1
|
Kong LZ, Jang IH, Wang C, Lee SY, Kim SM, Oh SC, Lee S, Jo S, Kim JH, Kim KK, Kim TD. Transcriptomic landscapes of STING-mediated DNA-sensing reveal cellular response heterogeneity. Int J Biol Macromol 2025; 288:138752. [PMID: 39674484 DOI: 10.1016/j.ijbiomac.2024.138752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Transfection of plasmid DNA (pDNA) encoding target genes is a routine tool in gene function studies and therapeutic applications. However, nucleic acid-sensing-mediated innate immune responses influence multiple intracellular signaling pathways. The stimulator of interferon genes (STING) is a crucial adapter protein for DNA sensors in mammalian cells. In this study, we explored the molecular mechanisms underlying DNA sensing by investigating the relationship between mRNA and protein expression levels and the STING pathway using single-cell analysis. We observed that reporter gene expression was dose-nonlinear after transfection of pDNA in cells with intact DNA-sensing pathways. Moreover, blocking the STING pathway in THP-1 cells significantly downregulated innate immune responses, upregulated exogenous gene expression, and mitigated the effects of innate immune responses on cell and gene function, but did not affect the proportion of reporter protein-positive cells. We elucidated the mechanisms of DNA sensing-induced innate immune response and cell death by analyzing heterozygous cellular responses to DNA transfection and transcriptome changes in positive cells. These findings suggest that the regulation of STING-mediated nucleic acid-sensing pathways is crucial for the accuracy of gene function studies and could enhance the efficacy of gene therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chunli Wang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Sales Conniff A, Tur J, Kohena K, Zhang M, Gibbons J, Heller LC. DNA Electrotransfer Regulates Molecular Functions in Skeletal Muscle. Bioelectricity 2024; 6:80-90. [PMID: 39119567 PMCID: PMC11304878 DOI: 10.1089/bioe.2022.0041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Background Tissues, such as skeletal muscle, have been targeted for the delivery of plasmid DNA (pDNA) encoding vaccines and therapeutics. The application of electric pulses (electroporation or electrotransfer) increases cell membrane permeability to enhance plasmid delivery and expression. However, the molecular effects of DNA electrotransfer on the muscle tissue are poorly characterized. Materials and Methods Four hours after intramuscular plasmid electrotransfer, we evaluated gene expression changes by RNA sequencing. Differentially expressed genes were analyzed by gene ontology (GO) pathway enrichment analysis. Results GO analysis highlighted many enriched molecular functions. The terms regulated by pulse application were related to muscle stress, the cytoskeleton and inflammation. The terms regulated by pDNA injection were related to a DNA-directed response and its control. Several terms regulated by pDNA electrotransfer were similar to those regulated by pulse application. However, the terms related to pDNA injection differed, focusing on entry of the plasmid into the cells and intracellular trafficking. Conclusion Each muscle stimulus resulted in specific regulated molecular functions. Identifying the unique intrinsic molecular changes driven by intramuscular DNA electrotransfer will aid in the design of preventative and therapeutic gene therapies.
Collapse
Affiliation(s)
- Amanda Sales Conniff
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Jared Tur
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Kristopher Kohena
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- USF Genomics Core, University of South Florida, Tampa, Florida, USA
| | - Justin Gibbons
- USF Omics Hub, University of South Florida, Tampa, Florida, USA
| | - Loree C. Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Pan M, Yin Y, Hu T, Wang X, Jia T, Sun J, Wang Q, Meng W, Zhu J, Dai C, Hu H, Wang C. UXT attenuates the CGAS-STING1 signaling by targeting STING1 for autophagic degradation. Autophagy 2023; 19:440-456. [PMID: 35543189 PMCID: PMC9851252 DOI: 10.1080/15548627.2022.2076192] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
STING1 (stimulator of interferon response cGAMP interactor 1), the pivotal adaptor protein of CGAS (cyclic GMP-AMP synthase)-STING1 signaling, is critical for type I IFN production of innate immunity. However, excessive or prolonged activation of STING1 is associated with autoinflammatory and autoimmune diseases. Thus, preventing STING1 from over-activation is important to maintain immune homeostasis. Here, we reported that UXT (ubiquitously expressed prefoldin like chaperone), a small chaperone-like protein, was essential to prevent the excessive activation of STING1-mediated type I IFN signaling through autophagic degradation of STING1 via SQSTM1 (sequestosome 1). Upon DNA mimics or cyclic GMP-AMP (cGAMP) stimulation, UXT specifically interacted with STING1 and promoted STING1 degradation through selective macroautophagy/autophagy. Moreover, UXT was required for more efficient autophagic degradation of STING1 by facilitating the interaction of SQSTM1 and STING1. The in vivo role of UXT in attenuating the CGAS-STING1 signaling was further confirmed in the mouse model of DNA-virus infection and the TMPD (2,6,10,14-tetramethylpentadecane)-induced murine lupus model. Intriguingly, the expression of UXT was consistently impaired and exhibited a remarkable inverse correlation with type I IFN signature in the leukocytes and PBMCs (peripheral blood mononuclear cells) of several large SLE (systemic lupus erythematosus) cohorts. Importantly, the replenishment of UXT effectively suppressed the production of IFNs and ISGs in the PBMCs of SLE patients. Taken together, our study reveals a novel regulatory role of UXT in autophagic degradation of STING1 to maintain immune homeostasis. UXT might be a potential therapeutic target for alleviating aberrant type I IFNs in autoimmune diseasesAbbreviations: 3-MA: 3-methyladenine; BMDMs: bone marrow-derived macrophages; cGAMP: cyclic GMP-AMP; CGAS: cyclic gmp-amp synthase; cKO: conditional knockout; CXCL10: C-X-C motif chemokine ligand 10; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HSV-1: herpes simplex virus type 1; HTDNA: herring testes DNA; IFIT1: interferon induced protein with tetratricopeptide repeats 1; IFNA4: interferon alpha 4; IFNB: interferon beta; IRF3: interferon regulatory factor 3; ISD: interferon stimulatory DNA; ISGs: IFN-stimulated genes; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; RNA-seq: RNA sequencing; PBMCs: peripheral blood mononuclear cells; RSAD2: radical S-adenosyl methionine domain containing 2; SLE: systemic lupus erythematosus; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TMPD: 2,6,10,14-tetramethylpentadecane; UXT: ubiquitously expressed prefoldin like chaperone.
Collapse
Affiliation(s)
- Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Tongyu Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Xinxia Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Tian Jia
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Jing Sun
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Wei Meng
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Juanjuan Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China
| | - Chunsun Dai
- Center for Kidney Diseases, The 2nd Affiliated Hospital of Nanjing Medical University, Nanjing, China,CONTACT Chunsun Dai Center for Kidney Diseases, The 2nd Affiliated Hospital of Nanjing Medical University, 262 North Zhongshan Road, Nanjing, China
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China,Haiyang Hu State Key Laboratory of Natural Medicines, School of Life Science and Technology China Pharmaceutical University, 639 Longmian AvenueNanjingChina
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangning District, China,Chen Wang State Key Laboratory of Natural Medicines, School of Life Science and Technology China Pharmaceutical University, 639 Longmian AvenueNanjingChina
| |
Collapse
|
4
|
Penner I, Büscher N, Dejung M, Freiwald A, Butter F, Plachter B. Subviral Dense Bodies of Human Cytomegalovirus Induce an Antiviral Type I Interferon Response. Cells 2022; 11:cells11244028. [PMID: 36552792 PMCID: PMC9777239 DOI: 10.3390/cells11244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cells infected with the human cytomegalovirus (HCMV) produce subviral particles, termed dense bodies (DBs), both in-vitro and in-vivo. They are released from cells, comparable to infectious virions, and are enclosed by a membrane that resembles the viral envelope and mediates the entry into cells. To date, little is known about how the DB uptake influences the gene expression in target cells. The purpose of this study was to investigate the impact of DBs on cells, in the absence of a viral infection. (2) Methods: Mass spectrometry, immunoblot analyses, siRNA knockdown, and a CRISPR-CAS9 knockout, were used to investigate the changes in cellular gene expression following a DB exposure; (3) Results: A number of interferon-regulated genes (IRGs) were upregulated after the fibroblasts and endothelial cells were exposed to DBs. This upregulation was dependent on the DB entry and mediated by the type I interferon signaling through the JAK-STAT pathway. The induction of IRGs was mediated by the sensing of the DB-introduced DNA by the pattern recognition receptor cGAS. (4) Conclusions: The induction of a strong type I IFN response by DBs is a unique feature of the HCMV infection. The release of DBs may serve as a danger signal and concomitantly contribute to the induction of a strong, antiviral immune response.
Collapse
Affiliation(s)
- Inessa Penner
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Nicole Büscher
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Mario Dejung
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Anja Freiwald
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Falk Butter
- Institute for Molecular Biology, 55128 Mainz, Germany
| | - Bodo Plachter
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
5
|
Sales Conniff A, Tur J, Kohena K, Zhang M, Gibbons J, Heller LC. Transcriptomic Analysis of the Acute Skeletal Muscle Effects after Intramuscular DNA Electroporation Reveals Inflammatory Signaling. Vaccines (Basel) 2022; 10:vaccines10122037. [PMID: 36560447 PMCID: PMC9786673 DOI: 10.3390/vaccines10122037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Skeletal muscle is a promising tissue for therapeutic gene delivery because it is highly vascularized, accessible, and capable of synthesizing protein for therapies or vaccines. The application of electric pulses (electroporation) enhances plasmid DNA delivery and expression by increasing membrane permeability. Four hours after plasmid electroporation, we evaluated acute gene and protein expression changes in mouse skeletal muscle to identify regulated genes and genetic pathways. RNA sequencing followed by functional annotation was used to evaluate differentially expressed mRNAs. Our data highlighted immune signaling pathways that may influence the effectiveness of DNA electroporation. Cytokine and chemokine protein levels in muscle lysates revealed the upregulation of a subset of inflammatory proteins and confirmed the RNA sequencing analysis. Several regulated DNA-specific pattern recognition receptor mRNAs were also detected. Identifying unique molecular changes in the muscle will facilitate a better understanding of the underlying molecular mechanisms and the development of safety biomarkers and novel strategies to improve skeletal muscle targeted gene therapy.
Collapse
Affiliation(s)
- Amanda Sales Conniff
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Jared Tur
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Kristopher Kohena
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Min Zhang
- USF Genomics Core, University of South Florida, Tampa, FL 33612, USA
| | - Justin Gibbons
- USF Omics Hub, University of South Florida, Tampa, FL 33612, USA
| | - Loree C. Heller
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-4637
| |
Collapse
|
6
|
Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res 2022; 70:578-606. [PMID: 35610534 DOI: 10.1007/s12026-022-09286-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Maintenance of immune homeostasis is an intricate process wherein inflammasomes play a pivotal role by contributing to innate and adaptive immune responses. Inflammasomes are ensembles of adaptor proteins that can trigger a signal following innate sensing of pathogens or non-pathogens eventuating in the inductions of IL-1β and IL-18. These inflammatory cytokines substantially influence the antigen-presenting cell's costimulatory functions and T helper cell differentiation, contributing to adaptive immunity. As acute and chronic disease conditions may accompany parallel tissue damage, we analyze the critical role of extracellular factors such as cytokines, amyloids, cholesterol crystals, etc., intracellular metabolites, and signaling molecules regulating inflammasome activation/inhibition. We develop an operative framework for inflammasome function and regulation by host cell factors and pathogens. While inflammasomes influence the innate and adaptive immune components' interplay modulating the anti-pathogen adaptive immune response, pathogens may target inflammasome inhibition as a survival strategy. As trapped between health and diseases, inflammasomes serve as promising therapeutic targets and their modus operandi serves as a scientific rationale for devising better therapeutic strategies.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India
| | - Bhaskar Saha
- National Centre for Cell Science, Lab-5, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Reena Agrawal-Rajput
- Immunology lab, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
7
|
Franzese O, Torino F, Giannetti E, Cioccoloni G, Aquino A, Faraoni I, Fuggetta MP, De Vecchis L, Giuliani A, Kaina B, Bonmassar E. Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment? Int J Mol Sci 2021; 22:ijms221910672. [PMID: 34639014 PMCID: PMC8509363 DOI: 10.3390/ijms221910672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients' quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy.
Collapse
Affiliation(s)
- Ornella Franzese
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Elisa Giannetti
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy; (F.T.); (E.G.)
| | - Giorgia Cioccoloni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - Angelo Aquino
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Isabella Faraoni
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Liana De Vecchis
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
| | - Anna Giuliani
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, D-55131 Mainz, Germany
- Correspondence: (B.K.); (E.B.)
| | - Enzo Bonmassar
- School of Medicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (O.F.); (G.C.); (A.A.); (I.F.); (L.D.V.)
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere, 00133 Rome, Italy; (M.P.F.); (A.G.)
- Correspondence: (B.K.); (E.B.)
| |
Collapse
|
8
|
Taffoni C, Steer A, Marines J, Chamma H, Vila IK, Laguette N. Nucleic Acid Immunity and DNA Damage Response: New Friends and Old Foes. Front Immunol 2021; 12:660560. [PMID: 33981307 PMCID: PMC8109176 DOI: 10.3389/fimmu.2021.660560] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
The maintenance of genomic stability in multicellular organisms relies on the DNA damage response (DDR). The DDR encompasses several interconnected pathways that cooperate to ensure the repair of genomic lesions. Besides their repair functions, several DDR proteins have emerged as involved in the onset of inflammatory responses. In particular, several actors of the DDR have been reported to elicit innate immune activation upon detection of cytosolic pathological nucleic acids. Conversely, pattern recognition receptors (PRRs), initially described as dedicated to the detection of cytosolic immune-stimulatory nucleic acids, have been found to regulate DDR. Thus, although initially described as operating in specific subcellular localizations, actors of the DDR and nucleic acid immune sensors may be involved in interconnected pathways, likely influencing the efficiency of one another. Within this mini review, we discuss evidences for the crosstalk between PRRs and actors of the DDR. For this purpose, we mainly focus on cyclic GMP-AMP (cGAMP) synthetase (cGAS) and Interferon Gamma Inducible Protein 16 (IFI16), as major PRRs involved in the detection of aberrant nucleic acid species, and components of the DNA-dependent protein kinase (DNA-PK) complex, involved in the repair of double strand breaks that were recently described to qualify as potential PRRs. Finally, we discuss how the crosstalk between DDR and nucleic acid-associated Interferon responses cooperate for the fine-tuning of innate immune activation, and therefore dictate pathological outcomes. Understanding the molecular determinants of such cooperation will be paramount to the design of future therapeutic approaches.
Collapse
Affiliation(s)
- Clara Taffoni
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Alizée Steer
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Johanna Marines
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France.,Azelead, Montpellier, France
| | - Hanane Chamma
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Isabelle K Vila
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Nadine Laguette
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| |
Collapse
|
9
|
Zhang R, Li Z, Tang YD, Su C, Zheng C. When human guanylate-binding proteins meet viral infections. J Biomed Sci 2021; 28:17. [PMID: 33673837 PMCID: PMC7934404 DOI: 10.1186/s12929-021-00716-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/01/2021] [Indexed: 12/23/2022] Open
Abstract
Innate immunity is the first line of host defense against viral infection. After invading into the cells, pathogen-associated-molecular-patterns derived from viruses are recognized by pattern recognition receptors to activate the downstream signaling pathways to induce the production of type I interferons (IFN-I) and inflammatory cytokines, which play critical functions in the host antiviral innate immune responses. Guanylate-binding proteins (GBPs) are IFN-inducible antiviral effectors belonging to the guanosine triphosphatases family. In addition to exerting direct antiviral functions against certain viruses, a few GBPs also exhibit regulatory roles on the host antiviral innate immunity. However, our understanding of the underlying molecular mechanisms of GBPs' roles in viral infection and host antiviral innate immune signaling is still very limited. Therefore, here we present an updated overview of the functions of GBPs during viral infection and in antiviral innate immunity, and highlight discrepancies in reported findings and current challenges for future studies, which will advance our understanding of the functions of GBPs and provide a scientific and theoretical basis for the regulation of antiviral innate immunity.
Collapse
Affiliation(s)
- Rongzhao Zhang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhixin Li
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
10
|
Yamazaki T, Bravo-San Pedro JM, Galluzzi L, Kroemer G, Pietrocola F. Autophagy in the cancer-immunity dialogue. Adv Drug Deliv Rev 2021; 169:40-50. [PMID: 33301821 DOI: 10.1016/j.addr.2020.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is quintessential for the maintenance of cellular homeostasis in all eukaryotic cells, explaining why both normal and malignant cells benefit from proficient autophagic responses. Moreover, autophagy is intimately involved in the immunological control of malignant transformation, tumor progression and response to therapy. However, the net effect of autophagy activation or inhibition on the natural growth or therapeutic response of tumors evolving in immunocompetent hosts exhibits a considerable degree of context dependency. Here, we discuss the complex cross-talk between autophagy and immuno-oncology as delineated by genetic and pharmacological approaches in mouse models of cancer.
Collapse
|
11
|
Zheng C. The emerging roles of NOD-like receptors in antiviral innate immune signaling pathways. Int J Biol Macromol 2021; 169:407-413. [PMID: 33347926 DOI: 10.1016/j.ijbiomac.2020.12.127] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
Viral infection triggers host pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns or danger-associated molecular patterns to initiate antiviral innate immune responses. NOD-like receptors (NLRs) are a subgroup of cytosolic PRRs. While substantial advances have been made over the past decade, recent studies have unveiled NLRs' emerging roles in the antiviral innate immune signaling pathways. However, the underlying mechanisms have not been fully understood. Here we present a detailed updated overview and novel insights into NLRs' functions in the antiviral innate immune signaling pathways, including TLR, RLR, and cyclic GMP-AMP synthase-stimulator of interferon genes signaling pathways, and highlight discrepancies in the reported findings and current challenges to future studies. A better understanding of this interplay's underlying molecular mechanisms is very important to provide scientific and theoretical bases for regulating antiviral innate immunity.
Collapse
Affiliation(s)
- Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Weyemi U, Galluzzi L. Chromatin and genomic instability in cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:ix-xvii. [PMID: 34507786 DOI: 10.1016/s1937-6448(21)00116-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Urbain Weyemi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| |
Collapse
|
13
|
Lasso G, Honig B, Shapira SD. A Sweep of Earth's Virome Reveals Host-Guided Viral Protein Structural Mimicry and Points to Determinants of Human Disease. Cell Syst 2020; 12:82-91.e3. [PMID: 33053371 PMCID: PMC7552982 DOI: 10.1016/j.cels.2020.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Viruses deploy genetically encoded strategies to coopt host machinery and support viral replicative cycles. Here, we use protein structure similarity to scan for molecular mimicry, manifested by structural similarity between viral and endogenous host proteins, across thousands of cataloged viruses and hosts spanning broad ecological niches and taxonomic range, including bacteria, plants and fungi, invertebrates, and vertebrates. This survey identified over 6,000,000 instances of structural mimicry; more than 70% of viral mimics cannot be discerned through protein sequence alone. We demonstrate that the manner and degree to which viruses exploit molecular mimicry varies by genome size and nucleic acid type and identify 158 human proteins that are mimicked by coronaviruses, providing clues about cellular processes driving pathogenesis. Our observations point to molecular mimicry as a pervasive strategy employed by viruses and indicate that the protein structure space used by a given virus is dictated by the host proteome. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Gorka Lasso
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY, USA; Department of Medicine, Columbia University, New York, NY, USA
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Karapetyan L, Luke JJ, Davar D. Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther 2020; 13:10039-10060. [PMID: 33116588 PMCID: PMC7553670 DOI: 10.2147/ott.s247050] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is a pattern recognition receptor that is predominantly located intracellularly in immune cells, including dendritic cells, macrophages, natural killer cells, and other antigen-presenting cells (APC). The primary ligands for TLR9 receptors are unmethylated cytidine phosphate guanosine (CpG) oligodinucleotides (ODN). TLR9 agonists induce inflammatory processes that result in the enhanced uptake and killing of microorganisms and cancer cells as well as the generation of adaptive immune responses. Preclinical studies of TLR9 agonists suggested efficacy both as monotherapy and in combination with several agents, which led to clinical trials in patients with advanced cancer. In these studies, intravenous, intratumoral, and subcutaneous routes of administration have been tested; with anti-tumor responses in both treated and untreated metastatic sites. TLR9 agonist monotherapy is safe, although efficacy is minimal in advanced cancer patients; conversely, combinations appear to be more promising. Several ongoing phase I and II clinical trials are evaluating TLR9 agonists in combination with a variety of agents including chemotherapy, radiotherapy, targeted therapy, and immunotherapy agents. In this review article, we describe the distribution, structure and signaling of TLR9; discuss the results of preclinical studies of TLR9 agonists; and review ongoing clinical trials of TLR9 agonists singly and in combination in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Lilit Karapetyan
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA
| | - Jason J Luke
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diwakar Davar
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center (HCC), Pittsburgh, PA, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Yamazaki T, Kirchmair A, Sato A, Buqué A, Rybstein M, Petroni G, Bloy N, Finotello F, Stafford L, Navarro Manzano E, Ayala de la Peña F, García-Martínez E, Formenti SC, Trajanoski Z, Galluzzi L. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy. Nat Immunol 2020; 21:1160-1171. [PMID: 32747819 DOI: 10.1038/s41590-020-0751-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Autophagy supports both cellular and organismal homeostasis. However, whether autophagy should be inhibited or activated for cancer therapy remains unclear. Deletion of essential autophagy genes increased the sensitivity of mouse mammary carcinoma cells to radiation therapy in vitro and in vivo (in immunocompetent syngeneic hosts). Autophagy-deficient cells secreted increased amounts of type I interferon (IFN), which could be limited by CGAS or STING knockdown, mitochondrial DNA depletion or mitochondrial outer membrane permeabilization blockage via BCL2 overexpression or BAX deletion. In vivo, irradiated autophagy-incompetent mammary tumors elicited robust immunity, leading to improved control of distant nonirradiated lesions via systemic type I IFN signaling. Finally, a genetic signature of autophagy had negative prognostic value in patients with breast cancer, inversely correlating with mitochondrial abundance, type I IFN signaling and effector immunity. As clinically useful autophagy inhibitors are elusive, our findings suggest that mitochondrial outer membrane permeabilization may represent a valid target for boosting radiation therapy immunogenicity in patients with breast cancer.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Alexander Kirchmair
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Marissa Rybstein
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Francesca Finotello
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Stafford
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Esther Navarro Manzano
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Francisco Ayala de la Peña
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Universidad de Murcia, Murcia, Spain
| | - Elena García-Martínez
- Hematology and Oncology Department, Hospital Universitario Morales Meseguer, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Universidad Católica San Antonio de Murcia, Guadalupe, Spain
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.
- Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
16
|
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1, best known as STING) is an endoplasmic reticulum-sessile protein that serves as a signaling hub, receiving input from several pattern recognition receptors, most of which sense ectopic DNA species in the cytosol. In particular, STING ensures the production of type I interferon (IFN) in response to invading DNA viruses, bacterial pathogens, as well as DNA leaking from mitochondria or the nucleus (e.g., in cells exposed to chemotherapy or radiotherapy). As a type I IFN is critical for the initiation of anticancer immune responses, the pharmaceutical industry has generated molecules that directly activate STING for use in oncological indications. Such STING agonists are being tested in clinical trials with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells (including dendritic cells) to elicit immunostimulatory effects, alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. In this Trial Watch, we discuss preclinical evidence and accumulating clinical experience shaping the design of Phase I and Phase II trials that evaluate the safety and preliminary efficacy of STING agonists in cancer patients.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, USA.,Sandra and Edward Meyer Cancer Center, New York, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Saeed AFUH, Ruan X, Guan H, Su J, Ouyang S. Regulation of cGAS-Mediated Immune Responses and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902599. [PMID: 32195086 PMCID: PMC7080523 DOI: 10.1002/advs.201902599] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Indexed: 05/08/2023]
Abstract
Early detection of infectious nucleic acids released from invading pathogens by the innate immune system is critical for immune defense. Detection of these nucleic acids by host immune sensors and regulation of DNA sensing pathways have been significant interests in the past years. Here, current understandings of evolutionarily conserved DNA sensing cyclic GMP-AMP (cGAMP) synthase (cGAS) are highlighted. Precise activation and tight regulation of cGAS are vital in appropriate innate immune responses, senescence, tumorigenesis and immunotherapy, and autoimmunity. Hence, substantial insights into cytosolic DNA sensing and immunotherapy of indispensable cytosolic sensors have been detailed to extend limited knowledge available thus far. This Review offers a critical, in-depth understanding of cGAS regulation, cytosolic DNA sensing, and currently established therapeutic approaches of essential cytosolic immune agents for improved human health.
Collapse
Affiliation(s)
- Abdullah F. U. H. Saeed
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
- College of Chemistry and Materials ScienceFujian Normal UniversityFuzhou350117China
| | - Xinglin Ruan
- Department of NeurologyFujian Medical University Union Hospital29 Xinquan Road Gulou DistrictFuzhou350001China
| | - Hongxin Guan
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Jingqian Su
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Fujian Key Laboratory of Special Marine Bio‐resources Sustainable UtilizationThe Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
| |
Collapse
|