement proteins, contributing to infection susceptibility. Oral hygiene intervention not onlyimproved oral health in SCN patients but also offers potential overall therapeuticbenefits.
Collapse
Affiliation(s)
- Kai Bao
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Angelika Silbereisen
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jonas Grossmann
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB) Quartier Sorge-Batiment Amphipole, Lausanne, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Peter Gehrig
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Merve Erguz
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | | | - Burç Pekpinarli
- Department of Pediatrics, School of Dentistry, Ege University, İzmir, Turkey
| | - Georgios N Belibasakis
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Georgios Tsilingaridis
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | - Nagihan Bostanci
- Division of Oral Health and Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
3
|
Yılmaz B, Emingil G. Validating proteomic biomarkers in saliva: distinguishing between health and periodontal diseases. Expert Rev Proteomics 2024; 21:417-429. [PMID: 39385324 DOI: 10.1080/14789450.2024.2413099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Periodontitis is a chronic inflammatory disease characterized by progressive soft tissue and alveolar bone loss due to interactions between microbial dental plaque and the host response. Despite extensive research on biomarkers from saliva or gingival crevicular fluid (GCF) for diagnosing periodontitis, clinical and radiological parameters remain the primary diagnostic tools. AREAS COVERED This review discusses the ongoing research into salivary biomarkers for periodontitis diagnosis, emphasizing the need for reliable biomarkers to differentiate between periodontal health and disease. Salivary biomarker research has gained momentum with advancements in proteomic technologies, enabling noninvasive sample collection and revealing potential candidate biomarkers. EXPERT OPINION Proteomic research since the early 2000s has identified promising biomarkers and provided insights into the pathogenesis of periodontitis. Bioinformatic analysis of proteomic data elucidates the underlying biological mechanisms. This review summarizes key findings and highlights common potential biomarkers identified through proteomic research in periodontology.
Collapse
Affiliation(s)
- Büşra Yılmaz
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| |
Collapse
|
4
|
Buduneli N, Bıyıkoğlu B, Kinane DF. Utility of gingival crevicular fluid components for periodontal diagnosis. Periodontol 2000 2024; 95:156-175. [PMID: 39004819 DOI: 10.1111/prd.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Periodontal diseases are highly prevalent chronic diseases, and severe periodontitis creates functional and esthetic problems and decreases self-esteem for a large percentage of the older population worldwide. In many cases of periodontitis, there is no distinct tell-tale pain that motivates a patient to seek treatment, rather the signs become clinically detectable late, and typically when the disease has progressed to a problematic level for the life of the dentition. Early periodontal screening and diagnostics tools will provide early recognition of periodontal diseases and facilitate timely management of the disease to reduce tooth loss. To this goal, gingival crevicular fluid is easily sampled, can be repeatedly and non-invasively collected, and can be tested for potential biomarkers. Moreover, the site specificity of periodontal diseases enhances the usefulness of gingival crevicular fluid sampled from specific sites as a biofluid for diagnosis and longitudinal monitoring of periodontal diseases. The present review aimed to provide up-to-date information on potential diagnostic biomarkers with utility that can be assayed from gingival crevicular fluid samples, focusing on what is new and useful and providing only general historic background textually and in a tabulated format.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey
| | - Başak Bıyıkoğlu
- Department of Periodontology, School Dentistry, Altinbas University, Istanbul, Turkey
| | - Denis F Kinane
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Santa K, Kumazawa Y, Watanabe K, Nagaoka I. The Potential Use of Vitamin D3 and Phytochemicals for Their Anti-Ageing Effects. Int J Mol Sci 2024; 25:2125. [PMID: 38396804 PMCID: PMC10889119 DOI: 10.3390/ijms25042125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Unlike other vitamins, vitamin D3 is synthesised in skin cells in the body. Vitamin D3 has been known as a bone-related hormone. Recently, however, it has been considered as an immune vitamin. Vitamin D3 deficiency influences the onset of a variety of diseases. Vitamin D3 regulates the production of proinflammatory cytokines such as tumour necrosis factor-α (TNF-α) through binding to vitamin D receptors (VDRs) in immune cells. Since blood levels of vitamin D3 (25-OH-D3) were low in coronavirus disease 2019 (COVID-19) patients, there has been growing interest in the importance of vitamin D3 to maintaining a healthy condition. On the other hand, phytochemicals are compounds derived from plants with over 7000 varieties and have various biological activities. They mainly have health-promoting effects and are classified as terpenoids, carotenoids, flavonoids, etc. Flavonoids are known as the anti-inflammatory compounds that control TNF-α production. Chronic inflammation is induced by the continuous production of TNF-α and is the fundamental cause of diseases like obesity, dyslipidaemia, diabetes, heart and brain diseases, autoimmune diseases, Alzheimer's disease, and cancer. In addition, the ageing process is induced by chronic inflammation. This review explains the cooperative effects of vitamin D3 and phytochemicals in the suppression of inflammatory responses, how it balances the natural immune response, and its link to anti-ageing effects. In addition, vitamin D3 and phytochemicals synergistically contribute to anti-ageing by working with ageing-related genes. Furthermore, prevention of ageing processes induced by the chronic inflammation requires the maintenance of healthy gut microbiota, which is related to daily dietary habits. In this regard, supplementation of vitamin D3 and phytochemicals plays an important role. Recently, the association of the prevention of the non-disease condition called "ME-BYO" with the maintenance of a healthy condition has been an attractive regimen, and the anti-ageing effect discussed here is important for a healthy and long life.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo 114-0032, Japan;
| | - Yoshio Kumazawa
- Vino Science Japan Inc., Kawasaki 210-0855, Kanagawa, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
- Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, Urayasu 279-0013, Chiba, Japan
| |
Collapse
|
6
|
Gao S, Lin M, Chen W, Chen X, Tian Z, Jia T, Xue Y, Song J, Lu Y, Zhou L, Wu L. Identification of potential diagnostic biomarkers associated with periodontitis by comprehensive bioinformatics analysis. Sci Rep 2024; 14:93. [PMID: 38168591 PMCID: PMC10761864 DOI: 10.1038/s41598-023-50410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects the tissues surrounding the teeth, including the gums and the bones supporting the teeth. Early detection and intervention are crucial for effective management of periodontitis. Our study aims to identify a diagnostic biomarker for periodontitis and explore the pathways associated with the occurrence and development of periodontitis. The expression of gingival tissue from periodontitis and healthy control were downloaded from the Gene Expression Omnibus. The weighted gene co-expression network analysis (WGCNA) were used to analyze module genes associated with periodontitis and DESeq2 were performed to identify differently expressed genes (DEGs) between periodontitis and healthy control. Then the candidate genes were obtained by intersecting the genes from interest modules and DEGs. Functional enrichment analysis was performed using gene ontology and kyoto encyclopedia of gene and genomes, followed by the protein-protein interaction (PPI) network analysis. The hub genes were identified by the cytoCNA plugin in Cytoscape. Finally, immunohistochemical staining of the hub genes was performed to validate the findings. WGCNA analysis found that the expression of the MEblack module was significantly higher in individuals with periodontitis compared to those in the healthy control group. A total of 888 DEGs, including 750 upregulated and 138 downregulated genes, were identified. Finally, 427 candidate genes were identified potentially associated with periodontitis after intersecting the DEGs and the black module genes. Several critical signaling pathways were identified associated with periodontitis by functional enrichment analysis, including cytokine-cytokine receptor interaction, neutrophil extracellular trap formation, Staphylococcus aureus infection, and Interleukin-17 signaling pathway. The PPI network analysis revealed that C-X-C motif chemokine ligand 5 (CXCL5) and C-X-C motif chemokine ligand 6 (CXCL6) could play an important role in the process of periodontitis. The gene expression level of CXCL5 and CXCL6 detected using immunohistochemical verified the findings. In conclusion, we found that CXCL5 and CXCL6 are closely associated with the occurrence of periodontitis. Our present pilot study suggests that CXCL5 and CXCL6 have the potential to be used as a diagnostic biomarker of periodontitis.
Collapse
Affiliation(s)
- Sixue Gao
- Department of Periodontics, Shenyang Stomatological Hospital, Shenyang, China
- Dalian Medical University, Dalian, China
| | - Meina Lin
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University) & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Wei Chen
- Department of Periodontics, Shenyang Stomatological Hospital, Shenyang, China
| | - Xinren Chen
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University) & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Zhiying Tian
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University) & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China
| | - Tong Jia
- Department of Periodontics, Shenyang Stomatological Hospital, Shenyang, China
| | - Yang Xue
- Department of Periodontics, Shenyang Stomatological Hospital, Shenyang, China
| | - Jie Song
- Department of Periodontics, Shenyang Stomatological Hospital, Shenyang, China
| | - Yongping Lu
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University) & Liaoning Key Laboratory of Reproductive Health, Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China.
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200125, China.
| | - Liuzhong Wu
- Department of Periodontics, Shenyang Stomatological Hospital, Shenyang, China.
| |
Collapse
|
7
|
Torres A, Michea MA, Végvári Á, Arce M, Morales A, Lanyon E, Alcota M, Fuentes C, Vernal R, Budini M, Zubarev RA, González FE. Proteomic profile of human gingival crevicular fluid reveals specific biological and molecular processes during clinical progression of periodontitis. J Periodontal Res 2023; 58:1061-1081. [PMID: 37522282 DOI: 10.1111/jre.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND AND OBJECTIVE There is no clear understanding of molecular events occurring in the periodontal microenvironment during clinical disease progression. Our aim was to explore qualitative and quantitative differences in gingival crevicular fluid (GCF) protein profiles from patients diagnosed with periodontitis between non-progressive and progressive periodontal sites. METHODS Five systemically healthy patients diagnosed with periodontitis were monitored weekly in their progression of the disease and GCF samples from 10 candidate sites were obtained. Two groups of five sites, matched from an equal number of teeth, were selected from the five patients: Progression (PG) and Non-Progression (NP). Global protein identification was performed with high-throughput proteomic approaches and label-free analysis determined their relative abundances. Proteins were identified by Proteome Discoverer v2.4 and searched against human SwissProt protein databases. Enrichment bioinformatic analyses were performed in STRING-DB and ShinyGO environment. RESULTS 1504 and 1500 proteins were identified in NP and PG respectively. Forty-eight proteins were exclusively identified in PG, while 52 were identified in NP. Moreover, 35 proteins were more abundant in PG and 29 proteins in NP (twofold change, p < .05). The NP group was mainly represented by proteins from "response to biotic stimuli and other organisms," "processes of cell death regulation," "peptidase regulation," "protein ubiquitination," and "ribosomal activity" GO categories. The most represented GO categories of the PG group were "assembly of multiprotein complexes," "catabolic processes," "lipid metabolism," and "binding to hemoglobin and haptoglobin." CONCLUSIONS There are quantitative and qualitative differences in the proteome of GCF from periodontal sites according to the status of clinical progression of periodontitis. Progressive periodontitis sites are characterized by a protein profile associated with catabolic processes, immune response, and response to cellular stress, while stable periodontitis sites show a protein profile mainly related to wound repair and healing processes, cell death regulation, and chaperone-mediated autophagy. Understanding the etiopathogenic role of these profiles in progressive periodontitis may help to develop new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M Angélica Michea
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alicia Morales
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Elías Lanyon
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Camila Fuentes
- Laboratory of Cancer Immunoregulation, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Mauricio Budini
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fermín E González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Du Y, Zhao F, Tao R, Liu B. Effect of forceful suction and air disinfection machines on aerosol removal. BMC Oral Health 2023; 23:652. [PMID: 37684672 PMCID: PMC10492290 DOI: 10.1186/s12903-023-03369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUNDS Dental procedures involving drilling and grinding can produce a significant amount of suspended aerosol particles (PM) and bioaerosols. This study aims to analyze the size and concentration of aerosol particles generated during drilling and to investigate the effectiveness of two air exchange systems, namely forceful suction (FS) and air disinfection machines (DM), in removing PM. METHODS For this study, 100 extracted permanent teeth were collected and divided into three groups: without suction (n = 50), suction with forceful suction (n = 25), and suction with air disinfection machines (n = 25). The removal rate of suspended aerosol particles was analyzed using particle counters and air data multimeter. RESULTS When drilling and grinding were performed without vacuum, 0.75% of the aerosol particles generated were PM2.5-10, 78.25% of total suspended aerosol particles (TSP) were PM2.5, and 98.68% of TSP were PM1. The nanoanalyzer measurements revealed that the aerodynamic diameter of most aerosol particles was below 60 nm, with an average particle diameter of 52.61 nm and an average concentration of 2.6*1011 ultrafine aerosol particles. The air change per hour (ACH) was significantly lower in the air disinfection machines group compared to the forceful suction group. Additionally, the number of aerosol particles and mass concentration was significantly lower in the air disinfection machines group compared to the forceful suction group in terms of PM2.5 levels. However, the forceful suction group also reduced the mass concentration in PM10 level than the air disinfection machines group. CONCLUSION In conclusion, the air exchange system can reduce the aerosol particles generated during drilling and grinding. Comparing the two air exchange systems, it was found that the air disinfection machines group reduces the number of aerosol particles and mass concentration in PM2.5 levels, while the forceful suction group reduces the mass concentration in PM10 level.
Collapse
Affiliation(s)
- Yaru Du
- Department of hospital allergy, Medical department, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fei Zhao
- Department of Periodontal I, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ran Tao
- Medical department, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bing Liu
- Department of Periodontal I, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
9
|
Romano F, Franco F, Corana M, Abbadessa G, Di Scipio F, Pergolizzi B, Castrignano C, Aimetti M, Berta GN. Cystatin SN (CST1) as a Novel Salivary Biomarker of Periodontitis. Int J Mol Sci 2023; 24:13834. [PMID: 37762137 PMCID: PMC10530756 DOI: 10.3390/ijms241813834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Identification of biomarkers could help in assessing periodontal health status and monitoring treatment outcomes. Therefore, the aim of this cross-sectional study was to identify potential innovative salivary biomarkers for the diagnosis of periodontitis using an untargeted proteomic approach. Forty-five healthy non-smoker participants diagnosed as having periodontally healthy conditions (H), severe periodontitis (P), and healthy but reduced periodontium after active periodontal treatment (T) were consecutively enrolled (15 per each group) in the study. A higher number of spots were identified in the proteome of unstimulated whole saliva collected from H and T subjects compared with P group, mainly within the range of 8-40 kDa. Protein spots of interest were analysed by MALDI-TOF-MS, allowing the identification of cystatin SN (CST1) isoform, as confirmed by Western blot. CST1 was markedly expressed in the H group, while it was absent in most P samples (p < 0.001). Interestingly, a distinct CST1 expression was observed in saliva from T patients. CST1 was negatively correlated with the percentage of pathological sites (p < 0.001) and was effective in discriminating active periodontitis from healthy periodontal status (whether H or T). Therefore, salivary CST1 may be a promising non-invasive biomarker for periodontal disease diagnosis and monitoring.
Collapse
Affiliation(s)
- Federica Romano
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (M.C.); (F.D.S.); (M.A.)
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| | - Matteo Corana
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (M.C.); (F.D.S.); (M.A.)
| | - Giuliana Abbadessa
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| | - Federica Di Scipio
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (M.C.); (F.D.S.); (M.A.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| | - Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, Section of Periodontology, University of Turin, 10126 Turin, Italy; (F.R.); (M.C.); (F.D.S.); (M.A.)
| | - Giovanni N. Berta
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy; (F.F.); (G.A.); (B.P.); (C.C.)
| |
Collapse
|
10
|
Claesson R, Johansson A, Belibasakis GN. Age-Related Subgingival Colonization of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Parvimonas micra-A Pragmatic Microbiological Retrospective Report. Microorganisms 2023; 11:1434. [PMID: 37374936 DOI: 10.3390/microorganisms11061434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to compare data about the prevalence and proportions of the bacterial species Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Parvimonas micra in periodontitis pocket samples collected from young, <35 years, and old, >35-year-old patients, YP and OP, respectively. The results from the analyses of a total of 3447 subgingival plaque samples analyzed for clinical diagnosis purposes by cultivation regarding the proportions of these species were collected from a database and elucidated. The prevalence of A. actinomycetemcomitans was found to be more than twice as high (OR = 2.96, 95% CI; 2.50-3.50) in samples from the younger (42.2%) than the older group (20.4%) (p < 0.001). The prevalence of P. micra was significantly lower in samples from the younger age group (OR = 0.43, 95%) (p < 0.001), whereas P. gingivalis was similarly distributed (OR = 0.78, 95%) in the two age groups (p = 0.006). A similar pattern was noticed for A. actinomycetemcomitans and P. gingivalis when high proportions (>50%) of the samples of these bacterial species were elucidated. In contrast, the proportion of samples containing >50% with P. micra was lower compared with the two other bacterial species. Furthermore, it was noted that the proportion of samples from old patients containing A. actinomycetemcomitans in combination with P. micra was almost three times higher than in samples when P. micra was replaced by P. gingivalis. In conclusion, A.actinomycetemcomitans showed an increased presence and proportion in samples from young patients compared with the old patients, while P. gingivalis was similarly distributed in the two age groups. P. micra showed an increased presence and proportion in samples from old patients compared with the young patients.
Collapse
Affiliation(s)
- Rolf Claesson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden
| | | | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14152 Huddinge, Sweden
| |
Collapse
|
11
|
Bostanci N, Belibasakis GN. Precision periodontal care: from omics discoveries to chairside diagnostics. Clin Oral Investig 2023; 27:971-978. [PMID: 36723713 PMCID: PMC9985578 DOI: 10.1007/s00784-023-04878-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/22/2023] [Indexed: 02/02/2023]
Abstract
The interface of molecular science and technology is guiding the transformation of personalized to precision healthcare. The application of proteomics, genomics, transcriptomics, and metabolomics is shaping the suitability of biomarkers for disease. Prior validation of such biomarkers in large and diverse patient cohorts helps verify their clinical usability. Incorporation of molecular discoveries into routine clinical practice relies on the development of customized assays and devices that enable the rapid delivery of analytical data to the clinician, while the patient is still in session. The present perspective review addresses this topic under the prism of precision periodontal care. Selected promising research attempts to innovate technological platforms for oral diagnostics are brought forward. Focus is placed on (a) the suitability of saliva as a conveniently sampled biological specimen for assessing periodontal health, (b) proteomics as a high-throughput approach for periodontal disease biomarker identification, and (c) chairside molecular diagnostic assays as a technological funnel for transitioning from the laboratory benchtop to the clinical point-of-care.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels alle 8, 141 52, Huddinge, Stockholm, Sweden.
| | - Georgios N Belibasakis
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels alle 8, 141 52, Huddinge, Stockholm, Sweden.
| |
Collapse
|
12
|
Huang R, He YX, Jia XT, Liu JN, Fan XC, Zeng N, Huang XF. Investigation of periodontal status and bacterial composition aroundmini-implants. Am J Orthod Dentofacial Orthop 2023:S0889-5406(23)00070-7. [PMID: 36858877 DOI: 10.1016/j.ajodo.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Mini-implants are now widely used in orthodontic treatment. Soft-tissue inflammation around the mini-implant is an important factor affecting its stability. This study aimed to investigate the periodontal status and the bacterial composition around mini-implants. METHODS A total of 79 mini-implants in 40 patients (aged 18-45 years) were evaluated in this study. The mini-implant probing depth (mPD), mini-implant gingival sulcus bleeding index (mBI), mini-implant plaque index (mPLI), and the composition of the supragingival and subgingival plaque around the mini-implants were recorded. After Congo red staining, the bacteria were classified and counted under a light microscope. RESULTS The mPLI and mBI around mini-implants in the infrazygomatic crest were higher than those in the buccal shelf and interradicular area. The mPD was higher on the coronal site of the mini-implant than on the mesial, distal, and apical sites in the infrazygomatic crest. The mPLI around the mini-implant was positively correlated with the mBI, and the mBI was positively correlated with the mPD. The supragingival and subgingival bacterial composition around the mini-implants was similar to that of natural teeth. Compared with supragingival bacterial composition, the subgingival bacteria of mini-implants had a significantly lower proportion of cocci and a higher proportion of bacilli and spirochetes. CONCLUSIONS The bacteria composition of the plaque and the location are important factors in the inflammation around mini-implants. Similar to natural teeth, mini-implants require health maintenance to prevent inflammation of the surrounding soft tissue and maintain stability.
Collapse
Affiliation(s)
- Rui Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yin-Xue He
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xue-Ting Jia
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ji-Nan Liu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Chuan Fan
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Na Zeng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, and School of Public Health, Peking University, Beijing, China
| | - Xiao-Feng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Claesson R, Johansson A, Belibasakis GN. Clinical laboratory diagnostics in dentistry: Application of microbiological methods. FRONTIERS IN ORAL HEALTH 2022; 3:983991. [PMID: 36160119 PMCID: PMC9493047 DOI: 10.3389/froh.2022.983991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
Diagnosis and treatment in dentistry are based on clinical examination of the patients. Given that the major oral diseases are of microbial biofilm etiology, it can be expected that performing microbiological analysis on samples collected from the patient could deliver supportive evidence to facilitate the decision-making process by the clinician. Applicable microbiological methods range from microscopy, to culture, to molecular techniques, which can be performed easily within dedicated laboratories proximal to the clinics, such as ones in academic dental institutions. Periodontal and endodontic infections, along with odontogenic abscesses, have been identified as conditions in which applied clinical microbiology may be beneficial for the patient. Administration of antimicrobial agents, backed by microbiological analysis, can yield more predictable treatment outcomes in refractory or early-occurring forms of periodontitis. Confirming a sterile root canal using a culture-negative sample during endodontic treatment may ensure the longevity of its outcome and prevent secondary infections. Susceptibility testing of samples obtained from odontogenic abscesses may facilitate the selection of the appropriate antimicrobial treatment to prevent further spread of the infection.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- *Correspondence: Rolf Claesson
| | - Anders Johansson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
14
|
Heikkinen AM, Raivisto T, Räisänen I, Tervahartiala T, Bostanci N, Sorsa T. Implementing of aMMP‐8 point‐of‐care test with a modified new disease classification in Finnish adolescent cohorts. Clin Exp Dent Res 2022; 8:1142-1148. [PMID: 35676762 PMCID: PMC9562567 DOI: 10.1002/cre2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/07/2022] Open
Abstract
Objectives Material and Methods Results Conclusions
Collapse
Affiliation(s)
- Anna M. Heikkinen
- Department of Oral and Maxillofacial Diseases and Public Health University of Helsinki and Helsinki University Hospital Helsinki Finland
- Department of Dental Medicine Karolinska Institutet Stockholm Sweden
- Faculty of Medicine and Health Technology University of Tampere Tampere Finland
- Department of Oral and Maxillofacial Diseases, Head and Neck Center University of Helsinki and Helsinki University Hospital Helsinki Finland
| | | | | | | | - Nagihan Bostanci
- Department of Dental Medicine Karolinska Institutet Stockholm Sweden
| | - Timo Sorsa
- Department of Dental Medicine Karolinska Institutet Stockholm Sweden
- Hameenlinna Kaupunki Hämeenlinna Finland
| |
Collapse
|
15
|
Silva DNDA, Monajemzadeh S, Pirih FQ. Systems Biology in Periodontitis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.853133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Systems biology is a promising scientific discipline that allows an integrated investigation of host factors, microbial composition, biomarkers, immune response and inflammatory mediators in many conditions such as chronic diseases, cancer, neurological disorders, and periodontitis. This concept utilizes genetic decoding, bioinformatic, flux-balance analysis in a comprehensive approach. The aim of this review is to better understand the current literature on systems biology and identify a clear applicability of it to periodontitis. We will mostly focus on the association between this condition and topics such as genomics, transcriptomics, proteomics, metabolomics, as well as contextualize delivery systems for periodontitis treatment, biomarker detection in oral fluids and associated systemic conditions.
Collapse
|
16
|
Baumgartner D, Johannsen B, Specht M, Lüddecke J, Rombach M, Hin S, Paust N, von Stetten F, Zengerle R, Herz C, Peham JR, Paqué PN, Attin T, Jenzer JS, Körner P, Schmidlin PR, Thurnheer T, Wegehaupt FJ, Kaman WE, Stubbs A, Hays JP, Rusu V, Michie A, Binsl T, Stejskal D, Karpíšek M, Bao K, Bostanci N, Belibasakis GN, Mitsakakis K. OralDisk: A Chair-Side Compatible Molecular Platform Using Whole Saliva for Monitoring Oral Health at the Dental Practice. BIOSENSORS 2021; 11:bios11110423. [PMID: 34821641 PMCID: PMC8615610 DOI: 10.3390/bios11110423] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 05/04/2023]
Abstract
Periodontitis and dental caries are two major bacterially induced, non-communicable diseases that cause the deterioration of oral health, with implications in patients' general health. Early, precise diagnosis and personalized monitoring are essential for the efficient prevention and management of these diseases. Here, we present a disk-shaped microfluidic platform (OralDisk) compatible with chair-side use that enables analysis of non-invasively collected whole saliva samples and molecular-based detection of ten bacteria: seven periodontitis-associated (Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and three caries-associated (oral Lactobacilli, Streptococcus mutans, Streptococcus sobrinus). Each OralDisk test required 400 µL of homogenized whole saliva. The automated workflow included bacterial DNA extraction, purification and hydrolysis probe real-time PCR detection of the target pathogens. All reagents were pre-stored within the disk and sample-to-answer processing took < 3 h using a compact, customized processing device. A technical feasibility study (25 OralDisks) was conducted using samples from healthy, periodontitis and caries patients. The comparison of the OralDisk with a lab-based reference method revealed a ~90% agreement amongst targets detected as positive and negative. This shows the OralDisk's potential and suitability for inclusion in larger prospective implementation studies in dental care settings.
Collapse
Affiliation(s)
- Desirée Baumgartner
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: (K.M.); (D.B.); Tel.: +49-761-203-73252 (K.M.); +49-761-203-98724 (D.B.)
| | - Benita Johannsen
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Mara Specht
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Jan Lüddecke
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Markus Rombach
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Sebastian Hin
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
| | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Christopher Herz
- AIT Austrian Institute of Technology, Molecular Diagnostics, Giefinggasse 4, 1210 Wien, Austria; (C.H.); (J.R.P.)
| | - Johannes R. Peham
- AIT Austrian Institute of Technology, Molecular Diagnostics, Giefinggasse 4, 1210 Wien, Austria; (C.H.); (J.R.P.)
| | - Pune N. Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Joël S. Jenzer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Philipp Körner
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Patrick R. Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Florian J. Wegehaupt
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (P.N.P.); (T.A.); (J.S.J.); (P.K.); (P.R.S.); (T.T.); (F.J.W.)
| | - Wendy E. Kaman
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands; (W.E.K.); (J.P.H.)
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Free University of Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands;
| | - John P. Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam (Erasmus MC), 3015 CN Rotterdam, The Netherlands; (W.E.K.); (J.P.H.)
| | - Viorel Rusu
- Magtivio B.V., Daelderweg 9, 6361 HK Nuth, The Netherlands;
| | - Alex Michie
- ClinicaGeno Ltd., 11 Station Approach, Coulsdon CR5 2NR, UK; (A.M.); (T.B.)
| | - Thomas Binsl
- ClinicaGeno Ltd., 11 Station Approach, Coulsdon CR5 2NR, UK; (A.M.); (T.B.)
| | - David Stejskal
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Syllabova 19, 70300 Ostrava, Czech Republic;
- Institute of Laboratory Diagnostics, University Hospital Ostrava, 17. Listopadu 1790/5, 70800 Ostrava, Czech Republic
| | - Michal Karpíšek
- BioVendor-Laboratorní Medicína a.s., Research & Diagnostic Products Division, Karasek 1767/1, Reckovice, 62100 Brno, Czech Republic;
- Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 61242 Brno, Czech Republic
| | - Kai Bao
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Georgios N. Belibasakis
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (N.B.); (G.N.B.)
| | - Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (B.J.); (M.S.); (J.L.); (M.R.); (S.H.); (N.P.); (F.v.S.); (R.Z.)
- Laboratory for MEMS Applications, IMTEK–Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: (K.M.); (D.B.); Tel.: +49-761-203-73252 (K.M.); +49-761-203-98724 (D.B.)
| |
Collapse
|
17
|
Is There a Link between COVID-19 Infection, Periodontal Disease and Acute Myocardial Infarction? Life (Basel) 2021; 11:life11101050. [PMID: 34685421 PMCID: PMC8538734 DOI: 10.3390/life11101050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Both periodontal disease and atherosclerosis are chronic disorders with an inflammatory substrate that leads to alteration of the host's immune response. In PD, inflammation is responsible for bone tissue destruction, while in atherosclerosis, it leads to atheromatous plaque formation. These modifications result from the action of pro-inflammatory cytokines that are secreted both locally at gingival or coronary sites, and systemically. Recently, it was observed that in patients with PD or with cardiovascular disease, COVID-19 infection is prone to be more severe. While the association between PD, inflammation and cardiovascular disease is well-known, the impact of COVID-19-related inflammation on the systemic complications of these conditions has not been established yet. The purpose of this review is to bring light upon the latest advances in understanding the link between periodontal-cardiovascular diseases and COVID-19 infection.
Collapse
|
18
|
Yakar N, Türedi A, Emingil G, Şahin Ç, Köse T, Silbereisen A, Bostanci N. Oral health and emotional well-being in premenopausal and postmenopausal women: a cross-sectional cohort study. BMC WOMENS HEALTH 2021; 21:338. [PMID: 34556103 PMCID: PMC8459505 DOI: 10.1186/s12905-021-01480-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
Background Menopause, the absence of ovarian sex steroids, is frequently accompanied by emotional and physiological changes in a woman´s body, as well as oral health changes. The present study aimed to evaluate the association between the periodontal health status and emotional and physical well-being among postmenopausal women (PMW) in comparison with regularly menstruating premenopausal women (RMPW). Methods A total of 115 women (PMW, n = 56, mean age ± SD: 54 ± 5; RMPW, n = 59, mean age ± SD: 41 ± 4) received a comprehensive medical assessment and a full-mouth oral examination. All completed the Women’s Health Questionnaire (WHQ) to measure emotional and physical well-being. The corresponding bone mineral density (BMD) scores were obtained from participants´ medical records. Results Tooth loss was significantly higher in PMW than RMPW after adjusting for age (3.88 ± 2.41 vs 2.14 ± 2.43, p < 0.05). No significant difference was found in the prevalence of periodontitis between the two groups (PMW: 39.2%, RMPW: 32.2%, p > 0.05). The prevalence of periodontitis was associated with fewer daily brushing sessions in PMW (p = 0.021). Based on the WHQ, both PMW and RMPW with periodontitis had higher ‘’depressed mood’’ scores compared to periodontally healthy women (p = 0.06 and p = 0.038, respectively). The women who reported fewer daily toothbrushing sessions found to have higher depressive mood scores (p = 0.043). Conclusions Presence of periodontitis is associated with the emotional and physical well-being of women and reinforcement of oral healtcare is recommended at different stages of a woman’s life including menopause to reduce the risk for early tooth loss in women.
Collapse
Affiliation(s)
- Nil Yakar
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14152, Huddinge, Sweden.,Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| | - Asena Türedi
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Faculty of Dentistry, Ege University, İzmir, Turkey.
| | - Çağdaş Şahin
- Department of Gynecology and Obstetrics, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Angelika Silbereisen
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14152, Huddinge, Sweden
| | - Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Alfred Nobels Allé 8, 14152, Huddinge, Sweden.
| |
Collapse
|
19
|
Esteves GM, Pereira JA, Azevedo NF, Azevedo AS, Mendes L. Friends with Benefits: An Inside Look of Periodontal Microbes' Interactions Using Fluorescence In Situ Hybridization-Scoping Review. Microorganisms 2021; 9:1504. [PMID: 34361938 PMCID: PMC8306857 DOI: 10.3390/microorganisms9071504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Fluorescence in situ hybridization (FISH) has proven to be particularly useful to describe the microbial composition and spatial organization of mixed microbial infections, as it happens in periodontitis. This scoping review aims to identify and map all the documented interactions between microbes in periodontal pockets by the FISH technique. Three electronic sources of evidence were consulted in search of suitable articles up to 7 November 2020: MEDLINE (via PubMed), Scopus (Elsevier: Amsterdam, The Netherlands), and Web of Science (Clarivate Analytics: Philadelphia, PA, USA) online databases. Studies that showed ex vivo and in situ interactions between, at least, two microorganisms were found eligible. Ten papers were included. Layered or radially ordered multiple-taxon structures are the most common form of consortium. Strict or facultative anaerobic microorganisms are mostly found in the interior and the deepest portions of the structures, while aerobic microorganisms are mostly found on the periphery. We present a model of the microbial spatial organization in sub- and supragingival biofilms, as well as how the documented interactions can shape the biofilm formation. Despite the already acquired knowledge, available evidence regarding the structural composition and interactions of microorganisms within dental biofilms is incomplete and large-scale studies are needed.
Collapse
Affiliation(s)
- Guilherme Melo Esteves
- Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.A.P.); (L.M.)
| | - José António Pereira
- Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.A.P.); (L.M.)
| | - Nuno Filipe Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (N.F.A.); (A.S.A.)
| | - Andreia Sofia Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (N.F.A.); (A.S.A.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Luzia Mendes
- Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (J.A.P.); (L.M.)
| |
Collapse
|
20
|
Mitsakakis K. Novel lab-on-a-disk platforms: a powerful tool for molecular fingerprinting of oral and respiratory tract infections. Expert Rev Mol Diagn 2021; 21:523-526. [PMID: 33902369 DOI: 10.1080/14737159.2021.1920400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Konstantinos Mitsakakis
- Hahn-Schickard, Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Johannsen B, Karpíšek M, Baumgartner D, Klein V, Bostanci N, Paust N, Früh SM, Zengerle R, Mitsakakis K. One-step, wash-free, bead-based immunoassay employing bound-free phase detection. Anal Chim Acta 2021; 1153:338280. [DOI: 10.1016/j.aca.2021.338280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/31/2021] [Indexed: 12/28/2022]
|
22
|
Salivary Biomarkers for Dental Caries Detection and Personalized Monitoring. J Pers Med 2021; 11:jpm11030235. [PMID: 33806927 PMCID: PMC8004821 DOI: 10.3390/jpm11030235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
This study investigated the potential of salivary bacterial and protein markers for evaluating the disease status in healthy individuals or patients with gingivitis or caries. Saliva samples from caries- and gingivitis-free individuals (n = 18), patients with gingivitis (n = 17), or patients with deep caries lesions (n = 38) were collected and analyzed for 44 candidate biomarkers (cytokines, chemokines, growth factors, matrix metalloproteinases, a metallopeptidase inhibitor, proteolytic enzymes, and selected oral bacteria). The resulting data were subjected to principal component analysis and used as a training set for random forest (RF) modeling. This computational analysis revealed four biomarkers (IL-4, IL-13, IL-2-RA, and eotaxin/CCL11) to be of high importance for the correct depiction of caries in 37 of 38 patients. The RF model was then used to classify 10 subjects (five caries-/gingivitis-free and five with caries), who were followed over a period of six months. The results were compared to the clinical assessments of dental specialists, revealing a high correlation between the RF prediction and the clinical classification. Due to the superior sensitivity of the RF model, there was a divergence in the prediction of two caries and four caries-/gingivitis-free subjects. These findings suggest IL-4, IL-13, IL-2-RA, and eotaxin/CCL11 as potential salivary biomarkers for identifying noninvasive caries. Furthermore, we suggest a potential association between JAK/STAT signaling and dental caries onset and progression.
Collapse
|
23
|
Validation and verification of predictive salivary biomarkers for oral health. Sci Rep 2021; 11:6406. [PMID: 33742017 PMCID: PMC7979790 DOI: 10.1038/s41598-021-85120-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Oral health is important not only due to the diseases emerging in the oral cavity but also due to the direct relation to systemic health. Thus, early and accurate characterization of the oral health status is of utmost importance. There are several salivary biomarkers as candidates for gingivitis and periodontitis, which are major oral health threats, affecting the gums. These need to be verified and validated for their potential use as differentiators of health, gingivitis and periodontitis status, before they are translated to chair-side for diagnostics and personalized monitoring. We aimed to measure 10 candidates using high sensitivity ELISAs in a well-controlled cohort of 127 individuals from three groups: periodontitis (60), gingivitis (31) and healthy (36). The statistical approaches included univariate statistical tests, receiver operating characteristic curves (ROC) with the corresponding Area Under the Curve (AUC) and Classification and Regression Tree (CART) analysis. The main outcomes were that the combination of multiple biomarker assays, rather than the use of single ones, can offer a predictive accuracy of > 90% for gingivitis versus health groups; and 100% for periodontitis versus health and periodontitis versus gingivitis groups. Furthermore, ratios of biomarkers MMP-8, MMP-9 and TIMP-1 were also proven to be powerful differentiating values compared to the single biomarkers.
Collapse
|
24
|
Bibi T, Khurshid Z, Rehman A, Imran E, Srivastava KC, Shrivastava D. Gingival Crevicular Fluid (GCF): A Diagnostic Tool for the Detection of Periodontal Health and Diseases. Molecules 2021; 26:molecules26051208. [PMID: 33668185 PMCID: PMC7956529 DOI: 10.3390/molecules26051208] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
The methodologies applicable for the evaluation of periodontal associated diseases are constantly evolving to provide quick, realistic, and scientifically proven results. Trends in the past followed a clinical evaluation of periodontal tissues and radiographic-based reports that formed the foundation for detection of diseases involving the structures supporting the teeth. As the confines and limitations of conventional strategies became obvious over the passage of time, hand in hand variety of techniques have evolved and experimentally justified. These improvisations are based on an improved understanding of the periodontal-pathogenic cascade. Periodontal pathogenesis and a paradigm shift from disease understanding to disease prevention and treatment entail few prerequisites that demand the objectivity of diagnostics procedure that includes sensitivity and specificity along with an explanation of the intensity of the disease, Gingival crevicular fluid an oral bio-fluid resides in the close proximity with gingival tissues have been widely used to understand and differentiate the periodontal health and diseased status. The biomarkers present in the GCF can be a reliable tool to detect the minute changes seen in the disease processes. The GCF consists of various host and bacterial-derived products as well as biomarkers which in turn can be evaluated for the diagnosis, prognosis as well as management of the periodontal disease. Thus, the review aims at describing GCF as a potential oral biofluid helpful in differentiating periodontal health and disease status.
Collapse
Affiliation(s)
- Tauqeer Bibi
- Department of Orthodontics, Bahria University Medical and Dental College, Karachi 75260, Pakistan;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (Z.K.); (D.S.); Tel.: +966-558420410 (Z.K.); +966-500782498 (D.S.)
| | - Ambreen Rehman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Eisha Imran
- Department of Dental Materials, HITEC Dental College, Institute of Medical Sciences, Taxilla 751010, Pakistan;
| | - Kumar Chandan Srivastava
- Oral Medicine and Radiology, Department of Oral Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia;
| | - Deepti Shrivastava
- Periodontics, Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
- Correspondence: (Z.K.); (D.S.); Tel.: +966-558420410 (Z.K.); +966-500782498 (D.S.)
| |
Collapse
|
25
|
Ng E, Tay JRH, Balan P, Ong MMA, Bostanci N, Belibasakis GN, Seneviratne CJ. Metagenomic sequencing provides new insights into the subgingival bacteriome and aetiopathology of periodontitis. J Periodontal Res 2021; 56:205-218. [PMID: 33410172 DOI: 10.1111/jre.12811] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022]
Abstract
"Open-ended" molecular techniques such as 16S rRNA sequencing have revealed that the oral bacteriome of subgingival plaque is more diverse than originally thought. 16S rRNA analysis has demonstrated that constituents of the overall bacterial community are qualitatively similar in health and disease, differing mainly in their relative proportions with respect to each other. Species in low abundance can also act as critical species, leading to the concept of global community dysbiosis which relates to shifts in community structure, rather than shifts in membership. Correlation analysis suggests that coordinated interactions in the community are essential for incipient dysbiosis and disease pathogenesis. The subgingival bacteriome also provides biomarkers that are useful for disease detection and management. Combined with clinical and biological parameters, these may assist clinicians in developing and implementing effective treatment strategies to restore microbial homeostasis and monitor disease. Identification of higher risk groups or poor responders to treatment using unique subgingival bacteriome signatures may also lead to early intervention.
Collapse
Affiliation(s)
- Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore, Singapore
| | - John R H Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore, Singapore
| | - P Balan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, SingHealth, Singapore, Singapore
| | - Marianne M A Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore, Singapore.,Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chaminda J Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, SingHealth, Singapore, Singapore.,Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
26
|
Behm C, Blufstein A, Gahn J, Kubin B, Moritz A, Rausch-Fan X, Andrukhov O. Continuing Effect of Cytokines and Toll-Like Receptor Agonists on Indoleamine-2,3-Dioxygenase-1 in Human Periodontal Ligament Stem/Stromal Cells. Cells 2020; 9:2696. [PMID: 33339125 PMCID: PMC7765527 DOI: 10.3390/cells9122696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 12/25/2022] Open
Abstract
Transplanted mesenchymal stem/stromal cells (MSCs) are a promising and innovative approach in regenerative medicine. Their regenerative potential is partly based upon their immunomodulatory activities. One of the most investigated immunomediators in MSCs, such as in periodontal ligament-derived MSCs (hPDLSCs), is indoleamine-2,3-dioxygenase-1 (IDO-1) which is upregulated by inflammatory stimuli, like cytokines. However, there are no data concerning continuing IDO-1 expression in hPDLSCs after the removal of inflammatory stimuli, such as cytokines and toll-like receptor (TLR) agonist-2 and TLR-3. Hence, primary hPDLSCs were stimulated with interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, TLR-2 agonist Pam3CSK4 or TLR-3 agonist Poly I/C. IDO-1 gene and protein expression and its enzymatic activity were measured up to five days after removing any stimuli. IL-1β- and TNF-α-induced IDO-1 expression and enzymatic activity decreased in a time-dependent manner after cessation of stimulation. IFN-γ caused a long-lasting effect on IDO-1 up to five days after removing IFN-γ. Both, TLR-2 and TLR-3 agonists induced a significant increase in IDO-1 gene expression, but only TLR-3 agonist induced significantly higher IDO-1 protein expression and enzymatic activity in conditioned media (CM). IDO-1 activity of Poly I/C- and Pam3CSK4-treated hPDLSCs was higher at one day after removal of stimuli than immediately after stimulation and declined to basal levels after five days. Among all tested stimuli, only IFN-γ was able to induce long-lasting IDO-1 expression and activity in hPDLSCs. The high plasticity of IDO-1 expression and its enzymatic activity in hPDLSCs due to the variable cytokine and virulence factor milieu and the temporal-dependent responsiveness of hPDLSCs may cause a highly dynamic potential of hPDLSCs to modulate immune responses in periodontal tissues.
Collapse
Affiliation(s)
- Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria;
| | - Johannes Gahn
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
| | - Barbara Kubin
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria;
| | - Xiaohui Rausch-Fan
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (C.B.); (A.B.); (J.G.); (B.K.); (X.R.-F.)
| |
Collapse
|
27
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Comparison of DNA Extracted from Pediatric Saliva, Gingival Crevicular Fluid and Site-Specific Biofilm Samples. Methods Protoc 2020; 3:mps3030048. [PMID: 32660039 PMCID: PMC7565886 DOI: 10.3390/mps3030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Introduction: Due to the non-invasive nature of saliva, many methods have been used to isolate and collect DNA from saliva samples for microbial screening. Many oral microbes also inhabit the oral biofilm, which may represent significantly different microbial constituents that may contribute to oral health and disease, including caries and periodontal disorders. Moreover, the biofilm may vary within the same patient at different sites. Few studies have evaluated the comparison between DNA isolated from saliva and DNA from site-specific biofilm, with virtually no studies addressing this analysis among pediatric patients. (2) Methods: An existing repository of paper point derived biofilm, gingival crevicular fluid (GCF), and unstimulated saliva samples previously collected from pediatric patients (n = 47) was identified. DNA was isolated from biofilm sites (tongue, upper buccal molar, mandibular lingual incisor), and GCF and saliva were used for quantitative DNA comparison using a phenol:chloroform extraction. A quantitative and qualitative analysis was performed using the NanoDrop 2000 spectrophotometer using absorbance readings at A230 nm, A260 nm and A280 nm. (3) Results: These data demonstrated the successful isolation of DNA from all of the patient samples, with the highest concentrations observed among unstimulated saliva (4264.1 ng/μL) and the lowest derived from GCF (1771.5 ng/μL). No differences were observed between males and females or minorities and non-minority patients. In addition, comparison of the overall concentrations of DNA obtained from adult samples was slightly higher than, but not significantly different from, the concentrations obtained from pediatric samples (p = 0.2827). A real-time quantitative qPCR screening revealed that all of the samples evaluated harbored bacterial and human DNA of sufficient quantity and quality for a molecular screening greater than the limit of detection (ΔRn = 0.01). (4) Conclusions: Many methods are currently available to provide the sampling and screening of saliva and specific sites within the oral cavity, but the validation and comparison of simple and low-cost methods, that include paper point sampling and unstimulated saliva collection, may suggest these methods and protocols provide sufficient DNA quality and quantity for molecular screening and other comparison applications. In addition, although heterogeneity will be a constant and consistent feature between patient samples, standardized methods that provide similar and consistent DNA from various oral sites may provide needed consistency for screening and molecular analysis.
Collapse
|
29
|
Belibasakis GN. Grand Challenges in Oral Infections and Microbes. FRONTIERS IN ORAL HEALTH 2020; 1:2. [PMID: 35047975 PMCID: PMC8757780 DOI: 10.3389/froh.2020.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
30
|
Beyer-Hans KMC, Sigrist MW, Silbereisen A, Ozturk VO, Emingil G, Bostanci N. Salivary Fingerprinting of Periodontal Disease by Infrared-ATR Spectroscopy. Proteomics Clin Appl 2020; 14:e1900092. [PMID: 31999389 DOI: 10.1002/prca.201900092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/10/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE Periodontal diseases, the most common chronic inflammatory diseases in humans, do not only affect tooth-supporting tissues but also other body parts by contributing to the development of life-threatening conditions. Since currently available diagnostic methods in periodontics lack the ability to identify patients at high risk for periodontal disease progression, development of innovative, non-invasive, rapid detection methods for diagnosing periodontal diseases is needed. This study aims to assess the potential of infrared attenuated total reflection (IR-ATR) spectroscopy to detect differences in composition of saliva supernatant in non-periodontitis individuals (control) and patients with generalized aggressive periodontitis (G-AgP). EXPERIMENTAL DESIGN IR-ATR is performed with a wavelength interval from 1230 to 1180 cm-1 , analyzed with a simple subtraction in absorbance data. RESULTS Ten samples show in the analysis of variance of the two data sets a true difference (99.8%). A principal component analysis (PCA) is able to discriminate between G-AgP and control groups. CONCLUSION AND CLINICAL RELEVANCE This study demonstrates for the first time that IR-ATR spectroscopy is a promising tool for the analysis of saliva supernatant for the diagnosis of periodontitis, and potentially other periodontal conditions. IR-ATR spectroscopy holds the potential to be miniaturized and utilized as a non-invasive screening test.
Collapse
Affiliation(s)
| | - Markus Werner Sigrist
- Laser Spectroscopy and Sensing Lab, Institute for Quantum Electronics, ETH Zurich, Zurich, 8093, Switzerland
| | - Angelika Silbereisen
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, 14152, Stockholm, Sweden
| | - Veli Ozgen Ozturk
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydin, 09100, Turkey
| | - Gulnur Emingil
- Department of Periodontology, Faculty of Dentistry, Egg University, Izmir, 35100, Turkey
| | - Nagihan Bostanci
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, 14152, Stockholm, Sweden
| |
Collapse
|