1
|
Vieira IA, Pezzi EH, Bandeira IC, Reis LB, de Araújo Rocha YM, Fernandes BV, Siebert M, Miyamoto KN, Siqueira MB, Achatz MI, Galvão HDCR, Garcia FADO, Campacci N, Carraro DM, Formiga MN, Vianna FSL, Palmero EI, Macedo GS, Ashton-Prolla P. Functional pri-miR-34b/c rs4938723 and KRAS 3'UTR rs61764370 SNPs: Novel phenotype modifiers in Li-Fraumeni Syndrome? Gene 2024; 898:148069. [PMID: 38070788 DOI: 10.1016/j.gene.2023.148069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE Li-Fraumeni Syndrome (LFS) is a rare cancer predisposing condition caused by germline pathogenic TP53 variants, in which core tumors comprise sarcomas, breast, brain and adrenocortical neoplasms. Clinical manifestations are highly variable in carriers of the Brazilian germline founder variant TP53 p.R337H, possibly due to the influence of modifier genes such as miRNA genes involved in the regulation of the p53 pathway. Herein, we investigated the potential phenotypic effects of two miRNA-related functional SNPs, pri-miR-34b/c rs4938723 and 3'UTR KRAS rs61764370, in a cohort of 273 LFS patients from Southern and Southeastern Brazil. METHODS The genotyping of selected SNPs was performed by TaqMan® allelic discrimination and subsequently custom TaqMan® genotyping results were confirmed by Sanger sequencing in all SNP-positive LFS patients. RESULTS Although the KRAS SNP showed no effect as a phenotype modulator, the rs4938723 CC genotype was significantly associated with development of LFS non-core tumors (first tumor diagnosis) in p.R337H carriers (p = 0.039). Non-core tumors were also more frequently diagnosed in carriers of germline TP53 DNA binding domain variants harboring the rs4938723 C variant allele. Previous studies described pri-miR-34b/c rs4938723 C as a risk allele for sporadic occurrence of thyroid and prostate cancers (non-core tumors of the LFS spectrum). CONCLUSION With this study, we presented additional evidence about the importance of analyzing miRNA genes that could indirectly regulate p53 expression, and, therefore, may modulate the LFS phenotype, such as those of the miR-34 family.
Collapse
Affiliation(s)
- Igor Araujo Vieira
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Health School, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, Brazil.
| | - Eduarda Heidrich Pezzi
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Larissa Brussa Reis
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Yasminne Marinho de Araújo Rocha
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Vieira Fernandes
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Marina Siebert
- Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Monique Banik Siqueira
- Health School, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo 93022-750, Brazil
| | - Maria I Achatz
- Centro de Oncologia, Hospital Sírio-Libanês, São Paulo, Brazil
| | | | | | - Natalia Campacci
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Genomic Medicine Service from Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
| | | | | | - Fernanda Sales Luiz Vianna
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Genetics, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Edenir Inez Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Genetics, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Gabriel S Macedo
- Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Hospital Moinhos de Vento (HMV), Porto Alegre, Rio Grande do Sul, Brazil; Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Genomic Medicine Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil; Department of Genetics, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, HCPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Li D, Luo C, Deng J, Xu Y, Fu S, Liu K, Wu J. MicroRNA 211-5p inhibits cancer cell proliferation and migration in pancreatic cancer by targeting BMP2. Aging (Albany NY) 2023; 15:14411-14421. [PMID: 38059889 PMCID: PMC10756115 DOI: 10.18632/aging.205320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
MicroRNAs (miRNAs) are essential to the tumour growth and metastasis of several cancers. However, the implied functions of miR-211-5p in pancreatic cancer (PC) remains poorly known. In the present study, we discovered that miR-211-5p was a significantly downregulated miRNA in PC tissues compared to adjacent non-tumour tissues. Moreover, we revealed that miR-211-5p overexpression suppressed the proliferation and metastasis of PC cells. Mechanistically, miR-211-5p directly bond to 3'UTR of bone morphogenetic protein-2 (BMP2) and negatively regulated its expression. Rescue experiments showed that the biological function of miR-211-5p was reversed by BMP-2 overexpression in PC cells. Clinical data indicated that BMP2 expression was negatively correlated with miR-211-5p levels in PC patients. Our study provided evidence that miR-211-5p served as a significant suppressor in PC, provided potential targets for prognosis and treatment of patients with PC.
Collapse
Affiliation(s)
- Dan Li
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chen Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianyong Deng
- Department of General Surgery, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yongkang Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Shumin Fu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Kan Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Jiangxi Province Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Jianbing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Xu J, Sun Y, Fu W, Fu S. MYCT1 in cancer development: Gene structure, regulation, and biological implications for diagnosis and treatment. Biomed Pharmacother 2023; 165:115208. [PMID: 37499454 DOI: 10.1016/j.biopha.2023.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Myc target 1 (MYCT1), located at 6q25.2, is a crucial player in cancer development. While widely distributed in cells, its subcellular localization varies across different cancer types. As a novel c-Myc target gene, MYCT1 is subject to regulation by multiple transcription factors. Studies have revealed aberrant expression of MYCT1 in various cancers, impacting pivotal biological processes such as proliferation, apoptosis, migration, genomic instability, and differentiation in cancer cells. Additionally, MYCT1 plays a critical role in modulating tumor angiogenesis and remodeling tumor immune responses within the tumor microenvironment. Despite certain debated functions, MYCT1 undeniably holds significance in cancer development. In this review, we comprehensively examine the relationship between MYCT1 and cancer, encompassing gene structure, regulation of gene expression, gene mutation, and biological function, with the aim of providing valuable insights for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jianan Xu
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Yuanyuan Sun
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Weineng Fu
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Shuang Fu
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, PR China; Department of Medical genetics, China Medical University, Shenyang 110022, PR China.
| |
Collapse
|
4
|
Tutar Y, Pirim D, Shah AA, Vallinoto ACR. Editorial: MicroRNA-related polymorphisms in infectious and inherited diseases. Front Genet 2023; 14:1192457. [PMID: 37113993 PMCID: PMC10127452 DOI: 10.3389/fgene.2023.1192457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Yusuf Tutar
- Division of Biochemistry, Department of Basic Pharmaceutical Sciences, Hamidiye Faculty of Pharmacy, Istanbul, Turkey
- Division of Molecular Oncology, Health Sciences Institute, Istanbul, Turkey
- Personalized Medicine and Immunotherapy Research Center, Istanbul, Turkey
- Experimental Medicine Application and Research Center, Validebag Research Park, University of Health Sciences, Istanbul, Turkey
| | - Dilek Pirim
- Institute of Health Science, Department of Translational Medicine, Bursa, Turkey
- Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Turkey
| | - Aftab Ali Shah
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Antonio C. R. Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
5
|
Zou K, Zhou X, Wang W, Shi L, Fu X. The association between polymorphisms in miRNA and the cholinesterase activity of workers in an omethoate-exposed environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1020-1029. [PMID: 32962420 DOI: 10.1080/09603123.2020.1820453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
To explore the association between polymorphisms in microRNAs (miRNAs) and the cholinesterase (ChE) activity in omethoate-exposed workers, we recruited 180 omethoate-exposed workers and 115 controls to measure their ChE activity using acetylcholine and dithio-bis-(nitrobenzoic acid) and genotype susceptible SNPs in their miRNA by time-of-flight mass spectrometry. ChE activity in the exposure group was lower than that in the control group (P < 0.001). The analysis of covariance result showed that ChE activity was lower in the (- -/- T) genotype in miR-30a rs111456995 (1.97 ± 0.47) than in the TT genotype (2.23 ± 0.59) of the exposure group (P = 0.004). Multivariate linear regression was performed to find influencing factors on ChE activity, and variables kept in the model included omethoate exposure (b = -1.094, P < 0.001), gender (b = -0.381, P < 0.001), miR-30a rs111456995 (- -/- T)(b = -0.248, P < 0.001), and drinking (b = 0.258, P =0.019). The results suggest that individuals carrying a (- -/- T) genotype in miR-30a rs111456995 were more susceptible to damage in their cholinesterase induced by omethoate exposure.
Collapse
Affiliation(s)
- Kaili Zou
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoshan Zhou
- College of Public Health, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Azlan A, Rajasegaran Y, Kang Zi K, Rosli AA, Yik MY, Yusoff NM, Heidenreich O, Moses EJ. Elucidating miRNA Function in Cancer Biology via the Molecular Genetics' Toolbox. Biomedicines 2022; 10:915. [PMID: 35453665 PMCID: PMC9029477 DOI: 10.3390/biomedicines10040915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-RNA (miRNAs) are short non-coding RNAs of about 18-20 nucleotides in length and are implicated in many cellular processes including proliferation, development, differentiation, apoptosis and cell signaling. Furthermore, it is well known that miRNA expression is frequently dysregulated in many cancers. Therefore, this review will highlight the various mechanisms by which microRNAs are dysregulated in cancer. Further highlights include the abundance of molecular genetics tools that are currently available to study miRNA function as well as their advantages and disadvantages with a special focus on various CRISPR/Cas systems This review provides general workflows and some practical considerations when studying miRNA function thus enabling researchers to make informed decisions in regards to the appropriate molecular genetics tool to be utilized for their experiments.
Collapse
Affiliation(s)
- Adam Azlan
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Khor Kang Zi
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Aliaa Arina Rosli
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mot Yee Yik
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Prinses Máxima Centrum Voor Kinderoncologie Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Emmanuel Jairaj Moses
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Liu D, Jin Y, Wu J, Zhu H, Ye D. MiR-135b-5p is an oncogene in pancreatic cancer to regulate GPRC5A expression by targeting transcription factor KLF4. Cell Death Discov 2022; 8:23. [PMID: 35027543 PMCID: PMC8758781 DOI: 10.1038/s41420-022-00814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
KLF4 is implicated in tumor progression of pancreatic cancer, but the molecular regulatory mechanism of KLF4 needs to be further specified. We aimed to probe molecular regulatory mechanism of KLF4 in malignant progression of pancreatic cancer. qRT-PCR or western blot was completed to test levels of predicted genes. Dual-luciferase and chromatin immunoprecipitation (ChIP) assays were designed to validate binding between genes. Cell viability and oncogenicity detection were used for in vitro and vivo functional assessment. KLF4 was a downstream target of miR-135b-5p. KLF4 could regulate GPRC5A level. MiR-135b-5p was notably increased in cancer cells, and overexpressing KLF4 functioned a tumor repressive role, which could be restored by miR-135b-5p. Besides, cell malignant phenotypes could be inhibited through reducing miR-135b-5p level, but they were restored by GPRC5A. Our results stressed that KLF4, as a vital target of miR-135b-5p, could influence promoter region of GPRC5A, thus affecting the malignant progression of pancreatic cancer.
Collapse
Affiliation(s)
- Daren Liu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Yun Jin
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinhong Wu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Huanbing Zhu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dan Ye
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Dragomir MP, Knutsen E, Calin GA. Classical and noncanonical functions of miRNAs in cancers. Trends Genet 2021; 38:379-394. [PMID: 34728089 DOI: 10.1016/j.tig.2021.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Alterations in microRNAs (miRNAs) expression are causative in the initiation and progression of human cancers. The molecular events responsible for the widespread differential expression of miRNAs in malignancy are exemplified by their location in cancer-associated genomic regions, epigenetic mechanisms, transcriptional dysregulation, chemical modifications and editing, and alterations in miRNA biogenesis proteins. The classical miRNA function is synonymous with post-transcriptional repression of target protein genes. However, several studies have reported miRNAs functioning outside this paradigm and some of these novel modes of regulation of gene expression have been implicated in cancers. Here, we summarize key aspects of miRNA involvement in cancer, with a special focus on these lesser-studied mechanisms of action.
Collapse
Affiliation(s)
- Mihnea P Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway.
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
A novel regQTL-SNP and the risk of lung cancer: a multi-dimensional study. Arch Toxicol 2021; 95:3815-3827. [PMID: 34596730 DOI: 10.1007/s00204-021-03170-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023]
Abstract
RegQTL, a novel concept, indicates that different genotypes of some SNPs have differential effects on the expression patterns of miRNAs and their target mRNAs. We aimed to identify the association between regQTL-SNPs and lung cancer risk and to explore the underlying mechanisms. The two-stage case-control study included the first stage in a Chinese population (626 lung cancer cases and 667 healthy controls) and the second stage in a European population (18,082 lung cancer cases and 13,780 healthy controls). Functional annotations were conducted based on the GTEx and the TCGA databases. Functional experiments were performed to explore the underlying biological mechanisms in vitro and vivo. After strict screening, five candidate regQTL-SNPs (rs7110737, rs273957, rs6593210, rs3768617, and rs6836432) were selected. Among them, the variant T allele of rs3768617 in LAMC1 was found to significantly increase the risk of lung cancer (first stage: P = 0.044; second stage: P = 0.007). The eQTL analysis showed that LAMC1 expression level was significantly higher in subjects with the variant T allele of rs3768617 (P = 1.10 × 10-14). In TCGA paired database, the regQTL annotation indicated the different expression patterns between LAMC1 and miRNA-548b-3p for the distinct genotypes of rs3768617. Additionally, LAMC1 knockdown significantly inhibited malignant phenotypes in lung cancer cell lines and suppressed tumor growth. A novel regQTL-SNP, rs3768617, might affect lung cancer risk by modulating the expression patterns of miRNA-548b-3p and LAMC1. RegQTL-SNPs could provide a new perspective for evaluating the regulatory function of SNPs in lung cancer development.
Collapse
|
10
|
Zingone A, Sinha S, Ante M, Nguyen C, Daujotyte D, Bowman ED, Sinha N, Mitchell KA, Chen Q, Yan C, Loher P, Meerzaman D, Ruppin E, Ryan BM. A comprehensive map of alternative polyadenylation in African American and European American lung cancer patients. Nat Commun 2021; 12:5605. [PMID: 34556645 PMCID: PMC8460807 DOI: 10.1038/s41467-021-25763-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Deciphering the post-transcriptional mechanisms (PTM) regulating gene expression is critical to understand the dynamics underlying transcriptomic regulation in cancer. Alternative polyadenylation (APA)-regulation of mRNA 3'UTR length by alternating poly(A) site usage-is a key PTM mechanism whose comprehensive analysis in cancer remains an important open challenge. Here we use a method and analysis pipeline that sequences 3'end-enriched RNA directly to overcome the saturation limitation of traditional 5'-3' based sequencing. We comprehensively map the APA landscape in lung cancer in a cohort of 98 tumor/non-involved tissues derived from European American and African American patients. We identify a global shortening of 3'UTR transcripts in lung cancer, with notable functional implications on the expression of both coding and noncoding genes. We find that APA of non-coding RNA transcripts (long non-coding RNAs and microRNAs) is a recurrent event in lung cancer and discover that the selection of alternative polyA sites is a form of non-coding RNA expression control. Our results indicate that mRNA transcripts from EAs are two times more likely than AAs to undergo APA in lung cancer. Taken together, our findings comprehensively map and identify the important functional role of alternative polyadenylation in determining transcriptomic heterogeneity in lung cancer.
Collapse
Affiliation(s)
- Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Sanju Sinha
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Michael Ante
- Lexogen GmbH, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Ares Genetics GmbH, Karl-Farkas-Gasse 18, 1030, Vienna, Austria
| | - Cu Nguyen
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Dalia Daujotyte
- Lexogen GmbH, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Neelam Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Khadijah A Mitchell
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US
| | - Qingrong Chen
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Chunhua Yan
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Phillipe Loher
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19017, US
| | - Daoud Meerzaman
- Computational Genomics Research, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, US
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, US
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, US.
| |
Collapse
|
11
|
Lu Y, Corradi C, Gentiluomo M, López de Maturana E, Theodoropoulos GE, Roth S, Maiello E, Morelli L, Archibugi L, Izbicki JR, Sarlós P, Kiudelis V, Oliverius M, Aoki MN, Vashist Y, van Eijck CHJ, Gazouli M, Talar-Wojnarowska R, Mambrini A, Pezzilli R, Bueno-de-Mesquita B, Hegyi P, Souček P, Neoptolemos JP, Di Franco G, Sperti C, Kauffmann EF, Hlaváč V, Uzunoğlu FG, Ermini S, Małecka-Panas E, Lucchesi M, Vanella G, Dijk F, Mohelníková-Duchoňová B, Bambi F, Petrone MC, Jamroziak K, Guo F, Kolarova K, Capretti G, Milanetto AC, Ginocchi L, Loveček M, Puzzono M, van Laarhoven HWM, Carrara S, Ivanauskas A, Papiris K, Basso D, Arcidiacono PG, Izbéki F, Chammas R, Vodicka P, Hackert T, Pasquali C, Piredda ML, Costello-Goldring E, Cavestro GM, Szentesi A, Tavano F, Włodarczyk B, Brenner H, Kreivenaite E, Gao X, Bunduc S, Vermeulen RCH, Schneider MA, Latiano A, Gioffreda D, Testoni SGG, Kupcinskas J, Lawlor RT, Capurso G, Malats N, Campa D, Canzian F. Association of Genetic Variants Affecting microRNAs and Pancreatic Cancer Risk. Front Genet 2021; 12:693933. [PMID: 34527018 PMCID: PMC8435735 DOI: 10.3389/fgene.2021.693933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023] Open
Abstract
Genetic factors play an important role in the susceptibility to pancreatic cancer (PC). However, established loci explain a small proportion of genetic heritability for PC; therefore, more progress is needed to find the missing ones. We aimed at identifying single nucleotide polymorphisms (SNPs) affecting PC risk through effects on micro-RNA (miRNA) function. We searched in silico the genome for SNPs in miRNA seed sequences or 3 prime untranslated regions (3'UTRs) of miRNA target genes. Genome-wide association data of PC cases and controls from the Pancreatic Cancer Cohort (PanScan) Consortium and the Pancreatic Cancer Case-Control (PanC4) Consortium were re-analyzed for discovery, and genotyping data from two additional consortia (PanGenEU and PANDoRA) were used for replication, for a total of 14,062 cases and 11,261 controls. None of the SNPs reached genome-wide significance in the meta-analysis, but for three of them the associations were in the same direction in all the study populations and showed lower value of p in the meta-analyses than in the discovery phase. Specifically, rs7985480 was consistently associated with PC risk (OR = 1.12, 95% CI 1.07-1.17, p = 3.03 × 10-6 in the meta-analysis). This SNP is in linkage disequilibrium (LD) with rs2274048, which modulates binding of various miRNAs to the 3'UTR of UCHL3, a gene involved in PC progression. In conclusion, our results expand the knowledge of the genetic PC risk through miRNA-related SNPs and show the usefulness of functional prioritization to identify genetic polymorphisms associated with PC risk.
Collapse
Affiliation(s)
- Ye Lu
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | | | | | | | - George E. Theodoropoulos
- First Propaedeutic University Surgery Clinic, Hippocratio General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Susanne Roth
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Evaristo Maiello
- Department of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Luca Morelli
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Livia Archibugi
- Digestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy
- Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Sarlós
- First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Vytautas Kiudelis
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Martin Oliverius
- Department of Surgery, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Curitiba, Brazil
| | - Yogesh Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus Medical Center, Erasmus University, Rotterdam, Netherlands
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Andrea Mambrini
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | | | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Medicine, Centre for Translational Medicine, University of Szeged, Szeged, Hungary
| | - Pavel Souček
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - John P. Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gregorio Di Franco
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Cosimo Sperti
- Department of Surgery-DiSCOG, Padua University Hospital, Padua, Italy
| | | | - Viktor Hlaváč
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Faik G. Uzunoğlu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefano Ermini
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Ewa Małecka-Panas
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Maurizio Lucchesi
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | - Giuseppe Vanella
- Digestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy
- Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Frederike Dijk
- Deparment of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Beatrice Mohelníková-Duchoňová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czechia
| | - Franco Bambi
- Blood Transfusion Service, Azienda Ospedaliero-Universitaria Meyer, Children's Hospital, Florence, Italy
| | - Maria Chiara Petrone
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Feng Guo
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katerina Kolarova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czechia
| | - Giovanni Capretti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | | | - Laura Ginocchi
- Oncological Department, Azienda USL Toscana Nord Ovest, Oncological Unit of Massa Carrara, Carrara, Italy
| | - Martin Loveček
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czechia
| | - Marta Puzzono
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Hanneke W. M. van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Silvia Carrara
- Division of Gastroenterology and Digestive Endoscopy, Department of Gastroenterology, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Audrius Ivanauskas
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Konstantinos Papiris
- Endoscopic Surgery Department, Hippocratio General Hospital of Athens, Athens, Greece
| | - Daniela Basso
- Department of Medicine-DIMED, Padua University Hospital, Padua, Italy
| | - Paolo G. Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Ferenc Izbéki
- Szent György University Teaching Hospital of County Fejér, Székesfehérvár, Hungary
| | - Roger Chammas
- Department of Radiology and Oncology, Institute of Cancer of São Paulo (ICESP), São Paulo, Brazil
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Biomedical Centre and Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
| | - Thilo Hackert
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Claudio Pasquali
- Department of Surgery-DiSCOG, Padua University Hospital, Padua, Italy
| | - Maria L. Piredda
- ARC-NET, Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Eithne Costello-Goldring
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Giulia Martina Cavestro
- Division of Experimental Oncology, Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Medicine, Centre for Translational Medicine, University of Szeged, Szeged, Hungary
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Barbara Włodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Edita Kreivenaite
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Xin Gao
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefania Bunduc
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Fundeni Clinical Institute, Bucharest, Romania
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Martin A. Schneider
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - Anna Latiano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Italy
| | - Sabrina G. G. Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Juozas Kupcinskas
- Department of Gastroenterology, Institute for Digestive Research, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rita T. Lawlor
- ARC-NET, Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, Sant’Andrea Hospital, Rome, Italy
- Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRSSC San Raffaele Scientific Institute, Milan, Italy
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Individual and joint effects of genetic polymorphisms in microRNA-machinery genes on congenital heart disease susceptibility. Cardiol Young 2021; 31:965-968. [PMID: 33423710 DOI: 10.1017/s1047951120004874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Single-nucleotide polymorphisms in miRNA-machinery genes may alter the biogenesis of miRNAs affecting disease susceptibility. In this case-control study, we aimed to evaluate the impact of three single-nucleotide polymorphisms (DICER rs1057035, DROSHA rs10719, and XPO5 rs11077) and their combined effect in a genetic risk score model on congenital heart disease (CHD) risk. A total of 639 participants was recruited, including 125 patients with CHD (65 males; age 9.2 ± 10 years) and 514 healthy controls (289 males; age 15.8 ± 18 years). Genotyping of polymorphisms in miRNA-machinery genes was performed using a TaqMan®SNP genotyping assay. A genetic risk score was calculated by summing the number of risk alleles of selected single-nucleotide polymorphisms. There was a significantly increased risk of CHD in patients with XPO5 rs11077 CC genotype as compared to AC heterozygote and AA homozygote patients (ORadjusted = 1.7; 95% CI: 1.1-2.8; p = 0.018). A clear tendency to significance was also found for DROSHA rs10719 AA genotype and CHD risk for both codominant and recessive models (ORadjusted = 1.8; 95% CI: 0.91-3.8; p = 0.09 and ORadjusted = 1.9; 95% CI: 0.92-4; p = 0.08, respectively). The resulting genetic risk score predicted a 1.73 risk for CHD per risk allele (95% CI: 1.2-2.5; p = 0.002). Subjects in the top tertile of genetic risk score were estimated to have more than three-fold increased risk of CHD compared with those in the bottom tertile (ORadjusted = 3.52; 95% CI: 1.4-9; p = 0.009). Our findings show that the genetic variants in miRNA-machinery genes might participate in the development of CHD.
Collapse
|
13
|
Uhd J, Miotke L, Ji HP, Dunaeva M, Pruijn GJM, Jørgensen CD, Kristoffersen EL, Birkedal V, Yde CW, Nielsen FC, Hansen J, Astakhova K. Ultra-fast detection and quantification of nucleic acids by amplification-free fluorescence assay. Analyst 2021; 145:5836-5844. [PMID: 32648858 DOI: 10.1039/d0an00676a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two types of clinically important nucleic acid biomarkers, microRNA (miRNA) and circulating tumor DNA (ctDNA) were detected and quantified from human serum using an amplification-free fluorescence hybridization assay. Specifically, miRNAs hsa-miR-223-3p and hsa-miR-486-5p with relevance for rheumatoid arthritis and cancer related mutations BRAF and KRAS of ctDNA were directly measured. The required oligonucleotide probes for the assay were rationally designed and synthesized through a novel "clickable" approach which is time and cost-effective. With no need for isolating nucleic acid components from serum, the fluoresence-based assay took only 1 hour. Detection and absolute quantification of targets was successfully achieved despite their notoriously low abundance, with a precision down to individual nucleotides. Obtained miRNA and ctDNA amounts showed overall a good correlation with current techniques. With appropriate probes, our novel assay and signal boosting approach could become a useful tool for point-of-care measuring other low abundance nucleic acid biomarkers.
Collapse
Affiliation(s)
- Jesper Uhd
- Department of Chemistry, Technical University of Denmark, 207 Kemitorvet, 2800 Kgs. Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shi Y, Yan F, Wang F, Pan L. MiR-128-3p suppresses tumor proliferation and metastasis via targeting CDC6 in hepatocellular carcinoma cells. Tissue Cell 2021; 72:101534. [PMID: 33991762 DOI: 10.1016/j.tice.2021.101534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are known to be involved in the pathogenesis of various cancers. The present study devotes efforts to discover the role of miR-128-3p in hepatocellular carcinoma (HCC). METHODS MiR-128-3p and cell division cycle 6 (CDC6) expressions in HCC tissue (n = 50) and adjacent normal tissue (n = 50) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay and flow cytometry were applied to measure the viability and cell cycle distribution of HuH7 and HCCLM3 cells, respectively. The potential binding sites of miR-128-3p on CDC6 were predicted with Targetscan 7.2 and confirmed by dual-luciferase reporter assay. Expression analysis of CDC6 and survival analysis in HCC were performed by GEPIA2. Wound healing and Transwell assays were used to detect HCC cell migration and invasion, respectively. Expressions of miR-128-3p and epithelial-mesenchymal transition (EMT)-related proteins (MMP2, MMP9, E-Cadherin, N-Cadherin and Vimentin) were quantified using qRT-PCR and western blot, respectively. RESULTS MiR-128-3p mRNA expression was lower in HCC tissue than in adjacent normal tissues. HCC cell viability was suppressed and cell cycle was arrested in G0/S phase by miR-128-3p mimic. CDC6 was targeted by miR-128-3p and had higher expression in HCC tissue. The promotive effects of overexpressed CDC6 on HCC cell viability, migration and invasion were reversed by up-regulating miR-128-3p. And the effects of overexpressed CDC6 on inhibiting E-Cadherin expression yet promoting MMP2, MMP9, N-Cadherin and Vimentin expressions in HCC cells were reversed by up-regulating miR-128-3p. CONCLUSION MiR-128-3p may suppress HCC cell proliferation and metastasis via targeting CDC6.
Collapse
Affiliation(s)
- Yu Shi
- Department of Hepatobiliary Surgery, Xinchang People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Fuguo Yan
- Department of Hepatobiliary Surgery, Xinchang People's Hospital, China; Wuhan University, China
| | - Fangping Wang
- Department of Hepatobiliary Surgery, Xinchang People's Hospital, China; Wenzhou Medical College, China
| | - Linfeng Pan
- School of Medicine, Shaoxing University, China; Department of General Surgery, Xinchang People's Hospital, China.
| |
Collapse
|
15
|
Ma R, Zhao M, Zou X, Zhou J, Bai Z. MicroRNA polymorphism: A target for diagnosis and prognosis of hepatocellular carcinoma? Oncol Lett 2021; 21:324. [PMID: 33692856 DOI: 10.3892/ol.2021.12586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a life-threatening cancer of the digestive system, with complex pathogenesis affected by a broad spectrum of genetic and epigenetic factors. Among several factors, microRNAs (miRNAs), which are considered regulators of the post-transcriptional gene expression, play important roles in determining the malignant phenotype of HCC. In recent years, the advances in molecular genetics have resulted in the characterization of complex genetic factors and in the identification of epigenetic mechanisms of diseases. Accumulating data have suggested that miRNA polymorphisms are involved in tumorigenesis and prognosis, suggesting that the miRNAs may serve as a target for HCC with regard to pathogenesis and prognosis. In the present review, a comprehensive and detailed literature search was conducted and the role of miRNA polymorphisms in the pathogenesis and prognosis of HCC is summarized. The data proposed the use of miRNAs as targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Ruixia Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Maomao Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xin Zou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jianye Zhou
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730000, P.R. China
| | - Zhongtian Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
16
|
Ying P, Li Y, Yang N, Wang X, Wang H, He H, Li B, Peng X, Zou D, Zhu Y, Zhong R, Miao X, Tian J, Chang J. Identification of genetic variants in m 6A modification genes associated with pancreatic cancer risk in the Chinese population. Arch Toxicol 2021; 95:1117-1128. [PMID: 33474615 DOI: 10.1007/s00204-021-02978-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
N6-Methyladenosine (m6A) is the most prevalent modification of RNA in eukaryotes, and is associated with many cellular processes and even the development of cancers. We hypothesized that single-nucleotide polymorphisms (SNPs) in m6A modification genes, including its "writers", "erasers" and "readers", might affect the m6A functions and associate with the susceptibility to pancreatic ductal adenocarcinoma (PDAC). We first conducted a two-stage case-control study in Chinese population to interrogate all SNPs in 22 m6A modification genes. In the discovery stage, a total of 2735 SNPs were genotyped in 980 patients and 1991 controls. Then, the promising SNP was replicated in another independent population consisting of 858 cases and 2084 controls. As a result, we found the rs7495 in 3'UTR of hnRNPC was significantly associated with increased risk of PDAC in both stages (combined odds ratio = 1.22, 95% confidence interval = 1.12-1.32, P = 2.39 × 10-6). To further reveal the biological function of rs7495 and hnRNPC, we performed a series of biochemical experiments. Luciferase reporter assays indicated that rs7495G allele promoted hnRNPC expression through disrupting a putative binding site for has-miR-183-3p. Cell viability assay demonstrated that knockdown of hnRNPC suppressed the proliferation of PDAC cells. RNA-seq analysis suggested that as an m6A "reader", hnRNPC played an important role in RNA biological processes. In conclusion, our findings elucidated that rs7495G could confer higher risk of PDAC via promoting the expression of hnRNPC through a miRNA-mediated manner. These results provided a novel insight into the critical role of m6A modification in tumorigenesis.
Collapse
Affiliation(s)
- Pingting Ying
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng He
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Moslehi R, Tsao HS, Zeinomar N, Stagnar C, Fitzpatrick S, Dzutsev A. Integrative genomic analysis implicates ERCC6 and its interaction with ERCC8 in susceptibility to breast cancer. Sci Rep 2020; 10:21276. [PMID: 33277540 PMCID: PMC7718875 DOI: 10.1038/s41598-020-77037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Up to 30% of all breast cancer cases may be inherited and up to 85% of those may be due to segregation of susceptibility genes with low and moderate risk [odds ratios (OR) ≤ 3] for (mostly peri- and post-menopausal) breast cancer. The majority of low/moderate-risk genes, particularly those with minor allele frequencies (MAF) of < 30%, have not been identified and/or validated due to limitations of conventional association testing approaches, which include the agnostic nature of Genome Wide Association Studies (GWAS). To overcome these limitations, we used a hypothesis-driven integrative genomics approach to test the association of breast cancer with candidate genes by analyzing multi-omics data. Our candidate-gene association analyses of GWAS datasets suggested an increased risk of breast cancer with ERCC6 (main effect: 1.29 ≤ OR ≤ 2.91, 0.005 ≤ p ≤ 0.04, 11.8 ≤ MAF ≤ 40.9%), and implicated its interaction with ERCC8 (joint effect: 3.03 ≤ OR ≤ 5.31, 0.01 ≤ pinteraction ≤ 0.03). We found significant upregulation of ERCC6 (p = 7.95 × 10-6) and ERCC8 (p = 4.67 × 10-6) in breast cancer and similar frequencies of ERCC6 (1.8%) and ERCC8 (0.3%) mutations in breast tumors to known breast cancer susceptibility genes such as BLM (1.9%) and LSP1 (0.3%). Our integrative genomics approach suggests that ERCC6 may be a previously unreported low- to moderate-risk breast cancer susceptibility gene, which may also interact with ERCC8.
Collapse
Affiliation(s)
- Roxana Moslehi
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA.
| | - Hui-Shien Tsao
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- New York State Office of Children and Family Services, New York, USA
| | - Nur Zeinomar
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- Mailman School of Public Health, Columbia University, New York, USA
| | - Cristy Stagnar
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York, USA
| | - Sean Fitzpatrick
- School of Public Health, Cancer Research Center, University at Albany, State University of New York (SUNY), Albany, NY, 12144, USA
| | - Amiran Dzutsev
- Cancer Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Gutierrez-Camino A, Richer C, St-Onge P, Lopez-Lopez E, Bañeres AC, de Andoin NG, Sastre A, Astigarraga I, Martin-Guerrero I, Sinnett D, Garcia-Orad A. Role of rs10406069 in miR-5196 in hyperdiploid childhood acute lymphoblastic leukemia. Epigenomics 2020; 12:1949-1955. [PMID: 33245684 DOI: 10.2217/epi-2020-0152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine the role of single nucleotide polymorphisms (SNPs) in noncoding RNAs in childhood acute lymphoblastic leukemia (ALL) subtypes. Materials & methods: We screened all SNPs in 130 pre-miRNA genes to assess their role in the susceptibility of the most common subtypes of ALL: hyperdiploid and ETV6-RUNX1. Results: In two independent cohorts, we found a significant association between rs10406069 in miR-5196 and the risk of developing hyperdiploid ALL. This observation could be explained by the impact of the SNP on miR-5196 expression and in turn, in its target genes. Indeed, rs10406069 was associated with expression changes in SMC1A, a gene involved in sister chromatin cohesion. Conclusion: rs10406069 in miR-5196 may have a relevant role in hyperdiploid ALL risk.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.,Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Chantal Richer
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Pascal St-Onge
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ana Carbone Bañeres
- Department of Paediatrics, University Hospital Miguel Servet, Zaragoza, Spain
| | - Nagore Garcia de Andoin
- Department of Paediatrics, University Hospital Donostia, San Sebastian, Spain.,Unit of Pediatric Oncohematology, BioDonostia Health Research Institute, San Sebastian, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Ana Sastre
- Department of Oncohematology, University Hospital La Paz, Madrid, Spain
| | - Itziar Astigarraga
- Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, Spain.,Department of Paediatrics, University Hospital Cruces, Barakaldo, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Daniel Sinnett
- Division of Hematology-Oncology, CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.,Pediatric Oncology Group, BioCruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
19
|
Zhang Z, Lin W, Lin Y, Kang M, Zhu J, Tong Z, Wu L, Sun J, Lin J. Long intergenic non-coding RNA Linc00485 promotes lung cancer progression by modulating miR-298/c-Myc axis. J Cell Mol Med 2020; 25:309-322. [PMID: 33237626 PMCID: PMC7810966 DOI: 10.1111/jcmm.16036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 12/20/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs), which are non‐protein‐coding transcripts, are emerging as novel biomarkers for cancer diagnosis. Their dysregulation is increasingly recognized to contribute to the development and progression of human cancers, including lung cancer. Linc00485 is a newly discovered cancer‐related lncRNA; however, little is known about its role in lung cancer progression. In this study, we found that the expression of Linc00485 was significantly increased in human lung cancer tissue and associated with malignant phenotypes, including tumour‐node‐metastasis (TNM) stage, metastasis and relapse. Furthermore, the proliferative, migratory and invasive abilities of lung cancer cells in vitro were significantly enhanced by overexpression of Linc00485 but inhibited by its silencing. Mechanistically, Linc00485 regulated the expression of c‐Myc by directly binding to miR‐298; the effects of Linc00485 overexpression could be significantly reversed by a c‐Myc inhibitor or small interfering RNA. Xenotransplantation experiments showed that Linc00485 silencing significantly weakened the proliferation potential of A549 cells in vivo. Overall, these findings indicate that Linc00485 overexpression down‐regulates miR‐298, resulting in the up‐regulation of c‐Myc and thereby promoting the development of lung cancer.
Collapse
Affiliation(s)
- Zhenyang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Wenwei Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yuhan Lin
- School of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiafu Zhu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhangwei Tong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Long Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianhai Sun
- Department of Oncology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, Hebei, China
| | - Jiangbo Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
20
|
NGUYEN TTN, TRAN MTH, NGUYEN VTL, NGUYEN UDP, NGUYEN GDT, HUYNH LH, NGUYEN HT. Single nucleotide polymorphisms in microRNAs action as biomarkers for breast cancer. Turk J Biol 2020; 44:284-294. [PMID: 33110366 PMCID: PMC7585164 DOI: 10.3906/biy-2004-78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) have been recently described as small noncoding RNAs that are involved in numerous crucial physiological processes, such as cell cycles, differentiation, development, and metabolism. Thus, dysregulation of these molecules could lead to several severe disorders, including breast cancer (BC). Ongoing investigations in malignant growth diagnostics have distinguished miRNAs as promising disease biomarkers. As with any other mRNAs, single nucleotide polymorphisms (SNPs) in DNA sequence encoding for miRNA (miR-SNPs) indeed lead to potential changes in the function of miRNA. In this study, miR-SNPs located in different miRNA sequence regions, which have been associated with BC in different ways, and the potential mechanisms of how these miR-SNPs develop the risk of the disease were discussed.
Collapse
Affiliation(s)
- Thanh Thi Ngoc NGUYEN
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh CityVietnam
- Vietnam National University, Ho Chi Minh CityVietnam
| | - Minh Thi Hong TRAN
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh CityVietnam
- Vietnam National University, Ho Chi Minh CityVietnam
| | - Vy Thi Lan NGUYEN
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh CityVietnam
- Vietnam National University, Ho Chi Minh CityVietnam
| | - Uyen Doan Phuong NGUYEN
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh CityVietnam
- Vietnam National University, Ho Chi Minh CityVietnam
| | - Giang Dien Thanh NGUYEN
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh CityVietnam
- Vietnam National University, Ho Chi Minh CityVietnam
| | - Luan Huu HUYNH
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh CityVietnam
- Vietnam National University, Ho Chi Minh CityVietnam
| | - Hue Thi NGUYEN
- Department of Physiology and Animal Biotechnology, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh CityVietnam
- Vietnam National University, Ho Chi Minh CityVietnam
| |
Collapse
|
21
|
Liu X, Zhao Y, Li Y, Zhang J. Quantitative assessment of lncRNA H19 polymorphisms and cancer risk: a meta-analysis based on 48,166 subjects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:15-27. [PMID: 31852249 DOI: 10.1080/21691401.2019.1699804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, numerous studies have been performed to detect the association between H19 polymorphisms and cancer susceptibility. However, their results were inconsistent and controversial. So, we carried out a meta-analysis aiming to define the association exactly. Eligible studies were collected using PubMed and Embase databases up to March 31, 2019. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the strength of association. Sensitivity analysis and publication bias were established to evaluate the robustness of our results. Totally, 60 studies involving 20763 cases and 27403 patients were analysed in our meta-analysis. Our results indicated that H19 rs217727 C > T polymorphism was significantly associated with increased cancer risk. In subgroup analysis, similarly increased risk could be found in gastrointestinal group for rs2839698 and protective effect was observed in rs2107425 polymorphism for cancer development in Caucasian population. Trial sequential analysis strengthened findings of our meta-analysis that cumulative evidence was adequate. In summary, our meta-analysis supported that H19 polymorphisms may be associated with cancer susceptibility.
Collapse
Affiliation(s)
- Xu Liu
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yating Zhao
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Jian Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Agiannitopoulos K, Samara P, Papadopoulou M, Efthymiadou A, Papadopoulou E, Tsaousis GN, Mertzanos G, Babalis D, Lamnissou K. miRNA polymorphisms and risk of premature coronary artery disease. Hellenic J Cardiol 2020; 62:278-284. [PMID: 32092393 DOI: 10.1016/j.hjc.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Several microRNA (miRNA) polymorphisms have been associated with susceptibility to specific health disorders, including cardiovascular diseases. The aim of the present study was to investigate whether four well-studied miRNA polymorphisms in non-Caucasian populations, namely miR146a G>C (rs2910164), miR149 C>T (rs2292832), miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444), contribute to the risk for the development of premature Coronary Artery Disease (CAD) in the Greek population. METHODS We used a case-control study to examine these associations in 400 individuals: 200 CAD patients [including a subgroup of myocardial infraction (MI) patients] and 200 healthy controls, all of Greek origin. MiRNA polymorphisms were genotyped using three different assays: Polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP), High resolution Melting (HRM) and Sanger sequencing. RESULTS Two of these polymorphisms, miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444) were found to be strongly associated with increased risk for CAD (p=0.0388 and p=0.0013, respectively) and for MI (p=0.0281 and p=0.0273, respectively). Furthermore, miR146C-miR149C-miR196T-miR499G allele combination appeared to be significantly related to CAD (p=0.0185) and MI (p=0.0337) prevalence. CONCLUSIONS Our results suggest that at least two of the studied polymorphisms, miR196a2 C>T (rs11614913) and miR499 A>G (rs3746444), as well as the miR146C-miR149C-miR196T-miR499G allele combination could represent useful biomarkers of CAD and/or MI susceptibility in the Greek population. These special genetic characteristics, in combination with environmental factors and personal habits, might contribute to CAD and/or MI prevalence.
Collapse
Affiliation(s)
- Konstantinos Agiannitopoulos
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece.
| | - Pinelopi Samara
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Miranta Papadopoulou
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece
| | - Astradeni Efthymiadou
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - George Mertzanos
- Department of Cardiology, "KAT" General Hospital, Athens, Greece
| | | | - Klea Lamnissou
- Division of Genetics & Biotechnology, Department of Biology, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Guo F, Xue J. MicroRNA‑628‑5p inhibits cell proliferation and induces apoptosis in colorectal cancer through downregulating CCND1 expression levels. Mol Med Rep 2020; 21:1481-1490. [PMID: 32016467 PMCID: PMC7003041 DOI: 10.3892/mmr.2020.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miR)-628-5p serves as an antitumor gene in a variety of cancers; however, the role of miR-628-5p in colorectal cancer remains largely unclear. The purpose of this study was to investigate the role and mechanism of miR-628-5p in colorectal cancer. Reverse transcription-quantitative PCR (RT-qPCR), colony formation assays and flow cytometric analysis were used to determine the expression levels of miR-628-5p in colorectal cancer tissues and cell lines, and the proliferative ability of colorectal cancer cells. TargetScan version 7.2 and dual-luciferase reporter assay were performed to predict and confirm miR-628-5p target genes. The expression levels of cyclin D1 (CCND1) and related genes were determined using RT-qPCR or/and western blotting analysis. miR-628-5p mimics and CCND1 plasmids were used to overexpress miR-628-5p and CCND1; it was demonstrated that the expression levels of miR-628-5p were significantly downregulated in colorectal cancer tissues and cell lines. miR-628-5p mimic-transfected cells inhibited the proliferation and induced apoptosis of HT-29 cells. CCND1, a downstream effector of miR-628-5p, promoted the proliferation and suppressed apoptosis of HT-29 cells, and the effects were reversed by miR-628-5p mimics. In conclusion, the present study suggested that colorectal cancer progression may be regulated through the miR-628-5p/CCND1 axis, and miR-628-5p could be used as a potential diagnostic and prognostic biomarker for colorectal cancer.
Collapse
Affiliation(s)
- Fei Guo
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075061, P.R. China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075061, P.R. China
| |
Collapse
|
24
|
Wang Y, Mu L, Huang M. MicroRNA‑195 suppresses rectal cancer growth and metastasis via regulation of the PI3K/AKT signaling pathway. Mol Med Rep 2019; 20:4449-4458. [PMID: 31702045 PMCID: PMC6797947 DOI: 10.3892/mmr.2019.10717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in the progression of cancer, however, only limited data on miRNAs in rectal cancer are available. The aim of the present study was to investigate whether miR‑195 could inhibit the progression of rectal cancer. The miR‑195 mimic was transfected into 2 types of human rectal cancer cells (SW837 and SW1463). Cell viability and apoptosis were analyzed by Cell Counting Kit‑8 (CCK‑8) assay and flow cytometry, and cell migration and invasion were assessed by scratch test and Transwell assay. The results revealed that insulin‑like growth factor 1 (IGF1) was predicted as a potential target of miR‑195 by Targetscan7.2, and the result was verified by dual‑luciferase reporter assay. The co‑transfection of IGF1 was performed to confirm the underlying mechanism of tumor suppressor of miR‑195 in rectal cancer. The activation of PI3K/AKT signaling was determined by western blotting. The levels of miR‑195 in SW837 and SW1463 cells were revealed to be lower than in human rectal mucosa epithelial cells. After the transfection with miR‑195, the cell viability was decreased, while the apoptosis was significantly increased (SW837: 5.21% vs. 20.96%; SW1463: 4.19% vs. 25.22%). Moreover, cell migration and invasion were significantly inhibited in the mimic group. miR‑195 specifically targeted IGF1, however, the co‑transfection of IGF1 could partially reverse the inhibitory effects of miR‑195 on rectal cancer cells. It was also determined that the phosphorylation of PI3K and AKT were significantly inhibited in the mimic group. The tumor suppressive ability of miR‑195 in rectal cancer cell proliferation and metastasis was mediated by blocking IGF1 expression and inhibiting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Linsong Mu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Miaoling Huang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
25
|
Li Y, Zhuo ZJ, Zhou H, Liu J, Xiao Z, Xiao Y, He J, Liu Z. miR-34b/c rs4938723 T>C Decreases Neuroblastoma Risk: A Replication Study in the Hunan Children. DISEASE MARKERS 2019; 2019:6514608. [PMID: 31583029 PMCID: PMC6754906 DOI: 10.1155/2019/6514608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is the most common seen solid neural tumor in children less than age one. As mutation in the miR-34b/c gene is observed in several types of human malignancies, there likely to be similar events that contribute to the pathogenesis of neuroblastoma. We hypothesize that polymorphism in the miR-34b/c gene might predispose to neuroblastoma. Here, we conducted this replication study by genotyping rs4938723 T>C from miR-34b/c in Hunan children (162 subjects with neuroblastoma and 270 control subjects) and examined its effect on the risk of neuroblastoma. We determined such association using logistic regression, adjusted for age and gender. Relative to those with TT genotype, subjects with C allele had reduced neuroblastoma risk (TC vs. TT: adjusted OR = 0.46, 95%CI = 0.30-0.71; additive model: adjusted OR = 0.64, 95%CI = 0.47-0.88; TC/CC vs. TT: adjusted OR = 0.49, 95%CI = 0.33-0.73). Stratified analysis revealed that rs4938723 TC/CC carriers were less likely to develop neuroblastoma for patients in the subgroups of age ≤ 18 months, age > 18 months, females, males, tumors in retroperitoneal, tumors in other sites, and clinical stages II, III, IV, and III+IV. Our findings verified miR-34b/c rs4938723 C variant allele as a protective factor for the risk of neuroblastoma. Further investigation of how miR-34b/c rs4938723 T>C might modify neuroblastoma risk is warranted.
Collapse
Affiliation(s)
- Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, 410004 Hunan, China
| | - Zhen-Jian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Haiyan Zhou
- Department of Pathology, Xiang-ya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Zhenghui Xiao
- Emergency Center of Hunan Children's Hospital, Changsha, 410004 Hunan, China
| | - Yaling Xiao
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, 410004 Hunan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623 Guangdong, China
| | - Zan Liu
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, 410004 Hunan, China
| |
Collapse
|
26
|
Kotarac N, Dobrijevic Z, Matijasevic S, Savic-Pavicevic D, Brajuskovic G. Analysis of association of potentially functional genetic variants within genes encoding miR-34b/c, miR-378 and miR-143/145 with prostate cancer in Serbian population. EXCLI JOURNAL 2019; 18:515-529. [PMID: 31423132 PMCID: PMC6694712 DOI: 10.17179/excli2019-1257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
MiRNA-associated genetic variants occurring in regulatory regions can affect the efficiency of transcription and potentially modify pri-miRNA or pre-miRNA processing. Since miRNA-based mechanisms are shown to be involved in the pathogenesis of prostate cancer (PCa), the aim of the present study was to evaluate the effect of rs4938723, rs1076064 and rs4705343 occurring in regulatory regions of miR-34b/c, miR-143/145 and miR-378, respectively, on PCa risk and progression in Serbian population. We examined a total of 1060 subjects, of which 350 were patients with PCa, 354 were patients with benign prostatic hyperplasia (BPH), while 356 healthy volunteers were included in the control group. Genotyping of rs4938723, rs1076064 and rs4705343 was performed by using Taqman® SNP Genotyping Assays. Allele C of rs4705342 was found to increase the risk of PCa (P=0.031 for codominant model, P=0.0088 for recessive model). Rs1076064 minor allele G was found to associate with serum PSA score, as well as with PCa T category and disease aggressiveness. For rs4938723 minor allele C was shown to be associated with the lower PCa T category (Pdom=0.0046; OR=0.36, 95 % CI 0.17-0.76) in T2 vs. T1 comparison. Rs4705342 was identified as PCa susceptibility variant in Serbian population, while for rs1076064 and rs4938723 association with PCa progression parameters was found.
Collapse
Affiliation(s)
- Nevena Kotarac
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Zorana Dobrijevic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Suzana Matijasevic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dusanka Savic-Pavicevic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Goran Brajuskovic
- Centre for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Jiang Y, Zhong J, Zhou Z, Qiu M, Zhou X, Liu Y, Huo R, Liang X, Chen Z, Lin Q, Yu X, Yu H. Association between polymorphisms in MicroRNA target sites of RAD51D genes and risk of hepatocellular carcinoma. Cancer Med 2019; 8:2545-2552. [PMID: 30883040 PMCID: PMC6536933 DOI: 10.1002/cam4.2068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 01/27/2023] Open
Abstract
RAD51D (RAD51L3) is a member of the RAD51 gene family which plays important roles in maintaining genomic stability and preventing DNA damage. This study is aimed to investigate the associations between RAD51D polymorphisms and the hereditary susceptibility of hepatocellular carcinoma (HCC). In this study we conducted a hospital-based case-control study including 805 cases (HCC patients) and 846 controls (nontumor patients) in Guangxi, China. A total of two Single-nucleotide polymorphisms (SNPs) rs12947947 and rs28363292 of RAD51D were selected and genotyped. Although we did not find two SNPs individually that had any significant main effect on risk of HCC, We found that the combined genotypes with 1-2 risk genotypes were associated with significantly increased overall risk of HCC (OR = 1.462, 95% CI = 1.050-2.036). According to the results of further stratification analysis, GT/GG genotype of rs28363292 increased HCC risk in zhuang people (OR = 3.913, 95% CI = 1.873-8.175) and nonhepatitis B virus (HBV) infection population (OR = 1.774, 95% CI = 1.060-2.969), the combined 1-2 risk genotypes increased the risk of HCC in zhuang people (OR = 2.817, 95% CI = 1.532-5.182) and non-HBV infected population (OR = 1.567, 95% CI = 1.042-2.358). Our results suggest that rs12947947 and rs28363292 polymorphisms may jointly contribute to the risk of HCC. Further large studies and functional studies are required to validate our findings.
Collapse
Affiliation(s)
- Yan‐Ji Jiang
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
- School of Public HealthGuangxi Medical UniversityGuangxiChina
| | - Jian‐Hong Zhong
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
| | - Zi‐Han Zhou
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
- School of Public HealthGuangxi Medical UniversityGuangxiChina
| | - Mo‐Qin Qiu
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
- School of Public HealthGuangxi Medical UniversityGuangxiChina
| | - Xian‐Guo Zhou
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
| | - Ying‐Chun Liu
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
| | - Rong‐Rui Huo
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
| | - Xiu‐Mei Liang
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
| | - Zhu Chen
- Affiliated Hospital of Guilin Medical UniversityGuangxiChina
| | - Qiu‐Ling Lin
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
- School of Public HealthGuangxi Medical UniversityGuangxiChina
| | - Xiang‐Yuan Yu
- School of Public HealthGuilin Medical UniversityGuangxiChina
| | - Hong‐Ping Yu
- Affiliated Tumor Hospital of Guangxi Medical UniversityGuangxiChina
- School of Public HealthGuangxi Medical UniversityGuangxiChina
| |
Collapse
|
28
|
Xue Y, Yang X, Hu S, Kang M, Chen J, Fang Y. A genetic variant in miR-100 is a protective factor of childhood acute lymphoblastic leukemia. Cancer Med 2019; 8:2553-2560. [PMID: 30848099 PMCID: PMC6536980 DOI: 10.1002/cam4.2082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the past decade, miR-100, miR-146a, and miR-210 were reported to be dysregulated in childhood acute lymphoblastic leukemia (ALL). However, effects of genetic variants in these three microRNAs have not been investigated in Chinese population. METHODS In this study, we conducted a case-control study to evaluate the relationship between genetic variants in miR-100, miR-146a, and miR-210 and the risk of childhood ALL in Chinese population. Subsequently, plasma expression level of miR-100 was also detected. RESULT We found that subjects carrying mutant homozygous TT genotype of miR-100 rs543412 had a statistically significantly decreased risk of childhood ALL (adjusted odds ratio [OR] = 0.73, 95% confidence interval [CI] = 0.55-0.97, P = 0.029). This protective effect was also observed among subjects whose parents were ever drinkers (adjusted OR = 0.53, 95% CI = 0.29-0.94), or whose living house were ever painted (adjusted OR = 0.57, 95% CI = 0.34-0.94). Besides, rs543412 variant homozygous TT had a significantly protective role in patients with childhood B-ALL. Finally, we found that expression level of miR-100 in plasma of childhood ALL cases was significantly higher than that of noncancer controls. CONCLUSION Our study suggested that there was significant association between the polymorphisms in miR-100 (rs543412) and decreased susceptibility to childhood ALL.
Collapse
Affiliation(s)
- Yao Xue
- Department of Hematology and OncologyChildren’s Hospital of Nanjing Medical UniversityNanjingChina
- Key Laboratory of HematologyNanjing Medical UniversityNanjingChina
| | - Xiaoyun Yang
- Department of Hematology and OncologyChildren’s Hospital of Nanjing Medical UniversityNanjingChina
- Key Laboratory of HematologyNanjing Medical UniversityNanjingChina
| | - Shaoyan Hu
- Department of Hematology and OncologySoochow University Affiliated Children’s HospitalSuzhouChina
| | - Meiyun Kang
- Department of Hematology and OncologyChildren’s Hospital of Nanjing Medical UniversityNanjingChina
- Key Laboratory of HematologyNanjing Medical UniversityNanjingChina
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Department of Hematology and Oncology, Shanghai Children’s Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongjun Fang
- Department of Hematology and OncologyChildren’s Hospital of Nanjing Medical UniversityNanjingChina
- Key Laboratory of HematologyNanjing Medical UniversityNanjingChina
| |
Collapse
|
29
|
Malhotra P, Read GH, Weidhaas JB. Breast Cancer and miR-SNPs: The Importance of miR Germ-Line Genetics. Noncoding RNA 2019; 5:ncrna5010027. [PMID: 30897768 PMCID: PMC6468861 DOI: 10.3390/ncrna5010027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies in cancer diagnostics have identified microRNAs (miRNAs) as promising cancer biomarkers. Single nucleotide polymorphisms (SNPs) in miRNA binding sites, seed regions, and coding sequences can help predict breast cancer risk, aggressiveness, response to stimuli, and prognosis. This review also documents significant known miR-SNPs in miRNA biogenesis genes and their effects on gene regulation in breast cancer, taking into account the genetic background and ethnicity of the sampled populations. When applicable, miR-SNPs are evaluated in the context of other patient factors, including mutations, hormonal status, and demographics. Given the power of miR-SNPs to predict patient cancer risk, prognosis, and outcomes, further study of miR-SNPs is warranted to improve efforts towards personalized medicine.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90001, USA.
| | - Graham H Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90001, USA.
| | - Joanne B Weidhaas
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA 90001, USA.
| |
Collapse
|
30
|
Lv ZD, Xin HN, Yang ZC, Wang WJ, Dong JJ, Jin LY, Li FN. miR-135b promotes proliferation and metastasis by targeting APC in triple-negative breast cancer. J Cell Physiol 2019; 234:10819-10826. [PMID: 30624764 DOI: 10.1002/jcp.27906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. The aim of our study was to investigate the functional role of microRNA-135b (miR-135b) in TNBC. A real-time polymerase chain reaction assay was used to quantify miR-135b expression levels in 90 paired TNBC tissue and adjacent normal tissue samples. Wound-healing and transwell assays were performed to evaluate the effects of miR-135b expression on the migration and invasion of TNBC cells. Luciferase reporter and western blot analyses were used to verify whether the mRNA encoding APC is a major target of miR-135b. In the current study, we found that miR-135b was highly expressed in TNBC tissue and cells, and the expression levels were correlated with lymph node status and TNM stage. In TNBC cells, the ectopic expression of miR-135b promoted cell proliferation and invasion in vitro. In addition, our study proved that the overexpression of miR-135b significantly suppressed APC expression by targeting the 3'-untranslated region of APC, whereas enhanced APC expression could partially abrogate the miR-135b-mediated promotion of carcinogenic traits in TNBC cells. Taken together, our study demonstrated that miR-135b expression promoted the proliferation and invasion of TNBC by downregulating APC expression, indicating that miR-135b may serve as a promising target for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Zhi-Dong Lv
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Hai-Na Xin
- Department of General Surgery, Maternity and Child Care Hospital of Weifang, Weifang, People's Republic of China
| | - Zhao-Chuan Yang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Wen-Juan Wang
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jiao-Jiao Dong
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Li-Ying Jin
- Cerebrovascular Disease Research Institute, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Fu-Nian Li
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
31
|
Lin H, Zhou AJ, Zhang JY, Liu SF, Gu JX. MiR-324-5p reduces viability and induces apoptosis in gastric cancer cells through modulating TSPAN8. J Pharm Pharmacol 2018; 70:1513-1520. [PMID: 30159900 DOI: 10.1111/jphp.12995] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The purpose of this study was to further clarify the role and underlying mechanism of miR-324-5p in gastric cancer. METHODS The expressions of miR-324-5p and TSPAN8 as determined by qRT-PCR or Western blot were compared between the gastric cancer tissues and normal tissues. Human gastric cancer cell line SGC-7901 was cultured and transfected with miR-324-5p mimic/inhibitor or pcDNA-TSPAN8. The cell survival was assessed by the cell viability and apoptosis. Luciferase reporter gene assays were performed to explore the interaction between miR-324-5p and TSPAN8 in SGC-7901 cells. KEY FINDINGS MiR-324-5p was decreased in human gastric carcinoma tissues (n = 33), but TSPAN8 protein expression was increased in the gastric carcinoma tissues (n = 33). Moreover, miR-324-5p inhibited the viability and induced the apoptosis of gastric cancer cells in vitro. TSPAN8 is a functional target of miR-324-5p in gastric cancer. MiR-324-5p was further confirmed to reduce gastric cancer cell viability and induce apoptosis via downregulating TSPAN8 in SGC-7901 cells in vitro. Additionally, miR-324-5p overexpression markedly inhibited the tumorigenesis of gastric cancer cells in vivo, as shown by the smaller tumour volume compared with the control. CONCLUSIONS This study suggested a novel, probable mechanism of miR-324-5p in gastric cancer context and revealed that miR-324-5p inhibited gastric cancer cell survival by targeting TSPAN8.
Collapse
Affiliation(s)
- Hai Lin
- Department of Gastroenterology, Linyi Central Hospital, Linyi, Shandong, China
| | - Ai-Jun Zhou
- Department of Digestive Medicine, Lianshui County People's Hospital, Huai'an, Jiangsu, China
| | - Jing-Yu Zhang
- The Internal Medicine Department, Jiangpu District Health Center of Huai'an, Huai'an, Jiangsu, China
| | - Shu-Fang Liu
- Laboratory Department, Linyi Central Hospital, Linyi, Shandong, China
| | - Jian-Xiang Gu
- Department of Digestive Medicine, The Second People's Hospital of Huai'an, The Huai'an Affiliated Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
32
|
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, Yu W, Wang Y, Li P, Wang J. Critical role of FOXO3a in carcinogenesis. Mol Cancer 2018; 17:104. [PMID: 30045773 PMCID: PMC6060507 DOI: 10.1186/s12943-018-0856-3] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
FOXO3a is a member of the FOXO subfamily of forkhead transcription factors that mediate a variety of cellular processes including apoptosis, proliferation, cell cycle progression, DNA damage and tumorigenesis. It also responds to several cellular stresses such as UV irradiation and oxidative stress. The function of FOXO3a is regulated by a complex network of processes, including post-transcriptional suppression by microRNAs (miRNAs), post-translational modifications (PTMs) and protein-protein interactions. FOXO3a is widely implicated in a variety of diseases, particularly in malignancy of breast, liver, colon, prostate, bladder, and nasopharyngeal cancers. Emerging evidences indicate that FOXO3a acts as a tumor suppressor in cancer. FOXO3a is frequently inactivated in cancer cell lines by mutation of the FOXO3a gene or cytoplasmic sequestration of FOXO3a protein. And its inactivation is associated with the initiation and progression of cancer. In experimental studies, overexpression of FOXO3a inhibits the proliferation, tumorigenic potential, and invasiveness of cancer cells, while silencing of FOXO3a results in marked attenuation in protection against tumorigenesis. The role of FOXO3a in both normal physiology as well as in cancer development have presented a great challenge to formulating an effective therapeutic strategy for cancer. In this review, we summarize the recent findings and overview of the current understanding of the influence of FOXO3a in cancer development and progression.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Xiang Ao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Wei Ding
- Department of comprehensive internal medicine, Affiliated Hospital, Qingdao University, Qingdao, 266003 China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Wei Wu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Wanpeng Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Yifei Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| | - Jianxun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021 China
| |
Collapse
|
33
|
King BL, Rosenstein MC, Smith AM, Dykeman CA, Smith GA, Yin VP. RegenDbase: a comparative database of noncoding RNA regulation of tissue regeneration circuits across multiple taxa. NPJ Regen Med 2018; 3:10. [PMID: 29872545 PMCID: PMC5973935 DOI: 10.1038/s41536-018-0049-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/17/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
Regeneration is an endogenous process of tissue repair that culminates in complete restoration of tissue and organ function. While regenerative capacity in mammals is limited to select tissues, lower vertebrates like zebrafish and salamanders are endowed with the capacity to regenerate entire limbs and most adult tissues, including heart muscle. Numerous profiling studies have been conducted using these research models in an effort to identify the genetic circuits that accompany tissue regeneration. Most of these studies, however, are confined to an individual injury model and/or research organism and focused primarily on protein encoding transcripts. Here we describe RegenDbase, a new database with the functionality to compare and contrast gene regulatory pathways within and across tissues and research models. RegenDbase combines pipelines that integrate analysis of noncoding RNAs in combination with protein encoding transcripts. We created RegenDbase with a newly generated comprehensive dataset for adult zebrafish heart regeneration combined with existing microarray and RNA-sequencing studies on multiple injured tissues. In this current release, we detail microRNA-mRNA regulatory circuits and the biological processes these interactions control during the early stages of heart regeneration. Moreover, we identify known and putative novel lncRNAs and identify their potential target genes based on proximity searches. We postulate that these candidate factors underscore robust regenerative capacity in lower vertebrates. RegenDbase provides a systems-level analysis of tissue regeneration genetic circuits across injury and animal models and addresses the growing need to understand how noncoding RNAs influence these changes in gene expression.
Collapse
Affiliation(s)
- Benjamin L. King
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| | - Michael C. Rosenstein
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Present Address: RockStep Solutions, Portland, ME 04101 USA
| | - Ashley M. Smith
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
| | - Christina A. Dykeman
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
| | - Grace A. Smith
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469 USA
- University of Maine Honors College, University of Maine, Orono, ME 04469 USA
| | - Viravuth P. Yin
- Kathryn Davis Center for Regenerative Biology and Medicine, Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672 USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469 USA
| |
Collapse
|
34
|
Shuai F, Wang B, Dong S. MicroRNA-204 Inhibits the Growth and Motility of Colorectal Cancer Cells by Downregulation of CXCL8. Oncol Res 2018; 26:1295-1305. [PMID: 29402343 PMCID: PMC7844723 DOI: 10.3727/096504018x15172747209020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Among all of the miRNAs, miR-204 has gained considerable attention in the field of cancer research. This study aimed to reveal the detailed functions and the underlying mechanism of miR-204 in colorectal cancer (CRC) cells. The expressions of miR-204 in CRC tumor tissues and cell lines were monitored. Expressions of miR-204 and CXCL8 in Caco-2 and HT-29 cells were altered by transfection, and then cell viability, apoptosis, migration, invasion, EMT-related protein expression, and PI3K/AKT/mTOR pathway protein expression were assessed. We found that miR-204 was expressed at low levels in CRC tumor tissues and cell lines when compared to their normal controls. miR-204 overexpression reduced the viability, migration, and invasion of Caco-2 and HT-29 cells while significantly inducing apoptosis. miR-204 overexpression upregulated E-cadherin expression and downregulated N-cadherin and vimentin expressions. CXCL8 was a target of miR-204, and miR-204 suppression could not increase cell viability, migration, invasion, and EMT procedure when CXCL8 was silenced. Moreover, miR-204 overexpression decreased the phosphorylated levels of PI3K, AKT, and mTOR. The increased phosphorylations of PI3K, AKT, and mTOR, and the upregulation of CXCL8 induced by miR-204 suppression were all abolished by the addition of LY294002 and AZD8055 (inhibitors of PI3K/AKT and mTOR, respectively). To conclude, we demonstrated a tumor-suppressive miRNA in CRC cell lines, miR-204, which is poorly expressed in CRC tissues and cell lines. miR-204 exerted antigrowth, antimigration, anti-invasion, and anti-EMT activities, which might be via deactivating the PI3K/AKT/mTOR pathway and repressing CXCL8 expression.
Collapse
Affiliation(s)
- Feng Shuai
- Department of Gastroenterology, East Medical District of Linyi People's Hospital, Linyi, Shandong, P.R. China
| | - Bo Wang
- Department of Pediatrics, Chinese Medicine Hospital in Linyi City, Linyi, Shandong, P.R. China
| | - Shuxiao Dong
- Department of Gastrointestinal Surgery, Linyi People's Hospital, Linyi, Shandong, P.R. China
| |
Collapse
|
35
|
Zhang Z, Che X, Yang N, Bai Z, Wu Y, Zhao L, Pei H. miR-135b-5p Promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomed Pharmacother 2017; 96:1341-1348. [PMID: 29196101 DOI: 10.1016/j.biopha.2017.11.074] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022] Open
Abstract
The exact mechanisms of metastasis for pancreatic cancer remain to be uncovered. This study aimed to elucidate the potential functional mechanism of miR-135b-5p in migration, invasion and epithelial-to-mesenchymal transition (EMT) of pancreatic cancer cells. By real-time PCR and analysis of GEO database, we determined the up-regulated expression of miR-135b-5p in pancreatic cancer tissues and cell lines. Clinically, highly expressed miR-135b-5p was closely related to advanced TNM stage, more lymph node metastasis, more distant metastasis and worse overall survival (OS) and disease-free survival (DFS). Functionally, Transwell assays indicated that miR-135b-5p was a promoter for migration and invasion of pancreatic cancer cells. Additionally, immunohistochemistry staining and Western blot showed that highly expressed miR-135b-5p accelerated EMT process of pancreatic cancer cells. Furthermore, a series of experiments and rescue experiments revealed that Nuclear Receptor Subfamily 3 Group C Member 2 (NR3C2) was the target of miR-135b-5p in pancreatic cancer cells, mediating the promotion effects of miR-135b-5p on the tumor cells migration, invasion and EMT. In conclusion, miR-135b-5p, maybe a novel therapeutic target for pancreatic cancer, promoted migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2.
Collapse
Affiliation(s)
- Zhengliang Zhang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiangming Che
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ni Yang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhenghai Bai
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuan Wu
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Li Zhao
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Honghong Pei
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|