1
|
Yi W, Sylvester E, Lian J, Deng C. The effects of risperidone and voluntary exercise intervention on synaptic plasticity gene expressions in the hippocampus and prefrontal cortex of juvenile female rats. Physiol Behav 2025; 294:114879. [PMID: 40096936 DOI: 10.1016/j.physbeh.2025.114879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Psychiatric disorders and antipsychotics are associated with impaired neuroplasticity, while physical exercise has been reported to enhance neuroplasticity and improve cognitive and affective processes. Therefore, this study hypothesizes that voluntary exercise can enhance synaptic plasticity in juvenile rats disrupted by risperidone, a commonly prescribed antipsychotic for pediatric patients. METHODS Thirty-two juvenile female rats were randomly assigned to Vehicle+Sedentary, Risperidone (0.9mg/kg; b.i.d)+Sedentary, Vehicle+Exercise (three hours daily access to running wheels), and Risperidone+Exercise groups for four week treatment. Brains were collected for further analysis. RESULTS In the hippocampus, the mRNA expressions of Bdnf, Ntrk2, and Grin2b were increased by risperidone and exercise intervention. Exercise upregulated expression of Grin1 and Grin2a. Syn1 and Syp mRNA expression were enhanced by exercise in the risperidone-treated group. The expression of both Mfn1 and Drp1 mRNA were decreased by risperidone-only treatment. In the prefrontal cortex, Bdnf and Dlg4 expression was upregulated by exercise, while the Ntrk2 expression was reduced by risperidone and reversed by exercise. The Mfn1 mRNA expression was decreased by risperidone with or without voluntary exercise. The risperidone-decreased Ppargc1α gene expression was enhanced by exercise. CONCLUSION Risperidone affects synaptic plasticity through a complex mechanism in female juvenile rats: enhancing certain key genes in the hippocampus while inhibiting genes essential for mitochondrial function. In line with our hypothesis, voluntary exercise promotes genes beneficial for synaptic plasticity and enhances specific genes reduced by risperidone, in female juvenile rats.
Collapse
Affiliation(s)
- Weijie Yi
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Emma Sylvester
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Jiamei Lian
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
2
|
Zhang L, Yamada S, Nagoshi N, Shinozaki M, Tsuji T, Nakamura M, Okano H, Tashiro S. Combining therapeutic strategies with rehabilitation improves motor recovery in animal models of spinal cord injury: A systematic review and meta-analysis. Ann Phys Rehabil Med 2025; 68:101911. [PMID: 39798215 DOI: 10.1016/j.rehab.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Despite the lack of clinically validated strategies for treating spinal cord injury (SCI), combining therapeutic strategies with rehabilitation is believed to promote recovery of motor function; however, current research findings are inconsistent. OBJECTIVES To explore whether combination therapy involving therapy and rehabilitative training (CIRT) has a synergistic effect on motor function recovery in animal models of SCI. METHODS We conducted a systematic review and meta-analysis of studies identified in a keyword search of 6 databases and extracted open-field motor scores from the Basso Mouse Scale (BMS) and the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB) for meta-analysis using a weighted mean difference (WMD) and 95 % CI. We also performed qualitative synthesis and analysis of secondary outcome measures related to histological improvements and adverse effects. RESULTS Eighty-seven preclinical studies were included. Combination treatment with treadmill training resulted in a significant improvement in motor function (1.40, 95 % CI 0.82 to 1.98, P < 0.01, I2 = 49 %), especially when initiated 1-2 weeks post-injury (1.77, 95 % CI 1.10 to 2.45, P < 0.01, I2 = 33 %) in rats. In mice, CIRT lasting <6 weeks may enhance recovery (0.95, 95 % CI 0.49 to 1.40, P < 0.01, I2 = 33 %). Although there is a trend toward better outcomes in the chronic phase, insufficient sample sizes prevent definitive conclusions from being drawn. Combined therapy also enhances the reorganization of inhibitory synaptic structures and functions, without aggravating allodynia or spasticity. CONCLUSIONS This systematic review and meta-analysis suggest that CIRT can lead to superior motor function recovery compared to single-modality therapy (SMT) in animal models of SCI, with no significant adverse effects on allodynia or spasticity. However, the efficacy of CIRT depends on various factors, and further research is needed to establish optimal treatment strategies and understand the underlying mechanisms of recovery.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Shin Yamada
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582
| | - Syoichi Tashiro
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
3
|
Jeong S, K Davis C, Vemuganti R. Mechanisms of time-restricted feeding-induced neuroprotection and neuronal plasticity in ischemic stroke as a function of circadian rhythm. Exp Neurol 2025; 383:115045. [PMID: 39510297 DOI: 10.1016/j.expneurol.2024.115045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Time-restricted feeding (TRF) is known to promote longevity and brain function, and potentially prevent neurological diseases. Animal studies show that TRF enhances brain-derived neurotrophic factor (BDNF) signaling and regulates autophagy and neuroinflammation, supporting synaptic plasticity, neurogenesis and neuroprotection. Feeding/fasting paradigms influence the circadian cycle, with TRF aligning circadian cycle-related gene expression, and thus altering physiological processes. Emerging evidence highlights the role of gut microbiota in neuronal plasticity, based on the observation that TRF significantly alters gut microbiota composition. Hence, the gut-brain axis may be crucial for maintaining cognitive functions and presents a potential therapeutic target for TRF-mediated neuroprotection. In the context of ischemic stroke where neuronal damage is extensive, TRF can be a preconditioning strategy to enhance synaptic plasticity and neuronal resilience, thus improving outcomes after stroke. This review discussed the link between TRF and circadian regulation in neuronal plasticity and its implications for recovery after stroke.
Collapse
Affiliation(s)
- Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin, Madison, WI, USA; William S. Middleton Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
4
|
Pinho RA, Muller AP, Marqueze LF, Radak Z, Arida RM. Physical exercise-mediated neuroprotective mechanisms in Parkinson's disease, Alzheimer's disease, and epilepsy. Braz J Med Biol Res 2024; 57:e14094. [PMID: 39607205 DOI: 10.1590/1414-431x2024e14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Research suggests that physical exercise is associated with prevention and management of chronic diseases. The influence of physical exercise on brain function and metabolism and the mechanisms involved are well documented in the literature. This review provides a comprehensive overview of the potential implications of physical exercise and the molecular benefits of exercise in Parkinson's disease, Alzheimer's disease, and epilepsy. Here, we present an overview of the effects of exercise on various aspects of metabolism and brain function. To this end, we conducted an extensive literature search of the PubMed, Web of Science, and Google Scholar databases to identify articles published in the past two decades. This review delves into key aspects including the modulation of neuroinflammation, neurotrophic factors, and synaptic plasticity. Moreover, we explored the potential role of exercise in advancing therapeutic strategies for these chronic diseases. In conclusion, the review highlights the importance of regular physical exercise as a complementary non-pharmacological treatment for individuals with neurological disorders such as Alzheimer's, Parkinson's disease, and epilepsy.
Collapse
Affiliation(s)
- R A Pinho
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
- Rede Nacional de Neurociência e Atividade Física, Brasil
| | - A P Muller
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - L F Marqueze
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brasil
| | - Z Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - R M Arida
- Rede Nacional de Neurociência e Atividade Física, Brasil
- Departamento de Fisiologia, Universidade Federal de São Paulo, Botucatu, SP, Brasil
| |
Collapse
|
5
|
Franco-García JM, Carlos-Vivas J, Castillo-Paredes A, Mayordomo-Pinilla N, Rojo-Ramos J, Pérez-Gómez J. Impacts of Square Stepping Exercise on Physical-Cognitive Function, Biomarkers, Body Composition and Mental Health in Healthy Senior Aged 60 and Above: A Systematic Review. Healthcare (Basel) 2024; 12:2325. [PMID: 39684951 DOI: 10.3390/healthcare12232325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The aim of this systematic review is to analyze the effects of Square Stepping Exercise (SSE) on physical and cognitive function in older people, including its effects on biomarkers, body composition and mental health, focusing only on research that assessed the efficacy of SSE-based interventions. Methods: PubMed, Web of Science, Scopus and Cochrane databases were searched from June 2006 to June 2024 according to the PRISMA guidelines. The main search terms used were related to "older people" and "square-stepping exercise". Controlled trials that included at least one intervention group focused on SSE were included. Participants had to be healthy, without physical or cognitive impairment, and the studies published in English or Spanish. The methodological quality of the selected research was assessed using the Physiotherapy Evidence Database (PEDro). Results: Twelve studies were selected from a total of 444 original records, with a total sample size of 577 participants. The health parameters of the participants were homogeneous, with ages ranging from 60 to 80 years. Significant gains were reported in certain physical function assessments, including balance, lower body strength and power, gait speed and flexibility. There were also significant findings in cognitive function, particularly in general cognitive status, focused attention, response time, basic task performance, and executive function. In addition, SSE can improve metrics such as body composition, brain-derived neurotrophic factor (BDNF), and mental health characteristics. Conclusions: SSE has the potential to significantly improve physical function, cognitive performance and body composition, as well as provide mental health benefits and have variable effects on biomarkers and cardiovascular health.
Collapse
Affiliation(s)
- Juan Manuel Franco-García
- Health, Economy, Motricity and Education (HEME) Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| | - Jorge Carlos-Vivas
- Physical Activity for Education, Performance and Health (PAEPH) Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| | - Antonio Castillo-Paredes
- Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de Las Américas, Santiago 8370040, Chile
| | - Noelia Mayordomo-Pinilla
- BioErgon Research Group, Faculty of Sports Sciences, University of Extremadura, 10003 Cáceres, Spain
| | - Jorge Rojo-Ramos
- BioErgon Research Group, Faculty of Sports Sciences, University of Extremadura, 10003 Cáceres, Spain
| | - Jorge Pérez-Gómez
- Health, Economy, Motricity and Education (HEME) Research Group, Faculty of Sport Sciences, University of Extremadura, 10003 Cáceres, Spain
| |
Collapse
|
6
|
Sanaeifar F, Pourranjbar S, Pourranjbar M, Ramezani S, Mehr SR, Wadan AHS, Khazeifard F. Beneficial effects of physical exercise on cognitive-behavioral impairments and brain-derived neurotrophic factor alteration in the limbic system induced by neurodegeneration. Exp Gerontol 2024; 195:112539. [PMID: 39116955 DOI: 10.1016/j.exger.2024.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases (NDDs) are a class of neurological disorders marked by the progressive loss of neurons that afflict millions of people worldwide. These illnesses affect brain connection, impairing memory, cognition, behavior, sensory perception, and motor function. Alzheimer's, Parkinson's, and Huntington's diseases are examples of common NDDs, which frequently include the buildup of misfolded proteins. Cognitive-behavioral impairments are early markers of neurodevelopmental disorders, emphasizing the importance of early detection and intervention. Neurotrophins such as brain-derived neurotrophic factor (BDNF) are critical for neuron survival and synaptic plasticity, which is required for learning and memory. NDDs have been associated with decreased BDNF levels. Physical exercise, a non-pharmacological intervention, benefits brain health by increasing BDNF levels, lowering cognitive deficits, and slowing brain degradation. Exercise advantages include increased well-being, reduced depression, improved cognitive skills, and neuroprotection by lowering amyloid accumulation, oxidative stress, and neuroinflammation. This study examines the effects of physical exercise on cognitive-behavioral deficits and BDNF levels in the limbic system impacted by neurodegeneration. The findings highlight the necessity of including exercise into NDD treatment to improve brain structure, function, and total BDNF levels. As research advances, exercise is becoming increasingly acknowledged as an important technique for treating cognitive decline and neurodegenerative disorders.
Collapse
Affiliation(s)
- Farhad Sanaeifar
- Department of Behavioral and Cognitive Sciences in Sport, Faculty of Sport Sciences andHealth, University of Tehran, Tehran, Iran
| | - Sina Pourranjbar
- Doctor of Medicine, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pourranjbar
- Department of Physical Education, Faculty of Medicine and Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sana Ramezani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samira Rostami Mehr
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Farnaz Khazeifard
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Wang X, Li S, Zhang Z, Cui Z, Wang Z. Association between widowhood and cognitive function among Chinese older adults with hearing impairment: the moderating effect of social support and participation. BMC Geriatr 2024; 24:764. [PMID: 39289645 PMCID: PMC11406715 DOI: 10.1186/s12877-024-05358-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Older adults with hearing impairments are vulnerable to cognitive impairment. Although previous reports suggest a correlation between widowhood and cognitive impairment, further investigation is needed to elucidate the effect of widowhood on cognitive function and the moderating effects of social support and participation on widowhood-related cognitive impairment in this vulnerable demographic. METHODS The study's data were sourced from the nationally representative Chinese Longitudinal Healthy Longevity Survey (CLHLS) for the years 2011, 2014, and 2018. Multiple linear regression was used to analyze the association between widowhood and cognitive function among older adults. Multivariate logistic regression examined the effect of widowhood on the likelihood of experiencing various levels of cognitive impairment in older adults with hearing impairments. A moderating effect model explored the roles of social support and participation in mitigating widowhood-related cognitive impairment. RESULTS The cognitive function of older adults with hearing impairment was found to be lower than that of those without hearing impairment. Widowhood was significantly negatively correlated with Mini-Mental State Examination (MMSE) scores in older adults, both with (Coef. = -0.898) and without (Coef.: = -0.680) hearing impairments. A stronger association was observed between widowhood and declining cognitive function among older adults with hearing impairment. Specifically, widowhood may be more likely to significantly increase the likelihood of moderate and severe cognitive impairment (RRR = 1.326, 1.538) among older adults with hearing impairments. Social support and social participation significantly moderated the cognitive impairment associated with widowhood among hearing-impaired older adults. These forms of support and engagement are buffers against the risk of widowhood-related cognitive impairment among this demographic. CONCLUSIONS Our findings indicate that widowhood is significantly associated with cognitive impairment in older adults with hearing impairment. Social support and participation help mitigate this risk. Strategies should prioritize early screening, specialized cognitive rehabilitation, comprehensive care, and enhancing social support and participation to maintain cognitive health in this vulnerable population following widowhood.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Health Policy & Management, Nanjing Medical University, Nanjing, 211166, China
| | - Sihan Li
- School of Health Policy & Management, Nanjing Medical University, Nanjing, 211166, China
| | - Zinan Zhang
- School of Health Policy & Management, Nanjing Medical University, Nanjing, 211166, China
- Laboratory for Digital Intelligence & Health Governance, Nanjing Medical University, Nanjing, 211166, China
| | - Zhaohan Cui
- School of Health Policy & Management, Nanjing Medical University, Nanjing, 211166, China.
- Laboratory for Digital Intelligence & Health Governance, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhonghua Wang
- School of Health Policy & Management, Nanjing Medical University, Nanjing, 211166, China.
- Laboratory for Digital Intelligence & Health Governance, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
8
|
Gardner RS, Ambalavanar MT, Gold PE, Korol DL. Enhancement of response learning in male rats with intrastriatal infusions of a BDNF - TrkB agonist, 7,8-dihydroxyflavone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606692. [PMID: 39211174 PMCID: PMC11360987 DOI: 10.1101/2024.08.08.606692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enhancement of learning and memory by cognitive and physical exercise may be mediated by brain-derived neurotrophic factor (BDNF) acting at tropomyosin receptor kinase B (TrkB). Upregulation of BDNF and systemic administration of a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), enhance learning of several hippocampus-sensitive tasks in rodents. Although BDNF and 7,8-DHF enhance functions of other brain areas too, these effects have mainly targeted non-cognitive functions. One goal of the present study was to determine whether 7,8-DHF would act beyond the hippocampus to enhance cognitive functions sensitive to manipulations of the striatum. Here, we examined the effects of intrastriatal infusions of 7,8-DHF on learning a striatum-sensitive response maze and on phosphorylation of TrkB receptors in 3-month-old male Sprague Dawley rats. Most prior studies of BDNF and 7,8-DHF effects on learning and memory have administered the drugs for days to months before assessing effects on cognition. A second goal of the present study was to determine whether a single drug treatment near the time of training would effectively enhance learning. Moreover, 7,8-DHF is often tested for its ability to reverse impairments in learning and memory rather than to enhance these functions in the absence of impairments. Thus, a third goal of this experiment was to evaluate the efficacy of 7,8-DHF in enhancing learning in unimpaired rats. In untrained rats, intrastriatal infusions of 7,8-DHF resulted in phosphorylation of TrkB receptors, suggesting that 7,8-DHF acted as a TrkB agonist and BDNF mimic. The findings that a single, intra-striatal infusion of 7,8-DHF 20 min before training enhanced response learning in rats suggest that, in addition to its trophic effects, BDNF modulates learning and memory through receptor mediated cell signaling events.
Collapse
|
9
|
Gökçe E, Adıgüzel E, Koçak ÖK, Kılınç H, Langeard A, Boran E, Cengiz B. Impact of Acute High-intensity Interval Training on Cortical Excitability, M1-related Cognitive Functions, and Myokines: A Randomized Crossover Study. Neuroscience 2024; 551:290-298. [PMID: 38851379 DOI: 10.1016/j.neuroscience.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
High-intensity interval training (HIIT) is a time-efficient, safe, and feasible exercise type that can be utilized across different ages and health status. This randomized cross-over study aimed to investigate the effect of acute HIIT on cortical excitability, M1-related cognitive functions, cognition-related myokines, brain-derived neurotrophic factor (BDNF), and Cathepsin B (CTSB). Twenty-three sedentary young adults (mean age: 22.78 years ± 2.87; 14 female) participated in a cross-over design involving two sessions: either 23 min of HIIT or seated rest. Before and after the sessions, cortical excitability was measured using transcranial magnetic stimulation, and M1-related cognitive functions were assessed by the n-back test and mental rotation test. Serum levels of BDNF and CTSB were assessed using the ELISA method before and after the HIIT intervention. We demonstrated that HIIT improved mental rotation and working memory, and increased serum levels of BDNF and CTSB, whereas cortical excitability did not change. Our findings provide evidence that one session of HIIT is effective on M1-related cognitive functions and cognition-related myokines. Future research is warranted to determine whether such findings are transferable to different populations, such as cognitively at-risk children, adults, and older adults, and to prescribe effective exercise programs.
Collapse
Affiliation(s)
- Evrim Gökçe
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey.
| | - Emre Adıgüzel
- Physical Medicine and Rehabilitation Hospital, Ankara City Hospital, Ankara, Turkey
| | - Özlem Kurtkaya Koçak
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Hasan Kılınç
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Antoine Langeard
- Normandie Univ, UNICAEN, INSERM, CYCERON, CHU Caen, COMETE UMR 1075, Caen, France
| | - Evren Boran
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bülent Cengiz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey; Department of Neurology, Section of Clinical Neurophysiology, Faculty of Medicine, Gazi University, Ankara, Turkey; Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey
| |
Collapse
|
10
|
Zou J, Hao S. Exercise-induced neuroplasticity: a new perspective on rehabilitation for chronic low back pain. Front Mol Neurosci 2024; 17:1407445. [PMID: 38912176 PMCID: PMC11191426 DOI: 10.3389/fnmol.2024.1407445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Chronic low back pain patients often experience recurrent episodes due to various peripheral and central factors, leading to physical and mental impairments, affecting their daily life and work, and increasing the healthcare burden. With the continuous advancement of neuropathological research, changes in brain structure and function in chronic low back pain patients have been revealed. Neuroplasticity is an important mechanism of self-regulation in the brain and plays a key role in neural injury repair. Targeting neuroplasticity and regulating the central nervous system to improve functional impairments has become a research focus in rehabilitation medicine. Recent studies have shown that exercise can have beneficial effects on the body, such as improving cognition, combating depression, and enhancing athletic performance. Exercise-induced neuroplasticity may be a potential mechanism through which exercise affects the brain. This article systematically introduces the theory of exercise-induced neuroplasticity, explores the central effects mechanism of exercise on patients with chronic low back pain, and further looks forward to new directions in targeted neuroplasticity-based rehabilitation treatment for chronic low back pain.
Collapse
Affiliation(s)
- Jianpeng Zou
- Department of Rehabilitation and Physiotherapy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shijie Hao
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Phillips R. Bonding and Attachment with Baby in the Womb or in the Neonatal Intensive Care Unit: The Critical Role of Early Emotional Connections. Crit Care Nurs Clin North Am 2024; 36:157-165. [PMID: 38705685 DOI: 10.1016/j.cnc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Bonding and attachment are known to be critically important for the well-being of infants and children. Both bonding and attachment can begin before birth, which impacts fetal and infant brain development and may improve birth outcomes. Babies in the womb and preterm babies in the neonatal intensive care unit (NICU) can hear and respond to maternal voices with positive effects on physiologic stability, brain development, and language development. Supporting emotional connections before and after birth is the responsibility and the privilege of health-care providers who care for pregnant mothers and babies in the NICU.
Collapse
Affiliation(s)
- Raylene Phillips
- Division of Neonatology, Department of Pediatrics, Loma Linda University Children's Hospital, Loma Linda University School of Medicine, 11175 Campus Street, CP 11121, Loma Linda, CA 92350, USA.
| |
Collapse
|
12
|
Milbocker KA, Smith IF, Klintsova AY. Maintaining a Dynamic Brain: A Review of Empirical Findings Describing the Roles of Exercise, Learning, and Environmental Enrichment in Neuroplasticity from 2017-2023. Brain Plast 2024; 9:75-95. [PMID: 38993580 PMCID: PMC11234674 DOI: 10.3233/bpl-230151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 07/13/2024] Open
Abstract
Brain plasticity, also termed neuroplasticity, refers to the brain's life-long ability to reorganize itself in response to various changes in the environment, experiences, and learning. The brain is a dynamic organ capable of responding to stimulating or depriving environments, activities, and circumstances from changes in gene expression, release of neurotransmitters and neurotrophic factors, to cellular reorganization and reprogrammed functional connectivity. The rate of neuroplastic alteration varies across the lifespan, creating further challenges for understanding and manipulating these processes to benefit motor control, learning, memory, and neural remodeling after injury. Neuroplasticity-related research spans several decades, and hundreds of reviews have been written and published since its inception. Here we present an overview of the empirical papers published between 2017 and 2023 that address the unique effects of exercise, plasticity-stimulating activities, and the depriving effect of social isolation on brain plasticity and behavior.
Collapse
Affiliation(s)
| | - Ian F. Smith
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, University of Delaware, Newark, USA
| |
Collapse
|
13
|
Borges Junior M, Tavares LFJ, Nagata GY, Barroso LSS, Fernandes HB, Souza-Gomes AF, Miranda AS, Nunes-Silva A. Impact of Strength Training Intensity on Brain-derived Neurotrophic Factor. Int J Sports Med 2024; 45:155-161. [PMID: 37871642 DOI: 10.1055/a-2197-1201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The present study employed a randomized crossover design to investigate the effect of strength-training exercise at varying intensities on acute changes in plasma brain-derived neurotrophic factor (BDNF) levels. Fourteen trained male subjects (41.0±5.8 years old) were enrolled in the current study. The strength-training protocol included bench press, leg press, and lat pull-down exercises. Participants performed four sets with repetition failure at 60% or 80% of their one-repetition maximum (1RM), with a two-minute rest period. The order of intensity was randomized among volunteers. Blood samples were collected before, immediately after, and one hour after each exercise protocol. A time-point comparison revealed that a single session of strength training at 60% of 1RM increased lactate plasma concentrations from 1.2 to 16 mmol/L (p<0.0001). However, no significant changes were observed in the plasma BDNF concentration. Conversely, the training session at 80% of 1RM increased lactate concentrations from 1.3 to 14 mmol/L (p<0.0001) and BDNF concentrations from 461 to 1730 pg/ml (p=0.035) one hour after the session's conclusion. These findings support the hypothesis that a single strength-training session at 80% 1RM can significantly enhance circulating levels of BDNF.
Collapse
|
14
|
Zhao Y, Huang B, Yu Y, Luan J, Huang S, Liu Y, Yang H, Chen Y, Yang R, Dong J, Shi H. Exercise to prevent the negative effects of sleep deprivation: A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105433. [PMID: 37898446 DOI: 10.1016/j.neubiorev.2023.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Ample sleep is an important basis for maintaining health, however with the pace of life accelerating in modern society, more people are using sacrificial sleep to cope with these social changes. Sleep deprivation can have negative effects on cognitive performance and psychosomatic health. It is well known that exercise, as a beneficial intervention strategy for human health, has been increasingly used in the clinic. But it's not clear if it can prevent the negative effects of sleep deprivation. In this meta-analysis, we reviewed 23 articles from PubMed and Web of Science to investigate whether moderate physical exercise can prevent the negative effects of sleep deprivation in rodents. Our findings suggest that exercise can prevent sleep deprivation-induced cognitive impairment and anxiety-like behaviors through multiple pathways. We also discuss possible molecular mechanisms involved in this protective effect, highlighting the potential of exercise as a preventive or therapeutic strategy for sleep deprivation-induced negative effects.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yang Yu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jiage Luan
- Nursing School, Hebei Medical University, Shijiazhuang 050017, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing 100191, China
| | - Ye Liu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Huiping Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yifei Chen
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Jing Dong
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan 430000, Hubei, China
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
15
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Abdulghani A, Poghosyan M, Mehren A, Philipsen A, Anderzhanova E. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD. Front Mol Neurosci 2023; 15:997054. [PMID: 36776770 PMCID: PMC9909442 DOI: 10.3389/fnmol.2022.997054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Adaptive neuroplasticity is a pivotal mechanism for healthy brain development and maintenance, as well as its restoration in disease- and age-associated decline. Management of mental disorders such as attention deficit hyperactivity disorder (ADHD) needs interventions stimulating adaptive neuroplasticity, beyond conventional psychopharmacological treatments. Physical exercises are proposed for the management of ADHD, and also depression and aging because of evoked brain neuroplasticity. Recent progress in understanding the mechanisms of muscle-brain cross-talk pinpoints the role of the myokine irisin in the mediation of pro-cognitive and antidepressant activity of physical exercises. In this review, we discuss how irisin, which is released in the periphery as well as derived from brain cells, may interact with the mechanisms of cellular autophagy to provide protein recycling and regulation of brain-derived neurotrophic factor (BDNF) signaling via glia-mediated control of BDNF maturation, and, therefore, support neuroplasticity. We propose that the neuroplasticity associated with physical exercises is mediated in part by irisin-triggered autophagy. Since the recent findings give objectives to consider autophagy-stimulating intervention as a prerequisite for successful therapy of psychiatric disorders, irisin appears as a prototypic molecule that can activate autophagy with therapeutic goals.
Collapse
Affiliation(s)
- Alhasan Abdulghani
- C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Henrich Heine University, Düsseldorf, Düsseldorf, Germany,*Correspondence: Alhasan Abdulghani,
| | - Mikayel Poghosyan
- Institute for Biology-Neurobiology, Freie University of Berlin, Berlin, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Elmira Anderzhanova
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
17
|
Dong TN, Kramár EA, Beardwood JH, Al-Shammari A, Wood MA, Keiser AA. Temporal endurance of exercise-induced benefits on hippocampus-dependent memory and synaptic plasticity in female mice. Neurobiol Learn Mem 2022; 194:107658. [PMID: 35811066 PMCID: PMC9901197 DOI: 10.1016/j.nlm.2022.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023]
Abstract
Exercise facilitates hippocampal neurogenesis and neuroplasticity that in turn, promotes cognitive function. Our previous studies have demonstrated that in male mice, voluntary exercise enables hippocampus-dependent learning in conditions that are normally subthreshold for long-term memory formation in sedentary animals. Such cognitive enhancement can be maintained long after exercise has ceased and can be re-engaged by a subsequent subthreshold exercise session, suggesting exercise-induced benefits are temporally dynamic. In females, the extent to which the benefits of exercise can be maintained and the mechanisms underlying this maintenance have yet to be defined. Here, we examined the exercise parameters required to initiate and maintain the benefits of exercise in female C57BL/6J mice. Using a subthreshold version of the hippocampus-dependent task called object-location memory (OLM) task, we show that 14d of voluntary exercise enables learning under subthreshold acquisition conditions in female mice. Following the initial exercise, a 7d sedentary delay results in diminished performance, which can be re-facilitated when animals receive 2d of reactivating exercise following the sedentary delay. Assessment of estrous cycle reveals enhanced wheel running activity during the estrus phase relative to the diestrus phase, whereas estrous phase on training or test had no effect on OLM performance. Utilizing the same exercise parameters, we demonstrate that 14d of exercise enhances long-term potentiation (LTP) in the CA1 region of the hippocampus, an effect that persists throughout the sedentary delay and following the reactivating exercise session. Previous studies have proposed exercise-induced BDNF upregulation as the mechanism underlying exercise-mediated benefits on synaptic plasticity and cognition. However, our assessment of hippocampal Bdnf mRNA expression following memory retrieval reveals no difference between exercise conditions and control, suggesting that persistent Bdnf upregulation may not be required for maintenance of exercise-induced benefits. Together, our data indicate that 14d of voluntary exercise can initiate long-lasting benefits on neuroplasticity and cognitive function in female mice, establishing the first evidence on the temporal endurance of exercise-induced benefits in females.
Collapse
Affiliation(s)
- T N Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - E A Kramár
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - J H Beardwood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - A Al-Shammari
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - M A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States
| | - A A Keiser
- Department of Neurobiology and Behavior, School of Biological Sciences University of California, Irvine 92697-2695, United States; Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine 92697-2695, United States; Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine 92697-2695, United States.
| |
Collapse
|
18
|
Li Q, Zhang L, Zhang Z, Wang Y, Zuo C, Bo S. A Shorter-Bout of HIIT Is More Effective to Promote Serum BDNF and VEGF-A Levels and Improve Cognitive Function in Healthy Young Men. Front Physiol 2022; 13:898603. [PMID: 35846013 PMCID: PMC9277476 DOI: 10.3389/fphys.2022.898603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: The aim of this study was to investigate the effects of single bouts of high-intensity interval training (HIIT) with different duration on serum brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor-A (VEGF-A) levels and cognitive function in healthy young men. Methods: Twelve healthy young men were participated in two HIIT treatments (20 min HIIT and 30 min HIIT) in a random order. BDNF, VEGF-A, cortisol, testosterone, blood lactic acid were measured and cognitive function was assessed by Stroop test (CWST) and Digital Span test (DST) before, immediately after, and 30 min after HIIT. Results: 20 and 30 min HIIT increased BLa (both p < 0.01), cortisol (20 min HIIT: p < 0.05; 30 min HIIT: p < 0.01), and testosterone (both p < 0.05) levels immediately when compared with their baselines. While BLa and cortisol were significantly higher in 30 min HIIT group than in 20 min HIIT group. Moreover, BDNF concentration (p < 0.01), DST-F (p < 0.01) and DST-B (p < 0.05) were increased and response time of Stroop was decreased immediately after HIIT only in 20 min HIIT group. VEGF-A concentration was increased immediately after HIIT in both groups (p < 0.01), but after 30 min recovery, it was returned to the baseline in the 20 min HIIT group and was lower than the baseline in 30 min HIIT group (p < 0.05). Conclusion: Twenty minutes HIIT is more effective than 30 minutes HIIT for promoting serum levels of BDNF and VEGF-A as well as cognitive function in healthy young men.
Collapse
Affiliation(s)
- Qing Li
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Li Zhang
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Zhengguo Zhang
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Yuhan Wang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chongwen Zuo
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Shumin Bo
- College of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
- *Correspondence: Shumin Bo,
| |
Collapse
|
19
|
Won J, Nielson KA, Smith JC. Subjective Well-Being and Bilateral Anterior Insula Functional Connectivity After Exercise Intervention in Older Adults With Mild Cognitive Impairment. Front Neurosci 2022; 16:834816. [PMID: 35620672 PMCID: PMC9128803 DOI: 10.3389/fnins.2022.834816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
While it is well known that exercise training is associated with improvement in subjective well-being among older adults, it is unclear if individuals with cognitive impairment experience the same effects elicited by exercise on subjective well-being. We further explored whether the bilateral anterior insula network may be an underlying neural mechanism for the exercise training-related improvements in subjective well-being. We investigated the effects of exercise training on subjective well-being in older adults (78.4 ± 7.1 years) with mild cognitive impairment (MCI; n = 14) and a cognitively normal (CN; n = 14) control group. We specifically assessed the relationship between changes in subjective well-being and changes in functional connectivity (FC) with the bilateral anterior insula from before to after exercise training. Cardiorespiratory fitness, subjective well-being, and resting-state fMRI were measured before and after a 12-week moderate-intensity walking intervention. A seed-based correlation analysis was conducted using the bilateral anterior insula as a priori seed regions of interest. The associations between bilateral anterior insula FC with other brain regions and subjective well-being were computed before and after exercise training, respectively, and the statistical difference between the correlations (before vs after exercise training) was evaluated. There was a significant Group (MCI vs CN) × Time (before vs after exercise training) interaction for subjective well-being, such that while those with MCI demonstrated significantly increased subjective well-being after exercise training, no changes in subjective well-being were observed in CN. Participants with MCI also showed an exercise training-related increase in the bilateral anterior insula FC. While there was no significant correlation between subjective well-being and bilateral anterior insula FC before exercise training, a positive association between subjective well-being and bilateral anterior insula FC was found in the MCI group after exercise training. Our findings indicate that 12 weeks of exercise training may enhance subjective well-being in older adults diagnosed with MCI and, further, suggest that increased bilateral anterior insula FC with other cortical regions may reflect neural network plasticity associated with exercise training-related improvements in subjective well-being.
Collapse
Affiliation(s)
- Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| | - Kristy A. Nielson
- Department of Psychology, Marquette University, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - J. Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, United States
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
| |
Collapse
|
20
|
Bonanni R, Cariati I, Tarantino U, D’Arcangelo G, Tancredi V. Physical Exercise and Health: A Focus on Its Protective Role in Neurodegenerative Diseases. J Funct Morphol Kinesiol 2022; 7:jfmk7020038. [PMID: 35645300 PMCID: PMC9149968 DOI: 10.3390/jfmk7020038] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Scientific evidence has demonstrated the power of physical exercise in the prevention and treatment of numerous chronic and/or age-related diseases, such as musculoskeletal, metabolic, and cardiovascular disorders. In addition, regular exercise is known to play a key role in the context of neurodegenerative diseases, as it helps to reduce the risk of their onset and counteracts their progression. However, the underlying molecular mechanisms have not yet been fully elucidated. In this regard, neurotrophins, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), glia cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4), have been suggested as key mediators of brain health benefits, as they are involved in neurogenesis, neuronal survival, and synaptic plasticity. The production of these neurotrophic factors, known to be increased by physical exercise, is downregulated in neurodegenerative disorders, suggesting their fundamental importance in maintaining brain health. However, the mechanism by which physical exercise promotes the production of neurotrophins remains to be understood, posing limits on their use for the development of potential therapeutic strategies for the treatment of neurodegenerative diseases. In this literature review, we analyzed the most recent evidence regarding the relationship between physical exercise, neurotrophins, and brain health, providing an overview of their involvement in the onset and progression of neurodegeneration.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (R.B.); (U.T.)
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (R.B.); (U.T.)
- Correspondence:
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (R.B.); (U.T.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, 00133 Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (G.D.); (V.T.)
| | - Giovanna D’Arcangelo
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (G.D.); (V.T.)
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy; (G.D.); (V.T.)
- Department of Systems Medicine, “Tor Vergata” University of Rome, 00133 Rome, Italy
| |
Collapse
|
21
|
Zhou YS, Meng FC, Cui Y, Xiong YL, Li XY, Meng FB, Niu ZX, Zheng JX, Quan YQ, Wu SX, Han Y, Xu H. Regular Aerobic Exercise Attenuates Pain and Anxiety in Mice by Restoring Serotonin-modulated Synaptic Plasticity in the ACC. Med Sci Sports Exerc 2021; 54:566-581. [PMID: 34935710 PMCID: PMC8920021 DOI: 10.1249/mss.0000000000002841] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Clinical studies found that regular aerobic exercise has analgesic and anti-anxiety effects; however, the underlying neural mechanisms remain unclear. Multiple studies have suggested that regular aerobic exercise may exert brain-protective effects by promoting the release of serotonin, which may be a pain modulator. The anterior cingulate cortex (ACC) is a key brain area for pain information processing, receiving dense serotonergic innervation. As a result, we hypothesized that exercise may increase the release of serotonin in the ACC, thus improving pain and anxiety behaviours. METHODS Integrative methods were used, including behavioural, electrophysiological, pharmacological, biochemical, and genetic approaches, to explore the effects of regular aerobic exercise and the underlying neural mechanisms. RESULTS Regular aerobic exercise in the form of voluntary wheel running for 30 minutes daily for 15 days showed significant effectiveness in relieving pain and concomitant anxiety in complete Freund's adjuvant (CFA)-induced chronic inflammation pain models. c-Fos staining and multielectrode array recordings revealed alterations in neuronal activities and synaptic plasticity in the ACC. Moreover, systemic pharmacological treatment with 4-chloro-DL-phenylalanine (PCPA) to deplete endogenous serotonin and local delivery of serotonin to the ACC revealed that exercise-related serotonin release in the ACC bidirectionally modulates pain sensitization and anxiety behaviours by modulating synaptic plasticity in the ACC. Furthermore, we found that 5-HT1A and 5-HT7 receptors mediated the serotonin modulation effects under conditions of regular aerobic exercise through local infusion of a selective antagonist and shRNA in the ACC. CONCLUSIONS Our results reveal that regular aerobic exercise can increase serotonin release and modulate synaptic plasticity in the ACC, ultimately improving pain and concomitant anxiety behaviours through the functions of the 5-HT1A and 5-HT7 receptors.
Collapse
Affiliation(s)
- Yong-Sheng Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, Xi'an, China Department of Thoracic Surgery, Air Force Medical Center, PLA, Beijing, China College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cariati I, Bonanni R, Pallone G, Scimeca M, Frank C, Tancredi V, D’Arcangelo G. Hippocampal Adaptations to Continuous Aerobic Training: A Functional and Ultrastructural Evaluation in a Young Murine Model. J Funct Morphol Kinesiol 2021; 6:101. [PMID: 34940510 PMCID: PMC8706318 DOI: 10.3390/jfmk6040101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aerobic training is known to influence cognitive processes, such as memory and learning, both in animal models and in humans. Particularly, in vitro and in vivo studies have shown that aerobic exercise can increase neurogenesis in the dentate gyrus, improve hippocampal long-term potentiation (LTP), and reduce age-related decline in mnemonic function. However, the underlying mechanisms are not yet fully understood. Based on this evidence, the aim of our study was to verify whether the application of two aerobic training protocols, different in terms of speed and speed variation, could modulate synaptic plasticity in a young murine model. Therefore, we assessed the presence of any functional changes by extracellular recordings in vitro in mouse hippocampal slices and structural alterations by transmission electron microscopy (TEM). Our results showed that an aerobic training protocol, well designed in terms of speed and speed variation, significantly contributes to improving synaptic plasticity and hippocampal ultrastructure, optimizing its benefits in the brain. Future studies will aim to clarify the underlying biological mechanisms involved in the modulation of synaptic plasticity induced by aerobic training.
Collapse
Affiliation(s)
- Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Roberto Bonanni
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Gabriele Pallone
- Department of System Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (G.P.); (V.T.); (G.D.)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Virginia Tancredi
- Department of System Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (G.P.); (V.T.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Giovanna D’Arcangelo
- Department of System Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (G.P.); (V.T.); (G.D.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
23
|
Umegaki H, Sakurai T, Arai H. Active Life for Brain Health: A Narrative Review of the Mechanism Underlying the Protective Effects of Physical Activity on the Brain. Front Aging Neurosci 2021; 13:761674. [PMID: 34916925 PMCID: PMC8670095 DOI: 10.3389/fnagi.2021.761674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
A growing body of evidence clearly indicates the beneficial effects of physical activity (PA) on cognition. The importance of PA is now being reevaluated due to the increase in sedentary behavior in older adults during the COVID-19 pandemic. Although many studies in humans have revealed that PA helps to preserve brain health, the underlying mechanisms have not yet been fully elucidated. In this review, which mainly focuses on studies in humans, we comprehensively summarize the mechanisms underlying the beneficial effects of PA or exercise on brain health, particularly cognition. The most intensively studied mechanisms of the beneficial effects of PA involve an increase in brain-derived neurotrophic factor (BDNF) and preservation of brain volume, especially that of the hippocampus. Nonetheless, the mutual associations between these two factors remain unclear. For example, although BDNF presumably affects brain volume by inhibiting neuronal death and/or increasing neurogenesis, human data on this issue are scarce. It also remains to be determined whether PA modulates amyloid and tau metabolism. However, recent advances in blood-based biomarkers are expected to help elucidate the beneficial effects of PA on the brain. Clinical data suggest that PA functionally modulates cognition independently of neurodegeneration, and the mechanisms involved include modulation of functional connectivity, neuronal compensation, neuronal resource allocation, and neuronal efficiency. However, these mechanisms are as yet not fully understood. A clear understanding of the mechanisms involved could help motivate inactive persons to change their behavior. More accumulation of evidence in this field is awaited.
Collapse
Affiliation(s)
- Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hidenori Arai
- National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
24
|
Paul AP, McNulty B, Parcetich KM. Influence of Single Bouts of Aerobic Exercise on Dual-Tasking Performance in Healthy Adults. J Mot Behav 2021; 54:372-381. [PMID: 34547989 DOI: 10.1080/00222895.2021.1980366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dual-tasking performance (DTP) is critical for most real-life activities. Interventions to improve DTP would be clinically valuable. This study investigated effects of single-bouts of two different aerobic exercises on the performance of Extended cognitive Timed-Up and Go (ETUGcog), a dual-task test involving concurrent performance of a physical (ETUG) and cognitive (counting backwards serial 7 s) task. Twenty-two adults performed single bouts of high-intensity interval training (HIIT) and moderate-intensity exercise (MIE), separately. ETUGcog was performed before, immediately following, and 24 hours after each exercise. Number and rates of correct serial 7 s were significantly higher 24 hours after HIIT, with no difference in times to complete ETUGcog. No such effects were found for MIE. Single bouts of HIIT could provide delayed improvements in DTP.
Collapse
Affiliation(s)
- Arco P Paul
- Department of Physical Therapy, Radford University Carilion, Roanoke, Virginia, USA.,Carilion Roanoke Community Hospital, Roanoke, Virginia, USA
| | - Brendan McNulty
- Genesis Rehab Services, Envoy of Staunton, Staunton, Virginia, USA
| | - Kevin M Parcetich
- Department of Physical Therapy, Radford University Carilion, Roanoke, Virginia, USA
| |
Collapse
|
25
|
Won J, Callow DD, Pena GS, Jordan LS, Arnold-Nedimala NA, Nielson KA, Smith JC. Hippocampal Functional Connectivity and Memory Performance After Exercise Intervention in Older Adults with Mild Cognitive Impairment. J Alzheimers Dis 2021; 82:1015-1031. [PMID: 34151792 PMCID: PMC8461699 DOI: 10.3233/jad-210051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: Exercise training (ET) has neuroprotective effects in the hippocampus, a key brain region for memory that is vulnerable to age-related dysfunction. Objective: We investigated the effects of ET on functional connectivity (FC) of the hippocampus in older adults with mild cognitive impairment (MCI) and a cognitively normal (CN) control group. We also assessed whether the ET-induced changes in hippocampal FC (Δhippocampal-FC) are associated with changes in memory task performance (Δmemory performance). Methods: 32 older adults (77.0±7.6 years; 16 MCI and 16 CN) participated in the present study. Cardiorespiratory fitness tests, memory tasks (Rey Auditory Verbal Learning Test (RAVLT) and Logical Memory Test (LM)), and resting-state fMRI were administered before and after a 12-week walking ET intervention. We utilized a seed-based correlation analysis using the bilateral anterior and posterior hippocampi as priori seed regions of interest. The associations of residualized ET-induced Δhippocampal-FC and Δmemory performance were assessed using linear regression. Results: There were significant improvements in RAVLT Trial 1 and LM test performance after ET across participants. At baseline, MCI, compared to CN, demonstrated significantly lower posterior hippocampal FC. ET was associated with increased hippocampal FC across groups. Greater ET-related anterior and posterior hippocampal FC with right posterior cingulate were associated with improved LM recognition performance in MCI participants. Conclusion: Our findings indicate that hippocampal FC is significantly increased following 12-weeks of ET in older adults and, moreover, suggest that increased hippocampal FC may reflect neural network plasticity associated with ET-related improvements in memory performance in individuals diagnosed with MCI.
Collapse
Affiliation(s)
- Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Daniel D Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Gabriel S Pena
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Leslie S Jordan
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | | | - Kristy A Nielson
- Department of Psychology, Marquette University, Milwaukee, WI, USA.,Department of Neuropsychology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
26
|
Li B, Mao Q, Zhao N, Xia J, Zhao Y, Xu B. Treadmill exercise overcomes memory deficits related to synaptic plasticity through modulating ionic glutamate receptors. Behav Brain Res 2021; 414:113502. [PMID: 34331969 DOI: 10.1016/j.bbr.2021.113502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/10/2021] [Accepted: 07/27/2021] [Indexed: 01/06/2023]
Abstract
Neuronal death and synaptic loss are major pathogensis of Alzheimer's disease (AD), which may be related to the ionic glutamate receptors abnormality. Ionic glutamate receptors are important postsynaptic membrane receptors that regulate excitatory synaptic transmission and are also major component of the postsynaptic density. Beta-Amyloid (Aβ) attacks ionic glutamate receptors to reduce synaptic efficacy and synaptic plasticity, resulting in neuronal death and synaptic loss. The current study aimed to investigate whether exercise-ameliorated AD was associated with changes in ionic glutamate receptors. Transgenic APP/PS1 mice (TgAPP/PS1) and age-matched littermate wild mice were divided into wild type control group, wild type exercise group, transgenic control group and transgenic exercise group. The mice in exercise groups were subjected to treadmill training for 12 weeks. The results showed that 12-week treadmill exercise improved the spatial learning and memory abilities of TgAPP/PS1 mice. Moreover, exercise decreased the contents of Aβ40, Aβ42 and amyloid plaque deposition in hippocampus of TgAPP/PS1 mice. The number of synapses and the length and thickness of postsynaptic densities (PSD) in the hippocampal CA1 region of TgAPP/PS1 mice were significantly increased after exercise. Concomitantly, TgAPP/PS1 displayed obstacles in synaptic plasticity as evidenced by significant decreases in the levels of synaptic structural plasticity-related proteins SYN, PSD95, MAP2 and NCAM, as well as ionic glutamate neuroreceptor subunit proteins GluN2B and GluA1. Interestingly, exercise alleviated these synaptic plasticity disorder in TgAPP/PS1 mice. Thus, this study demonstrates that 12-week treadmill exercise reduces Aβ levels in the hippocampus and mitigates cognitive decline in TgAPP/PS1 mice, which may be mediated by improvements in synaptic structural plasticity and excitatory neurotransmission.
Collapse
Affiliation(s)
- Baixia Li
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Qian Mao
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Na Zhao
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Jie Xia
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Yongcai Zhao
- School of Exercise and Health Science, Tianjin University of Sport, Tianjin, China
| | - Bo Xu
- School of Physical Education and Health Care, East China Normal University, Shanghai, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China.
| |
Collapse
|
27
|
Liu J, Chen C, Liu M, Zhuang S. Effects of Aerobic Exercise on Cognitive Function in Women With Methamphetamine Dependence in a Detoxification Program in Tianjin, China: A Randomized Controlled Trial. J Nurs Res 2021; 29:e164. [PMID: 34183568 DOI: 10.1097/jnr.0000000000000440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cognitive impairment is prevalent among individuals, especially women, with methamphetamine dependence. Although aerobic exercise has been shown to affect cognitive function in humans and animals, few related studies have focused on subjects with methamphetamine dependence. PURPOSE The aim of this study was to assess the detoxification-related effects of aerobic exercise on cognitive function in women with methamphetamine dependence. METHODS A randomized controlled trial was used with 98 women with methamphetamine dependence undergoing a detoxification program at a mental hospital. The women were distributed using a computer-generated grouping random method into either the study or control group. The investigator conducting the baseline questionnaire, the neuropsychologist assessing the cognitive function, and the data analyst were blinded to group assignment. In addition to hospital routine care, the study group received an aerobic exercise intervention for 3 months. The control group only received hospital routine care. Attention and working memory were measured using the Trail Making Test and Digit Span Test, verbal memory was measured using Logical Memory (LM) and Memory for Persons Data (MPD), and executive function was measured using the Color-Word Stroop Test. RESULTS Forty-nine participants were randomized into each group, and the valid data of 43 participants in the study group and 46 in the control group were analyzed. The study group showed significantly more improvement over time in terms of Digit Span Test, Trail Making Test, LM-delayed, MPD-5 minutes delayed, MPD-30 minutes delayed, and Color-Word Stroop Test than the control group (p < .05). LM-immediate and MPD-immediate scores showed that the effects of time and the interaction between time and group were significant but that the main effect of group was not. CONCLUSIONS/IMPLICATIONS FOR PRACTICE Women undergoing detoxification for methamphetamine dependence may practice aerobic exercise to improve attention, working memory, executive function, and parts of verbal memory. Aerobic exercise may be incorporated into detoxification treatment programs to facilitate the recovery of cognitive functions in women.
Collapse
Affiliation(s)
- Jingjing Liu
- BSN, RN, Graduate Student, School of Nursing, Tianjin Medical University, China
| | - Chen Chen
- BSN, RN, Graduate Student, School of Nursing, Tianjin Medical University, China
| | - Maojie Liu
- BSN, RN, Graduate Student, School of Nursing, Tianjin Medical University, China
| | - Shumei Zhuang
- PhD, RN, Associate Professor, School of Nursing, Tianjin Medical University, China
| |
Collapse
|
28
|
Mercerón-Martínez D, Ibaceta-González C, Salazar C, Almaguer-Melian W, Bergado-Rosado JA, Palacios AG. Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. J Alzheimers Dis 2021; 82:S37-S50. [DOI: 10.3233/jad-201178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is the most common and devastating neurodegenerative condition worldwide, characterized by the aggregation of amyloid-β and phosphorylated tau protein, and is accompanied by a progressive loss of learning and memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive deterioration. This article reviews critical aspects of AD neurodegeneration as well as therapeutic approaches that restore neural plasticity to provide functional recoveries, including environmental enrichment, physical exercise, transcranial stimulation, neurotrophin involvement, and direct electrical stimulation of the amygdala. In addition, we report recent behavioral results in Octodon degus, a promising natural model for the study of AD that naturally reproduces the neuropathological alterations observed in AD patients during normal aging, including neuronal toxicity, deterioration of neural plasticity, and the decline of learning and memory.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - William Almaguer-Melian
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
29
|
Hung YF, Hsueh YP. TLR7 and IL-6 differentially regulate the effects of rotarod exercise on the transcriptomic profile and neurogenesis to influence anxiety and memory. iScience 2021; 24:102384. [PMID: 33981972 PMCID: PMC8082089 DOI: 10.1016/j.isci.2021.102384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/20/2021] [Accepted: 03/30/2021] [Indexed: 11/06/2022] Open
Abstract
Voluntary exercise is well known to benefit brain performance. In contrast, forced exercise induces inflammation-related stress responses and may cause psychiatric disorders. Here, we unexpectedly found that rotarod testing, a frequently applied assay for evaluating rodent motor coordination, induces anxiety and alters spatial learning/memory performance of mice. Rotarod testing upregulated genes involved in the unfolded protein response and stress responses and downregulated genes associated with neurogenesis and neuronal differentiation. It impacts two downstream pathways. The first is the IL-6-dependent pathway, which mediates rotarod-induced anxiety. The second is the Toll-like receptor 7 (TLR7)-dependent pathway, which is involved in the effect of rotarod exercise on gene expression and its impact on contextual learning and memory of mice. Thus, although rotarod exercise does not induce systemic inflammation, it influences innate immunity-related responses in the brain, controls gene expression and, consequently, regulates anxiety and contextual learning and memory. Rotarod training at 5 or 10 weeks of age induces anxious behavior in an open field Rotarod training upregulates IL-6 expression in the brain and results in anxiety Rotarod training alters performances of test mice in spatial learning and memory TLR7 controls the rotarod-impacted transcriptomic profiles and contextual memory
Collapse
Affiliation(s)
- Yun-Fen Hung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
30
|
Shu Y, He Q, Xie Y, Zhang W, Zhai S, Wu T. Cognitive Gains of Aerobic Exercise in Patients With Ischemic Cerebrovascular Disorder: A Systematic Review and Meta-Analysis. Front Cell Dev Biol 2020; 8:582380. [PMID: 33392183 PMCID: PMC7775417 DOI: 10.3389/fcell.2020.582380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Cognitive impairment has become an important problem in ischemic cerebrovascular disorder survivors as disease related deaths have been significantly reduced. Aerobic exercise, the most prevalent mode of physical activity, positively contributes to cognition in both healthy population and people with cognitive impairment. However, studies on its associations with cognitive gains in patients with ischemic cerebrovascular disease showed mixed findings. Objective: To explore the cognitive effects of aerobic exercise on ischemic cerebrovascular disorder survivors and investigate the possible moderators on exercise benefits. Method: Randomized controlled trials investigating the effects of sole aerobic exercise on cognitive function in population with ischemic intracranial vascular disorder compared to any control group who did not receive the intervention were enrolled in this systematic review and meta-analysis. Four online database (Pubmed, Cochrane Library, Embase, and Web of Science) were searched. Results: The initial search returned 1,522 citations and ultimately 11 studies were included in the systematic review. Analysis of seven studies showed the beneficial but not statistically significant impact of aerobic exercise on global cognitive function (0.13; 95% Cl -0.09 to 0.35; p = 0.25). Participants already with cognitive impairment benefited more from this intervention (0.31; 95% Cl 0.07-0.55; p = 0.01) and moderate intensity might be the optimal choice (0.34; 95% Cl -0.01 to 0.69; p = 0.06). The program duration and initiation time after stroke occurrence did not predict better cognitive outcome. Aerobic exercise was not associated with improvement of processing speed and executive function, the two subdomains of cognitive function. Conclusions: Aerobic exercise may contribute to cognitive gains in survivors of ischemic cerebrovascular disorder, especially for population already with cognitive decline. Our findings suggest that the adoption of moderate intensity aerobic exercise might improve cognition in such population.
Collapse
Affiliation(s)
- Yimei Shu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing He
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanrong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Zhai
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Autio J, Stenbäck V, Gagnon DD, Leppäluoto J, Herzig KH. (Neuro) Peptides, Physical Activity, and Cognition. J Clin Med 2020; 9:jcm9082592. [PMID: 32785144 PMCID: PMC7464334 DOI: 10.3390/jcm9082592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Regular physical activity (PA) improves cognitive functions, prevents brain atrophy, and delays the onset of cognitive decline, dementia, and Alzheimer’s disease. Presently, there are no specific recommendations for PA producing positive effects on brain health and little is known on its mediators. PA affects production and release of several peptides secreted from peripheral and central tissues, targeting receptors located in the central nervous system (CNS). This review will provide a summary of the current knowledge on the association between PA and cognition with a focus on the role of (neuro)peptides. For the review we define peptides as molecules with less than 100 amino acids and exclude myokines. Tachykinins, somatostatin, and opioid peptides were excluded from this review since they were not affected by PA. There is evidence suggesting that PA increases peripheral insulin growth factor 1 (IGF-1) levels and elevated serum IGF-1 levels are associated with improved cognitive performance. It is therefore likely that IGF-1 plays a role in PA induced improvement of cognition. Other neuropeptides such as neuropeptide Y (NPY), ghrelin, galanin, and vasoactive intestinal peptide (VIP) could mediate the beneficial effects of PA on cognition, but the current literature regarding these (neuro)peptides is limited.
Collapse
Affiliation(s)
- Juho Autio
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
| | - Ville Stenbäck
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Biocenter Oulu, 90220 Oulu, Finland
| | - Dominique D. Gagnon
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Laboratory of Environmental Exercise Physiology, School of Human Kinetics, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Center of Research in Occupational Safety and Health, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Juhani Leppäluoto
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland; (J.A.); (V.S.); (D.D.G.); (J.L.)
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60-572 Poznan, Poland
- Correspondence:
| |
Collapse
|
32
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
33
|
Santana E, de los Reyes T, Casas-Tintó S. Small heat shock proteins determine synapse number and neuronal activity during development. PLoS One 2020; 15:e0233231. [PMID: 32437379 PMCID: PMC7241713 DOI: 10.1371/journal.pone.0233231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 01/31/2023] Open
Abstract
Environmental changes cause stress, Reactive Oxygen Species and unfolded protein accumulation which hamper synaptic activity and trigger cell death. Heat shock proteins (HSPs) assist protein refolding to maintain proteostasis and cellular integrity. Mechanisms regulating the activity of HSPs include transcription factors and posttranslational modifications that ensure a rapid response. HSPs preserve synaptic function in the nervous system upon environmental insults or pathological factors and contribute to the coupling between environmental cues and neuron control of development. We have performed a biased screening in Drosophila melanogaster searching for synaptogenic modulators among HSPs during development. We explore the role of two small-HSPs (sHSPs), sHSP23 and sHSP26 in synaptogenesis and neuronal activity. Both sHSPs immunoprecipitate together and the equilibrium between both chaperones is required for neuronal development and activity. The molecular mechanism controlling HSP23 and HSP26 accumulation in neurons relies on a novel gene (CG1561), which we name Pinkman (pkm). We propose that sHSPs and Pkm are targets to modulate the impact of stress in neurons and to prevent synapse loss.
Collapse
|