1
|
Tiwari V, Shandily S, Albert J, Mishra V, Dikkatwar M, Singh R, Sah SK, Chand S. Insights into medication-induced liver injury: Understanding and management strategies. Toxicol Rep 2025; 14:101976. [PMID: 40125297 PMCID: PMC11928981 DOI: 10.1016/j.toxrep.2025.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/23/2025] [Indexed: 03/25/2025] Open
Abstract
Drug-induced liver injury (DILI) has increasingly become a major concern in Western countries since the late 1960s, with an estimated annual incidence of 13.9-19.1 cases per 100,000 people. DILI is a significant cause of acute liver failure, exhibiting a high mortality rate of 10-50 %. Its etiology includes medications, herbal products, and dietary supplements, exacerbated by pre-existing liver conditions, sonorities, pregnancy, and nutritional deficiencies. It is categorized into intrinsic and idiosyncratic reactions. Intrinsic DILI, dose-dependent and predictable, is primarily caused by substances like paracetamol, which leads to liver toxicity through direct metabolic pathways. In contrast, idiosyncratic DILI is less common, unpredictable, and affects susceptible individuals, with non-steroidal anti-inflammatory drugs, antibiotics, and cardiovascular agents frequently implicated in hospitals. Oxidative stress, mitochondrial dysfunction, bile salt export inhibition, and stress on the endoplasmic reticulum are some DILI-related pathophysiology. Diagnosis relies on biochemical tests, serological markers, radiological investigations, and liver biopsy. Management strategies emphasize the identification and cessation of the offending drugs, supportive care, and specific treatment options targeted to the culprit drugs. Management depends on the severity and nature of the injury.
Collapse
Affiliation(s)
- Vatsalya Tiwari
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Shrishti Shandily
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Jessielina Albert
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Vaibhav Mishra
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Manoj Dikkatwar
- DY Patil University School of Pharmacy, DY Patil (Deemed to be University), Nerul, Navi Mumbai, Maharashtra 400706, India
| | - Rohit Singh
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Sujit Kumar Sah
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Sharad Chand
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| |
Collapse
|
2
|
Saeed BI, Uthirapathy S, Kubaev A, Ganesan S, Shankhyan A, Gupta S, Joshi KK, Kariem M, Jasim AS, Ahmed JK. Ferroptosis as a key player in the pathogenesis and intervention therapy in liver injury: focusing on drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04115-w. [PMID: 40244448 DOI: 10.1007/s00210-025-04115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Globally, drug-induced hepatotoxicity or drug-induced liver injury (DILI) is a serious clinical concern. Knowing the processes and patterns of cell death is essential for finding new therapeutic targets since there are not many alternatives to therapy for severe liver lesions. Excessive lipid peroxidation is a hallmark of ferroptosis, an iron-reliant non-apoptotic cell death linked to various liver pathologies. When iron is pathogenic, concomitant inflammation may exacerbate iron-mediated liver injury, and the hepatocyte necrosis that results is a key element in the fibrogenic response. The idea that dysregulated metabolic pathways and compromised iron homeostasis contribute to the development of liver injury by ferroptosis is being supported by new data. Various ferroptosis-linked genes and pathways have been linked to liver injury, although the molecular processes behind ferroptosis's pathogenicity are not well known. Here, we delve into the features of ferroptosis, the processes governing ferroptosis, and our current knowledge of iron metabolism. We also provide an overview of ferroptosis's involvement in the pathophysiology of liver injury, particularly DILI. Lastly, the therapeutic possibilities of ferroptosis targeting for liver injury management have been provided. Natural products, nanoparticles (NPs), mesenchymal stem cell (MSC), and their exosomes have attracted increasing attention among such therapeutics.
Collapse
Affiliation(s)
- Bahaa Ibrahim Saeed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-Maarif, Anbar, Iraq
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan.
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India
- Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
| | - Ahmed Salman Jasim
- Radiology Techniques Department College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
3
|
Fukunaga I, Takebe T. In vitro liver models for toxicological research. Drug Metab Pharmacokinet 2025; 62:101478. [PMID: 40203632 DOI: 10.1016/j.dmpk.2025.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Drug-induced liver injury (DILI) presents a major challenge not only in new drug development but also in post-marketing withdrawals and the safety of food, cosmetics, and chemicals. Experimental model organisms such as the rodents have been widely used for preclinical toxicological testing. However, the tension exists associated with the ethical and sustainable use of animals in part because animals do not necessarily inform the human-specific ADME (adsorption, dynamics, metabolism and elimination) profiling. To establish alternative models in humans, in vitro hepatic tissue models have been proposed, ranging from primary hepatocytes, immortal hepatocytes, to the development of new cell resources such as stem cell-derived hepatocytes. Given the evolving number of novel alternative methods, understanding possible combinations of cell sources and culture methods will be crucial to develop the context-of-use assays. This review primarily focuses on 3D liver organoid models for conducting. We will review the relevant cell sources, bioengineering methods, selection of training compounds, and biomarkers towards the rationale design of in vitro toxicology testing.
Collapse
Affiliation(s)
- Ichiro Fukunaga
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Takanori Takebe
- Human Biology Research Unit, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan; Divisions of Gastroenterology, Hepatology & Nutrition, Developmental Biology and Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Fäs L, Chen M, Tong W, Wenz F, Hewitt NJ, Tu M, Sanchez K, Zapiórkowska-Blumer N, Varga H, Kaczmarska K, Colombo MV, Filippi BGH. Physiological liver microtissue 384-well microplate system for preclinical hepatotoxicity assessment of therapeutic small molecule drugs. Toxicol Sci 2025; 203:79-87. [PMID: 39397666 DOI: 10.1093/toxsci/kfae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Hepatotoxicity can lead to the discontinuation of approved or investigational drugs. The evaluation of the potential hepatoxicity of drugs in development is challenging because current models assessing this adverse effect are not always predictive of the outcome in human beings. Cell lines are routinely used for early hepatotoxicity screening, but to improve the detection of potential hepatotoxicity, in vitro models that better reflect liver morphology and function are needed. One such promising model is human liver microtissues. These are spheroids made of primary human parenchymal and nonparenchymal liver cells, which are amenable to high throughput screening. To test the predictivity of this model, the cytotoxicity of 152 FDA (US Food & Drug Administration)-approved small molecule drugs was measured as per changes in ATP content in human liver microtissues incubated in 384-well microplates. The results were analyzed with respect to drug label information, drug-induced liver injury (DILI) concern class, and drug class. The threshold IC50ATP-to-Cmax ratio of 176 was used to discriminate between safe and hepatotoxic drugs. "vMost-DILI-concern" drugs were detected with a sensitivity of 72% and a specificity of 89%, and "vMost-DILI-concern" drugs affecting the nervous system were detected with a sensitivity of 92% and a specificity of 91%. The robustness and relevance of this evaluation were assessed using a 5-fold cross-validation. The good predictivity, together with the in vivo-like morphology of the liver microtissues and scalability to a 384-well microplate, makes this method a promising and practical in vitro alternative to 2D cell line cultures for the early hepatotoxicity screening of drug candidates.
Collapse
Affiliation(s)
- Lola Fäs
- InSphero AG, CH-8952 Schlieren, Switzerland
| | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, AR 72079, United States
| | | | | | - Monika Tu
- InSphero AG, CH-8952 Schlieren, Switzerland
| | | | | | | | | | | | | |
Collapse
|
5
|
Scarpignato C, Hunt RH. Potassium-competitive Acid Blockers: Current Clinical Use and Future Developments. Curr Gastroenterol Rep 2024; 26:273-293. [PMID: 39145848 PMCID: PMC11401795 DOI: 10.1007/s11894-024-00939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE OF THE REVIEW Acid suppression with proton pump inhibitors (PPIs) represents the standard of care in the treatment of acid-related diseases. However, despite their effectiveness, PPIs display some intrinsic limitations, which underlie the unmet clinical needs that have been identified over the past decades. The aims of this review are to summarize the current status and future development of the new class of antisecretory drugs (potassium-competitive acid blockers, P-CABs) that have recently been introduced into medical practice. RECENT FINDINGS Over the past decades, clinical needs unmet by the current acid suppressants have been recognized, especially in the management of patients with GERD, Helicobacter pylori infection and NSAID-related peptic ulcer. The failure to address these needs is mainly due to their inability to achieve a consistent acid suppression in all patients and, particularly, to control nighttime acidity. It was then realized that an extended duration of acid suppression would exert additional benefits. The available data with P-CABs show that they are able to address these unmet clinical needs. Four different P-CABs (vonoprazan, tegoprazan, fexuprazan and keverprazan) are currently available. However, only two of them are approved outside Asia. Vonoprazan is available in North, Central and South America while tegoprazan is marketed only in Latin American countries. Two other compounds (namely linazapran glurate and zestaprazan) are presently under clinical development. While clinical trials on GERD have been performed with all P-CABs, only vonoprazan and tegoprazan have been investigated as components of Helicobacter pylori eradication regimens. The available data show that-in the above two clinical indications-P-CABs provide similar or better efficacy in comparison with PPIs. Their safety in the short-term overlaps that of PPIs, but data from long-term treatment are needed.
Collapse
Affiliation(s)
- Carmelo Scarpignato
- Department of Medicine & Surgery, University of Parma, Parma, Italy.
- Department of Health Sciences, United Campus of Malta, Msida, Malta.
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, Hong Kong.
- Faculty of Medicine, University of Nantes, Nantes, France.
| | - Richard H Hunt
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive, Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Chen X, Pan H, Hao Z, Yi H, Tang S. Changing Trajectories of Alanine Aminotransferase and Risk of Antituberculosis Drug-Induced Liver Injury in Chinese Patients: A Cohort Study. J Clin Pharmacol 2024; 64:840-848. [PMID: 38436510 DOI: 10.1002/jcph.2422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Antituberculosis drug-induced liver injury (ATLI) is a major adverse effect during antituberculosis treatment. Early detection or prediction is essential to prevent ATLI in antituberculosis treatment patients. The purpose of this work is to explore the relationship between alanine aminotransferase (ALT) trajectories within 15 days of initial treatment and the risk of ATLI. Based on a historical cohort of patients hospitalized for antituberculosis treatment and group-based trajectory modeling analysis, ALT trajectories within 15 days of initial treatment were determined. Conditional logistic regression model was used to estimate the association between different ALT trajectories and the risk of ATLI, and the corresponding odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated with covariates. Based on the ALT levels within 15 days of initial treatment, a total of 853 patients were divided into four ALT trajectories. The incidence of ATLI significantly increased with the increase of ALT trajectories (2.33%, 4.38%, 5.90%, and 2.44%, respectively). Compared with trajectory 1, the adjusted OR for ATLI in trajectory 2, trajectory 3, and trajectory 4 were 2.448 (95% CI: 0.302-19.856, P = 0.402), 5.373 (95% CI: 0.636-45.411, P = 0.123), 11.010 (95% CI: 0.720-168.330, P = 0.085), respectively, and there was an increasing trend of ATLI risk (Ptrend = 0.015). Different ALT trajectories within 15 days of initial treatment were associated with different risk of ATLI, and it is necessary to pay attention to the ALT trajectory within 15 days of initial treatment to predict the occurrence of ATLI.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Yuan H, Tian Y, Jiang R, Wang Y, Nie M, Li X, He Y, Liu X, Zhao R, Zhang J. Susceptibility to Hepatotoxic Drug-Induced Liver Injury Increased After Traumatic Brain Injury in Mice. J Neurotrauma 2024; 41:1425-1437. [PMID: 37265124 DOI: 10.1089/neu.2022.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The early stages of brain injury can induce acute liver injury, which can be recovered in the short term. Continued medication treatment during hospitalization for brain injury alleviates the prognosis and contributes to a high incidence of drug-induced liver injury (DILI). We hypothesize that there is an interaction between changes in the hepatic environment after brain injury and liver injury produced by intensive drug administration, leading to an upregulation of the organism's sensitivity to DILI. In this study, mice models of TBI were established by controlled cortical impact (CCI) and models of DILI were constructed by acetaminophen (APAP). All mice were divided into four groups: Sham, TBI, APAP, and TBI+APAP, and related liver injury indicators in liver and serum were detected by Western blot, Quantitative real-time PCR (qRT-PCR), and immunohistochemical staining. The results suggested that liver injury induced in the early stages of brain injury recovered in 3 days, but this state could still significantly aggravate DILI, represented by higher liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT]), oxidative stress (increase in malondialdehyde [MDA] concentration and deregulation of glutathione [GSH] and superoxide dismutase [SOD] activities), inflammatory response (activation of the HMGB1/TLR4/NF-κB signaling pathway, and increased messenger RNA [mRNA] and protein levels of pro-inflammatory cytokines including tumor necrosis factor alpha [TNF-α], interleukin [IL]-6, and IL-1β), and apoptosis (TUNEL assay, upregulation of Bax protein and deregulation of Bcl-2 protein). In summary, our results suggested that TBI is a potential susceptibility factor for DILI and exacerbates DILI.
Collapse
Affiliation(s)
- Hengjie Yuan
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanzhi Wang
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaochun Li
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Yifan He
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Ruiting Zhao
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jingyue Zhang
- Department of Pharmacy, General Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Brunese MC, Avella P, Cappuccio M, Spiezia S, Pacella G, Bianco P, Greco S, Ricciardelli L, Lucarelli NM, Caiazzo C, Vallone G. Future Perspectives on Radiomics in Acute Liver Injury and Liver Trauma. J Pers Med 2024; 14:572. [PMID: 38929793 PMCID: PMC11204538 DOI: 10.3390/jpm14060572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Acute liver injury occurs most frequently due to trauma, but it can also occur because of sepsis or drug-induced injury. This review aims to analyze artificial intelligence (AI)'s ability to detect and quantify liver injured areas in adults and pediatric patients. Methods: A literature analysis was performed on the PubMed Dataset. We selected original articles published from 2018 to 2023 and cohorts with ≥10 adults or pediatric patients. Results: Six studies counting 564 patients were collected, including 170 (30%) children and 394 adults. Four (66%) articles reported AI application after liver trauma, one (17%) after sepsis, and one (17%) due to chemotherapy. In five (83%) studies, Computed Tomography was performed, while in one (17%), FAST-UltraSound was performed. The studies reported a high diagnostic performance; in particular, three studies reported a specificity rate > 80%. Conclusions: Radiomics models seem reliable and applicable to clinical practice in patients affected by acute liver injury. Further studies are required to achieve larger validation cohorts.
Collapse
Affiliation(s)
- Maria Chiara Brunese
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.B.)
| | - Pasquale Avella
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
- Hepatobiliary and Pancreatic Surgery Unit, Pineta Grande Hospital, 81030 Castel Volturno, Italy
| | - Micaela Cappuccio
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Salvatore Spiezia
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.B.)
| | - Giulia Pacella
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.B.)
| | - Paolo Bianco
- Hepatobiliary and Pancreatic Surgery Unit, Pineta Grande Hospital, 81030 Castel Volturno, Italy
| | - Sara Greco
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Nicola Maria Lucarelli
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Corrado Caiazzo
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.B.)
| | - Gianfranco Vallone
- Department of Medicine and Health Science “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.B.)
| |
Collapse
|
9
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Rispoli P, Scandiuzzi Piovesan T, Decorti G, Stocco G, Lucafò M. iPSCs as a groundbreaking tool for the study of adverse drug reactions: A new avenue for personalized therapy. WIREs Mech Dis 2024; 16:e1630. [PMID: 37770042 DOI: 10.1002/wsbm.1630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Induced pluripotent stem cells (iPSCs), obtained by reprogramming different somatic cell types, represent a promising tool for the study of drug toxicities, especially in the context of personalized medicine. Indeed, these cells retain the same genetic heritage of the donor, allowing the development of personalized models. In addition, they represent a useful tool for the study of adverse drug reactions (ADRs) in special populations, such as pediatric patients, which are often poorly represented in clinical trials due to ethical issues. Particularly, iPSCs can be differentiated into any tissue of the human body, following several protocols which use different stimuli to induce specific differentiation processes. Differentiated cells also maintain the genetic heritage of the donor, and therefore are suitable for personalized pharmacological studies; moreover, iPSC-derived differentiated cells are a valuable tool for the investigation of the mechanisms underlying the physiological differentiation processes. iPSCs-derived organoids represent another important tool for the study of ADRs. Precisely, organoids are in vitro 3D models which better represent the native organ, both from a structural and a functional point of view. Moreover, in the same way as iPSC-derived 2D models, iPSC-derived organoids are appropriate personalized models since they retain the genetic heritage of the donor. In comparison to other in vitro models, iPSC-derived organoids present advantages in terms of versatility, patient-specificity, and ethical issues. This review aims to provide an updated report of the employment of iPSCs, and 2D and 3D models derived from these, for the study of ADRs. This article is categorized under: Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- Paola Rispoli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Giuliana Decorti
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Gabriele Stocco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Umbaugh DS, Jaeschke H. Biomarker discovery in acetaminophen hepatotoxicity: leveraging single-cell transcriptomics and mechanistic insight. Expert Rev Clin Pharmacol 2024; 17:143-155. [PMID: 38217408 PMCID: PMC10872301 DOI: 10.1080/17512433.2024.2306219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury and can cause a rapid progression to acute liver failure (ALF). Therefore, the identification of prognostic biomarkers to determine which patients will require a liver transplant is critical for APAP-induced ALF. AREAS COVERED We begin by relating the mechanistic investigations in mouse models of APAP hepatotoxicity to the human APAP overdose pathophysiology. We draw insights from the established sequence of molecular events in mice to understand the progression of events in the APAP overdose patient. Through this mechanistic understanding, several new biomarkers, such as CXCL14, have recently been evaluated. We also explore how single-cell RNA sequencing, spatial transcriptomics, and other omics approaches have been leveraged for identifying novel biomarkers and how these approaches will continue to push the field of biomarker discovery forward. EXPERT OPINION Recent investigations have elucidated several new biomarkers or combination of markers such as CXCL14, a regenerative miRNA signature, a cell death miRNA signature, hepcidin, LDH, CPS1, and FABP1. While these biomarkers are promising, they all require further validation. Larger cohort studies analyzing these new biomarkers in the same patient samples, while adding these candidate biomarkers to prognostic models will further support their clinical utility.
Collapse
Affiliation(s)
- David S Umbaugh
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Alatawi FS, Omran AME, Alatawi MS, Rashad E, Yasin NAE, Soliman AF. Network Pharmacology Prediction and Experimental Validation of Ferulic Acid’s Protective Effects against Diclofenac‐Induced Liver Injury. J Food Biochem 2024; 2024. [DOI: 10.1155/2024/5592390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Despite being one of the most consumed analgesics worldwide, liver injury is an adverse effect of diclofenac (DF). In pursuit of reliable hepatoprotective natural remedies, this study aimed to investigate the potential protective effect of ferulic acid (FA) and its mechanism against DF‐induced liver injury. Various network databases and datasets were used to collect targets corresponding to FA and DF‐induced liver injury. Enrichment analyses of common targets were performed, a protein‐protein interaction (PPI) network was constructed, the hub genes were identified, and the upstream miRNA interacting with the top hub gene was later predicted. A DF‐induced liver injury rat model was established to verify FA’s protective effects, and the selected hub gene expression level with its upstream regulatory miRNA and a downstream set of targets was examined to elucidate the underlying mechanism. A total of 18 genes were identified as potential targets of FA to protect against DF‐induced liver injury. Data from the enrichment and PPI analyses and the prediction of the upstream miRNAs indicated that the most worthwhile pair to study was miR‐296‐5p/Jun. In vivo findings showed that coadministration of FA significantly reduced the DF‐induced alterations in the liver function indices, oxidative stress, and liver histology. Mechanistically, FA downregulated the expression of Jun, Bim, Bax, Casp3, IL‐1β, IL‐6, and TNF‐α, whereas it upregulated the expression of rno‐miR‐296‐5p and Bcl2. In conclusion, combining network pharmacology and an in vivo study revealed that miR‐296‐5p/Jun axis could mediate the mitigative effect of FA against DF‐induced liver injury.
Collapse
|
13
|
Shalkami AGS, El-Shoura EAM, Hassan MIA. Carvedilol alleviates the detrimental effects of azathioprine on hepatic tissues in experimental rats: Focusing on redox system, inflammatory and apoptosis pathways. Hum Exp Toxicol 2024; 43:9603271241269003. [PMID: 39080824 DOI: 10.1177/09603271241269003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE Drug-induced liver injury is becoming an increasingly important topic in drug research and clinical practice. Due to a lack of experimental animal models, predicting drug-induced liver injury in humans is challenging. Azathioprine (AZA) is a classical immunosuppressant with hepatotoxic adverse effects. The present study aimed to address the hepatoprotective effect of carvedilol (CAR) against AZA-induced hepatocellular injury via assessing redox-sensitive signals. METHOD To achieve this purpose, rats were allocated into four groups: control, CAR only, AZA only, and CAR plus AZA groups. The induction of hepatic injury was induced by a single intraperitoneal injection of AZA at a dose of 50 mg/kg on the 6th day of the experiment. Each experimental protocol was approved and supervised by the Ethics Committee for Animal Experiments. RESULTS The results of the present study revealed that CAR administration significantly diminished AZA-induced hepatic dysfunction, as evidenced by relief of hepatic function biomarkers and histopathological aberration induced by AZA injection. Besides, CAR restored oxidant/antioxidant balance as well as NRF2 expression. In addition, CAR suppressed inflammatory response induced by AZA challenge as evidenced by downregulation of TLR4, TNF-α, MPO, and eNOS/iNOS levels in hepatic tissue. Moreover, CAR recovered apoptotic/anti-apoptotic status by modulation of caspase-3/Bcl2 expression. CONCLUSION Taken together, CAR protects against AZA-induced hepatic injury via antioxidant, anti-inflammatory, and anti-apoptotic activities. These findings revealed that CAR could be a good candidate for hepatic injury protection and can be added to AZA therapeutic regimen to reduce their adverse effect.
Collapse
Affiliation(s)
- Abdel-Gawad S Shalkami
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- Clinical Pharmacy Program, Faculty of Health Science and Nursing, Al-Rayan Colleges, Medina, Saudi Arabia
| | - Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohammed I A Hassan
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
14
|
Zheng Y, Wang L, Wang J, Zhao T, Wang J. Modulation of the HIF-1α-NCOA4-FTH1 Signaling Axis Regulating Ferroptosis-induced Hepatic Stellate Cell Senescence to Explore the Anti-hepatic Fibrosis Mechanism of Curcumol. Curr Med Chem 2024; 31:2821-2837. [PMID: 38351696 DOI: 10.2174/0109298673271261231213051410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 06/05/2024]
Abstract
INTRODUCTION Senescence of activated hepatic stellate cells (HSC) reduces extracellular matrix expression to reverse liver fibrosis. Ferroptosis is closely related to cellular senescence, but its regulatory mechanisms need to be further investigated. The iron ions weakly bound to ferritin in the cell are called labile iron pool (LIP), and together with ferritin, they maintain cellular iron homeostasis and regulate the cell's sensitivity to ferroptosis. METHODS We used lipopolysaccharide (LPS) to construct a pathological model group and divided the hepatic stellate cells into a blank group, a model group, and a curcumol 12.5 mg/L group, a curcumol 25 mg/L group, and a curcumol 50 mg/L group. HIF-1α-NCOA4- FTH1 signalling axis, ferroptosis and cellular senescence were detected by various cellular molecular biology experiments. RESULT We found that curcumol could induce hepatic stellate cell senescence by promoting iron death in hepatic stellate cells. Curcumol induced massive deposition of iron ions in hepatic stellate cells by activating the HIF-1α-NCOA4-FTH1 signalling axis, which further led to iron overload and lipid peroxidation-induced ferroptosis. Interestingly, our knockdown of HIF-1α rescued curcumol-induced LIP and iron deposition in hepatic stellate cells, suggesting that HIF-1α is a key target of curcumol in regulating iron metabolism and ferroptosis. We were able to rescue curcumol-induced hepatic stellate cell senescence when we reduced LIP and iron ion deposition using iron chelators. CONCLUSION Overall, curcumol induces ferroptosis and cellular senescence by increasing HIF-1α expression and increasing NCOA4 interaction with FTH1, leading to massive deposition of LIP and iron ions, which may be the molecular biological mechanism of its anti-liver fibrosis.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Jiaru Wang
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, 530222, Guangxi , China
| |
Collapse
|
15
|
Laha A, Sarkar A, Panja AS, Bandopadhyay R. Screening of Prospective Antiallergic Compound as FcεRI Inhibitors and Its Antiallergic Efficacy Through Immunoinformatics Approaches. Mol Biotechnol 2024; 66:26-33. [PMID: 36988875 DOI: 10.1007/s12033-023-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The occurrence of allergy, a type I hypersensitivity reaction, is rising exponentially all over the world. Sometimes, allergy proves to be fatal for atopic patients, due to the occurrence of anaphylaxis. This study is aimed to find an anti-allergic agent that can inhibit the binding of IgE to Human High Affinity IgE Receptor (FCεRI), thereby preventing the degranulation of mast cells. A considerable number of potential anti-allergic compounds were assessed for their inhibitory strength through ADMET studies. AUTODOCK was used for estimating the binding energy between anti-allergic compounds and FCεRI, along with the interacting amino acids. The docked pose showing favorable binding energy was subjected to molecular dynamics simulation study. Marrubiin, a diterpenoid lactone from Lamiaceae, and epicatechin-3-gallate appears to be effective in blocking the Human High Affinity IgE Receptor (FCεRI). This in-silico study proposes the use of marrubiin and epicatechin-3-gallate, in the downregulation of allergic responses. Due to the better inhibition constant, future direction of this study is to analyze the safety and efficacy of marrubiin in anti-allergic activities through in-vivo clinical human trials.
Collapse
Affiliation(s)
- Anubhab Laha
- UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
- Department of Botany, Chandernagore College, Chandernagore, Hooghly, West Bengal, 712136, India
| | - Aniket Sarkar
- Post-Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Rajib Bandopadhyay
- UGC Centre for Advanced Study, Department of Botany, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
16
|
Allison R, Guraka A, Shawa IT, Tripathi G, Moritz W, Kermanizadeh A. Drug induced liver injury - a 2023 update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:442-467. [PMID: 37786264 DOI: 10.1080/10937404.2023.2261848] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Drug-Induced Liver Injury (DILI) constitutes hepatic damage attributed to drug exposure. DILI may be categorized as hepatocellular, cholestatic or mixed and might also involve immune responses. When DILI occurs in dose-dependent manner, it is referred to as intrinsic, while if the injury occurs spontaneously, it is termed as idiosyncratic. This review predominately focused on idiosyncratic liver injury. The established molecular mechanisms for DILI include (1) mitochondria dysfunction, (2) increased reactive oxygen species levels, (3) presence of elevated apoptosis and necrosis, (4) and bile duct injuries associated with immune mediated pathways. However, it should be emphasized that the underlying mechanisms responsible for DILI are still unknown. Prevention strategies are critical as incidences occur frequently, and treatment options are limited once the injury has developed. The aim of this review was to utilize retrospective cohort studies from across the globe to gain insight into epidemiological patterns. This review considers (1) what is currently known regarding the mechanisms underlying DILI, (2) discusses potential risk factors and (3) implications of the coronavirus pandemic on DILI presentation and research. Future perspectives are also considered and discussed and include potential new biomarkers, causality assessment and reporting methods.
Collapse
Affiliation(s)
- Rebecca Allison
- College of Science and Technology, University of Derby, Derby, UK
| | - Asha Guraka
- College of Science and Technology, University of Derby, Derby, UK
| | - Isaac Thom Shawa
- College of Science and Technology, University of Derby, Derby, UK
| | - Gyan Tripathi
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Ali Kermanizadeh
- College of Science and Technology, University of Derby, Derby, UK
| |
Collapse
|
17
|
He B, Cheng X, Xiang HR, Li Y, Zhang QZ, Peng WX, Yang B. Glutamate dehydrogenase combined with ferrochelatase as a biomarker of liver injury induced by antituberculosis drugs. Br J Clin Pharmacol 2023; 89:3092-3104. [PMID: 37259680 DOI: 10.1111/bcp.15807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
AIMS To explore the potential value of serum glutamate dehydrogenase (GLDH), ferrochelatase (FECH), heme oxygenase-1 (HO-1) and glutathione-S-transferase-α (GST-α) as diagnostic biomarkers for liver injury caused by antituberculosis drugs. METHODS We established a rat model of isoniazide-induced liver injury and recruited 122 hospitalized tuberculosis patients taking antituberculosis drugs. We detected the concentration of GLDH, FECH, HO-1 and GST-α by enzyme-linked immunosorbent assay. GraphPad Prism8 and SPSS 26.0 were used for statistical analysis. RESULTS In the rat model, serum GLDH concentration gradually increased during isoniazid (INH) administration, while serum FECH, HO-1 and GST-α concentrations significantly increased after INH administration was stopped. The receiver operating characteristic curve showed that the areas under the curve (AUCs) of serum GLDH and FECH for the diagnosis of anti-tuberculosis (TB) drug-induced liver injury (anti-TB-DILI) were 0.7692 (95% confidence interval [CI] 0.5442-0.9943) and 0.7284 (95% CI 0.4863-0.9705) and the diagnostic accuracies were 81.25% and 78.79%, respectively. In clinical research, the AUCs of GLDH and FECH were 0.9124 (95% CI 0.8380-0.9867) and 0.6634 (95% CI 0.5391-0.7877), and the optimal thresholds were 10.40 mIU/mL and 1.304 ng/mL, respectively. The diagnostic accuracy, specificity and positive predictive value (PPV) of GLDH were 82.61%, 79.38% and 47.22%. We performed a joint diagnostic test for GLDH and FECH. The diagnostic accuracy (90.43%), specificity (91.75%) and PPV (65.21%) of serial tests were better than for GLDH and FECH alone. CONCLUSIONS GLDH in the diagnosis of liver injury induced by anti-TB drugs has high sensitivity, but low specificity and low PPV. The combination of GLDH and FECH could significantly improve the specificity, PPV and diagnostic accuracy, and reduce the false-positive rate of anti-TB-DILI.
Collapse
Affiliation(s)
- Bei He
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Cheng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huai-Rong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Xing Peng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| | - Bo Yang
- Institute of Medical Laboratory, the First Hospital of Changsha City, Changsha, Hunan, China
| |
Collapse
|
18
|
Xiang HR, Li Y, Cheng X, He B, Li HM, Zhang QZ, Wang B, Peng WX. Serum levels of IL-6/IL-10/GLDH may be early recognition markers of anti-tuberculosis drugs (ATB) -induced liver injury. Toxicol Appl Pharmacol 2023; 475:116635. [PMID: 37487937 DOI: 10.1016/j.taap.2023.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
To explore the potential value of serum glutamate dehydrogenase (GLDH) combined with inflammatory cytokines as diagnostic biomarkers for anti-tuberculosis drug -induced liver injury (ATB-DILI). We collected the residual serum from the patients who met the criteria after liver function tests. We have examined these parameters including GLDH which were determined by enzyme-linked immunosorbent assay and cytokines which were determined by cytokine combination detection kit. Multivariate logistics stepwise forward regression was applied to establish regression models. A total of 138 tuberculosis patients were included in the diagnostic markers study of ATB-DILI, including normal liver function group (n = 108) and ATB-DILI group(n = 30). Serum GLDH, IL-6 and IL-10 levels were significantly increased in the ATB-DILI group. Receiver operating characteristic curve (ROC) curve showed that the area under curve (AUC) of serum GLDH, IL-6 and IL-10 for the diagnosis of ATB-DILI were 0.870, 0.714 and 0.811, respectively. In logistic regression modeling, the AUC of GLDH combined with IL-10 as an ATB-DILI marker is 0.912. Serum IL-6、IL-10 and GLDH levels began to rise preceded the increase in ALT by 7 days, with significant differences in IL-6 compared with 7 days. Serum GLDH, IL-6 and IL-10 levels were correlated with the severity of liver injury. In conclusion, we found that GLDH, IL-6 and IL-10 alone as diagnostic markers of ATB-DILI had good diagnostic efficacy. Logistic regression model established by GLDH and IL-10 had better diagnostic efficacy and IL-6 may be an early predictor of liver injury in the setting of ATB poisoning.
Collapse
Affiliation(s)
- Huai-Rong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yun Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xuan Cheng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bei He
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hua-Min Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bin Wang
- Institute of Medical Laboratory, the First hospital of Changsha City, Changsha, Hunan 410011, China.
| | - Wen-Xing Peng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
19
|
Park JE, Ahn CH, Lee HJ, Sim DY, Park SY, Kim B, Shim BS, Lee DY, Kim SH. Antioxidant-Based Preventive Effect of Phytochemicals on Anticancer Drug-Induced Hepatotoxicity. Antioxid Redox Signal 2023; 38:1101-1121. [PMID: 36242510 DOI: 10.1089/ars.2022.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Drug-induced liver injury (DILI) or hepatotoxicity has been a hot issue to overcome on the safety and physiological function of the liver, since it is known to have biochemical, cellular, immunological, and molecular alterations in the liver mainly induced by alcohol, chemicals, drugs, heavy metals, and genetic factors. Recently efficient therapeutic and preventive strategies by some phytochemicals are of interest, targeting oxidative stress-mediated hepatotoxicity alone or in combination with anticancer drugs. Recent Advances: To assess DILI, the variety of in vitro and in vivo animal models has been developed mainly by using carbon tetrachloride, d-galactosamine, acetaminophen, and lipopolysaccharide. Also, the mechanisms on hepatotoxicity by several drugs and herbs have been explored in detail. Recent studies reveal that antioxidants including vitamins and some phytochemicals were reported to prevent against DILI. Critical Issues: Antioxidant therapy with some phytochemicals is noteworthy, since oxidative stress is critically involved in DILI via production of chemically reactive oxygen species or metabolites, impairment of mitochondrial respiratory chain, and induction of redox cycling. Future Directions: For efficient antioxidant therapy, DILI susceptibility, Human Leukocyte Antigen genetic factors, biomarkers, and pathogenesis implicated in hepatotoxicity should be further explored in association with oxidative stress-mediated signaling, while more randomized preclinical and clinical trials are required with optimal safe doses of drugs and/or phytochemicals alone or in combination for efficient clinical practice along with the development of advanced DILI diagnostic tools.
Collapse
Affiliation(s)
- Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chi-Hoon Ahn
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Su Yeon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Njeka Wojnarova L, Kutinova Canova N, Arora M, Farghali H. Differentiated modulation of signaling molecules AMPK and SIRT1 in experimentally drug-induced hepatocyte injury. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:50-60. [PMID: 35416184 DOI: 10.5507/bp.2022.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
AIM Currently available medicines have little to offer in terms of supporting the regeneration of injured hepatic cells. Previous experimental studies have shown that resveratrol and metformin, less specific activators of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1), can effectively attenuate acute liver injury. The aim of this experimental study was to elucidate whether modulation of AMPK and SIRT1 activity can modify drug/paracetamol (APAP)-induced hepatocyte damage in vitro. METHODS Primary rat hepatocytes were pretreated with mutual combinations of specific synthetic activators and inhibitors of SIRT1 and AMPK and followed by a toxic dose of APAP. At the end of cultivation, medium samples were collected for biochemical analysis of alanine-aminotransferase and nitrite levels. Hepatocyte viability, thiobarbituric reactive substances, SIRT1 and AMPK activity and protein expression were also assessed. RESULTS The harmful effect of APAP was associated with decreased AMPK and SIRT1 activity and protein expression alongside enhanced oxidative stress in hepatocytes. The addition of AMPK activator (AICAR) or SIRT1 activator (CAY10591) significantly attenuated the deleterious effects of AMPK inhibitor (Compound C) on the hepatotoxicity of APAP. Furthermore, CAY10591 but not AICAR markedly decreased the deleterious effect of APAP in combination with SIRT1 inhibitor (EX-527). CONCLUSION Our findings demonstrate that decreased AMPK activity is associated with the hepatotoxic effect of APAP which can be significantly attenuated by the administration of a SIRT1 activator. These findings suggest that differentiated modulation of AMPK and SIRT1 activity could therefore provide an interesting and novel therapeutic opportunity in the future to combat hepatocyte injury.
Collapse
Affiliation(s)
- Lea Njeka Wojnarova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Nikolina Kutinova Canova
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Mahak Arora
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Hassan Farghali
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
21
|
Abdel Halim AS, Rudayni HA, Chaudhary AA, Ali MAM. MicroRNAs: Small molecules with big impacts in liver injury. J Cell Physiol 2023; 238:32-69. [PMID: 36317692 DOI: 10.1002/jcp.30908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Harrington C, Krishnan S, Mack CL, Cravedi P, Assis DN, Levitsky J. Noninvasive biomarkers for the diagnosis and management of autoimmune hepatitis. Hepatology 2022; 76:1862-1879. [PMID: 35611859 PMCID: PMC9796683 DOI: 10.1002/hep.32591] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
Abstract
Autoimmune hepatitis (AIH) is a rare disease of unclear etiology characterized by loss of self-tolerance that can lead to liver injury, cirrhosis, and acute liver failure. First-line treatment consists of systemic corticosteroids, or budesonide, and azathioprine, to which most patients are initially responsive, although predictors of response are lacking. Relapses are very common, correlate with histological activity despite normal serum transaminases, and increase hepatic fibrosis. Furthermore, current regimens lead to adverse effects and reduced quality of life, whereas medication titration is imprecise. Biomarkers that can predict the clinical course of disease, identify patients at elevated risk for relapse, and improve monitoring and medication dosing beyond current practice would have high clinical value. Herein, we review novel candidate biomarkers in adult and pediatric AIH based on prespecified criteria, including gene expression profiles, proteins, metabolites, and immune cell phenotypes in different stages of AIH. We also discuss biomarkers relevant to AIH from other immune diseases. We conclude with proposed future directions in which biomarker implementation into clinical practice could lead to advances in personalized therapeutic management of AIH.
Collapse
Affiliation(s)
- Claire Harrington
- Division of Gastroenterology & HepatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Swathi Krishnan
- Medicine DepartmentYale School of MedicineNew HavenConnecticutUSA
| | - Cara L. Mack
- Section of Pediatric Gastroenterology, Hepatology & Nutrition, Children's Hospital ColoradoUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paolo Cravedi
- Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David N. Assis
- Section of Digestive DiseasesYale School of MedicineNew HavenConnecticutUSA
| | - Josh Levitsky
- Division of Gastroenterology & HepatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
23
|
Illuminating the hepatotoxic mechanism of norcantharidin in rats using metabolomics analysis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
Norcantharidin (NCTD) has multiple antitumor effects. However, NCTD can induce significant hepatotoxicity and the mechanism of hepatotoxicity is not clear for now.
Objective
This study aimed to explore the hepatotoxicity of NCTD in rat by ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight (Q-TOF)-MS (UPLC/Q-TOF-MS) metabolomics.
Results
Serum biochemical indices including alanine aminotransferase (ALT) and total bilirubin (T-BIL) were significantly increased. Histopathological and ultrastructure results revealed that hepatocytes were damaged. Furthermore, the metabolomics results showed that 11 metabolites in serum and 8 metabolites in liver were differential metabolites for NCTD hepatotoxicity. Four metabolic pathways including the sphingolipid metabolism, purine metabolism, arachidonic acid metabolism, and glycerophospholipid metabolism were the key metabolic pathways related to NCTD hepatotoxicity.
Conclusion
The metabolomics analysis in this study reveal new clues on the hepatotoxicity mechanism of NCTD in rats. These findings have potential applications in the toxicity study of NCTD.
Collapse
|
24
|
Woo SM, Alhaqqan DM, Gildea DT, Patel PA, Cundra LB, Lewis JH. Highlights of the drug-induced liver injury literature for 2021. Expert Rev Gastroenterol Hepatol 2022; 16:767-785. [PMID: 35839342 DOI: 10.1080/17474124.2022.2101996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
INTRODUCTION In 2021, over 3,000 articles on Drug-Induced Liver Injury (DILI) were published, nearly doubling the annual number compared to 2011. This review selected DILI articles from 2021 we felt held the greatest interest and clinical relevance. AREAS COVERED A literature search was conducted using PubMed between 1 March 2021 and 28 February 2022. 86 articles were included. This review discusses new and established cases of hepatotoxins, including new FDA approvals and COVID-19 therapeutics. Developments in biomarkers and causality assessment methods are discussed. Updates from registries are also explored. EXPERT OPINION DILI diagnosis and prognostication remain challenging. Roussel Uclaf Causality Assessment Method (RUCAM) is the best option for determining causality and has been increasingly accepted by clinicians. Revised Electronic Causality Assessment Method (RECAM) may be more user-friendly and accurate but requires further validation. Quantitative systems pharmacology methods, such as DILIsym, are increasingly used to predict hepatotoxicity. Oncotherapeutic agents represent many newly approved and described causes of DILI. Such hepatotoxicity is deemed acceptable relative to the benefit these drugs offer. Drugs developed for non-life-threatening disorders may not show a favorable benefit-to-risk ratio and will be more difficult to approve. As the COVID-19 landscape evolves, its effect on DILI deserves further investigation.
Collapse
Affiliation(s)
- Stephanie M Woo
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Dalal M Alhaqqan
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Daniel T Gildea
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Palak A Patel
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Lindsey B Cundra
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - James H Lewis
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
25
|
Deng Y, Luo X, Li X, Xiao Y, Xu B, Tong H. Screening of Biomarkers and Toxicity Mechanisms of Rifampicin-Induced Liver Injury Based on Targeted Bile Acid Metabolomics. Front Pharmacol 2022; 13:925509. [PMID: 35754491 PMCID: PMC9226894 DOI: 10.3389/fphar.2022.925509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Rifampicin (RIF) is a critical first-line drug for tuberculosis. However, long-term or high-dose treatment with RIF can induce severe liver injury; the underlying mechanism of this effect has not yet been clarified. This study was performed to screen reliable and sensitive biomarkers in serum bile acids (BAs) using targeted BA metabolomics and evaluate the toxicity mechanisms underlying RIF-induced liver injury through the farnesoid x receptor (Fxr)-multidrug resistance-associated proteins (Mrps) signaling pathway. Thirty-two Institute of Cancer Research mice were randomly divided into four groups, and normal saline, isoniazid 75 mg/kg + RIF 177 mg/kg (RIF-L), RIF-L, or RIF 442.5 mg/kg (RIF-H) was orally administered by gavage for 21 days. After treatment, changes in serum biochemical parameters, hepatic pathological conditions, BA levels, Fxr expression, and BA transporter levels were measured. RIF caused notable liver injury and increased serum cholic acid (CA) levels. Decline in the serum secondary BAs (deoxycholic acid, lithocholic acid, taurodeoxycholic acid, and tauroursodeoxycholic acid) levels led to liver injury in mice. Serum BAs were subjected to metabolomic assessment using partial least squares discriminant and receiver operating characteristic curve analyses. CA, DCA, LCA, TDCA, and TUDCA are potential biomarkers for early detection of RIF-induced liver injury. Furthermore, RIF-H reduced hepatic BA levels and elevated serum BA levels by suppressing the expression of Fxr and Mrp2 messenger ribonucleic acid (mRNA) while inducing that of Mrp3 and Mrp4 mRNAs. These findings provide evidence for screening additional biomarkers based on targeted BA metabolomics and provide further insights into the pathogenesis of RIF-induced liver injury.
Collapse
Affiliation(s)
- Yang Deng
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Xilin Luo
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Yisha Xiao
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Bing Xu
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| | - Huan Tong
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China.,The Clinical Application Research Institute of Antibiotics in Changsha, Changsha, China
| |
Collapse
|
26
|
Doktorova TY, Azzi P, Hofer J, Messner CJ, Gaiser C, Werner S, Singh P, Hardy B, Suter-Dick L, Chesne C. How to Foster 'New Approach Methodology' Toxicologists. Altern Lab Anim 2022; 50:71-75. [PMID: 35179997 DOI: 10.1177/02611929221078945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The need to reduce, refine and replace animal experimentation has led to a boom in the establishment of new approach methodologies (NAMs). This promising trend brings the hope that the replacement of animals by using NAMs will become increasingly accepted by regulators, included in legislation, and consequently more-often implemented by industry. The majority of NAMs, however, are still not very well understood, either due to the complexity of the applied approach or the data analysis workflow. A potential solution to this problem is the provision of better educational resources to scientists new to the area - showcasing the added value of NAMs and outlining various ways of overcoming issues associated with knowledge gaps. In this paper, the educational exchange between four institutions - namely, two universities and two SMEs - via a series of video training sessions, is described. The goal of this exchange was to showcase an exemplary event to help introduce scientists to non-animal approaches, and to actively support the development of resources enabling the use of alternatives to laboratory animals.
Collapse
Affiliation(s)
| | - Pamela Azzi
- Lebanese University, Faculty of Sciences, Hadath, Lebanon.,Biopredic International, Saint-Grégoire, France
| | - Joelle Hofer
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Catherine J Messner
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Carine Gaiser
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Sophie Werner
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | | | | | - Laura Suter-Dick
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | | |
Collapse
|
27
|
Wang XN, Xia WR, Liu JQ, Sun FY, Zhong ZJ, Liu LF, Xin GZ. Targeting tryptophan metabolism reveals Clematichinenoside AR alleviates triptolide-induced hepatotoxicity. J Pharm Biomed Anal 2022; 208:114461. [PMID: 34775190 DOI: 10.1016/j.jpba.2021.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Liver toxicity induced by Triptolide (TP) has limited its clinical application on rheumatoid arthritis (RA). Saponins have been proved as an efficacious remedy to mitigate hepatotoxicity. However, the mechanism of reducing hepatotoxicity by saponins intervention remains incompletely characterized. Tryptophan (Trp) metabolites activate transcriptional regulators to mediate host detoxification responses. Our study aimed to investigate whether Clematichinenoside AR (C-AR) could attenuate TP-induced liver damage by regulating Trp metabolism. We used targeted metabolomics to quantify Trp metabolites in the serum and liver samples of collagen-induced arthritis rats treated by TP. Multiple comparison analyses helped the evaluation of promising biomarkers. The pronounced changed levels of Trp, indole acetic acid, and indole-3-carboxaldehyde in the serum and indole acetic acid, indole, and tryptamine in the liver are relevant to TP-induced liver injury. Intervention with C-AR could relieve TP-induced hepatotoxicity evidenced by ameliorative serum parameters and hepatic histology. In addition, C-AR regulated the levels of these indoles biomarker candidates to normal. Therapeutic modulation with natural compounds might be a useful clinical strategy to ameliorate toxicity induced by TP. Deciphering Trp metabolism will facilitate a better understanding of the pathogenesis of diseases and drug responding.
Collapse
Affiliation(s)
- Xin-Nan Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Wen-Rui Xia
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 818 Xingwan Road, Nanchang 330004, Jiangxi Province, China.
| | - Fang-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Zhu-Jun Zhong
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
28
|
Hu C, Li HW, Ke JQ, Yu XC, Zhao MY, Shi XY, Wu LJ, Tang XL, Xiong YH. Metabolic profiling of lysophosphatidylcholines in chlorpromazine hydrochloride- and N-acetyl- p-amino-phenoltriptolide-induced liver injured rats based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Hum Exp Toxicol 2022; 41:9603271221108320. [PMID: 35722787 DOI: 10.1177/09603271221108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chlorpromazine hydrochloride (CH) and N-acetyl-p-amino-phenoltriptolide (APAP) are typical acentral dopamine receptor antagonists and antipyretic analgesics in clinical applications, respectively. However, it has been reported that these 2 drugs could cause liver damage. Lysophosphatidylcholines (LPCs) have multiple physiological functions and are metabolized primarily in the liver, where it undergoes significant changes when the liver is damaged. In the study, 15 LPCs in the rat serum with CH- and APAP-induced liver injury were quantified based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, and multivariate statistical analyses including principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were combined to understand CH- and APAP-induced liver injury from the perspective of LPC metabolic profiling. The quantitative results showed that there were significant changes in 10 LPCs and 5 LPCs after CH- and APAP-administration, separately. The results of PCA and OPLS-DA indicated that CH- and APAP-induced liver injury could be well distinguished by the LPC metabolic profiling, and 7 LPCs and 1 LPC biomarkers that could characterize CH- and APAP-induced liver damage in turn had been screened. This study will not only provide a new perspective for the clinical diagnosis of CH- and APAP-induced liver injury, but also offer a reference for further study of their hepatotoxicity mechanisms.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Hong-Wei Li
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Jia-Qun Ke
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xue-Chun Yu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Mei-Yu Zhao
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xin-Yue Shi
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Lin-Jing Wu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xi-Lan Tang
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Yin-Hua Xiong
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
29
|
Redrawing the map to novel DILI biomarkers in circulation: Where are we, where should we go, and how can we get there? LIVERS 2021; 1:286-293. [PMID: 34966905 DOI: 10.3390/livers1040022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Circulating biomarkers of drug-induced liver injury (DILI) have been a focus of research in hepatology over the last decade, and several novel DILI biomarkers that hold promise for certain applications have been identified. For example, glutamate dehydrogenase holds promise as a specific biomarker of liver injury in patients with concomitant muscle damage. It may also be a specific indicator of mitochondrial damage. In addition, microRNA-122 is sensitive for early detection of liver injury in acetaminophen overdose patients. However, recent events in the field of DILI biomarker research have provided us with an opportunity to step back, consider how biomarker discovery has been done thus far, and determine how to move forward in a way that will optimize the discovery process. This is important because major challenges remain in the DILI field and related areas that could be overcome in part by new biomarkers. In this short review, we briefly describe recent progress in DILI biomarker discovery and development, identify current needs, and suggest a general approach to move forward.
Collapse
|
30
|
Using an Automated Algorithm to Identify Potential Drug-Induced Liver Injury Cases in a Pharmacovigilance Database. Adv Ther 2021; 38:4709-4721. [PMID: 34319549 PMCID: PMC8408072 DOI: 10.1007/s12325-021-01856-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is the most frequent cause of acute liver failure in North America and Europe, but it is often missed because of unstandardized diagnostic methods and criteria. This study aimed to develop and validate an automated algorithm to identify potential DILI cases in routine pharmacovigilance (PV) activities. METHODS Post-marketing hepatic adverse events reported for a potentially hepatotoxic drug in a global PV database from 19 March 2017 to 18 June 2018 were assessed manually and with the automated algorithm. The algorithm provided case assessments by applying pre-specified criteria to all case data and narratives simultaneously. RESULTS A total of 1456 cases were included for analysis and assessed manually. Sufficient data for algorithm assessment were available for 476 cases (32.7%). Of these cases, manual assessment identified 312 (65.5%) potential DILI cases while algorithm assessment identified 305 (64.1%) potential DILI cases. Comparison of manual and algorithm assessments demonstrated a sensitivity of 97.8% and a specificity of 79.3% for the algorithm. Given the prevalence of potential DILI cases in the population studied, the algorithm was calculated to have positive predictive value 56.3% and negative predictive value 99.2%. The time required for manual review compared to algorithm review suggested that application of the algorithm prior to manual screening would have resulted in a time savings of 42.2%. CONCLUSION An automated algorithm to identify potential DILI cases was developed and successfully implemented. The algorithm demonstrated a high sensitivity, a high negative predictive value, along with significant efficiency and utility in a real-time PV database.
Collapse
|
31
|
Metabolomic analysis to discriminate drug-induced liver injury (DILI) phenotypes. Arch Toxicol 2021; 95:3049-3062. [PMID: 34274980 PMCID: PMC8380240 DOI: 10.1007/s00204-021-03114-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022]
Abstract
Drug-induced liver injury (DILI) is an adverse toxic hepatic clinical reaction associated to the administration of a drug that can occur both at early clinical stages of drug development, as well after normal clinical usage of approved drugs. Because of its unpredictability and clinical relevance, it is of medical concern. Three DILI phenotypes (hepatocellular, cholestatic, and mixed) are currently recognized, based on serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) values. However, this classification lacks accuracy to distinguish among the many intermediate mixed types, or even to estimate the magnitude and progression of the injury. It was found desirable to have additional elements for better evaluation criteria of DILI. With this aim, we have examined the serum metabolomic changes occurring in 79 DILI patients recruited and monitored using established clinical criteria, along the course of the disease and until recovery. Results revealed that free and conjugated bile acids, and glycerophospholipids were among the most relevant metabolite classes for DILI phenotype characterization. Using an ensemble of PLS-DA models, metabolomic information was integrated into a ternary diagram to display the disease phenotype, the severity of the liver damage, and its progression. The modeling implemented and the use of such compiled information in an easily understandable and visual manner facilitates a straightforward DILI phenotyping and allow to monitor its progression and recovery prediction, usefully complementing the concise information drawn out by the ALT and ALP classification.
Collapse
|
32
|
Gerussi A, Natalini A, Antonangeli F, Mancuso C, Agostinetto E, Barisani D, Di Rosa F, Andrade R, Invernizzi P. Immune-Mediated Drug-Induced Liver Injury: Immunogenetics and Experimental Models. Int J Mol Sci 2021; 22:4557. [PMID: 33925355 PMCID: PMC8123708 DOI: 10.3390/ijms22094557] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) is a challenging clinical event in medicine, particularly because of its ability to present with a variety of phenotypes including that of autoimmune hepatitis or other immune mediated liver injuries. Limited diagnostic and therapeutic tools are available, mostly because its pathogenesis has remained poorly understood for decades. The recent scientific and technological advancements in genomics and immunology are paving the way for a better understanding of the molecular aspects of DILI. This review provides an updated overview of the genetic predisposition and immunological mechanisms behind the pathogenesis of DILI and presents the state-of-the-art experimental models to study DILI at the pre-clinical level.
Collapse
Affiliation(s)
- Alessio Gerussi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Clara Mancuso
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Elisa Agostinetto
- Academic Trials Promoting Team, Institut Jules Bordet, L’Universite’ Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
- Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center—IRCCS, Humanitas Cancer Center, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy
| | - Donatella Barisani
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology (IBPM), National Research Council of Italy (CNR), 00185 Rome, Italy; (A.N.); (F.A.); (F.D.R.)
| | - Raul Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), UGC Aparato Digestivo, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29016 Málaga, Spain;
| | - Pietro Invernizzi
- Centre for Autoimmune Liver Diseases, Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (C.M.); (D.B.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
33
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
34
|
Mechanism-based identification of plasma metabolites associated with liver toxicity. Toxicology 2020; 441:152493. [DOI: 10.1016/j.tox.2020.152493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 12/25/2022]
|
35
|
Minerali E, Foil DH, Zorn KM, Lane TR, Ekins S. Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI). Mol Pharm 2020; 17:2628-2637. [PMID: 32422053 DOI: 10.1021/acs.molpharmaceut.0c00326] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI) is one the most unpredictable adverse reactions to xenobiotics in humans and the leading cause of postmarketing withdrawals of approved drugs. To date, these drugs have been collated by the FDA to form the DILIRank database, which classifies DILI severity and potential. These classifications have been used by various research groups in generating computational predictions for this type of liver injury. Recently, groups from Pfizer and AstraZeneca have collated DILI in vitro data and physicochemical properties for compounds that can be used along with data from the FDA to build machine learning models for DILI. In this study, we have used these data sets, as well as the Biopharmaceutics Drug Disposition Classification System data set, to generate Bayesian machine learning models with our in-house software, Assay Central. The performance of all machine learning models was assessed through both the internal 5-fold cross-validation metrics and prediction accuracy of an external test set of compounds with known hepatotoxicity. The best-performing Bayesian model was based on the DILI-concern category from the DILIRank database with an ROC of 0.814, a sensitivity of 0.741, a specificity of 0.755, and an accuracy of 0.746. A comparison of alternative machine learning algorithms, such as k-nearest neighbors, support vector classification, AdaBoosted decision trees, and deep learning methods, produced similar statistics to those generated with the Bayesian algorithm in Assay Central. This study demonstrates machine learning models grouped in a tool called MegaTox that can be used to predict early-stage clinical compounds, as well as recent FDA-approved drugs, to identify potential DILI.
Collapse
Affiliation(s)
- Eni Minerali
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H Foil
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
36
|
|
37
|
Abstract
Drug-induced liver injury (DILI), including herbal and dietary supplement hepatotoxicity, is often passed lightly; however, it can lead to the requirement of a liver transplant or may even cause death because of liver failure. Recently, the American College of Gastroenterology, Chinese Society of Hepatology and European Association for the Study of the Liver guidelines for the diagnosis and treatment of DILI have been established, and they will be helpful for guiding clinical treatment decisions. Roussel Uclaf Causality Assessment Method scoring is the most commonly used method to diagnose DILI; however, it has some limitations, such as poor validity and reproducibility. Recently, studies on new biomarkers have been actively carried out, which will help diagnose DILI and predict the prognosis of DILI. It is expected that the development of new therapies such as autophagy inducers and various other technologies of the fourth industrial revolution will be applicable to DILI research.
Collapse
Affiliation(s)
- Jeong Ill Suh
- Department of Internal Medicine, College of Medicine, Dongguk Unversity, Gyeongju, Korea
| |
Collapse
|