1
|
Luo H, Lv J, Wen P, Zhang S, Ma W, Yang Z. Supramolecular polyrotaxane-based nano-theranostics enable cancer-cell stiffening for enhanced T-cell-mediated anticancer immunotherapy. Nat Commun 2025; 16:2331. [PMID: 40057488 PMCID: PMC11890869 DOI: 10.1038/s41467-025-57718-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025] Open
Abstract
Despite the tremendous therapeutic promise of activating stimulators of interferon genes (STING) enable to prime robust de novo T-cell responses, biomechanics-mediated immune inhibitory pathways hinder the cytotoxicity of T cells against tumor cells. Blocking cancer cell biomechanics-mediated evasion provides a feasible strategy for augmenting STING activation-mediated anti-tumor therapeutic efficacy. Here, we fabricate a redox-responsive Methyl-β-cyclodextrin (MeβCD)-based supramolecular polyrotaxanes (MSPs), where the amphiphilic diselenide-bridged axle polymer loads MeβCD by the host-guest interaction and end-caping with two near-infrared (NIR) fluorescence probes IR783. The MSPs self-assemble with STING agonists diABZIs into nanoparticles (RDPNs@diABZIs), which enable simultaneous release of MeβCD and diABZIs in the redox tumor microenvironment. After the released diABZIs activate STING on antigen-presenting cells (APCs), de novo T-cell responses are initiated. Meanwhile, the released MeβCD depletes membrane cholesterol to overcome cancer-cell mechanical softness, which enhances the CTL-mediated killing of cancer cells. In the female tumor-bearing mouse model, we demonstrate that RDPNs@diABZIs lead to effective tumor regression and generate long-term immunological memory. Furthermore, RDPNs@diABZIs can achieve significant tumor eradication, with these mice remaining survival for at least 2 months.
Collapse
Affiliation(s)
- Haifen Luo
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Jingqi Lv
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Peiye Wen
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Shan Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China
| | - Wen Ma
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China.
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Al-Aqtash R, Collier DM. Ionotropic purinergic receptor 7 (P2X7) channel structure and pharmacology provides insight regarding non-nucleotide agonism. Channels (Austin) 2024; 18:2355150. [PMID: 38762911 PMCID: PMC11110710 DOI: 10.1080/19336950.2024.2355150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
P2X7 is a member of the Ionotropic Purinergic Receptor (P2X) family. The P2X family of receptors is composed of seven (P2X1-7), ligand-gated, nonselective cation channels. Changes in P2X expression have been reported in multiple disease models. P2Xs have large complex extracellular domains that function as receptors for a variety of ligands, including endogenous and synthetic agonists and antagonists. ATP is the canonical agonist. ATP affinity ranges from nanomolar to micromolar for most P2XRs, but P2X7 has uniquely poor ATP affinity. In many physiological settings, it may be difficult to achieve the millimolar extracellular ATP concentrations needed for P2X7 channel activation; however, channel function is implicated in pain sensation, immune cell function, cardiovascular disease, cancer, and osteoporosis. Multiple high-resolution P2X7 structures have been solved in apo-, ATP-, and antagonist-bound states. P2X7 structural data reveal distinct allosteric and orthosteric antagonist-binding sites. Both allosteric and orthosteric P2X7 antagonists are well documented to inhibit ATP-evoked channel current. However, a growing body of evidence supports P2X7 activation by non-nucleotide agonists, including extracellular histone proteins and human cathelicidin-derived peptides (LL-37). Interestingly, P2X7 non-nucleotide agonism is not inhibited by allosteric antagonists, but is inhibited by orthosteric antagonists. Herein, we review P2X7 function with a focus on the efficacy of available pharmacology on P2X7 channel current activation by non-nucleotide agonists in effort to understand agonist/antagonist efficacy, and consider the impact of these data on the current understanding of P2X7 in physiology and disease given these limitations of P2X7-selective antagonists and incomplete knockout mouse models.
Collapse
Affiliation(s)
- Rua’a Al-Aqtash
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Nehr-Majoros AK, Király Á, Helyes Z, Szőke É. Lipid raft disruption as an opportunity for peripheral analgesia. Curr Opin Pharmacol 2024; 75:102432. [PMID: 38290404 DOI: 10.1016/j.coph.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Chronic pain conditions are unmet medical needs, since the available drugs, opioids, non-steroidal anti-inflammatory/analgesic drugs and adjuvant analgesics do not provide satisfactory therapeutic effect in a great proportion of patients. Therefore, there is an urgent need to find novel targets and novel therapeutic approaches that differ from classical pharmacological receptor antagonism. Most ion channels and receptors involved in pain sensation and processing such as Transient Receptor Potential ion channels, opioid receptors, P2X purinoreceptors and neurokinin 1 receptor are located in the lipid raft regions of the plasma membrane. Targeting the membrane lipid composition and structure by sphingolipid or cholesterol depletion might open future perspectives for the therapy of chronic inflammatory, neuropathic or cancer pain, most importantly acting at the periphery.
Collapse
Affiliation(s)
- Andrea Kinga Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Ágnes Király
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary.
| |
Collapse
|
4
|
Cevoli F, Arnould B, Peralta FA, Grutter T. Untangling Macropore Formation and Current Facilitation in P2X7. Int J Mol Sci 2023; 24:10896. [PMID: 37446075 DOI: 10.3390/ijms241310896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Macropore formation and current facilitation are intriguing phenomena associated with ATP-gated P2X7 receptors (P2X7). Macropores are large pores formed in the cell membrane that allow the passage of large molecules. The precise mechanisms underlying macropore formation remain poorly understood, but recent evidence suggests two alternative pathways: a direct entry through the P2X7 pore itself, and an indirect pathway triggered by P2X7 activation involving additional proteins, such as TMEM16F channel/scramblase. On the other hand, current facilitation refers to the progressive increase in current amplitude and activation kinetics observed with prolonged or repetitive exposure to ATP. Various mechanisms, including the activation of chloride channels and intrinsic properties of P2X7, have been proposed to explain this phenomenon. In this comprehensive review, we present an in-depth overview of P2X7 current facilitation and macropore formation, highlighting new findings and proposing mechanistic models that may offer fresh insights into these untangled processes.
Collapse
Affiliation(s)
- Federico Cevoli
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Benoit Arnould
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francisco Andrés Peralta
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- Instituto de Neurociencias, CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Thomas Grutter
- Équipe de Chimie et Neurobiologie Moléculaire, Laboratoire de Conception et Application de Molécules Bioactives (CAMB) UMR 7199, Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67000 Strasbourg, France
| |
Collapse
|
5
|
Sivcev S, Kudova E, Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology 2023; 234:109542. [PMID: 37040816 DOI: 10.1016/j.neuropharm.2023.109542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Neurosteroids are steroids synthesized de novo in the brain from cholesterol in an independent manner from peripheral steroid sources. The term "neuroactive steroid" includes all steroids independent of their origin, and newly synthesized analogs of neurosteroids that modify neuronal activities. In vivo application of neuroactive steroids induces potent anxiolytic, antidepressant, anticonvulsant, sedative, analgesic and amnesic effects, mainly through interaction with the γ-aminobutyric acid type-A receptor (GABAAR). However, neuroactive steroids also act as positive or negative allosteric regulators on several ligand-gated channels including N-methyl-d-aspartate receptors (NMDARs), nicotinic acetylcholine receptors (nAChRs) and ATP-gated purinergic P2X receptors. Seven different P2X subunits (P2X1-7) can assemble to form homotrimeric or heterotrimeric ion channels permeable for monovalent cations and calcium. Among them, P2X2, P2X4, and P2X7 are the most abundant within the brain and can be regulated by neurosteroids. Transmembrane domains are necessary for neurosteroid binding, however, no generic motif of amino acids can accurately predict the neurosteroid binding site for any of the ligand-gated ion channels including P2X. Here, we will review what is currently known about the modulation of rat and human P2X by neuroactive steroids and the possible structural determinants underlying neurosteroid-induced potentiation and inhibition of the P2X2 and P2X4 receptors.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
von Mücke-Heim IA, Deussing JM. The P2X7 receptor in mood disorders: Emerging target in immunopsychiatry, from bench to bedside. Neuropharmacology 2023; 224:109366. [PMID: 36470368 DOI: 10.1016/j.neuropharm.2022.109366] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Psychiatric disorders are among the most burdensome disorders worldwide. Though therapies have evolved over the last decades, treatment resistance still affects many patients. Recently, neuroimmune systems have been identified as important factors of mood disorder biology. The underlying dysregulation in neuroimmune cross-talk is driven by genetic risk factors and accumulating adverse environmental influences like chronic psychosocial stress. These result in a cluster of proinflammatory cytokines and quantitative and functional changes of immune cell populations (e.g., microglia, monocytes, T cells), varying by disease entity and state. Among the emerging immune targets, purinergic signalling revolving around the membranous and ATP specific P2X7 receptor (P2X7R) has gained wider attention and clinical studies making use of antagonistic drugs are on-going. Still, no clinically meaningful applications have been identified so far. A major problem is the often overly simplified approach taken to translate findings from bench to bedside. Therefore, the present review focuses on purinergic signalling via P2X7R in the context of recent advances in immunopsychiatric mood disorder research. Our aim is to provide an overview of the current P2X7R-related findings, from bench to bedside. First, we summarize the characteristics of purinergic signalling and P2X7R, followed by a depiction of genetic and clinical data connecting P2X7R to mood disorders. We close with our perspective on current developments and discuss changes necessary to translate the evident potential of P2X7R signalling modulation into meaningful clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
| | - Jan M Deussing
- Max Planck Institute for Psychiatry, Molecular Neurogenetics, Munich, Germany.
| |
Collapse
|
7
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
8
|
Durner A, Durner E, Nicke A. Improved ANAP incorporation and VCF analysis reveal details of P2X7 current facilitation and a limited conformational interplay between ATP binding and the intracellular ballast domain. eLife 2023; 12:82479. [PMID: 36598131 PMCID: PMC9859053 DOI: 10.7554/elife.82479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
The large intracellular C-terminus of the pro-inflammatory P2X7 ion channel receptor (P2X7R) is associated with diverse P2X7R-specific functions. Cryo-EM structures of the closed and ATP-bound open full-length P2X7R recently identified a membrane-associated anchoring domain, an open-state stabilizing "cap" domain, and a globular "ballast domain" containing GTP/GDP and dinuclear Zn2+-binding sites with unknown functions. To investigate protein dynamics during channel activation, we improved incorporation of the environment-sensitive fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (ANAP) into Xenopus laevis oocyte-expressed P2X7Rs and performed voltage clamp fluorometry. While we confirmed predicted conformational changes within the extracellular and the transmembrane domains, only 3 out of 41 mutants containing ANAP in the C-terminal domain resulted in ATP-induced fluorescence changes. We conclude that the ballast domain functions rather independently from the extracellular ATP binding domain and might require activation by additional ligands and/or protein interactions. Novel tools to study these are presented.
Collapse
Affiliation(s)
- Anna Durner
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU MunichMunichGermany
| | - Ellis Durner
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, LMU MunichMunichGermany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU MunichMunichGermany
| |
Collapse
|
9
|
Volonté C, Amadio S. Rethinking purinergic concepts and updating the emerging role of P2X7 and P2X4 in amyotrophic lateral sclerosis. Neuropharmacology 2022; 221:109278. [PMID: 36202258 DOI: 10.1016/j.neuropharm.2022.109278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
The topic of the present review regards the ubiquitous and phylogenetically most ancient prototype of intercellular signaling, the one mediated by extracellular nucleosides and nucleotides, bearing a strong influence on pathophysiological processes in the nervous system. Not by chance, purine and pyrimidine molecules are the most prevalent and ubiquitous chemical messengers in the animal and plant kingdoms, operating through a large plethora of purinergic metabolizing enzymes, P1 and P2 receptors, nucleoside and nucleotide channels and transporters. Because ectonucleotidases degrade the agonists of P2 receptors while simultaneously generate the agonists for P1 receptors, and because several agonists, or antagonists, simultaneously bind and activate, or inhibit, more than one receptor subtype, it follows that an all-inclusive "purinergic network" perspective should be better considered when looking at purinergic actions. This becomes particularly crucial during pathological conditions as for instance amyotrophic lateral sclerosis, where the contribution of purinergic signaling has been demonstrated to differ according to each target cell phenotype and stage of disease progression. Here we will present some newly updated results about P2X7 and P2X4 as the most thoroughly investigated P2 receptors in amyotrophic lateral sclerosis, being aware that the comprehension of their actions is still in progress, and that the purinergic rationale for studying this disease must be however wide-ranging and all-inclusive. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Cinzia Volonté
- CNR-Institute for Systems Analysis and Computer Science "Antonio Ruberti", Via Dei Taurini 19, 00185, Rome, Italy; IRCCS Fondazione Santa Lucia-Cellular Neurobiology Unit, Via Del Fosso di Fiorano 65, 00143, Rome, Italy.
| | - Susanna Amadio
- IRCCS Fondazione Santa Lucia-Cellular Neurobiology Unit, Via Del Fosso di Fiorano 65, 00143, Rome, Italy
| |
Collapse
|
10
|
Passarella D, Ronci M, Di Liberto V, Zuccarini M, Mudò G, Porcile C, Frinchi M, Di Iorio P, Ulrich H, Russo C. Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System. Int J Mol Sci 2022; 23:ijms23158683. [PMID: 35955821 PMCID: PMC9369131 DOI: 10.3390/ijms23158683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2022] Open
Abstract
Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The “cholesterol shuttle” is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s and Niemann–Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol–purine reciprocal control could hopefully promote further research.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Patrizia Di Iorio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Henning Ulrich
- Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-087-440-4897
| |
Collapse
|
11
|
Hypercholesterolemia Negatively Regulates P2X7-Induced Cellular Function in CD4 + and CD8 + T-Cell Subsets from B6 Mice Fed a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23126730. [PMID: 35743168 PMCID: PMC9223416 DOI: 10.3390/ijms23126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously showed that plasma membrane cholesterol and GM1 ganglioside content are responsible for the opposite sensitivity of mouse leukemic T cells to ATP. We also reported that the sensitivity of CD4+ and CD8+ T cells to ATP depends on their stage of differentiation. Here, we show that CD4+ and CD8+ T cells from B6 mice express different levels of membrane GM1 and P2X7 but similar levels of cholesterol. Thus, in CD4+ T cells, membrane cholesterol content negatively correlated with ATP/P2X7-induced CD62L shedding but positively correlated with pore formation, phosphatidylserine externalization, and cell death. By contrast, in CD8+ T cells, cholesterol, GM1, and P2X7 levels negatively correlated with all these ATP/P2X7-induced cellular responses. The relationship between cholesterol and P2X7-induced cellular responses was confirmed by modulating cholesterol levels either ex vivo or through a high-fat diet. Membrane cholesterol enrichment ex vivo led to a significant reduction in all P2X7-induced cellular responses in T cells. Importantly, diet-induced hypercholesterolemia in B6 mice was also associated with decreased sensitivity to ATP in CD4+ and CD8+ T cells, highlighting the relationship between cholesterol intake and the amplitudes of P2X7-induced cellular responses in T cells.
Collapse
|
12
|
Bobkov D, Semenova S. Impact of lipid rafts on transient receptor potential channel activities. J Cell Physiol 2022; 237:2034-2044. [PMID: 35014032 DOI: 10.1002/jcp.30679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022]
Abstract
Members of the transient receptor potential (TRP) superfamily are cation channels that are expressed in nearly every mammalian cell type and respond as cellular sensors to various environmental stimuli. Light, pressure, osmolarity, temperature, and other stimuli can induce TRP calcium conductivity and correspondingly trigger many signaling processes in cells. Disruption of TRP channel activity, as a rule, harms cellular function. Despite numerous studies, the mechanisms of TRP channel regulation are not yet sufficiently clear, in part, because TRP channels are regulated by a broad set of ligands having diverse physical and chemical features. It is now known that some TRP members are located in membrane microdomains termed lipid rafts. Moreover, interaction between specific raft-associated lipids with channels may be a key regulation mechanism. This review examines recent findings related to the roles of lipid rafts in regulation of TRP channel activity. The mechanistic events of channel interactions with the main lipid raft constituent, cholesterol, are being clarified. Better understanding of mechanisms behind such interactions would help establish the key elements of TRP channel regulation and hence allow control of cellular responses to environmental stimuli.
Collapse
Affiliation(s)
- Danila Bobkov
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Svetlana Semenova
- Laboratory of Ionic Mechanisms of Cell Signaling, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
13
|
Murrell-Lagnado RD, Kawate T. Methods for Studying Cholesterol-Dependent Regulation of P2X7 Receptors. Methods Mol Biol 2022; 2510:253-264. [PMID: 35776329 DOI: 10.1007/978-1-0716-2384-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cholesterol dynamically regulates P2X7 receptor function in both physiological and pathological conditions. Studies suggest that cholesterol suppresses P2X7 receptor activity through direct binding or through indirect effects on the biophysical properties of the membrane. Notably, the palmitoylated C-terminus seems to counteract the action of cholesterol to make it less inhibitory. However, the mechanism underlying cholesterol-dependent regulation of P2X7 receptor remains unclear. Here we describe detailed methods that facilitate the quantification of P2X7 channel activity while controlling the amount of cholesterol in the system. We will first describe the use of methyl-β-cyclodextrin (MCD), a cyclic oligosaccharide consisting of seven glucose monomers, to decrease or increase plasma membrane cholesterol levels. We will then describe protocols for the reconstitution of purified P2X7 in proteoliposomes of defined lipid composition. These methods can be combined with commonly used techniques such as dye-uptake assays or electrophysiology. We also describe a fluorescence assay to measure cholesterol-binding to P2X7. These approaches are complementary to cryo-EM or molecular dynamics simulations, which are also powerful tools for investigating cholesterol-P2X7 interactions. An improved understanding of the mechanisms of action of cholesterol on P2X7 may contribute to elucidate the roles of this receptor in ageing, inflammation, and cancer, whose progression correlates with the level of cholesterol.
Collapse
Affiliation(s)
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
To inhibit or to boost the ATP/P2RX7 pathway to fight cancer-that is the question. Purinergic Signal 2021; 17:619-631. [PMID: 34347213 DOI: 10.1007/s11302-021-09811-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite new biological insights and recent therapeutic advances, many tumors remain at baseline during treatments. Therefore, there is an urgent need to find new therapeutic strategies to improve the care of patients with solid tumors. P2RX7 receptor (P2XR7), an ATP-gated ion channel characterized by its ability to form large pore within the cell membrane, is described by most of the investigators as a "chef d'orchestre" of the antitumor immune response. The purpose of this review is to detail the recent information concerning different cellular mechanisms linking P2RX7 to hallmarks of cancer and to discuss different progresses in elucidating how activation of the ATP/P2RX7/NLRP3/IL-18 pathway is a very promising approach to fight cancer progression by increasing antitumor immune responses.
Collapse
|
15
|
P2X7 Receptors and TMEM16 Channels Are Functionally Coupled with Implications for Macropore Formation and Current Facilitation. Int J Mol Sci 2021; 22:ijms22126542. [PMID: 34207150 PMCID: PMC8234106 DOI: 10.3390/ijms22126542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/03/2023] Open
Abstract
P2X7 receptors (P2X7) are cationic channels involved in many diseases. Following their activation by extracellular ATP, distinct signaling pathways are triggered, which lead to various physiological responses such as the secretion of pro-inflammatory cytokines or the modulation of cell death. P2X7 also exhibit unique behaviors, such as “macropore” formation, which corresponds to enhanced large molecule cell membrane permeability and current facilitation, which is caused by prolonged activation. These two phenomena have often been confounded but, thus far, no clear mechanisms have been resolved. Here, by combining different approaches including whole-cell and single-channel recordings, pharmacological and biochemical assays, CRISPR/Cas9 technology and cell imaging, we provide evidence that current facilitation and macropore formation involve functional complexes comprised of P2X7 and TMEM16, a family of Ca2+-activated ion channel/scramblases. We found that current facilitation results in an increase of functional complex-embedded P2X7 open probability, a result that is recapitulated by plasma membrane cholesterol depletion. We further show that macropore formation entails two distinct large molecule permeation components, one of which requires functional complexes featuring TMEM16F subtype, the other likely being direct permeation through the P2X7 pore itself. Such functional complexes can be considered to represent a regulatory hub that may orchestrate distinct P2X7 functionalities.
Collapse
|
16
|
Territo PR, Zarrinmayeh H. P2X 7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches. Front Cell Neurosci 2021; 15:617036. [PMID: 33889073 PMCID: PMC8055960 DOI: 10.3389/fncel.2021.617036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS), where the bulk of these receptors are implicated in neuroinflammatory responses and regulation of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family, P2X7 receptor is generally known for its inactivity in normal conditions and activation by moderately high concentrations (>100 μM) of extracellular adenosine 5′-triphosphate (ATP) released from injured cells as a result of brain injury or pathological conditions. Activation of P2X7R contributes to the activation and proliferation of microglia and directly contribute to neurodegeneration by provoking microglia-mediated neuronal death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that results in initiation, maturity and release of the pro-inflammatory cytokines and generation of reactive oxygen and nitrogen species. These components of the inflammatory response play important roles in many neural pathologies and neurodegeneration disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes are upregulated under neuroinflammatory conditions. Several in vivo studies have demonstrated beneficial effects of the P2X7 receptor antagonists in animal model systems of neurodegenerative diseases. A number of specific and selective P2X7 receptor antagonists have been developed, but only few of them have shown efficient brain permeability. Finding potent and selective P2X7 receptor inhibitors which are also CNS penetrable and display acceptable pharmacokinetics (PK) has presented challenges for both academic researchers and pharmaceutical companies. In this review, we discuss the role of P2X7 receptor function in neurodegenerative diseases, the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation associated with neurodegeneration.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
17
|
Chang CH, Chang YS, Hsieh YL. Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Rep 2021; 6:e922. [PMID: 34585035 PMCID: PMC8462592 DOI: 10.1097/pr9.0000000000000922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodal nociceptor that monitors noxious thermal sensations. Few studies have addressed the role of TRPV1 in mechanical allodynia in small-fiber neuropathy (SFN) caused by sensory nerve damage. Accordingly, this article reviews the putative mechanisms of TRPV1 depletion that mediates mechanical allodynia in SFN. The intraepidermal nerve fibers (IENFs) degeneration and sensory neuronal injury are the primary characteristics of SFN. Intraepidermal nerve fibers are mainly C-polymodal nociceptors and Aδ-fibers, which mediated allodynic pain after neuronal sensitization. TRPV1 depletion by highly potent neurotoxins induces the upregulation of activating transcription factor 3 and IENFs degeneration which mimics SFN. TRPV1 is predominately expressed by the peptidergic than nonpeptidergic nociceptors, and these neurochemical discrepancies provided the basis of the distinct pathways of thermal analgesia and mechanical allodynia. The depletion of peptidergic nociceptors and their IENFs cause thermal analgesia and sensitized nonpeptidergic nociceptors respond to mechanical allodynia. These distinct pathways of noxious stimuli suggested determined by the neurochemical-dependent neurotrophin cognate receptors such as TrkA and Ret receptors. The neurogenic inflammation after TRPV1 depletion also sensitized Ret receptors which results in mechanical allodynia. The activation of spinal TRPV1(+) neurons may contribute to mechanical allodynia. Also, an imbalance in adenosinergic analgesic signaling in sensory neurons such as the downregulation of prostatic acid phosphatase and adenosine A1 receptors, which colocalized with TRPV1 as a membrane microdomain also correlated with the development of mechanical allodynia. Collectively, TRPV1 depletion-induced mechanical allodynia involves a complicated cascade of cellular signaling alterations.
Collapse
Affiliation(s)
- Chin-Hong Chang
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Shuang Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Ferrari D, la Sala A, Milani D, Celeghini C, Casciano F. Purinergic Signaling in Controlling Macrophage and T Cell Functions During Atherosclerosis Development. Front Immunol 2021; 11:617804. [PMID: 33664731 PMCID: PMC7921745 DOI: 10.3389/fimmu.2020.617804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow. It is a leading cause of death in industrialized countries as it causes heart attacks, strokes, and peripheral vascular disease. Pathogenesis of the atherosclerotic lesion (atheroma) relies on the accumulation of cholesterol-containing low-density lipoproteins (LDL) and on changes of artery endothelium that becomes adhesive for monocytes and lymphocytes. Immunomediated inflammatory response stimulated by lipoprotein oxidation, cytokine secretion and release of pro-inflammatory mediators, worsens the pathological context by amplifying tissue damage to the arterial lining and increasing flow-limiting stenosis. Formation of thrombi upon rupture of the endothelium and the fibrous cup may also occur, triggering thrombosis often threatening the patient’s life. Purinergic signaling, i.e., cell responses induced by stimulation of P2 and P1 membrane receptors for the extracellular nucleotides (ATP, ADP, UTP, and UDP) and nucleosides (adenosine), has been implicated in modulating the immunological response in atherosclerotic cardiovascular disease. In this review we will describe advancements in the understanding of purinergic modulation of the two main immune cells involved in atherogenesis, i.e., monocytes/macrophages and T lymphocytes, highlighting modulation of pro- and anti-atherosclerotic mediated responses of purinergic signaling in these cells and providing new insights to point out their potential clinical significance.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Andrea la Sala
- Certification Unit, Health Directorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Daniela Milani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
19
|
P2X-GCaMPs as Versatile Tools for Imaging Extracellular ATP Signaling. eNeuro 2021; 8:ENEURO.0185-20.2020. [PMID: 33380526 PMCID: PMC7877454 DOI: 10.1523/eneuro.0185-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
ATP is an extracellular signaling molecule involved in numerous physiological and pathologic processes. However, in situ characterization of the spatiotemporal dynamic of extracellular ATP is still challenging because of the lack of sensor with appropriate specificity, sensitivity, and kinetics. Here, we report the development of biosensors based on the fusion of cation permeable ATP receptors (P2X) to genetically encoded calcium sensors [genetically encoded calcium indicator (GECI)]. By combining the features of P2X receptors with the high signal-to-noise ratio of GECIs, we generated ultrasensitive green and red fluorescent sniffers that detect nanomolar ATP concentrations in situ and also enable the tracking of P2X receptor activity. We provide the proof of concept that these sensors can dynamically track ATP release evoked by depolarization in mouse neurons or by extracellular hypotonicity. Targeting these P2X-based biosensors to diverse cell types should advance our knowledge of extracellular ATP dynamics in vivo.
Collapse
|
20
|
Sivcev S, Slavikova B, Ivetic M, Knezu M, Kudova E, Zemkova H. Lithocholic acid inhibits P2X2 and potentiates P2X4 receptor channel gating. J Steroid Biochem Mol Biol 2020; 202:105725. [PMID: 32652201 DOI: 10.1016/j.jsbmb.2020.105725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/02/2023]
Abstract
The family of ATP-gated purinergic P2X receptors comprises seven bunits (P2X1-7) that are unevenly distributed in the central and peripheral nervous systems as well as other organs. Endogenous modulators of P2X receptors are phospholipids, steroids and neurosteroids. Here, we analyzed whether bile acids, which are natural products derived from cholesterol, affect P2X receptor activity. We examined the effects of primary and secondary bile acids and newly synthesized derivatives of lithocholic acid on agonist-induced responses in HEK293T cells expressing rat P2X2, P2X4 and P2X7 receptors. Electrophysiology revealed that low micromolar concentrations of lithocholic acid and its structural analog 4-dafachronic acid strongly inhibit ATP-stimulated P2X2 but potentiate P2X4 responses, whereas primary bile acids and other secondary bile acids exhibit no or reduced effects only at higher concentrations. Agonist-stimulated P2X7 responses are significantly potentiated by lithocholic acid at moderate concentrations. Structural modifications of lithocholic acid at positions C-3, C-5 or C-17 abolish both inhibitory and potentiation effects to varying degrees, and the 3α-hydroxy group contributes to the ability of the molecule to switch between potentiation and inhibition. Lithocholic acid allosterically modulates P2X2 and P2X4 receptor sensitivity to ATP, reduces the rate of P2X4 receptor desensitization and antagonizes the effect of ivermectin on P2X4 receptor deactivation. Alanine-scanning mutagenesis of the upper halve of P2X4 transmembrane domain-1 revealed that residues Phe48, Val43 and Tyr42 are important for potentiating effect of lithocholic acid, indicating that modulatory sites for lithocholic acid and ivermectin partly overlap. Lithocholic acid also inhibits ATP-evoked currents in pituitary gonadotrophs expressing native P2X2, and potentiates ATP currents in nonidentified pituitary cells expressing P2X4 receptors. These results indicate that lithocholic acid is a bioactive steroid that may help to further unveil the importance of the P2X2, and P2X4 receptors in many physiological processes.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Knezu
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
21
|
eATP/P2X7R Axis: An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases. Int J Mol Sci 2020; 21:ijms21175963. [PMID: 32825102 PMCID: PMC7504480 DOI: 10.3390/ijms21175963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.
Collapse
|
22
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
23
|
Fan Z, Kong M, Li M, Hong W, Fan X, Xu Y. Brahma Related Gene 1 (Brg1) Regulates Cellular Cholesterol Synthesis by Acting as a Co-factor for SREBP2. Front Cell Dev Biol 2020; 8:259. [PMID: 32500071 PMCID: PMC7243037 DOI: 10.3389/fcell.2020.00259] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocyte is a hub for cholesterol metabolism. Augmented synthesis of cholesterol in the liver is associated with hypercholesterolemia and contributes to the pathogenesis of a host of cardiovascular and metabolic diseases. Sterol response element binding protein 2 (SREBP2) regulates hepatic cholesterol metabolism by activating the transcription of rate-limiting enzymes in the cholesterol biosynthesis pathway. The underlying epigenetic mechanism is not well understood. We report here that mice with hepatocyte-specific knockout (CKO) of Brg1, a chromatin remodeling protein, exhibit reduced levels of hepatic cholesterol compared to the wild type (WT) littermates when placed on a high-fact diet (HFD) or a methionine-and-choline-deficient diet (MCD). Down-regulation of cholesterol levels as a result of BRG1 deficiency was accompanied by attenuation of cholesterogenic gene transcription. Likewise, BRG1 knockdown in hepatocytes markedly suppressed the induction of cholesterogenic genes by lipid depletion formulas. Brg1 interacted with SREBP2 and was recruited by SREBP2 to the cholesterogenic gene promoters. Reciprocally, Brg1 deficiency dampened the occupancies of SREBP2 on target promoters likely through modulating H3K9 methylation on the cholesterogenic gene promoters. Mechanistically, Brg1 recruited the H3K9 methyltransferase KDM3A to co-regulate pro-cholesterogenic transcription. KDM3A silencing dampened the cholesterogenic response in hepatocytes equivalent to Brg1 deficiency. In conclusion, our data demonstrate a novel epigenetic pathway that contributes to SREBP2-dependent cholesterol synthesis in hepatocytes.
Collapse
Affiliation(s)
- Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
24
|
Miller YI, Navia-Pelaez JM, Corr M, Yaksh TL. Lipid rafts in glial cells: role in neuroinflammation and pain processing. J Lipid Res 2020; 61:655-666. [PMID: 31862695 PMCID: PMC7193960 DOI: 10.1194/jlr.tr119000468] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/06/2019] [Indexed: 12/27/2022] Open
Abstract
Activation of microglia and astrocytes secondary to inflammatory processes contributes to the development and perpetuation of pain with a neuropathic phenotype. This pain state presents as a chronic debilitating condition and affects a large population of patients with conditions like rheumatoid arthritis and diabetes, or after surgery, trauma, or chemotherapy. Here, we review the regulation of lipid rafts in glial cells and the role they play as a key component of neuroinflammatory sensitization of central pain signaling pathways. In this context, we introduce the concept of an inflammaraft (i-raft), enlarged lipid rafts harboring activated receptors and adaptor molecules and serving as an organizing platform to initiate inflammatory signaling and the cellular response. Characteristics of the inflammaraft include increased relative abundance of lipid rafts in inflammatory cells, increased content of cholesterol per raft, and increased levels of inflammatory receptors, such as toll-like receptor (TLR)4, adaptor molecules, ion channels, and enzymes in lipid rafts. This inflammaraft motif serves an important role in the membrane assembly of protein complexes, for example, TLR4 dimerization. Operating within this framework, we demonstrate the involvement of inflammatory receptors, redox molecules, and ion channels in the inflammaraft formation and the regulation of cholesterol and sphingolipid metabolism in the inflammaraft maintenance and disruption. Strategies for targeting inflammarafts, without affecting the integrity of lipid rafts in noninflammatory cells, may lead to developing novel therapies for neuropathic pain states and other neuroinflammatory conditions.
Collapse
Affiliation(s)
- Yury I Miller
- Departments of MedicineUniversity of California San Diego, La Jolla, CA. mailto:
| | | | - Maripat Corr
- Departments of MedicineUniversity of California San Diego, La Jolla, CA
| | - Tony L Yaksh
- Anesthesiology,University of California San Diego, La Jolla, CA
| |
Collapse
|
25
|
Savio LEB, de Andrade Mello P, Santos SACS, de Sousa JC, Oliveira SDS, Minshall RD, Kurtenbach E, Wu Y, Longhi MS, Robson SC, Coutinho-Silva R. P2X7 receptor activation increases expression of caveolin-1 and formation of macrophage lipid rafts, thereby boosting CD39 activity. J Cell Sci 2020; 133:jcs.237560. [PMID: 32005701 DOI: 10.1242/jcs.237560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are tissue-resident immune cells that are crucial for the initiation and maintenance of immune responses. Purinergic signaling modulates macrophage activity and impacts cellular plasticity. The ATP-activated purinergic receptor P2X7 (also known as P2RX7) has pro-inflammatory properties, which contribute to macrophage activation. P2X7 receptor signaling is, in turn, modulated by ectonucleotidases, such as CD39 (also known as ENTPD1), expressed in caveolae and lipid rafts. Here, we examined P2X7 receptor activity and determined impacts on ectonucleotidase localization and function in macrophages primed with lipopolysaccharide (LPS). First, we verified that ATP boosts CD39 activity and caveolin-1 protein expression in LPS-primed macrophages. Drugs that disrupt cholesterol-enriched domains - such as nystatin and methyl-β-cyclodextrin - decreased CD39 enzymatic activity in all circumstances. We noted that CD39 colocalized with lipid raft markers (flotillin-2 and caveolin-1) in macrophages that had been primed with LPS followed by treatment with ATP. P2X7 receptor inhibition blocked these ATP-mediated increases in caveolin-1 expression and inhibited the colocalization with CD39. Further, we found that STAT3 activation is significantly attenuated caveolin-1-deficient macrophages treated with LPS or LPS+BzATP. Taken together, our data suggest that P2X7 receptor triggers the initiation of lipid raft-dependent mechanisms that upregulates CD39 activity and could contribute to limit macrophage responses restoring homeostasis.
Collapse
Affiliation(s)
- Luiz Eduardo Baggio Savio
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Paola de Andrade Mello
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Stephanie Alexia Cristina Silva Santos
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Júlia Costa de Sousa
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Suellen D S Oliveira
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Richard D Minshall
- Departments of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA.,Departments of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Eleonora Kurtenbach
- Laboratory of Molecular Biology and Biochemistry of Proteins, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Yan Wu
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Gutorov R, Peters M, Katz B, Brandwine T, Barbera NA, Levitan I, Minke B. Modulation of Transient Receptor Potential C Channel Activity by Cholesterol. Front Pharmacol 2019; 10:1487. [PMID: 31920669 PMCID: PMC6923273 DOI: 10.3389/fphar.2019.01487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Changes of cholesterol level in the plasma membrane of cells have been shown to modulate ion channel function. The proposed mechanisms underlying these modulations include association of cholesterol to a single binding site at a single channel conformation, association to a highly flexible cholesterol binding site adopting multiple poses, and perturbation of lipid rafts. These perturbations have been shown to induce reversible targeting of mammalian transient receptor potential C (TRPC) channels to the cholesterol-rich membrane environment of lipid rafts. Thus, the observed inhibition of TRPC channels by methyl-β-cyclodextrin (MβCD), which induces cholesterol efflux from the plasma membrane, may result from disruption of lipid rafts. This perturbation was also shown to disrupt multimolecular signaling complexes containing TRPC channels. The Drosophila TRP and TRP-like (TRPL) channels belong to the TRPC channel subfamily. When the Drosophila TRPL channel was expressed in S2 or HEK293 cells and perfused with MβCD, the TRPL current was abolished in less than 100 s, fitting well the fast kinetic phase of cholesterol sequestration experiments in cells. It was thus suggested that the fast kinetics of TRPL channel suppression by MβCD arise from disruption of lipid rafts. Accordingly, lipid raft perturbation by cholesterol sequestration could give clues to the function of lipid environment in TRPC channel activity and its mechanism.
Collapse
Affiliation(s)
- Rita Gutorov
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Maximilian Peters
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ben Katz
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tal Brandwine
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Nicolas A Barbera
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Baruch Minke
- Institute for Medical Research Israel-Canada (IMRIC), Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
27
|
McCarthy AE, Yoshioka C, Mansoor SE. Full-Length P2X 7 Structures Reveal How Palmitoylation Prevents Channel Desensitization. Cell 2019; 179:659-670.e13. [PMID: 31587896 DOI: 10.1016/j.cell.2019.09.017] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/30/2019] [Accepted: 09/13/2019] [Indexed: 12/24/2022]
Abstract
P2X receptors are trimeric, non-selective cation channels activated by extracellular ATP. The P2X7 receptor subtype is a pharmacological target because of involvement in apoptotic, inflammatory, and tumor progression pathways. It is the most structurally and functionally distinct P2X subtype, containing a unique cytoplasmic domain critical for the receptor to initiate apoptosis and not undergo desensitization. However, lack of structural information about the cytoplasmic domain has hindered understanding of the molecular mechanisms underlying these processes. We report cryoelectron microscopy structures of full-length rat P2X7 receptor in apo and ATP-bound states. These structures reveal how one cytoplasmic element, the C-cys anchor, prevents desensitization by anchoring the pore-lining helix to the membrane with palmitoyl groups. They show a second cytoplasmic element with a unique fold, the cytoplasmic ballast, which unexpectedly contains a zinc ion complex and a guanosine nucleotide binding site. Our structures provide first insights into the architecture and function of a P2X receptor cytoplasmic domain.
Collapse
Affiliation(s)
- Alanna E McCarthy
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201, USA
| | - Steven E Mansoor
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA; Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
28
|
Kopp R, Krautloher A, Ramírez-Fernández A, Nicke A. P2X7 Interactions and Signaling - Making Head or Tail of It. Front Mol Neurosci 2019; 12:183. [PMID: 31440138 PMCID: PMC6693442 DOI: 10.3389/fnmol.2019.00183] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular adenine nucleotides play important roles in cell-cell communication and tissue homeostasis. High concentrations of extracellular ATP released by dying cells are sensed as a danger signal by the P2X7 receptor, a non-specific cation channel. Studies in P2X7 knockout mice and numerous disease models have demonstrated an important role of this receptor in inflammatory processes. P2X7 activation has been shown to induce a variety of cellular responses that are not usually associated with ion channel function, for example changes in the plasma membrane composition and morphology, ectodomain shedding, activation of lipases, kinases, and transcription factors, as well as cytokine release and apoptosis. In contrast to all other P2X family members, the P2X7 receptor contains a long intracellular C-terminus that constitutes 40% of the whole protein and is considered essential for most of these effects. So far, over 50 different proteins have been identified to physically interact with the P2X7 receptor. However, few of these interactions have been confirmed in independent studies and for the majority of these proteins, the interaction domains and the physiological consequences of the interactions are only poorly described. Also, while the structure of the P2X7 extracellular domain has recently been resolved, information about the organization and structure of its C-terminal tail remains elusive. After shortly describing the structure and assembly of the P2X7 receptor, this review gives an update of the identified or proposed interaction domains within the P2X7 C-terminus, describes signaling pathways in which this receptor has been involved, and provides an overlook of the identified interaction partners.
Collapse
Affiliation(s)
- Robin Kopp
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna Krautloher
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Antonio Ramírez-Fernández
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| |
Collapse
|
29
|
Mahaut Smith MP, Evans RJ, Vial C. Development of a P2X1-eYFP receptor knock-in mouse to track receptors in real time. Purinergic Signal 2019; 15:397-402. [PMID: 31286385 PMCID: PMC6736900 DOI: 10.1007/s11302-019-09666-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/19/2019] [Indexed: 01/22/2023] Open
Abstract
A P2X1-eYFP knock-in mouse was generated to study receptor expression and mobility in smooth muscle and blood cells. eYFP was added to the C-terminus of the P2X1R and replaced the native P2X1R. Fluorescence corresponding to P2X1-eYFPR was detected in urinary bladder smooth muscle, platelets and megakaryocytes. ATP-evoked currents from wild type and P2X1-eYFP isolated urinary bladder smooth muscle cells had the same peak current amplitude and time-course showing that the eYFP addition had no obvious effect on properties. Fluorescence recovery after photobleaching (FRAP) in bladder smooth muscle cells demonstrated that surface P2X1Rs are mobile and their movement is reduced following cholesterol depletion. Compared to the platelet and megakaryocyte, P2X1-eYFP fluorescence was negligible in red blood cells and the majority of smaller marrow cells. The spatial pattern of P2X1-eYFP fluorescence in the megakaryocyte along with FRAP assessment of mobility suggested that P2X1Rs are expressed extensively throughout the membrane invagination system of this cell type. The current study highlights that the spatiotemporal properties of P2X1R expression can be monitored in real time in smooth muscle cells and megakaryocytes/platelets using the eYFP knock-in mouse model.
Collapse
Affiliation(s)
- Martyn P Mahaut Smith
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Catherine Vial
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
30
|
Sivcev S, Slavikova B, Rupert M, Ivetic M, Nekardova M, Kudova E, Zemkova H. Synthetic testosterone derivatives modulate rat P2X2 and P2X4 receptor channel gating. J Neurochem 2019; 150:28-43. [PMID: 31069814 DOI: 10.1111/jnc.14718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
P2X receptors (P2XRs) are ATP-gated cationic channels that are allosterically modulated by numerous compounds, including steroids and neurosteroids. These compounds may both inhibit and potentiate the activity of P2XRs, but sex steroids such as 17β-estradiol or progesterone are reported to be inactive. Here, we tested a hypothesis that testosterone, another sex hormone, modulates activity of P2XRs. We examined actions of native testosterone and a series of testosterone derivatives on the gating of recombinant P2X2R, P2X4R and P2X7R and native channels expressed in pituitary cells and hypothalamic neurons. The 17β-ester derivatives of testosterone rapidly and positively modulate the 1 µM ATP-evoked currents in P2X2R- and P2X4R-expressing cells, but not agonist-evoked currents in P2X7R-expressing cells. In general, most of the tested testosterone derivatives are more potent modulators than endogenous testosterone. The comparison of chemical structures and whole-cell recordings revealed that their interactions with P2XRs depend on the lipophilicity and length of the alkyl chain at position C-17. Pre-treatment with testosterone butyrate or valerate increases the sensitivity of P2X2R and P2X4R to ATP by several fold, reduces the rate of P2X4R desensitization, accelerates resensitization, and enhances ethidium uptake by P2X4R. Native channels are also potentiated by testosterone derivatives, while endogenously expressed GABA receptors type A are inhibited. The effect of ivermectin, a P2X4R-specific allosteric modulator, on deactivation is antagonized by testosterone derivatives in a concentration-dependent manner. Together, our results provide evidence for potentiation of particular subtypes of P2XRs by testosterone derivatives and suggest a potential role of ivermectin binding site for steroid-induced modulation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonja Sivcev
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Slavikova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Marian Rupert
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Milorad Ivetic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Nekardova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Zemkova
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
31
|
Fryatt AG, Dayl S, Stavrou A, Schmid R, Evans RJ. Organization of ATP-gated P2X1 receptor intracellular termini in apo and desensitized states. J Gen Physiol 2019; 151:146-155. [PMID: 30626615 PMCID: PMC6363416 DOI: 10.1085/jgp.201812108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
The human P2X1 receptor (hP2X1R) is a trimeric ligand-gated ion channel opened by extracellular ATP. The intracellular amino and carboxyl termini play significant roles in determining the time-course and regulation of channel gating-for example, the C terminus regulates recovery from the desensitized state following agonist washout. This suggests that the intracellular regions of the channel have distinct structural features. Studies on the hP2X3R have shown that the intracellular regions associate to form a cytoplasmic cap in the open state of the channel. However, intracellular features could not be resolved in the agonist-free apo and ATP-bound desensitized structures. Here we investigate the organization of the intracellular regions of hP2X1R in the apo and ATP-bound desensitized states following expression in HEK293 cells. We couple cysteine scanning mutagenesis of residues R25-G30 and H355-R360 with the use of bi-functional cysteine reactive cross-linking compounds of different lengths (MTS-2-MTS, BMB, and BM(PEG)2), which we use as molecular calipers. If two cysteine residues come into close proximity, we predict they will be cross-linked and result in ∼66% of the receptor subunits running on a Western blot as dimers. In the control construct (C349A) that removed the free cysteine C349, and some cysteine-containing mutants, cross-linker treatment does not result in dimerization. However, we detect efficient dimerization for R25C, G30C, P358C, K359C, and R360C. This selective pattern indicates that there is structural organization to these regions in the apo and desensitized states in a native membrane environment. The existence of such precap (apo) and postcap (desensitized) organization of the intracellular domains would facilitate efficient gating of the channel.
Collapse
Affiliation(s)
- Alistair G Fryatt
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sudad Dayl
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | - Anastasios Stavrou
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
32
|
Barbera N, Levitan I. Chiral Specificity of Cholesterol Orientation Within Cholesterol Binding Sites in Inwardly Rectifying K+ Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:77-95. [DOI: 10.1007/978-3-030-04278-3_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Schmid R, Evans RJ. ATP-Gated P2X Receptor Channels: Molecular Insights into Functional Roles. Annu Rev Physiol 2018; 81:43-62. [PMID: 30354932 DOI: 10.1146/annurev-physiol-020518-114259] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the nervous system, ATP is co-stored in vesicles with classical transmitters and released in a regulated manner. ATP from the intracellular compartment can also exit the cell through hemichannels and following shear stress or membrane damage. In the past 30 years, the action of ATP as an extracellular transmitter at cell-surface receptors has evolved from somewhat of a novelty that was treated with skepticism to purinergic transmission being accepted as having widespread important functional roles mediated by ATP-gated ionotropic P2X receptors (P2XRs). This review focuses on work published in the last five years and provides an overview of ( a) structural studies, ( b) the molecular basis of channel properties and regulation of P2XRs, and ( c) the physiological and pathophysiological roles of ATP acting at defined P2XR subtypes.
Collapse
Affiliation(s)
- Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; .,Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom;
| |
Collapse
|
34
|
Barbera N, Ayee MAA, Akpa BS, Levitan I. Molecular Dynamics Simulations of Kir2.2 Interactions with an Ensemble of Cholesterol Molecules. Biophys J 2018; 115:1264-1280. [PMID: 30205899 PMCID: PMC6170799 DOI: 10.1016/j.bpj.2018.07.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
Cholesterol is a major regulator of multiple types of ion channels, but the specific mechanisms and the dynamics of its interactions with the channels are not well understood. Kir2 channels were shown to be sensitive to cholesterol through direct interactions with "cholesterol-sensitive" regions on the channel protein. In this work, we used Martini coarse-grained simulations to analyze the long (μs) timescale dynamics of cholesterol with Kir2.2 channels embedded into a model membrane containing POPC phospholipid with 30 mol% cholesterol. This approach allows us to simulate the dynamic, unbiased migration of cholesterol molecules from the lipid membrane environment to the protein surface of Kir2.2 and explore the favorability of cholesterol interactions at both surface sites and recessed pockets of the channel. We found that the cholesterol environment surrounding Kir channels forms a complex milieu of different short- and long-term interactions, with multiple cholesterol molecules concurrently interacting with the channel. Furthermore, utilizing principles from network theory, we identified four discrete cholesterol-binding sites within the previously identified cholesterol-sensitive region that exist depending on the conformational state of the channel-open or closed. We also discovered that a twofold decrease in the cholesterol level of the membrane, which we found earlier to increase Kir2 activity, results in a site-specific decrease of cholesterol occupancy at these sites in both the open and closed states: cholesterol molecules at the deepest of these discrete sites shows no change in occupancy at different cholesterol levels, whereas the remaining sites showed a marked decrease in occupancy.
Collapse
Affiliation(s)
- Nicolas Barbera
- Department of Chemical Engineering; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manuela A A Ayee
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Belinda S Akpa
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina.
| | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
35
|
Peverini L, Beudez J, Dunning K, Chataigneau T, Grutter T. New Insights Into Permeation of Large Cations Through ATP-Gated P2X Receptors. Front Mol Neurosci 2018; 11:265. [PMID: 30108481 PMCID: PMC6080412 DOI: 10.3389/fnmol.2018.00265] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022] Open
Abstract
The permeability of large cations through the P2X pore has remained arguably the most controversial and complicated topic in P2X-related research, with the emergence of conflicting studies on the existence, mechanism and physiological relevance of a so-called “dilated” state. Due to the important role of several “dilating” P2X subtypes in numerous diseases, a clear and detailed understanding of this phenomenon represents a research priority. Recent advances, however, have challenged the existence of a progressive, ATP-induced pore dilation, by demonstrating that this phenomenon is an artifact of the method employed. Here, we discuss briefly the history of this controversial and enigmatic dilated state, from its initial discovery to its recent reconsideration. We will discuss the literature in which mechanistic pathways to a large cation-permeable state are proposed, as well as important advances in the methodology employed to study this elusive state. Considering recent literature, we will also open the discussion as to whether an intrinsically dilating P2X pore exists, as well as the physiological relevance of such a large cation-permeable pore and its potential use as therapeutic pathway.
Collapse
Affiliation(s)
- Laurie Peverini
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Juline Beudez
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Kate Dunning
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Thierry Chataigneau
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| | - Thomas Grutter
- CNRS, CAMB UMR 7199, Équipe de Chimie et Neurobiologie Moléculaire, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
36
|
Young CNJ, Górecki DC. P2RX7 Purinoceptor as a Therapeutic Target-The Second Coming? Front Chem 2018; 6:248. [PMID: 30003075 PMCID: PMC6032550 DOI: 10.3389/fchem.2018.00248] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
The P2RX7 receptor is a unique member of a family of extracellular ATP (eATP)-gated ion channels expressed in immune cells, where its activation triggers the inflammatory cascade. Therefore, P2RX7 has been long investigated as a target in the treatment of infectious and inflammatory diseases. Subsequently, P2RX7 signaling has been documented in other physiological and pathological processes including pain, CNS and psychiatric disorders and cancer. As a result, a range of P2RX7 antagonists have been developed and trialed. Interestingly, the recent crystallization of mammalian and chicken receptors revealed that most widely-used antagonists may bind a unique allosteric site. The availability of crystal structures allows rational design of improved antagonists and modeling of binding sites of the known or presumed inhibitors. However, several unanswered questions limit the cogent development of P2RX7 therapies. Firstly, this receptor functions as an ion channel, but its chronic stimulation by high eATP causes opening of the non-selective large pore (LP), which can trigger cell death. Not only the molecular mechanism of LP opening is still not fully understood but its function(s) are also unclear. Furthermore, how can tumor cells take advantage of P2RX7 for growth and spread and yet survive overexpression of potentially cytotoxic LP in the eATP-rich environment? The recent discovery of the feedback loop, wherein the LP-evoked release of active MMP-2 triggers the receptor cleavage, provided one explanation. Another mechanism might be that of cancer cells expressing a structurally altered P2RX7 receptor, devoid of the LP function. Exploiting such mechanisms should lead to the development of new, less toxic anticancer treatments. Notably, targeted inhibition of P2RX7 is crucial as its global blockade reduces the immune and inflammatory responses, which have important anti-tumor effects in some types of malignancies. Therefore, another novel approach is the synthesis of tissue/cell specific P2RX7 antagonists. Progress has been aided by the development of p2rx7 knockout mice and new conditional knock-in and knock-out models are being created. In this review, we seek to summarize the recent advances in our understanding of molecular mechanisms of receptor activation and inhibition, which cause its re-emergence as an important therapeutic target. We also highlight the key difficulties affecting this development.
Collapse
Affiliation(s)
- Chris N. J. Young
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Faculty of Health and Life Sciences, The School of Allied Health Sciences, De Montfort University, Leicester, United Kingdom
| | - Dariusz C. Górecki
- Molecular Medicine Laboratory, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- The General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| |
Collapse
|
37
|
Di Virgilio F, Schmalzing G, Markwardt F. The Elusive P2X7 Macropore. Trends Cell Biol 2018; 28:392-404. [PMID: 29439897 DOI: 10.1016/j.tcb.2018.01.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
Abstract
ATP, which is released under pathological conditions and is considered a damage-associated molecular pattern (DAMP), activates P2X7 receptors (P2X7Rs), trimeric plasma membrane ion channels selective for small cations. P2X7Rs are partners in NOD-like receptor containing a pyrin (NLRP3) inflammasome activation and promoters of tumor cell growth. P2X7R overstimulation triggers the ATP-dependent opening of a nonselective plasma membrane pore, known as a 'macropore', which allows fluxes of large hydrophilic molecules. The pathophysiological functions of P2X7R are thought to be dependent on activation of this conductance pathway, yet its molecular identity is unknown. Recent reports show that P2X7R permeability to organic solutes is an early and intrinsic property of the channel itself. A better understanding of P2X7R-dependent changes in plasma membrane permeability will allow a rationale development of novel anti-inflammatory and anticancer drugs.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Günther Schmalzing
- Department of Pharmacology and Toxicology, University of Aachen, Aachen, Germany
| | - Fritz Markwardt
- Institute for Physiology, Martin Luther University, Halle/Saale, Germany
| |
Collapse
|
38
|
Di Virgilio F, Giuliani AL, Vultaggio-Poma V, Falzoni S, Sarti AC. Non-nucleotide Agonists Triggering P2X7 Receptor Activation and Pore Formation. Front Pharmacol 2018; 9:39. [PMID: 29449813 PMCID: PMC5799242 DOI: 10.3389/fphar.2018.00039] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
The P2X7 receptor (P2X7R) is a ligand-gated plasma membrane ion channel belonging to the P2X receptor subfamily activated by extracellular nucleotides. General consensus holds that the physiological (and maybe the only) agonist is ATP. However, scattered evidence generated over the last several years suggests that ATP might not be the only agonist, especially at inflammatory sites. Solid data show that NAD+ covalently modifies the P2X7R of mouse T lymphocytes, thus lowering the ATP threshold for activation. Other structurally unrelated agents have been reported to activate the P2X7R via a poorly understood mechanism of action: (a) the antibiotic polymyxin B, possibly a positive allosteric P2X7R modulator, (b) the bactericidal peptide LL-37, (c) the amyloidogenic β peptide, and (d) serum amyloid A. Some agents, such as Alu-RNA, have been suggested to activate the P2X7R acting on the intracellular N- or C-terminal domains. Mode of P2X7R activation by these non-nucleotide ligands is as yet unknown; however, these observations raise the intriguing question of how these different non-nucleotide ligands may co-operate with ATP at inflammatory or tumor sites. New information obtained from the cloning and characterization of the P2X7R from exotic mammalian species (e.g., giant panda) and data from recent patch-clamp studies are strongly accelerating our understanding of P2X7R mode of operation, and may provide hints to the mechanism of activation of P2X7R by non-nucleotide ligands.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Anna L Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Vultaggio-Poma
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alba C Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
39
|
Karasawa A, Michalski K, Mikhelzon P, Kawate T. The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. eLife 2017; 6:31186. [PMID: 28920575 PMCID: PMC5624784 DOI: 10.7554/elife.31186] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/15/2022] Open
Abstract
The P2X7 receptor mediates extracellular ATP signaling implicated in the development of devastating diseases such as chronic pain and cancer. Activation of the P2X7 receptor leads to opening of the characteristic dye-permeable membrane pore for molecules up to ~900 Da. However, it remains controversial what constitutes this peculiar pore and how it opens. Here we show that the panda receptor, when purified and reconstituted into liposomes, forms an intrinsic dye-permeable pore in the absence of other cellular components. Unexpectedly, we found that this pore opens independent of its unique C-terminal domain. We also found that P2X7 channel activity is facilitated by phosphatidylglycerol and sphingomyelin, but dominantly inhibited by cholesterol through direct interactions with the transmembrane domain. In combination with cell-based functional studies, our data suggest that the P2X7 receptor itself constitutes a lipid-composition dependent dye-permeable pore, whose opening is facilitated by palmitoylated cysteines near the pore-lining helix.
Collapse
Affiliation(s)
- Akira Karasawa
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Kevin Michalski
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Polina Mikhelzon
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Toshimitsu Kawate
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| |
Collapse
|