1
|
Chen Z, Zhang R, Wang T, Peng Y, Zhou Q, Cao P, Xiao X, Li F, Wei Z, Wang Y, Xu D, Qiao B, Cheng S, Wu Q, Niu L. Nanosheet-shaped WS 2/ICG nanocomposite for photodynamic/photothermal synergistic bacterial clearance and cutaneous regeneration on infectious wounds. BIOMATERIALS ADVANCES 2025; 169:214192. [PMID: 39854997 DOI: 10.1016/j.bioadv.2025.214192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy. In this study, tungsten disulfide (WS₂) nanosheet with a high surface area was used to load ICG, creating a multifunctional nanocomposite, WS2/ICG, aimed at treating bacteria-infected wounds. The two-dimensional surface structure of WS₂ provides dispersible binding sites for ICG, and the synthesized nanocomposite exhibits excellent stability. Under near-infrared (NIR) laser excitation, the generated heat further synergistically enhances the yield of singlet oxygen. Additionally, the WS₂/ICG nanoplatform synergistically combines photothermal effect with photodynamic effect, achieving a "1 + 1 > 2" enhancement. Upon NIR laser excitation, the nanocomposite disrupts bacterial cell membranes through localized heating and ROS accumulation, leading to energy metabolism system disruption and subsequent bacterial lysis and death. The findings demonstrate WS₂/ICG's outstanding antibacterial properties and biocompatibility, effectively treating skin infections and promoting tissue regeneration, providing a simple and promising solution for bacteria-infected wounds.
Collapse
Affiliation(s)
- Zhiling Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Rui Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China
| | - Tao Wang
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China; School of Public Health, Hainan Medical University, Haikou 571199, China
| | - Yanan Peng
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China
| | - Qionglin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Peipei Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Xinxin Xiao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Fengling Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Ziming Wei
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China
| | - Yuanyuan Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Dan Xu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Bin Qiao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Shaowen Cheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China; Department of Wound Repair, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China.
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
2
|
Paduvari R, Arekal R, Somashekara DM. Uncovering the mysteries of bacterial cytochrome c oxidases: A review on structural and molecular insights for potential application. Int J Biol Macromol 2025; 309:142773. [PMID: 40180098 DOI: 10.1016/j.ijbiomac.2025.142773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Cytochrome c oxidases are hemoproteins with a heme prosthetic group bound to the apoprotein. These complex enzymes are found embedded in the plasma membrane of the bacterial cells and play a vital role in the transfer of electrons from the electron transport chain to the oxygen molecule that acts as a terminal electron acceptor and gets reduced to water molecules. It helps establish a proton gradient across the plasma membrane by pumping hydrogen ions into the periplasmic space, generating adenosine triphosphate through oxidative phosphorylation. Bacteria have various cytochrome c oxidases based on the ecological niche that are differentially expressed with varying environmental conditions. Cytochrome c oxidases are made of different subunits with a distinct heme‑copper binuclear active site that catalyzes oxygen molecule reduction. Since these complex enzymes play a vital role in cellular respiration, the structure of cytochrome c oxidases remains conserved in many of the bacteria. Therefore, a detailed analysis of the structure of enzyme subunits, amino acid composition, and catalytic activity helps to design small molecules as drugs of clinical relevance for bacteria. The present review focuses on the structural details and molecular mechanisms such as proton pumping, electron transfer and the catalytic activity of oxygen reduction.
Collapse
Affiliation(s)
- Raghavendra Paduvari
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Roopashri Arekal
- Department of Microbiology, Biotechnology and Food Technology, Bangalore University, Bengaluru 560056, Karnataka, India
| | - Divyashree Mysore Somashekara
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India..
| |
Collapse
|
3
|
Zharova TV, Grivennikova VG. F o·F 1 ATP-synthase/ATPase of Paracoccus denitrificans: Mystery of Unidirectional Catalysis. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S86-S104. [PMID: 40164154 DOI: 10.1134/s000629792460399x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 04/02/2025]
Abstract
Fo·F1 ATP synthases/ATPases (Fo·F1) catalyze ATP synthesis by consuming energy of electrochemical potential of hydrogen ions (pmf), or ATP hydrolysis resulting in the pmf formation. It is generally accepted to consider Fo·F1 as a reversible chemomechanical-electrical molecular machine, however: (i) the mechanism of energy-dependent ATP synthesis is based only on the data on hydrolytic activity of the enzyme, (ii) Fo·F1 from a number of organisms effectively synthesize, but is unable to hydrolyze ATP, which indicates non-observance of the principle of microreversibility and requires development of a new hypotheses concerning the enzyme mechanism. Since 1980, the group of A. D. Vinogradov has been developing a concept according to which the elementary catalysis stages of ATP hydrolysis and ATP synthesis do not coincide, and there are two independently operating forms of Fo·F1 in the coupled membranes - pmf-generating ATPase and pmf-consuming ATP synthase. Fo·F1 of P. denitrificans as a natural model of an irreversibly functioning enzyme is a convenient object for experimental verification of the hypothesis of unidirectional energy conversion. The review considers modern concepts of the molecular mechanisms of regulation of Fo·F1 ATP synthase/ATPase of P. denitrificans and development of the hypothesis of two forms of Fo·F1.
Collapse
Affiliation(s)
- Tatiana V Zharova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vera G Grivennikova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Srivastav S, Biswas A, Anand A. Interplay of niche and respiratory network in shaping bacterial colonization. J Biol Chem 2025; 301:108052. [PMID: 39662826 PMCID: PMC11742581 DOI: 10.1016/j.jbc.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024] Open
Abstract
The human body is an intricate ensemble of prokaryotic and eukaryotic cells, and this coexistence relies on the interplay of many biotic and abiotic factors. The inhabiting microbial population has to maintain its physiological homeostasis under highly dynamic and often hostile host environments. While bacterial colonization primarily relies on the metabolic suitability for the niche, there are reports of active remodeling of niche microenvironments to create favorable habitats, especially in the context of pathogenic settlement. Such physiological plasticity requires a robust metabolic system, often dependent on an adaptable energy metabolism. This review focuses on the respiratory electron transport system and its adaptive consequences within the host environment. We provide an overview of respiratory chain plasticity, which allows pathogenic bacteria to niche-specify, niche-diversify, mitigate inflammatory stress, and outcompete the resident microbiota. We have reviewed existing and emerging knowledge about the role of respiratory chain components responsible for the entry and exit of electrons in influencing the pathogenic outcomes.
Collapse
Affiliation(s)
- Stuti Srivastav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Arpita Biswas
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Amitesh Anand
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
Coluccio A, Lopez Palomera F, Spero MA. Anaerobic bacteria in chronic wounds: Roles in disease, infection and treatment failure. Wound Repair Regen 2024; 32:840-857. [PMID: 39129662 DOI: 10.1111/wrr.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Infection is among the most common factors that impede wound healing, yet standard treatments routinely fail to resolve chronic wound infections. The chronic wound environment is largely hypoxic/anoxic, and wounds are predominantly colonised by facultative and obligate anaerobic bacteria. Oxygen (O2) limitation is an underappreciated driver of microbiota composition and behaviour in chronic wounds. In this perspective article, we examine how anaerobic bacteria and their distinct physiologies support persistent, antibiotic-recalcitrant infections. We describe the anaerobic energy metabolisms bacteria rely on for long-term survival in the wound environment, and why many antibiotics become less effective under hypoxic conditions. We also discuss obligate anaerobes, which are among the most prevalent taxa to colonise chronic wounds, yet their potential roles in influencing the microbial community and wound healing have been overlooked. All of the most common obligate anaerobes found in chronic wounds are opportunistic pathogens. We consider how these organisms persist in the wound environment and interface with host physiology to hinder wound healing processes or promote chronic inflammation. Finally, we apply our understanding of anaerobic physiologies to evaluate current treatment practices and to propose new strategies for treating chronic wound infections.
Collapse
Affiliation(s)
- Alison Coluccio
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | - Melanie A Spero
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
6
|
Janczak M, Vilhjálmsdóttir J, Ädelroth P. Proton transfer in cytochrome bd-I from E. coli involves Asp-105 in CydB. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149489. [PMID: 39009175 DOI: 10.1016/j.bbabio.2024.149489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Cytochrome bds are bacterial terminal oxidases expressed under low oxygen conditions, and they are important for the survival of many pathogens and hence potential drug targets. The largest subunit CydA contains the three redox-active cofactors heme b558, heme b595 and the active site heme d. One suggested proton transfer pathway is found at the interface between the CydA and the other major subunit CydB. Here we have studied the O2 reduction mechanism in E. coli cyt. bd-I using the flow-flash technique and focused on the mechanism, kinetics and pathway for proton transfer. Our results show that the peroxy (P) to ferryl (F) transition, coupled to the oxidation of the low-spin heme b558 is pH dependent, with a maximum rate constant (~104 s-1) that is slowed down at higher pH. We assign this behavior to rate-limitation by internal proton transfer from a titratable residue with pKa ~ 9.7. Proton uptake from solution occurs with the same P➔F rate constant. Site-directed mutagenesis shows significant effects on catalytic turnover in the CydB variants Asp58B➔Asn and Asp105B➔Asn variants consistent with them playing a role in proton transfer. Furthermore, in the Asp105B➔Asn variant, the reactions up to P formation occur essentially as in the wildtype bd-I, but the P➔F transition is specifically inhibited, supporting a direct and specific role for Asp105B in the functional proton transfer pathway in bd-I. We further discuss the possible identity of the high pKa proton donor, and the conservation pattern of the Asp-105B in the cyt. bd superfamily.
Collapse
Affiliation(s)
- M Janczak
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - J Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - P Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
7
|
Gough AM, Parker AC, O'Bryan PJ, Whitehead TR, Roy S, Garcia BL, Hoffman PS, Jeffrey Smith C, Rocha ER. New functions of pirin proteins and a 2-ketoglutarate: Ferredoxin oxidoreductase ortholog in Bacteroides fragilis metabolism and their impact on antimicrobial susceptibility to metronidazole and amixicile. Microbiologyopen 2024; 13:e1429. [PMID: 39109824 PMCID: PMC11304471 DOI: 10.1002/mbo3.1429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The understanding of how central metabolism and fermentation pathways regulate antimicrobial susceptibility in the anaerobic pathogen Bacteroides fragilis is still incomplete. Our study reveals that B. fragilis encodes two iron-dependent, redox-sensitive regulatory pirin protein genes, pir1 and pir2. The mRNA expression of these genes increases when exposed to oxygen and during growth in iron-limiting conditions. These proteins, Pir1 and Pir2, influence the production of short-chain fatty acids and modify the susceptibility to metronidazole and amixicile, a new inhibitor of pyruvate: ferredoxin oxidoreductase in anaerobes. We have demonstrated that Pir1 and Pir2 interact directly with this oxidoreductase, as confirmed by two-hybrid system assays. Furthermore, structural analysis using AlphaFold2 predicts that Pir1 and Pir2 interact stably with several central metabolism enzymes, including the 2-ketoglutarate:ferredoxin oxidoreductases Kor1AB and Kor2CDAEBG. We used a series of metabolic mutants and electron transport chain inhibitors to demonstrate the extensive impact of bacterial metabolism on metronidazole and amixicile susceptibility. We also show that amixicile is an effective antimicrobial against B. fragilis in an experimental model of intra-abdominal infection. Our investigation led to the discovery that the kor2AEBG genes are essential for growth and have dual functions, including the formation of 2-ketoglutarate via the reverse TCA cycle. However, the metabolic activity that bypasses the function of Kor2AEBG following the addition of phospholipids or fatty acids remains undefined. Overall, our study provides new insights into the central metabolism of B. fragilis and its regulation by pirin proteins, which could be exploited for the development of new narrow-spectrum antimicrobials in the future.
Collapse
Affiliation(s)
- Andrea M. Gough
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Anita C. Parker
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | | | | | - Sourav Roy
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Brandon L. Garcia
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Paul S. Hoffman
- Department of Medicine, Division of Infectious Diseases and International HealthUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - C. Jeffrey Smith
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Edson R. Rocha
- Department of Microbiology and ImmunologyBrody School of Medicine at East Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
8
|
Yoon KN, Lee HG, Yeom SJ, Kim SS, Park JH, Song BS, Yi SW, Do YJ, Oh B, Oh SI, Eun JB, Park SH, Lee JH, Kim HB, Lee JH, Hur TY, Kim JK. Lactiplantibacillus argentoratensis AGMB00912 alleviates salmonellosis and modulates gut microbiota in weaned piglets: a pilot study. Sci Rep 2024; 14:15466. [PMID: 38965336 PMCID: PMC11224356 DOI: 10.1038/s41598-024-66092-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
This study aimed to evaluate the efficacy of Lactiplantibacillus argentoratensis AGMB00912 (LA) in reducing Salmonella Typhimurium infection in weaned piglets. The investigation focused on the influence of LA on the gut microbiota composition, growth performance, and Salmonella fecal shedding. The results indicated that LA supplementation significantly improved average daily gain and reduced the prevalence and severity of diarrhea. Fecal analysis revealed reduced Salmonella shedding in the LA-supplemented group. Furthermore, LA notably altered the composition of the gut microbiota, increasing the levels of beneficial Bacillus and decreasing those of harmful Proteobacteria and Spirochaetes. Histopathological examination showed less intestinal damage in LA-treated piglets than in the controls. The study also observed that LA affected metabolic functions related to carbohydrate, amino acid, and fatty acid metabolism, thereby enhancing gut health and resilience against infection. Short-chain fatty acid concentrations in the feces were higher in the LA group, suggesting improved gut microbial activity. LA supplementation enriched the population of beneficial bacteria, including Streptococcus, Clostridium, and Bifidobacterium, while reducing the number of harmful bacteria, such as Escherichia and Campylobacter. These findings indicate the potential of LA as a probiotic alternative for swine nutrition, offering protective effects to the gut microbiota against Salmonella infection.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Han Gyu Lee
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Seo-Joon Yeom
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sang-Su Kim
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Jong-Heum Park
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Beom-Seok Song
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Seung-Won Yi
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Byungkwan Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Sang-Ik Oh
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, 54596, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, 56212, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ju-Hoon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea.
| | - Jae-Kyung Kim
- Research Division for Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
9
|
Wang RZ, Lonergan ZR, Wilbert SA, Eiler JM, Newman DK. Widespread detoxifying NO reductases impart a distinct isotopic fingerprint on N 2O under anoxia. Proc Natl Acad Sci U S A 2024; 121:e2319960121. [PMID: 38865268 PMCID: PMC11194513 DOI: 10.1073/pnas.2319960121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, can be generated by multiple biological and abiotic processes in diverse contexts. Accurately tracking the dominant sources of N2O has the potential to improve our understanding of N2O fluxes from soils as well as inform the diagnosis of human infections. Isotopic "Site Preference" (SP) values have been used toward this end, as bacterial and fungal nitric oxide reductases (NORs) produce N2O with different isotopic fingerprints, spanning a large range. Here, we show that flavohemoglobin (Fhp), a hitherto biogeochemically neglected yet widely distributed detoxifying bacterial NO reductase, imparts a distinct SP value onto N2O under anoxic conditions (~+10‰) that correlates with typical environmental N2O SP measurements. Using Pseudomonas aeruginosa as a model organism, we generated strains that only contained Fhp or the dissimilatory NOR, finding that in vivo N2O SP values imparted by these enzymes differ by over 10‰. Depending on the cellular physiological state, the ratio of Fhp:NOR varies significantly in wild-type cells and controls the net N2O SP biosignature: When cells grow anaerobically under denitrifying conditions, NOR dominates; when cells experience rapid, increased nitric oxide concentrations under anoxic conditions but are not growing, Fhp dominates. Other bacteria that only make Fhp generate similar N2O SP biosignatures to those measured from our P. aeruginosa Fhp-only strain. Fhp homologs in sequenced bacterial genomes currently exceed NOR homologs by nearly a factor of four. Accordingly, we suggest a different framework to guide the attribution of N2O biological sources in nature and disease.
Collapse
Affiliation(s)
- Renée Z. Wang
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA91101
| | | | - Steven A. Wilbert
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA91101
| | - John M. Eiler
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA91101
| | - Dianne K. Newman
- Division of Geological and Planetary Sciences, Caltech, Pasadena, CA91101
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA91101
| |
Collapse
|
10
|
Moon CW, Porges E, Taylor SC, Bacon J. A Microtiter Plate Assay at Acidic pH to Identify Potentiators that Enhance Pyrazinamide Activity Against Mycobacterium tuberculosis. Methods Mol Biol 2024; 2833:65-77. [PMID: 38949702 DOI: 10.1007/978-1-0716-3981-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pyrazinamide (PZA) is a key component of chemotherapy for the treatment of drug-susceptible tuberculosis (TB) and is likely to continue to be included in new drug combinations. Potentiation of PZA could be used to reduce the emergence of resistance, shorten treatment times, and lead to a reduction in the quantity of PZA consumed by patients, thereby reducing the toxic effects. Acidified medium is required for the activity of PZA against Mycobacterium tuberculosis. In vitro assessments of pyrazinamide activity are often avoided because of the lack of standardization, which has led to a lack of effective in vitro tools for assessing and/or enhancing PZA activity.We have developed and optimized a novel, robust, and reproducible, microtiter plate assay, that centers around acidity levels that are low enough for PZA activity. The assay can be applied to the evaluation of novel compounds for the identification of potentiators that enhance PZA activity. In this assay, potentiation of PZA is demonstrated to be statistically significant with the addition of rifampicin (RIF), which can, therefore, be used as a positive control. Conversely, norfloxacin demonstrates no potentiating activity with PZA and can be used as a negative control. The method, and the associated considerations, described here, can be adapted in the search for potentiators of other antimicrobials.
Collapse
Affiliation(s)
| | - Eleanor Porges
- Discovery Group, UK Health Security Agency, Porton Down, Salisbury, UK
| | | | - Joanna Bacon
- Discovery Group, UK Health Security Agency, Porton Down, Salisbury, UK.
| |
Collapse
|
11
|
Wang RZ, Lonergan ZR, Wilbert SA, Eiler JM, Newman DK. Widespread detoxifying NO reductases impart a distinct isotopic fingerprint on N 2O under anoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562248. [PMID: 37873075 PMCID: PMC10592819 DOI: 10.1101/2023.10.13.562248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, can be generated by compositionally complex microbial populations in diverse contexts. Accurately tracking the dominant biological sources of N2O has the potential to improve our understanding of N2O fluxes from soils as well as inform the diagnosis of human infections. Isotopic "Site Preference" (SP) values have been used towards this end, as bacterial and fungal nitric oxide reductases produce N2O with different isotopic fingerprints. Here we show that flavohemoglobin, a hitherto biogeochemically neglected yet widely distributed detoxifying bacterial NO reductase, imparts a distinct SP value onto N2O under anoxic conditions that correlates with typical environmental N2O SP measurements. We suggest a new framework to guide the attribution of N2O biological sources in nature and disease.
Collapse
Affiliation(s)
- Renée Z. Wang
- Division of Geological and Planetary Sciences, Caltech; Pasadena, 91101, USA
| | - Zachery R. Lonergan
- Division of Biology and Biological Engineering, Caltech; Pasadena, 91101, USA
| | - Steven A. Wilbert
- Division of Biology and Biological Engineering, Caltech; Pasadena, 91101, USA
- Current Address: Department of Environmental Health and Engineering, Johns Hopkins; Baltimore, 21218, USA
| | - John M. Eiler
- Division of Geological and Planetary Sciences, Caltech; Pasadena, 91101, USA
| | - Dianne K. Newman
- Division of Geological and Planetary Sciences, Caltech; Pasadena, 91101, USA
- Division of Biology and Biological Engineering, Caltech; Pasadena, 91101, USA
| |
Collapse
|
12
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
13
|
Baruzzo G, Serafini A, Finotello F, Sanavia T, Cioetto-Mazzabò L, Boldrin F, Lavezzo E, Barzon L, Toppo S, Provvedi R, Manganelli R, Di Camillo B. Role of the Extracytoplasmic Function Sigma Factor SigE in the Stringent Response of Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0294422. [PMID: 36946740 PMCID: PMC10100808 DOI: 10.1128/spectrum.02944-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023] Open
Abstract
Bacteria respond to nutrient starvation implementing the stringent response, a stress signaling system resulting in metabolic remodeling leading to decreased growth rate and energy requirements. A well-characterized model of stringent response in Mycobacterium tuberculosis is the one induced by growth in low phosphate. The extracytoplasmic function (ECF) sigma factor SigE was previously suggested as having a key role in the activation of stringent response. In this study, we challenge this hypothesis by analyzing the temporal dynamics of the transcriptional response of a sigE mutant and its wild-type parental strain to low phosphate using RNA sequencing. We found that both strains responded to low phosphate with a typical stringent response trait, including the downregulation of genes encoding ribosomal proteins and RNA polymerase. We also observed transcriptional changes that support the occurring of an energetics imbalance, compensated by a reduced activity of the electron transport chain, decreased export of protons, and a remodeling of central metabolism. The most striking difference between the two strains was the induction in the sigE mutant of several stress-related genes, in particular, the genes encoding the ECF sigma factor SigH and the transcriptional regulator WhiB6. Since both proteins respond to redox unbalances, their induction suggests that the sigE mutant is not able to maintain redox homeostasis in response to the energetics imbalance induced by low phosphate. In conclusion, our data suggest that SigE is not directly involved in initiating stringent response but in protecting the cell from stress consequent to the low phosphate exposure and activation of stringent response. IMPORTANCE Mycobacterium tuberculosis can enter a dormant state enabling it to establish latent infections and to become tolerant to antibacterial drugs. Dormant bacteria's physiology and the mechanism(s) used by bacteria to enter dormancy during infection are still unknown due to the lack of reliable animal models. However, several in vitro models, mimicking conditions encountered during infection, can reproduce different aspects of dormancy (growth arrest, metabolic slowdown, drug tolerance). The stringent response, a stress response program enabling bacteria to cope with nutrient starvation, is one of them. In this study, we provide evidence suggesting that the sigma factor SigE is not directly involved in the activation of stringent response as previously hypothesized, but it is important to help the bacteria to handle the metabolic stress related to the adaptation to low phosphate and activation of stringent response, thus giving an important contribution to our understanding of the mechanism behind stringent response development.
Collapse
Affiliation(s)
- Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | | | - Tiziana Sanavia
- Department of Information Engineering, University of Padova, Padua, Italy
| | | | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | | | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Padua, Italy
| |
Collapse
|
14
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
15
|
Zhu X, Hong A, Sun X, Wang W, He G, Luo H, Wu Z, Xu Q, Hu Z, Wu X, Huang D, Li L, Zhao X, Deng X. Nigericin is effective against multidrug resistant gram-positive bacteria, persisters, and biofilms. Front Cell Infect Microbiol 2022; 12:1055929. [PMID: 36605124 PMCID: PMC9807916 DOI: 10.3389/fcimb.2022.1055929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Multidrug-resistant (MDR) bacteria pose a significant clinical threat to human health, but the development of antibiotics cannot meet the urgent need for effective agents, especially those that can kill persisters and biofilms. Here, we reported that nigericin showed potent bactericidal activity against various clinical MDR Gram-positive bacteria, persisters and biofilms, with low frequencies of resistance development. Moreover, nigericin exhibited favorable in vivo efficacy in deep-seated mouse biofilm, murine skin and bloodstream infection models. With Staphylococcus aureus, nigericin disrupted ATP production and electron transport chain; cell death was associated with altered membrane structure and permeability. Obtaining nigericin-resistant/tolerant mutants required multiple rounds of challenge, and, cross-resistance to members of several antimicrobial classes was absent, probably due to distinct nigericin action with the GraSR two-component regulatory system. Thus, our work reveals that nigericin is a promising antibiotic candidate for the treatment of chronic or recurrent infections caused by Gram-positive bacteria.
Collapse
Affiliation(s)
- Xiaoli Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Anjin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Xihuan Sun
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Weijie Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Guanghui He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Huan Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Zhenhua Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Zhiyu Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Xiaobing Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Donghong Huang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
16
|
Mahmoudi P, Akbarpour MR, Lakeh HB, Jing F, Hadidi MR, Akhavan B. Antibacterial Ti-Cu implants: A critical review on mechanisms of action. Mater Today Bio 2022; 17:100447. [PMID: 36278144 PMCID: PMC9579810 DOI: 10.1016/j.mtbio.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Titanium (Ti) has been widely used for manufacturing of bone implants because of its mechanical properties, biological compatibility, and favorable corrosion resistance in biological environments. However, Ti implants are prone to infection (peri-implantitis) by bacteria which in extreme cases necessitate painful and costly revision surgeries. An emerging, viable solution for this problem is to use copper (Cu) as an antibacterial agent in the alloying system of Ti. The addition of copper provides excellent antibacterial activities, but the underpinning mechanisms are still obscure. This review sheds light on such mechanisms and reviews how incorporation of Cu can render Ti-Cu implants with antibacterial activity. The review first discusses the fundamentals of interactions between bacteria and implanted surfaces followed by an overview of the most common engineering strategies utilized to endow an implant with antibacterial activity. The underlying mechanisms for antibacterial activity of Ti-Cu implants are then discussed in detail. Special attention is paid to contact killing mechanisms because the misinterpretation of this mechanism is the root of discrepancies in the literature.
Collapse
Affiliation(s)
- Pezhman Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11365-9466, Iran
| | - Mohammad Reza Akbarpour
- Department of Materials Engineering, University of Maragheh, Maragheh, P.O. Box 55136-553, Iran
| | | | - Fengjuan Jing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Mohammad Reza Hadidi
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Behnam Akhavan
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Research Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
17
|
Lawer A, Tyler C, Hards K, Keighley LM, Cheung CY, Kierek F, Su S, Matikonda SS, McInnes T, Tyndall JDA, Krause KL, Cook GM, Gamble AB. Synthesis and Biological Evaluation of Aurachin D Analogues as Inhibitors of Mycobacterium tuberculosis Cytochrome bd Oxidase. ACS Med Chem Lett 2022; 13:1663-1669. [PMID: 36262396 PMCID: PMC9575164 DOI: 10.1021/acsmedchemlett.2c00401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
A revised total synthesis of aurachin D (1a), an isoprenoid quinolone alkaloid that targets Mycobacterium tuberculosis (Mtb) cytochrome bd (cyt-bd) oxidase, was accomplished using an oxazoline ring-opening reaction. The ring opening enabled access to a range of electron-poor analogues, while electron-rich analogues could be prepared using the Conrad-Limpach reaction. The aryl-substituted and side-chain-modified aurachin D analogues were screened for inhibition of Mtb cyt-bd oxidase and growth inhibition of Mtb. Nanomolar inhibition of Mtb cyt-bd oxidase was observed for the shorter-chain analogue 1d (citronellyl side chain) and the aryl-substituted analogues 1g/1k (fluoro substituent at C6/C7), 1t/1v (hydroxy substituent at C5/C6) and 1u/1w/1x (methoxy substituent at C5/C6/C7). Aurachin D and the analogues did not inhibit growth of nonpathogenic Mycobacterium smegmatis, but the citronellyl (1d) and 6-fluoro-substituted (1g) inhibitors from the Mtb cyt-bd oxidase assay displayed moderate growth inhibition against pathogenic Mtb (MIC = 4-8 μM).
Collapse
Affiliation(s)
- Aggie Lawer
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Chelsea Tyler
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Kiel Hards
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Laura M. Keighley
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Chen-Yi Cheung
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
| | - Fabian Kierek
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Simon Su
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | | | - Tyler McInnes
- Department
of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | | | - Kurt L. Krause
- Department
of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Gregory M. Cook
- Department
of Microbiology and Immunology, University
of Otago, Dunedin 9054, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin 9054, New Zealand
| | - Allan B. Gamble
- School
of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
18
|
Spero MA, Jones J, Lomenick B, Chou TF, Newman DK. Mechanisms of chlorate toxicity and resistance in Pseudomonas aeruginosa. Mol Microbiol 2022; 118:321-335. [PMID: 36271736 PMCID: PMC9589919 DOI: 10.1111/mmi.14972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that often encounters hypoxic/anoxic environments within the host, which increases its tolerance to many conventional antibiotics. Toward identifying novel treatments, we explored the therapeutic potential of chlorate, a pro-drug that kills hypoxic/anoxic, antibiotic-tolerant P. aeruginosa populations. While chlorate itself is relatively nontoxic, it is enzymatically reduced to the toxic oxidizing agent, chlorite, by hypoxically induced nitrate reductase. To better assess chlorate's therapeutic potential, we investigated mechanisms of chlorate toxicity and resistance in P. aeruginosa. We used transposon mutagenesis to identify genes that alter P. aeruginosa fitness during chlorate treatment, finding that methionine sulfoxide reductases (Msr), which repair oxidized methionine residues, support survival during chlorate stress. Chlorate treatment leads to proteome-wide methionine oxidation, which is exacerbated in a ∆msrA∆msrB strain. In response to chlorate, P. aeruginosa upregulates proteins involved in a wide range of functions, including metabolism, DNA replication/repair, protein repair, transcription, and translation, and these newly synthesized proteins are particularly vulnerable to methionine oxidation. The addition of exogenous methionine partially rescues P. aeruginosa survival during chlorate treatment, suggesting that widespread methionine oxidation contributes to death. Finally, we found that mutations that decrease nitrate reductase activity are a common mechanism of chlorate resistance.
Collapse
Affiliation(s)
- Melanie A. Spero
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Present address: Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Jeff Jones
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tsui-Fen Chou
- Proteome Exploration Laboratory, Beckman Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
19
|
McNeil MB, Cheung CY, Waller NJE, Adolph C, Chapman CL, Seeto NEJ, Jowsey W, Li Z, Hameed HMA, Zhang T, Cook GM. Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:980844. [PMID: 36093195 PMCID: PMC9461714 DOI: 10.3389/fcimb.2022.980844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis remains a leading cause of infectious disease morbidity and mortality for which new drug combination therapies are needed. Mycobacterial bioenergetics has emerged as a promising space for the development of novel therapeutics. Further to this, unique combinations of respiratory inhibitors have been shown to have synergistic or synthetic lethal interactions, suggesting that combinations of bioenergetic inhibitors could drastically shorten treatment times. Realizing the full potential of this unique target space requires an understanding of which combinations of respiratory complexes, when inhibited, have the strongest interactions and potential in a clinical setting. In this review, we discuss (i) chemical-interaction, (ii) genetic-interaction and (iii) chemical-genetic interaction studies to explore the consequences of inhibiting multiple mycobacterial respiratory components. We provide potential mechanisms to describe the basis for the strongest interactions. Finally, whilst we place an emphasis on interactions that occur with existing bioenergetic inhibitors, by highlighting interactions that occur with alternative respiratory components we envision that this information will provide a rational to further explore alternative proteins as potential drug targets and as part of unique drug combinations.
Collapse
Affiliation(s)
- Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cara Adolph
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Cassandra L. Chapman
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Noon E. J. Seeto
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins, Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- *Correspondence: Matthew B. McNeil, ; Gregory M. Cook,
| |
Collapse
|
20
|
Komatsuya K, Sakura T, Shiomi K, Ōmura S, Hikosaka K, Nozaki T, Kita K, Inaoka DK. Siccanin Is a Dual-Target Inhibitor of Plasmodium falciparum Mitochondrial Complex II and Complex III. Pharmaceuticals (Basel) 2022; 15:ph15070903. [PMID: 35890202 PMCID: PMC9319939 DOI: 10.3390/ph15070903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/05/2023] Open
Abstract
Plasmodium falciparum contains several mitochondrial electron transport chain (ETC) dehydrogenases shuttling electrons from the respective substrates to the ubiquinone pool, from which electrons are consecutively transferred to complex III, complex IV, and finally to the molecular oxygen. The antimalarial drug atovaquone inhibits complex III and validates this parasite’s ETC as an attractive target for chemotherapy. Among the ETC dehydrogenases from P. falciparum, dihydroorotate dehydrogenase, an essential enzyme used in de novo pyrimidine biosynthesis, and complex III are the two enzymes that have been characterized and validated as drug targets in the blood-stage parasite, while complex II has been shown to be essential for parasite survival in the mosquito stage; therefore, these enzymes and complex II are considered candidate drug targets for blocking parasite transmission. In this study, we identified siccanin as the first (to our knowledge) nanomolar inhibitor of the P. falciparum complex II. Moreover, we demonstrated that siccanin also inhibits complex III in the low-micromolar range. Siccanin did not inhibit the corresponding complexes from mammalian mitochondria even at high concentrations. Siccanin inhibited the growth of P. falciparum with IC50 of 8.4 μM. However, the growth inhibition of the P. falciparum blood stage did not correlate with ETC inhibition, as demonstrated by lack of resistance to siccanin in the yDHODH-3D7 (EC50 = 10.26 μM) and Dd2-ELQ300 strains (EC50 = 18.70 μM), suggesting a third mechanism of action that is unrelated to mitochondrial ETC inhibition. Hence, siccanin has at least a dual mechanism of action, being the first potent and selective inhibitor of P. falciparum complexes II and III over mammalian enzymes and so is a potential candidate for the development of a new class of antimalarial drugs.
Collapse
Affiliation(s)
- Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan;
| | - Satoshi Ōmura
- Ōmura Satoshi Memorial Institute, Kitasato University, Minato-ku, Tokyo 108-8641, Japan;
| | - Kenji Hikosaka
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; (K.K.); (T.N.)
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan
- Correspondence: (K.K.); (D.K.I.); Tel.: +81-95-819-7575 (K.K.); +81-95-819-7230 (D.K.I.)
| |
Collapse
|
21
|
Cao Z, Chen X, Chen J, Xia A, Bacacao B, Tran J, Sharma D, Bekale LA, Santa Maria PL. Gold nanocluster adjuvant enables the eradication of persister cells by antibiotics and abolishes the emergence of resistance. NANOSCALE 2022; 14:10016-10032. [PMID: 35796201 PMCID: PMC9578678 DOI: 10.1039/d2nr01003h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Persister cells are responsible for relapses of infections common in cystic fibrosis and chronic suppurative otitis media (CSOM). Yet, there are no Food and Drug Administration (FDA) approved antibiotics to eradicate persister cells. Frustratingly, the global preclinical bacterial pipeline does not contain antibacterial agents targeting persister cells. Therefore, we report a nontraditional antimicrobial chemotherapy strategy based on gold nanoclusters adjuvant to eradicate persister cells by existing antibiotics belonging to that different class. Compared to killing with antibiotics alone, combining antibiotics and AuNC@CPP sterilizes persister cells and biofilms. Enhanced killing of up to 4 orders of magnitude in a validated mouse model of CSOM with Pseudomonas aeruginosa infection was observed when combining antibiotics and AuNC@CPP, informing a potential approach to improve the treatment of CSOM. We established that the mechanism of action of AuNC@CPP is due to disruption of the proton gradient and membrane hyperpolarization. The method presented here could compensate for the lack of new antibiotics to combat persister cells. This method could also benefit the current effort to slow resistance development because AuNC@CPP abolished the emergence of drug-resistant strains induced by antibiotics.
Collapse
Affiliation(s)
- Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Xiaohua Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Brian Bacacao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Jessica Tran
- The Protein and Nucleic Acid Biotechnology Facility, Beckman Center Stanford University, 279 Campus Drive, West Stanford, CA 94305, USA
| | - Devesh Sharma
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| |
Collapse
|
22
|
Anand P, Akhter Y. A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. Int J Biol Macromol 2022; 212:474-494. [PMID: 35613677 DOI: 10.1016/j.ijbiomac.2022.05.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
Abstract
Energy metabolism is a universal process occurring in all life forms. In Mycobacterium tuberculosis (Mtb), energy production is carried out in two possible ways, oxidative phosphorylation (OxPhos) and substrate-level phosphorylation. Mtb is an obligate aerobic bacterium, making it dependent on OxPhos for ATP synthesis and growth. Mtb inhabits varied micro-niches during the infection cycle, outside and within the host cells, which alters its primary metabolic pathways during the pathogenesis. In this review, we discuss cellular respiration in the context of the mechanism and structural importance of the proteins and enzyme complexes involved. These protein-protein complexes have been proven to be essential for Mtb virulence as they aid the bacteria's survival during aerobic and hypoxic conditions. ATP synthase, a crucial component of the electron transport chain, has been in the limelight, as a prominent drug target against tuberculosis. Likewise, in this review, we have explored other protein-protein complexes of the OxPhos pathway, their functional essentiality, and their mechanism in Mtb's diverse lifecycle. The review summarises crucial target proteins and reported inhibitors of the electron transport chain pathway of Mtb.
Collapse
Affiliation(s)
- Pragya Anand
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India
| | - Yusuf Akhter
- Department of Biotechnology, School of Life Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
23
|
Visualization of mRNA Expression in Pseudomonas aeruginosa Aggregates Reveals Spatial Patterns of Fermentative and Denitrifying Metabolism. Appl Environ Microbiol 2022; 88:e0043922. [PMID: 35586988 DOI: 10.1128/aem.00439-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gaining insight into the behavior of bacteria at the single-cell level is important given that heterogeneous microenvironments strongly influence microbial physiology. The hybridization chain reaction (HCR) is a technique that provides in situ molecular signal amplification, enabling simultaneous mapping of multiple target RNAs at small spatial scales. To refine this method for biofilm applications, we designed and validated new probes to visualize the expression of key catabolic genes in Pseudomonas aeruginosa aggregates. In addition to using existing probes for the dissimilatory nitrate reductase (narG), we developed probes for a terminal oxidase (ccoN1), nitrite reductase (nirS), nitrous oxide reductase (nosZ), and acetate kinase (ackA). These probes can be used to determine gene expression levels across heterogeneous populations such as biofilms. Using these probes, we quantified gene expression across oxygen gradients in aggregate populations grown using the agar block biofilm assay (ABBA). We observed distinct patterns of catabolic gene expression, with upregulation occurring in particular ABBA regions both within individual aggregates and over the aggregate population. Aerobic respiration (ccoN1) showed peak expression under oxic conditions, whereas fermentation (ackA) showed peak expression in the anoxic cores of high metabolic activity aggregates near the air-agar interface. Denitrification genes narG, nirS, and nosZ showed peak expression in hypoxic and anoxic regions, although nirS expression remained at peak levels deeper into anoxic environments than other denitrification genes. These results reveal that the microenvironment correlates with catabolic gene expression in aggregates, and they demonstrate the utility of HCR in unveiling cellular activities at the microscale level in heterogeneous populations. IMPORTANCE To understand bacteria in diverse contexts, we must understand the variations in behaviors and metabolisms they express spatiotemporally. Populations of bacteria are known to be heterogeneous, but the ways this variation manifests can be challenging to characterize due to technical limitations. By focusing on energy conservation, we demonstrate that HCR v3.0 can visualize nuances in gene expression, allowing us to understand how metabolism in Pseudomonas aeruginosa biofilms responds to microenvironmental variation at high spatial resolution. We validated probes for four catabolic genes, including a constitutively expressed oxidase, acetate kinase, nitrite reductase, and nitrous oxide reductase. We showed that the genes for different modes of metabolism are expressed in overlapping but distinct subpopulations according to oxygen concentrations in a predictable fashion. The spatial transcriptomic technique described here has the potential to be used to map microbial activities across diverse environments.
Collapse
|
24
|
Rivera-Lugo R, Deng D, Anaya-Sanchez A, Tejedor-Sanz S, Tang E, Reyes Ruiz VM, Smith HB, Titov DV, Sauer JD, Skaar EP, Ajo-Franklin CM, Portnoy DA, Light SH. Listeria monocytogenes requires cellular respiration for NAD + regeneration and pathogenesis. eLife 2022; 11:e75424. [PMID: 35380108 PMCID: PMC9094743 DOI: 10.7554/elife.75424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Cellular respiration is essential for multiple bacterial pathogens and a validated antibiotic target. In addition to driving oxidative phosphorylation, bacterial respiration has a variety of ancillary functions that obscure its contribution to pathogenesis. We find here that the intracellular pathogen Listeria monocytogenes encodes two respiratory pathways which are partially functionally redundant and indispensable for pathogenesis. Loss of respiration decreased NAD+ regeneration, but this could be specifically reversed by heterologous expression of a water-forming NADH oxidase (NOX). NOX expression fully rescued intracellular growth defects and increased L. monocytogenes loads >1000-fold in a mouse infection model. Consistent with NAD+ regeneration maintaining L. monocytogenes viability and enabling immune evasion, a respiration-deficient strain exhibited elevated bacteriolysis within the host cytosol and NOX expression rescued this phenotype. These studies show that NAD+ regeneration represents a major role of L. monocytogenes respiration and highlight the nuanced relationship between bacterial metabolism, physiology, and pathogenesis.
Collapse
Affiliation(s)
- Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David Deng
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Andrea Anaya-Sanchez
- Graduate Group in Microbiology, University of California, BerkeleyBerkeleyUnited States
| | - Sara Tejedor-Sanz
- Department of Biosciences, Rice UniversityHoustonUnited States
- The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Eugene Tang
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Valeria M Reyes Ruiz
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical CenterNashvilleUnited States
| | - Hans B Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Denis V Titov
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Nutritional Sciences and Toxicology, University of California, BerkeleyBerkeleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical CenterNashvilleUnited States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical CenterNashvilleUnited States
| | - Caroline M Ajo-Franklin
- Department of Biosciences, Rice UniversityHoustonUnited States
- The Molecular Foundry, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Samuel H Light
- Department of Microbiology, University of ChicagoChicagoUnited States
- Duchossois Family Institute, University of ChicagoChicagoUnited States
| |
Collapse
|
25
|
Yin J, Li F, Li Z, Yu L, Zhu F, Zeng S. Feature, Function, and Information of Drug Transporter-Related Databases. Drug Metab Dispos 2022; 50:76-85. [PMID: 34426411 DOI: 10.1124/dmd.121.000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
With the rapid progress in pharmaceutical experiments and clinical investigations, extensive knowledge of drug transporters (DTs) has accumulated, which is valuable data for the understanding of drug metabolism and disposition. However, such data are largely dispersed in the literature, which hampers its utility and significantly limits its possibility for comprehensive analysis. A variety of databases have, therefore, been constructed to provide DT-related data, and they were reviewed in this study. First, several knowledge bases providing data regarding clinically important drugs and their corresponding transporters were discussed, which constituted the most important resources of DT-centered data. Second, some databases describing the general transporters and their functional families were reviewed. Third, various databases offering transporter information as part of their entire data collection were described. Finally, customized database functions that are available to facilitate DT-related research were discussed. This review provided an overview of the whole collection of DT-related databases, which might facilitate research on precision medicine and rational drug use. SIGNIFICANCE STATEMENT: A collection of well established databases related to drug transporters were comprehensively reviewed, which were organized according to their importance in drug absorption, distribution, metabolism, and excretion research. These databases could collectively contribute to the research on rational drug use.
Collapse
Affiliation(s)
- Jiayi Yin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Fengcheng Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Zhaorong Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Feng Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| |
Collapse
|
26
|
Beites T, Jansen RS, Wang R, Jinich A, Rhee KY, Schnappinger D, Ehrt S. Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection. Nat Commun 2021; 12:6593. [PMID: 34782606 PMCID: PMC8593149 DOI: 10.1038/s41467-021-26941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis depends on host fatty acids as a carbon source. However, fatty acid β-oxidation is mediated by redundant enzymes, which hampers the development of antitubercular drugs targeting this pathway. Here, we show that rv0338c, which we refer to as etfD, encodes a membrane oxidoreductase essential for β-oxidation in M. tuberculosis. An etfD deletion mutant is incapable of growing on fatty acids or cholesterol, with long-chain fatty acids being bactericidal, and fails to grow and survive in mice. Analysis of the mutant’s metabolome reveals a block in β-oxidation at the step catalyzed by acyl-CoA dehydrogenases (ACADs), which in other organisms are functionally dependent on an electron transfer flavoprotein (ETF) and its cognate oxidoreductase. We use immunoprecipitation to show that M. tuberculosis EtfD interacts with FixA (EtfB), a protein that is homologous to the human ETF subunit β and is encoded in an operon with fixB, encoding a homologue of human ETF subunit α. We thus refer to FixA and FixB as EtfB and EtfA, respectively. Our results indicate that EtfBA and EtfD (which is not homologous to human EtfD) function as the ETF and oxidoreductase for β-oxidation in M. tuberculosis and support this pathway as a potential target for tuberculosis drug development. The pathogen Mycobacterium tuberculosis depends on host fatty acids and cholesterol as carbon sources. Here, Beites et al. identify a protein complex that is essential for fatty acid and cholesterol utilization and thus for survival of M. tuberculosis during infection, supporting this pathway as a potential target for tuberculosis drug development.
Collapse
Affiliation(s)
- Tiago Beites
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Robert S Jansen
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.,Department of Microbiology, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.,Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Heitkamp T, Börsch M. Fast ATP-Dependent Subunit Rotation in Reconstituted F oF 1-ATP Synthase Trapped in Solution. J Phys Chem B 2021; 125:7638-7650. [PMID: 34254808 DOI: 10.1021/acs.jpcb.1c02739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FoF1-ATP synthases are ubiquitous membrane-bound, rotary motor enzymes that can catalyze ATP synthesis and hydrolysis. Their enzyme kinetics are controlled by internal subunit rotation, by substrate and product concentrations, and by mechanical inhibitory mechanisms but also by the electrochemical potential of protons across the membrane. Single-molecule Förster resonance energy transfer (smFRET) has been used to detect subunit rotation within FoF1-ATP synthases embedded in freely diffusing liposomes. We now report that kinetic monitoring of functional rotation can be prolonged from milliseconds to seconds by utilizing an anti-Brownian electrokinetic trap (ABEL trap). These extended observation times allowed us to observe fluctuating rates of functional rotation for individual FoF1-liposomes in solution. Broad distributions of ATP-dependent catalytic rates were revealed. The buildup of an electrochemical potential of protons was confirmed to limit the maximum rate of ATP hydrolysis. In the presence of ionophores or uncouplers, the fastest subunit rotation speeds measured in single reconstituted FoF1-ATP synthases were 180 full rounds per second. This was much faster than measured by biochemical ensemble averaging, but not as fast as the maximum rotational speed reported previously for isolated single F1 complexes uncoupled from the membrane-embedded Fo complex. Further application of ABEL trap measurements should help resolve the mechanistic causes of such fluctuating rates of subunit rotation.
Collapse
Affiliation(s)
- Thomas Heitkamp
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Nonnenplan 2-4, 07743 Jena, Germany
| |
Collapse
|
28
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
29
|
Abstract
Bacteria power their energy metabolism using membrane-bound respiratory enzymes that capture chemical energy and transduce it by pumping protons or Na+ ions across their cell membranes. Recent breakthroughs in molecular bioenergetics have elucidated the architecture and function of many bacterial respiratory enzymes, although key mechanistic principles remain debated. In this Review, we present an overview of the structure, function and bioenergetic principles of modular bacterial respiratory chains and discuss their differences from the eukaryotic counterparts. We also discuss bacterial supercomplexes, which provide central energy transduction systems in several bacteria, including important pathogens, and which could open up possible avenues for treatment of disease.
Collapse
|
30
|
André AC, Debande L, Marteyn BS. The selective advantage of facultative anaerobes relies on their unique ability to cope with changing oxygen levels during infection. Cell Microbiol 2021; 23:e13338. [PMID: 33813807 DOI: 10.1111/cmi.13338] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
Bacteria, including those that are pathogenic, have been generally classified according to their ability to survive and grow in the presence or absence of oxygen: aerobic and anaerobic bacteria, respectively. Strict aerobes require oxygen to grow (e.g., Neisseria), and strict anaerobes grow exclusively without, and do not survive oxygen exposure (e.g., Clostridia); aerotolerant bacteria (e.g., Lactobacilli) are insensitive to oxygen exposure. Facultative anaerobes (e.g., E. coli) have the unique ability to grow in the presence or in the absence of oxygen and are thus well-adapted to these changing conditions, which may constitute an underestimated selective advantage for infection. In the WHO antibiotic-resistant 'priority pathogens' list, facultative anaerobes are overrepresented (8 among 12 listed pathogens), consistent with clinical studies performed in populations particularly susceptible to infectious diseases. Bacteria aerobic respiratory chain plays a central role in oxygen consumption, leading to the formation of hypoxic infectious sites (infectious hypoxia). Facultative anaerobes have developed a wide diversity of aerotolerance and anaerotolerance strategies in vivo. However, at a single cell level, the modulation of the intracellular oxygen level in host infected cells remains elusive and will be discussed in this review. In conclusion, the ability of facultative bacteria to evolve in the presence or the absence of oxygen is essential for their virulence strategy and constitute a selective advantage. TAKE AWAY: Most life-threatening pathogenic bacteria are facultative anaerobes. Only facultative anaerobes are aerotolerant, anaerotolerant and capable of consuming O2 . Facultative anaerobes induce and are well adapted to cellular hypoxia.
Collapse
Affiliation(s)
- Antonin C André
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,Université de Paris, Paris, France
| | - Lorine Debande
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France
| | - Benoit S Marteyn
- Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR9002, Université de Strasbourg, Strasbourg, France.,University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.,Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, Paris Cedex 15, France
| |
Collapse
|
31
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
32
|
Gevorgyan H, Khalatyan S, Vassilian A, Trchounian K. The role of Escherichia coli FhlA transcriptional activator in generation of proton motive force and F O F 1 -ATPase activity at pH 7.5. IUBMB Life 2021; 73:883-892. [PMID: 33773019 DOI: 10.1002/iub.2470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022]
Abstract
Escherichia coli is able to utilize the mixture of carbon sources and produce molecular hydrogen (H2 ) via formate hydrogen lyase (FHL) complexes. In current work role of transcriptional activator of formate regulon FhlA in generation of fermentation end products and proton motive force, N'N'-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase activity at 20 and 72 hr growth during utilization of mixture of glucose, glycerol, and formate were investigated. It was shown that in fhlA mutant specific growth rate was ~1.5 fold lower compared to wt, while addition of DCCD abolished the growth in fhlA but not in wt. Formate was not utilized in fhlA mutant but wt cells simultaneously utilized formate with glucose. Glycerol utilization started earlier (from 2 hr) in fhlA than in wt. The DCCD-sensitive ATPase activity in wt cells membrane vesicles increased ~2 fold at 72 hr and was decreased 70% in fhlA. Addition of formate in the assays increased proton ATPase activity in wt and mutant strain. FhlA absence mainly affected the ΔpH but not ΔΨ component of Δp in the cells grown at 72 hr but not in 24 hr. The Δp in wt cells decreased from 24 to 72 hr of growth ~40 mV while in fhlA mutant it was stable. Taken together, it is suggested that FhlA regulates the concentration of fermentation end products and via influencing FO F1 -ATPase activity contributes to the proton motive force generation.
Collapse
Affiliation(s)
- Heghine Gevorgyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.,Faculty of Biology, Scientific-Research Institute of Biology, Yerevan State University, Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, Yerevan, Armenia
| | - Satenik Khalatyan
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, Yerevan, Armenia.,Laboratory of Neuroscience, Yerevan State Medical University, Yerevan, Armenia
| | - Anait Vassilian
- Department of Ecology and Nature Protection, Faculty of Biology, Yerevan State University, Yerevan, Armenia
| | - Karen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia.,Faculty of Biology, Scientific-Research Institute of Biology, Yerevan State University, Yerevan, Armenia.,Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
33
|
Redox Active Antimicrobial Peptides in Controlling Growth of Microorganisms at Body Barriers. Antioxidants (Basel) 2021; 10:antiox10030446. [PMID: 33805777 PMCID: PMC7998263 DOI: 10.3390/antiox10030446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023] Open
Abstract
Epithelia in the skin, gut and other environmentally exposed organs display a variety of mechanisms to control microbial communities and limit potential pathogenic microbial invasion. Naturally occurring antimicrobial proteins/peptides and their synthetic derivatives (here collectively referred to as AMPs) reinforce the antimicrobial barrier function of epithelial cells. Understanding how these AMPs are functionally regulated may be important for new therapeutic approaches to combat microbial infections. Some AMPs are subject to redox-dependent regulation. This review aims to: (i) explore cysteine-based redox active AMPs in skin and intestine; (ii) discuss casual links between various redox environments of these barrier tissues and the ability of AMPs to control cutaneous and intestinal microbes; (iii) highlight how bacteria, through intrinsic mechanisms, can influence the bactericidal potential of redox-sensitive AMPs.
Collapse
|
34
|
Zimmermann J, Kaleta C, Waschina S. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol 2021; 22:81. [PMID: 33691770 PMCID: PMC7949252 DOI: 10.1186/s13059-021-02295-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Genome-scale metabolic models of microorganisms are powerful frameworks to predict phenotypes from an organism's genotype. While manual reconstructions are laborious, automated reconstructions often fail to recapitulate known metabolic processes. Here we present gapseq ( https://github.com/jotech/gapseq ), a new tool to predict metabolic pathways and automatically reconstruct microbial metabolic models using a curated reaction database and a novel gap-filling algorithm. On the basis of scientific literature and experimental data for 14,931 bacterial phenotypes, we demonstrate that gapseq outperforms state-of-the-art tools in predicting enzyme activity, carbon source utilisation, fermentation products, and metabolic interactions within microbial communities.
Collapse
Affiliation(s)
- Johannes Zimmermann
- Christian-Albrechts-University Kiel, Institute of Experimental Medicine, Research Group Medical Systems Biology, Michaelis-Str. 5, Kiel, 24105 Germany
| | - Christoph Kaleta
- Christian-Albrechts-University Kiel, Institute of Experimental Medicine, Research Group Medical Systems Biology, Michaelis-Str. 5, Kiel, 24105 Germany
| | - Silvio Waschina
- Christian-Albrechts-University Kiel, Institute of Experimental Medicine, Research Group Medical Systems Biology, Michaelis-Str. 5, Kiel, 24105 Germany
- Christian-Albrechts-University Kiel, Institute of Human Nutrition and Food Science, Nutriinformatics, Heinrich-Hecht-Platz 10, Kiel, 24118 Germany
| |
Collapse
|
35
|
Saier MH, Reddy VS, Moreno-Hagelsieb G, Hendargo KJ, Zhang Y, Iddamsetty V, Lam KJK, Tian N, Russum S, Wang J, Medrano-Soto A. The Transporter Classification Database (TCDB): 2021 update. Nucleic Acids Res 2021; 49:D461-D467. [PMID: 33170213 PMCID: PMC7778945 DOI: 10.1093/nar/gkaa1004] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
The Transporter Classification Database (TCDB; tcdb.org) is a freely accessible reference resource, which provides functional, structural, mechanistic, medical and biotechnological information about transporters from organisms of all types. TCDB is the only transport protein classification database adopted by the International Union of Biochemistry and Molecular Biology (IUBMB) and now (October 1, 2020) consists of 20 653 proteins classified in 15 528 non-redundant transport systems with 1567 tabulated 3D structures, 18 336 reference citations describing 1536 transporter families, of which 26% are members of 82 recognized superfamilies. Overall, this is an increase of over 50% since the last published update of the database in 2016. This comprehensive update of the database contents and features include (i) adoption of a chemical ontology for substrates of transporters, (ii) inclusion of new superfamilies, (iii) a domain-based characterization of transporter families for the identification of new members as well as functional and evolutionary relationships between families, (iv) development of novel software to facilitate curation and use of the database, (v) addition of new subclasses of transport systems including 11 novel types of channels and 3 types of group translocators and (vi) the inclusion of many man-made (artificial) transmembrane pores/channels and carriers.
Collapse
Affiliation(s)
- Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Vamsee S Reddy
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | - Kevin J Hendargo
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Yichi Zhang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Vasu Iddamsetty
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Katie Jing Kay Lam
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Nuo Tian
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Steven Russum
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Jianing Wang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Arturo Medrano-Soto
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
36
|
Panchal V, Brenk R. Riboswitches as Drug Targets for Antibiotics. Antibiotics (Basel) 2021; 10:45. [PMID: 33466288 PMCID: PMC7824784 DOI: 10.3390/antibiotics10010045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches reside in the untranslated region of RNA and regulate genes involved in the biosynthesis of essential metabolites through binding of small molecules. Since their discovery at the beginning of this century, riboswitches have been regarded as potential antibacterial targets. Using fragment screening, high-throughput screening and rational ligand design guided by X-ray crystallography, lead compounds against various riboswitches have been identified. Here, we review the current status and suitability of the thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), glmS, guanine, and other riboswitches as antibacterial targets and discuss them in a biological context. Further, we highlight challenges in riboswitch drug discovery and emphasis the need to develop riboswitch specific high-throughput screening methods.
Collapse
Affiliation(s)
- Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| |
Collapse
|
37
|
The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. BIOLOGY 2020; 9:biology9120443. [PMID: 33291531 PMCID: PMC7761784 DOI: 10.3390/biology9120443] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Mycobacterium tuberculosis is a bacterium of great medical importance because it causes tuberculosis, a disease that affects millions of people worldwide. Two important features are related to this bacterium: its ability to infect and survive inside the host, minimizing the immune response, and the burden of clinical isolates that are highly resistant to antibiotics treatment. These two phenomena are directly affected by cell envelope proteins, such as proteins from the ATP-Binding Cassette (ABC transporters) superfamily. In this review, we have compiled information on all the M. tuberculosis ABC transporters described so far, both from a functional and structural point of view, and show their relevance for the bacillus and the potential targets for studies aiming to control the microorganism and structural features. Abstract Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), a disease that affects millions of people in the world and that is associated with several human diseases. The bacillus is highly adapted to infect and survive inside the host, mainly because of its cellular envelope plasticity, which can be modulated to adapt to an unfriendly host environment; to manipulate the host immune response; and to resist therapeutic treatment, increasing in this way the drug resistance of TB. The superfamily of ATP-Binding Cassette (ABC) transporters are integral membrane proteins that include both importers and exporters. Both types share a similar structural organization, yet only importers have a periplasmic substrate-binding domain, which is essential for substrate uptake and transport. ABC transporter-type importers play an important role in the bacillus physiology through the transport of several substrates that will interfere with nutrition, pathogenesis, and virulence. Equally relevant, exporters have been involved in cell detoxification, nutrient recycling, and antibiotics and drug efflux, largely affecting the survival and development of multiple drug-resistant strains. Here, we review known ABC transporters from M. tuberculosis, with particular focus on the diversity of their structural features and relevance in infection and drug resistance.
Collapse
|
38
|
The Unique C-Terminal Extension of Mycobacterial F-ATP Synthase Subunit α Is the Major Contributor to Its Latent ATP Hydrolysis Activity. Antimicrob Agents Chemother 2020; 64:AAC.01568-20. [PMID: 32988828 DOI: 10.1128/aac.01568-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023] Open
Abstract
Mycobacterial F1Fo-ATP synthases (α3:β3:γ:δ:ε:a:b:b':c9 ) are incapable of ATP-driven proton translocation due to their latent ATPase activity. This prevents wasting of ATP and altering of the proton motive force, whose dissipation is lethal to mycobacteria. We demonstrate that the mycobacterial C-terminal extension of nucleotide-binding subunit α contributes mainly to the suppression of ATPase activity in the recombinant mycobacterial F1-ATPase. Using C-terminal deletion mutants, the regions responsible for the enzyme's latency were mapped, providing a new compound epitope.
Collapse
|
39
|
Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome bcc- aa3 Supercomplex. Int J Mol Sci 2020; 21:ijms21228521. [PMID: 33198276 PMCID: PMC7697965 DOI: 10.3390/ijms21228521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatisaa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.
Collapse
|
40
|
Wong CF, Lau AM, Harikishore A, Saw WG, Shin J, Ragunathan P, Bhushan S, Ngan SFC, Sze SK, Bates RW, Dick T, Grüber G. A systematic assessment of mycobacterial F 1 -ATPase subunit ε's role in latent ATPase hydrolysis. FEBS J 2020; 288:818-836. [PMID: 32525613 DOI: 10.1111/febs.15440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
In contrast to most bacteria, the mycobacterial F1 FO -ATP synthase (α3 :β3 :γ:δ:ε:a:b:b':c9 ) does not perform ATP hydrolysis-driven proton translocation. Although subunits α, γ and ε of the catalytic F1 -ATPase component α3 :β3 :γ:ε have all been implicated in the suppression of the enzyme's ATPase activity, the mechanism remains poorly defined. Here, we brought the central stalk subunit ε into focus by generating the recombinant Mycobacterium smegmatis F1 -ATPase (MsF1 -ATPase), whose 3D low-resolution structure is presented, and its ε-free form MsF1 αβγ, which showed an eightfold ATP hydrolysis increase and provided a defined system to systematically study the segments of mycobacterial ε's suppression of ATPase activity. Deletion of four amino acids at ε's N terminus, mutant MsF1 αβγεΔ2-5 , revealed similar ATP hydrolysis as MsF1 αβγ. Together with biochemical and NMR solution studies of a single, double, triple and quadruple N-terminal ε-mutants, the importance of the first N-terminal residues of mycobacterial ε in structure stability and latency is described. Engineering ε's C-terminal mutant MsF1 αβγεΔ121 and MsF1 αβγεΔ103-121 with deletion of the C-terminal residue D121 and the two C-terminal ɑ-helices, respectively, revealed the requirement of the very C terminus for communication with the catalytic α3 β3 -headpiece and its function in ATP hydrolysis inhibition. Finally, we applied the tools developed during the study for an in silico screen to identify a novel subunit ε-targeting F-ATP synthase inhibitor.
Collapse
Affiliation(s)
- Chui-Fann Wong
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Aik-Meng Lau
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Amaravadhi Harikishore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Wuan-Geok Saw
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore City, Singapore
| | - So-Fong Cam Ngan
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Roderick W Bates
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| |
Collapse
|
41
|
Cader MZ, de Almeida Rodrigues RP, West JA, Sewell GW, Md-Ibrahim MN, Reikine S, Sirago G, Unger LW, Iglesias-Romero AB, Ramshorn K, Haag LM, Saveljeva S, Ebel JF, Rosenstiel P, Kaneider NC, Lee JC, Lawley TD, Bradley A, Dougan G, Modis Y, Griffin JL, Kaser A. FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell 2020; 180:278-295.e23. [PMID: 31978345 PMCID: PMC6978800 DOI: 10.1016/j.cell.2019.12.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/18/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5′-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling. An unbiased LC-MS screen reveals FAMIN as a purine nucleoside enzyme FAMIN combines adenosine phosphorylase with ADA-, PNP-, and MTAP-like activities FAMIN enables a purine nucleotide cycle (PNC) preventing cytoplasmic acidification The FAMIN-dependent PNC balances the glycolysis-mitochondrial redox interface
Collapse
Affiliation(s)
- M Zaeem Cader
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Rodrigo Pereira de Almeida Rodrigues
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Gavin W Sewell
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Muhammad N Md-Ibrahim
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephanie Reikine
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Giuseppe Sirago
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ana Belén Iglesias-Romero
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Katharina Ramshorn
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Lea-Maxie Haag
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Svetlana Saveljeva
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Jana-Fabienne Ebel
- Institute of Clinical Molecular Biology, Christian Albrechts University, Campus Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University, Campus Kiel, 24105 Kiel, Germany
| | - Nicole C Kaneider
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - James C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Allan Bradley
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yorgo Modis
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
42
|
Weng C, Shen L, Ang WH. Harnessing Endogenous Formate for Antibacterial Prodrug Activation by in cellulo Ruthenium-Mediated Transfer Hydrogenation Reaction. Angew Chem Int Ed Engl 2020; 59:9314-9318. [PMID: 32141662 DOI: 10.1002/anie.202000173] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 03/01/2020] [Indexed: 01/17/2023]
Abstract
The abundance and evolving pathogenic behavior of bacterial microorganisms give rise to antibiotic tolerance and resistance which pose a danger to global public health. New therapeutic strategies are needed to keep pace with this growing threat. We propose a novel approach for targeting bacteria by harnessing formate, a cell metabolite found only in particular bacterial species, to activate an antibacterial prodrug and selectively inhibit their growth. This strategy is premised on transfer hydrogenation reaction on a biorthogonal substrate utilizing native formate as the hydride source as a means of uncaging an antibacterial prodrug. Using coordination-directed 3-component assembly to prepare a library of 768 unique Ru-Arene Schiff-base complexes, we identified several candidates that efficiently reduced sulfonyl azide functional group in the presence of formate. This strategy paves the way for a new approach of targeted antibacterial therapy by exploiting unique bacterial metabolites.
Collapse
Affiliation(s)
- Cheng Weng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Linghui Shen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.,NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
43
|
Weng C, Shen L, Ang WH. Harnessing Endogenous Formate for Antibacterial Prodrug Activation by
in cellulo
Ruthenium‐Mediated Transfer Hydrogenation Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Cheng Weng
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Linghui Shen
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Wee Han Ang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- NUS Graduate School of Integrative Sciences and EngineeringNational University of Singapore 28 Medical Drive Singapore 117456 Singapore
| |
Collapse
|
44
|
Bisio A, Schito AM, Pedrelli F, Danton O, Reinhardt JK, Poli G, Tuccinardi T, Bürgi T, De Riccardis F, Giacomini M, Calzia D, Panfoli I, Schito GC, Hamburger M, De Tommasi N. Antibacterial and ATP Synthesis Modulating Compounds from Salvia tingitana. JOURNAL OF NATURAL PRODUCTS 2020; 83:1027-1042. [PMID: 32182064 PMCID: PMC7997632 DOI: 10.1021/acs.jnatprod.9b01024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 05/05/2023]
Abstract
A surface extract of the aerial parts of Salvia tingitana afforded a nor-sesterterpenoid (1) and eight new sesterterpenoids (2-̵9), along with five known sesterterpenoids, five labdane and one abietane diterpenoid, one sesquiterpenoid, and four flavonoids. The structures of the new compounds were established by 1D and 2D NMR spectroscopy, HRESIMS, and VCD data and Mosher's esters analysis. The antimicrobial activity of compounds was evaluated against 30 human pathogens including 27 clinical strains and three isolates of marine origin for their possible implications on human health. The methyl ester of salvileucolide (10), salvileucolide-6,23-lactone (11), sclareol (15), and manool (17) were the most active against Gram-positive bacteria. The compounds were also tested for the inhibition of ATP production in purified mammalian rod outer segments. Terpenoids 10, 11, 15, and 17 inhibited ATP production, while only 17 inhibited also ATP hydrolysis. Molecular modeling studies confirmed the capacity of 17 to interact with mammalian ATP synthase. A significant reduction of ATP production in the presence of 17 was observed in Enterococcus faecalis and E. faecium isolates.
Collapse
Affiliation(s)
- Angela Bisio
- Department
of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Anna M. Schito
- Department
of Integrated Surgical and Diagnostical Sciences, University of Genova, Largo Rosanna Benzi 8, 16145 Genova, Italy
| | - Francesca Pedrelli
- Department
of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Ombeline Danton
- Department
of Pharmaceutical Sciences, University of
Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jakob K. Reinhardt
- Department
of Pharmaceutical Sciences, University of
Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Giulio Poli
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Thomas Bürgi
- Department
of Chemical Physics, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| | - Francesco De Riccardis
- Department
of Chemistry and Biology, University of
Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| | - Mauro Giacomini
- Department
of Informatics Bioengineering Robotics and System Engineering, University of Genova, Via all’Opera Pia, 13, 16145 Genova, Italy
| | - Daniela Calzia
- Department
of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Isabella Panfoli
- Department
of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Gian Carlo Schito
- Department
of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Matthias Hamburger
- Department
of Pharmaceutical Sciences, University of
Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Nunziatina De Tommasi
- Department
of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| |
Collapse
|
45
|
Milgrom YM, Duncan TM. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148189. [PMID: 32194063 DOI: 10.1016/j.bbabio.2020.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
46
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
47
|
Lin CY, Pang AP, Zhang Y, Qiao J, Zhao GR. Comparative transcriptomic analysis reveals the significant pleiotropic regulatory effects of LmbU on lincomycin biosynthesis. Microb Cell Fact 2020; 19:30. [PMID: 32050973 PMCID: PMC7014725 DOI: 10.1186/s12934-020-01298-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/05/2020] [Indexed: 01/02/2023] Open
Abstract
Background Lincomycin, produced by Streptomyces lincolnensis, is a lincosamide antibiotic and widely used for the treatment of the infective diseases caused by Gram-positive bacteria. The mechanisms of lincomycin biosynthesis have been deeply explored in recent years. However, the regulatory effects of LmbU that is a transcriptional regulator in lincomycin biosynthetic (lmb) gene cluster have not been fully addressed. Results LmbU was used to search for homologous LmbU (LmbU-like) proteins in the genomes of actinobacteria, and the results showed that LmbU-like proteins are highly distributed regulators in the biosynthetic gene clusters (BGCs) of secondary metabolites or/and out of the BGCs in actinomycetes. The overexpression, inactivation and complementation of the lmbU gene indicated that LmbU positively controls lincomycin biosynthesis in S. lincolnensis. Comparative transcriptomic analysis further revealed that LmbU activates the 28 lmb genes at whole lmb cluster manner. Furthermore, LmbU represses the transcription of the non-lmb gene hpdA in the biosynthesis of l-tyrosine, the precursor of lincomycin. LmbU up-regulates nineteen non-lmb genes, which would be involved in multi-drug flux to self-resistance, nitrate and sugar transmembrane transport and utilization, and redox metabolisms. Conclusions LmbU is a significant pleiotropic transcriptional regulator in lincomycin biosynthesis by entirely activating the lmb cluster and regulating the non-lmb genes in Streptomyces lincolnensis. Our results first revealed the pleiotropic regulatory function of LmbU, and shed new light on the transcriptional effects of LmbU-like family proteins on antibiotic biosynthesis in actinomycetes.
Collapse
Affiliation(s)
- Chun-Yan Lin
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Ai-Ping Pang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yue Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China. .,SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
48
|
Lee BM, Harold LK, Almeida DV, Afriat-Jurnou L, Aung HL, Forde BM, Hards K, Pidot SJ, Ahmed FH, Mohamed AE, Taylor MC, West NP, Stinear TP, Greening C, Beatson SA, Nuermberger EL, Cook GM, Jackson CJ. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathog 2020; 16:e1008287. [PMID: 32032366 PMCID: PMC7032734 DOI: 10.1371/journal.ppat.1008287] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/20/2020] [Accepted: 12/16/2019] [Indexed: 12/21/2022] Open
Abstract
Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.
Collapse
Affiliation(s)
- Brendon M. Lee
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Liam K. Harold
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Deepak V. Almeida
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Livnat Afriat-Jurnou
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
- MIGAL, Galilee Research Institute, Kiryat Shmona, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Htin Lin Aung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Brian M. Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - F. Hafna Ahmed
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - A. Elaaf Mohamed
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matthew C. Taylor
- Land and Water Flagship, The Commonwealth Scientific and Industrial Organisation, Canberra, Australian Capital Territory, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Chris Greening
- Land and Water Flagship, The Commonwealth Scientific and Industrial Organisation, Canberra, Australian Capital Territory, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Scott A. Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Eric L. Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
49
|
Saw WG, Wong CF, Dick T, Grüber G. Overexpression, purification, enzymatic and microscopic characterization of recombinant mycobacterial F-ATP synthase. Biochem Biophys Res Commun 2019; 522:374-380. [PMID: 31761325 DOI: 10.1016/j.bbrc.2019.11.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 01/16/2023]
Abstract
The F-ATP synthase is an essential enzyme in mycobacteria, including the pathogenic Mycobacterium tuberculosis. Several new compounds in the TB-drug pipeline target the F-ATP synthase. In light of the importance and pharmacological attractiveness of this novel antibiotic target, tools have to be developed to generate a recombinant mycobacterial F1FO ATP synthase to achieve atomic insight and mutants for mechanistic and regulatory understanding as well as structure-based drug design. Here, we report the first genetically engineered, purified and enzymatically active recombinant M. smegmatis F1FO ATP synthase. The projected 2D- and 3D structures of the recombinant enzyme derived from negatively stained electron micrographs are presented. Furthermore, the first 2D projections from cryo-electron images are revealed, paving the way for an atomic resolution structure determination.
Collapse
Affiliation(s)
- Wuan-Geok Saw
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Chui-Fann Wong
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
50
|
Mascolo L, Bald D. Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 152:55-63. [PMID: 31738981 DOI: 10.1016/j.pbiomolbio.2019.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022]
Abstract
The branched respiratory chain of Mycobacterium tuberculosis has attracted attention as a highly promising target for next-generation antibacterials. This system includes two terminal oxidases of which the exclusively bacterial cytochrome bd represents the less energy-efficient one. Albeit dispensable for growth under standard laboratory conditions, cytochrome bd is important during environmental stress. In this review, we discuss the role of cytochrome bd during infection of the mammalian host and in the defense against antibacterials. Deeper insight into the biochemistry of mycobacterial cytochrome bd is needed to understand the physiological role of this bacteria-specific defense factor. Conversely, cytochrome bd may be utilized to gain information on mycobacterial physiology in vitro and during host infection. Knowledge-based manipulation of cytochrome bd function may assist in designing the next-generation tuberculosis combination chemotherapy.
Collapse
Affiliation(s)
- Ludovica Mascolo
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, Amsterdam Institute for Molecules, Medicines and Systems, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
| |
Collapse
|