1
|
Mou L, Zhang Y, Liu C, Zhang MM, Liu TT, Liu J, Wang Q, Liu J. Evaluation and clinical characteristics of anxiety, depression, and sleep quality among adult patients with seizure clusters. Epilepsy Res 2025; 213:107552. [PMID: 40222316 DOI: 10.1016/j.eplepsyres.2025.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE This study aims to examine the clinical characteristics among seizure clusters (SCs) in adult patients with epilepsy, measure anxiety and depression symptoms, sleep quality and analyze risk factors related to these conditions while assessing their social burden. METHODS The Generalized Anxiety Disorder-7 (GAD-7), the Neurological Disorders Depression Inventory for Epilepsy (NDDI-E), the Pittsburgh Sleep Quality Index (PSQI), and the Social Support Rating Scale (SSRS) were among the structured questionnaires utilized in Sichuan Provincial People's Hospital. Multivariate logistic regression analysis was conducted on the related differential indicators. RESULTS A total of 330 adult patients with epilepsy were included. Statistically significant differences (p < 0.05) were found between the patients with SCs and without groups in terms of age at first onset, etiology, semiology distribution, imaging and EEG results, therapy, and prognosis. SC patients had significantly higher GAD-7, NDDI-E, and PSQI average total scores than in the Non-Seizure Cluster (NSC) group. (p < 0.001), and the distribution of related factors varying by age and daily seizure frequency. Patients with SCs had shown lower objective support, including material support, social networks, and group relationships than the control group SIGNIFICANCE: SCs are a type of clinical emergency. Patients with SCs are more susceptible to anxiety, depression, poor sleep quality and social burden, requiring proactive intervention and mental health management. This study is registered with the Chinese Clinical Trials Registry (identifier: ChiCTR2400088157).
Collapse
Affiliation(s)
- Lan Mou
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuwen Zhang
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Chenshi Liu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming-Ming Zhang
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Ting-Ting Liu
- Department of Medical Records, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Oinglongchang Ward, Chengdu Sixth People's Hospital, Chengdu, China
| | - Qi Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Liu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
2
|
Coleman EM, White M, Antonoudiou P, Weiss GL, Scarpa G, Stone B, Maguire J. Early life stress influences epilepsy outcomes in mice. Epilepsy Behav 2025; 163:110217. [PMID: 39689578 PMCID: PMC11830541 DOI: 10.1016/j.yebeh.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Stress is a common seizure trigger that has been implicated in worsening epilepsy outcomes, which encompasses psychiatric and cognitive comorbidities and sudden unexpected death in epilepsy (SUDEP) risk. The neuroendocrine response to stress is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and HPA axis dysfunction worsens epilepsy outcomes, increasing seizure burden, behavioral comorbidities, and risk for SUDEP in mice. Early life stress (ELS) reprograms the HPA axis into adulthood, impacting both the basal and stress-induced activity. Thus, we propose that ELS may influence epilepsy outcomes by influencing the function of the HPA axis. To test this hypothesis, we utilized the maternal separation paradigm and examined the impact on seizure susceptibility. We show that ELS exerts a sex dependent effect on seizure susceptibility in response to acute administration of the chemoconvulsant, kainic acid, which is associated with an altered relationship between seizure activity and HPA axis function. To further examine the impact of ELS on epilepsy outcomes, we utilized the intrahippocampal kainic acid model of chronic epilepsy in mice previously exposed to maternal separation. We find that the relationship between corticosterone levels and the extent of epileptiform activity is altered in mice subjected to ELS. We demonstrate that ELS impacts behavioral outcomes associated with chronic epilepsy in a sex-dependent manner, with females being more affected. We also observe reduced mortality (presumed SUDEP) in female mice subjected to ELS, consistent with previous findings suggesting a role for HPA axis dysfunction in SUDEP risk. These data demonstrate for the first time that ELS influences epilepsy outcomes and suggest that previous life experiences may impact the trajectory of epilepsy.
Collapse
Affiliation(s)
- Emanuel M Coleman
- Tufts University School of Medicine, Neuroscience Department, Boston, MA, USA
| | - Maya White
- Tufts University School of Medicine, Neuroscience Department, Boston, MA, USA
| | | | - Grant L Weiss
- Tufts University School of Medicine, Neuroscience Department, Boston, MA, USA
| | - Garrett Scarpa
- Tufts University School of Medicine, Neuroscience Department, Boston, MA, USA
| | - Bradly Stone
- Tufts University School of Medicine, Neuroscience Department, Boston, MA, USA
| | - Jamie Maguire
- Tufts University School of Medicine, Neuroscience Department, Boston, MA, USA.
| |
Collapse
|
3
|
Reddy DS, Vadassery A, Ramakrishnan S, Singh T, Clossen B, Wu X. Kindling Models of Epileptogenesis for Developing Disease-Modifying Drugs for Epilepsy. Curr Protoc 2024; 4:e70020. [PMID: 39436626 PMCID: PMC11498896 DOI: 10.1002/cpz1.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Kindling models are widely used animal models to study the pathobiology of epilepsy and epileptogenesis. These models exhibit distinctive features whereby sub-threshold stimuli instigate the initial induction of brief focal seizures. Over time, the severity and duration of these seizures progressively increase, leading to a fully epileptic state, which is marked by consistent development of generalized tonic-clonic seizures. Kindling involves focal stimulation via implanted depth electrodes or repeated administration of chemoconvulsants such as pentylenetetrazol. Comparative analysis of preclinical and clinical findings has confirmed a high predictive validity of fully kindled animals for testing novel antiseizure medications. Thus, kindling models remain an essential component of anticonvulsant drug development programs. This article provides a comprehensive guide to working protocols, testing of therapeutic drugs, outcome parameters, troubleshooting, and data analysis for various electrical and chemical kindling epileptogenesis models for new therapeutic development and optimization. The use of pharmacological agents or genetically modified mice in kindling experiments is valuable, offering insights into the impact of a specific target on various aspects of seizures, including thresholds, initiation, spread, termination, and the generation of a hyperexcitable network. These kindling epileptogenesis paradigms are helpful in identifying mechanisms and disease-modifying interventions for epilepsy. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Hippocampal kindling Basic Protocol 2: Amygdala kindling Basic Protocol 3: Rapid hippocampal kindling Basic Protocol 4: Chemical kindling.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Abhinav Vadassery
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Bryan Clossen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Xin Wu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
4
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
5
|
Wang Y, Wang F, He R, Wang Y, Liu Y, Jin X. Short-term effects of ambient nitrogen dioxide on medical emergency calls for epileptic seizures: A time-series study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2133-2141. [PMID: 39073612 DOI: 10.1007/s00484-024-02736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Short-term exposure to air pollution has previously been studied in relation to certain neurological disorders, but there is still a lack of convincing data linking air pollution to epileptic seizures. The study's goal was to investigate how exposure to ambient nitrogen dioxide (NO2) affected the number of patients seeking assistance at the Wuhan Emergency Medical Center due to epileptic seizures. We gathered data on medical emergency calls (MECs), daily ambient air pollution concentrations (SO2, NO2, PM2.5, PM10, CO, and O3), and meteorological variables in Wuhan, China, spanning from January 1, 2017, to November 30, 2019. To investigate the potential influence of ambient nitrogen dioxide on MECs for epileptic seizures, we carried out a time-series investigation using the general additive model (GAM). Additionally, analyses stratified by season, age, and gender were performed. A total of 8989 records of MECs for epileptic seizures were enrolled in our study during the period. Statistical analysis indicates that a rise of 10 μg/m3 in NO2 concentration is linked to a 0.17% increase in daily MECs for epileptic seizures (95% confidence interval [CI]: 0.02%, 0.32%). Furthermore, people aged 14-59 years were more susceptible(2.25%, P < 0.05). The short-term effects of NO2 exposure on daily MECs for epileptic seizures were stronger in warm seasons than in cool seasons (0.55% vs. -0.10%, P < 0.0001). Our findings suggests that short-term exposure to ambient NO2 was positively correlated with daily MECs for epileptic seizures in Wuhan, China. Additionally, we observed that these associations were stronger in patients aged above 14 but under 60 years and the warmer seasons (from April to September).
Collapse
Affiliation(s)
- Yijie Wang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Fei Wang
- WuHan Emergency Centre, 288 Machang Road, Wuhan, 430022, Hubei, China
| | - Rong He
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yiming Wang
- The Second Clinical School of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Xiaoqing Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
6
|
Coleman EM, White M, Antonoudiou P, Weiss GL, Scarpa G, Stone B, Maguire J. Early life stress influences epilepsy outcomes in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612052. [PMID: 39314367 PMCID: PMC11419006 DOI: 10.1101/2024.09.09.612052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Stress is a common seizure trigger that has been implicated in worsening epilepsy outcomes. The neuroendocrine response to stress is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and HPA axis dysfunction worsens epilepsy outcomes, increasing seizure burden, behavioral comorbidities, and risk for sudden unexpected death in epilepsy (SUDEP) in mice. Early life stress (ELS) reprograms the HPA axis into adulthood, impacting both the basal and stress-induced activity. Thus, we propose that ELS may influence epilepsy outcomes by influencing the function of the HPA axis. To test this hypothesis, we utilized the maternal separation paradigm and examined the impact on seizure susceptibility. We show that ELS exerts a sex dependent effect on seizure susceptibility in response to acute administration of the chemoconvulsant, kainic acid, which is associated with an altered relationship between seizure activity and HPA axis function. To further examine the impact of ELS on epilepsy outcomes, we utilized the intrahippocampal kainic acid model of chronic epilepsy in mice previously exposed to maternal separation. We find that the relationship between corticosterone levels and the extent of epileptiform activity is altered in mice subjected to ELS. We demonstrate that ELS impacts behavioral outcomes associated with chronic epilepsy in a sex-dependent manner, with females being more affected. We also observe reduced mortality (presumed SUDEP) in female mice subjected to ELS, consistent with previous findings suggesting a role for HPA axis dysfunction in SUDEP risk. These data demonstrate for the first time that ELS influences epilepsy outcomes and suggest that previous life experiences may impact the trajectory of epilepsy.
Collapse
|
7
|
Batista FLA, de Araújo SMB, de Sousa DB, Sobrinho FBC, de Lima Silva MG, de Oliveira MRC, da Costa RHS, Rodrigues LB, Bezerra FS, de Azevedo DV, Vieira-Neto AE, Magalhães FEA, de Menezes IRA. Anticonvulsant and anxiolytic-like potential of the essential oil from the Ocimum basilicum Linn leaves and its major constituent estragole on adult zebrafish (Danio rerio). Neurochem Int 2024; 178:105796. [PMID: 38936553 DOI: 10.1016/j.neuint.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
The Ocimum species present active compounds with the potential to develop drugs for treating chronic disease conditions, such as anxiety and seizures. The present study aims to investigate the anticonvulsant and anxiolytic-like effect of the essential oil from O. basilicum Linn (OEFOb) leaves and its major constituent estragole (ES) in vivo on adult zebrafish (aZF) and in silico. The aZF were treated with OEFOb or ES or vehicle and submitted to the tests of toxicity, open-field, anxiety, and convulsion and validated the interactions of the estragole on the involvement of GABAergic and serotonergic receptors by molecular docking assay. The results showed that the oral administration of OEFOb and ES did not have a toxic effect on the aZF and showed anxiolytic-like effects with the involvement of GABAA, 5-HT1, 5-HT2A/2C and 5-HT3A/3B as well on anxiety induced by alcohol withdrawal. The OEFOb and ES showed anticonvulsant potential attenuating the seizures induced by pentylenetetrazole (PTZ) by modulation of the GABAA system. Both anxiolytic and anticonvulsant effects were corroborated by the potential of the interaction of ES by in silico assay. These study samples demonstrate the pharmacological evidence and potential for using these compounds to develop new anxiolytic and anticonvulsant drugs.
Collapse
Affiliation(s)
- Francisco Lucas A Batista
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil; Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Sandra Maria B de Araújo
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Daniela Braga de Sousa
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Francisco Bastos C Sobrinho
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Maria Gabriely de Lima Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Maria Rayane C de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Roger Henrique S da Costa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Lindaiane Bezerra Rodrigues
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil
| | - Franciglauber Silva Bezerra
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Djane Ventura de Azevedo
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | | | - Francisco Ernani A Magalhães
- Laboratory of Bioprospection of Natural Products and Biotechnology, Department of Chemistry, State University of Ceará, Campus CECITEC, Tauá, Ceará, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Chemical Biology, Regional University of Cariri (URCA), Rua Coronel Antônio Luis 1161, Pimenta, CEP 63105-000, Crato, Ceará, Brazil.
| |
Collapse
|
8
|
Gavrilovic A, Gavrilovic J, Ilic Zivojinovic J, Jeličić L, Radovanovic S, Vesic K. Influence of Epilepsy Characteristics on the Anxiety Occurrence. Brain Sci 2024; 14:858. [PMID: 39335354 PMCID: PMC11430231 DOI: 10.3390/brainsci14090858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The presence of anxiety in individuals with epilepsy significantly influences their medical treatment and quality of life and often goes unrecognized or untreated, posing a challenge to differential diagnosis. The study aimed to investigate the influence of epilepsy characteristics on anxiety. The research involved 155 patients with generalized and focal drug-sensitive [DSE] and drug-resistant [DRE] epilepsy. Hamilton anxiety rating scale [HAS] was used to assess the symptoms of anxiety at three time points [baseline, 12, and 18 months]. DSE patients exhibited significantly lower HAM-A scores than patients with DRE at the initial visit [p = 0.000] after 12 [p = 0.000] and 18-month follow-up [p = 0.000]. Focal DRE patients presented higher HAM-A scores than focal DSE patients in the initial visit [p = 0.000] after 12 [p = 0.000] and 18 months [p = 0.000]. Medication responsiveness, seizure type, and illness duration emerged as significant anxiety predictors [p = 0.000]. After 18 months of follow-up, significant contributors to anxiety were drug responsivity and illness duration [p = 0.000]. The occurrence of anxiety in epilepsy patients is most significantly influenced by well-controlled epilepsy and a positive response to medication.
Collapse
Affiliation(s)
- Aleksandar Gavrilovic
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic of Neurology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Jagoda Gavrilovic
- Department of Infectious Diseases, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic for Infectious Diseases, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Ilic Zivojinovic
- Faculty of Medicine, Institute of Hygiene and Medical Ecology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ljiljana Jeličić
- Cognitive Neuroscience Department Research and Development Institute "Life Activities Advancement Institute", 11000 Belgrade, Serbia
- Department of Speech, Language and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, 11000 Belgrade, Serbia
| | - Snezana Radovanovic
- Department of Social Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Katarina Vesic
- Department of Neurology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Clinic of Neurology, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Salpekar J, Ertenu DD. Anxiety and school avoidance in an 8-year-old child with epilepsy. Epilepsy Behav Rep 2024; 26:100659. [PMID: 38532902 PMCID: PMC10963191 DOI: 10.1016/j.ebr.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Anxiety is ubiquitous in school age children. Co-occurring medical illness adds to the complexity of identifying pathologic anxiety as opposed to that of typical development such as with social interactions or academic pressures. Anxiety may also occur in the context of cognitive difficulties or inattention, both of which may be exacerbated by epilepsy or by anti-seizure medicines themselves. Treatment strategies may require patience and long-term observations to account for the typical range of stressors that may be expected with disease progression or with development through childhood. This section illustrates the challenge of diagnosis and management of anxiety in the context of epilepsy in a school aged child and addresses nuances that neurology clinicians need to consider. Practical strategies for management including stepwise options for pharmacologic treatment will be emphasized.
Collapse
Affiliation(s)
- Jay Salpekar
- Neuropsychiatry Center, Kennedy Krieger Institute, Psychiatry and Neurology, Johns Hopkins University School of Medicine, 1741 Ashland Ave., Baltimore, MD 21205, United States
| | - D. Dilara Ertenu
- Neuropsychiatry Center, Kennedy Krieger Institute, Psychiatry and Neurology, Johns Hopkins University School of Medicine, 1741 Ashland Ave., Baltimore, MD 21205, United States
| |
Collapse
|
10
|
Zwierzyńska E, Pietrzak B. The impact of brivaracetam on cognitive processes and anxiety in various experimental models. Pharmacol Rep 2024; 76:86-97. [PMID: 38182968 PMCID: PMC10830775 DOI: 10.1007/s43440-023-00564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Memory deficits and anxiety symptoms are undesirable effects that occur in epilepsy patients. They may be associated with the pathophysiology of the disease but also with anticonvulsant therapy. Brivaracetam (BRV) is one of the newest antiseizure drugs. It acts as a ligand for synaptic vesicle glycoprotein 2A (SV2A), which may play a significant role in cognitive processes. Although BRV has a favorable safety profile, its central side effects remain unclear. Hence, this study aimed to evaluate the effect of BRV on various types of memory and anxiety in rats. METHODS BRV was given to adult male Wistar rats (n = 80) via gastric tube as a single dose (6 mg/kg or 20 mg/kg) or chronically (6 mg/kg). The effect of the drug on spatial memory was evaluated in the Morris water maze (MWM), fear-learning by passive avoidance (PA), and recognition memory with novel object recognition (NOR). The elevated plus maze (EPM) was used to assess anxiety-like behaviors. RESULTS The impact of BRV on memory is dose-dependent and mainly high doses may alter retrieval memory and fear-learning. Sub-chronic administration also impaired retrieval and spatial memory in animals. Moreover, chronic BRV may increase anxiety levels in rats but did not affect recognition memory. CONCLUSIONS BRV may cause transient memory deficits as well as anxiety disturbances. However, the results are varied and depend on the type of memory, used dose, and duration of administration.
Collapse
Affiliation(s)
- Ewa Zwierzyńska
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland.
| | - Bogusława Pietrzak
- Department of Pharmacodynamics, Medical University of Lodz, Muszyńskiego 1, 90-151, Łódź, Poland
| |
Collapse
|
11
|
Molteberg E, Thorsby PM, Kverneland M, Iversen PO, Selmer KK, Hofoss D, Nakken KO, Taubøll E. Stress biomarkers in adult patients with drug-resistant epilepsy on a modified Atkins diet: A prospective study. Epilepsia Open 2023; 8:1331-1339. [PMID: 37574592 PMCID: PMC10690645 DOI: 10.1002/epi4.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVE Ketogenic diets like the modified Atkins diet (MAD) are increasingly used in patients with refractory epilepsy. For epilepsy patients, stress is a well-known seizure-precipitating factor. New possibilities for measuring biomarkers of stress are now available. The purpose of this study was to investigate the impact of MAD on endocrine stress biomarkers. METHODS Forty-nine patients with drug-resistant epilepsy were investigated at baseline and after 12 weeks on MAD. Cortisol and cortisol-binding globulin (CBG) were measured and free cortisol index (FCI) calculated. We also measured metanephrine, normetanephrine, and methoxytyramine, all markers of epinephrine, norepinephrine, and dopamine, respectively. Changes were analyzed according to sex and antiseizure medications. The different markers at baseline and after 12 weeks of MAD treatment were correlated with seizure frequency and weight loss, respectively. RESULTS The change in total cortisol was modest after 12 weeks on the diet (from 432.9 nmol/L (403.1-462.7)) to 422.6 nmol/L (384.6-461.0), P = 0.6). FCI was reduced (from 0.39 (0.36-0.42) to 0.34 (0.31-0.36), P = 0.001). CBG increased during the study (from 1126.4 nmol/L (1074.5-1178.3) to 1272.5 nmol/L (1206.3-1338.7), P < 0.001). There were no changes in the metanephrines after 12 weeks on the diet. The decrease in FCI was significant only in women, and only observed in patients using nonenzyme-inducing ASMs. We did not find any correlation between cortisol, CBG, or FCI levels and seizure frequency. SIGNIFICANCE After being on MAD for 12 weeks, FCI decreased significantly. The reduction in FCI may reflect reduced stress, but it may also be an effect of increased CBG. The reasons behind these alterations are unknown. Possibly, the changes may be a result of a reduction in insulin resistance and thyroid hormone levels. Treatment with MAD does not seem to influence "fight or flight" hormones.
Collapse
Affiliation(s)
- Ellen Molteberg
- National Centre for EpilepsyOslo University HospitalOsloNorway
- Institute of Clinical Medicine, University of OsloOsloNorway
| | - Per M Thorsby
- Institute of Clinical Medicine, University of OsloOsloNorway
- Hormone Laboratory, Dep of Medical Biochemistry and Biochemical endocrinology and metabolism research groupOslo University HospitalOsloNorway
| | | | - Per Ole Iversen
- Department of NutritionUniversity of OsloOsloNorway
- Department of HaematologyOslo University HospitalOsloNorway
| | - Kaja K Selmer
- National Centre for EpilepsyOslo University HospitalOsloNorway
- Department of Research and Innovation, Division of Clinical NeuroscienceOslo University Hospital and the University of OsloOsloNorway
| | - Dag Hofoss
- National Centre for EpilepsyOslo University HospitalOsloNorway
| | - Karl O Nakken
- National Centre for EpilepsyOslo University HospitalOsloNorway
| | - Erik Taubøll
- Institute of Clinical Medicine, University of OsloOsloNorway
- Department of NeurologyOslo University HospitalOsloNorway
| |
Collapse
|
12
|
Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y, Song Y. Bile acid signalling and its role in anxiety disorders. Front Endocrinol (Lausanne) 2023; 14:1268865. [PMID: 38075046 PMCID: PMC10710157 DOI: 10.3389/fendo.2023.1268865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Jhaveri DJ, McGonigal A, Becker C, Benoliel JJ, Nandam LS, Soncin L, Kotwas I, Bernard C, Bartolomei F. Stress and Epilepsy: Towards Understanding of Neurobiological Mechanisms for Better Management. eNeuro 2023; 10:ENEURO.0200-23.2023. [PMID: 37923391 PMCID: PMC10626502 DOI: 10.1523/eneuro.0200-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023] Open
Abstract
Stress has been identified as a major contributor to human disease and is postulated to play a substantial role in epileptogenesis. In a significant proportion of individuals with epilepsy, sensitivity to stressful events contributes to dynamic symptomatic burden, notably seizure occurrence and frequency, and presence and severity of psychiatric comorbidities [anxiety, depression, posttraumatic stress disorder (PTSD)]. Here, we review this complex relationship between stress and epilepsy using clinical data and highlight key neurobiological mechanisms including the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, altered neuroplasticity within limbic system structures, and alterations in neurochemical pathways such as brain-derived neurotrophic factor (BNDF) linking epilepsy and stress. We discuss current clinical management approaches of stress that help optimize seizure control and prevention, as well as psychiatric comorbidities associated with epilepsy. We propose that various shared mechanisms of stress and epilepsy present multiple avenues for the development of new symptomatic and preventative treatments, including disease modifying therapies aimed at reducing epileptogenesis. This would require close collaborations between clinicians and basic scientists to integrate data across multiple scales, from genetics to systems biology, from clinical observations to fundamental mechanistic insights. In future, advances in machine learning approaches and neuromodulation strategies will enable personalized and targeted interventions to manage and ultimately treat stress-related epileptogenesis.
Collapse
Affiliation(s)
- Dhanisha J Jhaveri
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Aileen McGonigal
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4067, Australia
- Mater Epilepsy Unit, Department of Neurosciences, Mater Hospital, Brisbane, QLD 4101, Australia
| | - Christel Becker
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
| | - Jean-Jacques Benoliel
- Institut National de la Santé et de la Recherche Médicale, Unité 1124, Université Paris Cité, Paris, 75006, France
- Site Pitié-Salpêtrière, Service de Biochimie Endocrinienne et Oncologie, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, 75651, France
| | - L Sanjay Nandam
- Turner Inst for Brain & Mental Health, Faculty of Medicine, Nursing and Health Sciences, School of Psychological Sciences, Monash University, Melbourne, 3800, Australia
| | - Lisa Soncin
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Laboratoire d'Anthropologie et de Psychologie Cliniques, Cognitives et Sociales, Côte d'Azur University, Nice, 06300, France
| | - Iliana Kotwas
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| | - Christophe Bernard
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
| | - Fabrice Bartolomei
- Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, 13005, France
- Epileptology and Cerebral Rhythmology, Assistance Publique Hôpitaux de Marseille, Timone Hospital, Marseille, 13005, France
| |
Collapse
|
14
|
Nakamura H, Sugihara G, Hara K, Inaji M, Noha M, Takumi I, Watanabe M, Takahashi H, Maehara T, Yamamoto H, Takagi S. Seizure-related stress and arousal responses mediate a relationship between anxiety trait and state in epilepsy. Epilepsy Behav 2023; 147:109442. [PMID: 37716325 DOI: 10.1016/j.yebeh.2023.109442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Epilepsy causes substantial psychological distress and anxiety, primarily due to seizures. However, the impact of stress responses and changes in arousal and their association with anxiety patterns in patients with epilepsy (PWE) remains unclear. This study aimed to investigate the relationships among seizures, stress and arousal characteristics, and trait and state anxiety characteristics in PWE. METHODS Our sample consisted of 159 outpatients with epilepsy recruited from five institutions in Japan in 2020. Participants completed the State-Trait Anxiety Inventory-Form JYZ (STAI) and the Japanese-Stress Arousal Check List (J-SACL). We analyzed the correlations between inventory scores and clinical information. Using principal component analysis (PCA), we derived epilepsy-specific stress/arousal characteristics, which accounted for high arousal and low-stress levels, termed epilepsy-specific stress or arousal response (ESAR), from the J-SACL scores. We conducted a mediation analysis to assess the mediating role of ESAR in the relationship between traits and state anxiety. RESULTS We found significant correlations between J-SACL stress and arousal factors (r = -0.845, p < 0.001), ESAR and seizure frequency (r = -0.29, p < 0.001), ESAR and trait anxiety scores on the STAI (r = -0.77, p < 0.0001), and ESAR and state anxiety scores on the STAI (r = -0.60, p < 0.0001). Mediation analysis supported by the Monte Carlo method revealed that ESAR significantly mediated the association between trait and state anxiety. CONCLUSIONS These findings elucidate the epilepsy-specific stress and arousal characteristics and their roles in mediating traits and state anxiety. These results may reflect the long-term clinical course and unique emotion recognition tendencies in epilepsy.
Collapse
Affiliation(s)
- Hironobu Nakamura
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan; Hara Clinic, Kanagawa, Japan
| | - Genichi Sugihara
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Keiko Hara
- Hara Clinic, Kanagawa, Japan; Department of Respiratory and Nervous System Science, Biomedical Laboratory Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Noha
- Department of Neurosurgery, Okinawa Red Cross Hospital, Okinawa, Japan
| | - Ichiro Takumi
- Department of Neurosurgery, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Yamamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Shunsuke Takagi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan; Sleep Research Institute, Waseda University, 513 Waseda-Tsurumakicho, Shinjuku, Tokyo 162-0041 Japan.
| |
Collapse
|
15
|
Chaudhry N, Bergey GK, Kaplan PW, Johnson EL. Life Stressors During Pregnancy in Women With Epilepsy: Results From the Pregnancy Risk Assessment Monitoring System. Neurology 2023; 100:e2424-e2431. [PMID: 37072226 PMCID: PMC10264049 DOI: 10.1212/wnl.0000000000207274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/23/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To compare specific life stressors and domestic abuse that pregnant women and others with epilepsy (WWE) experience compared with pregnant women and others without epilepsy (WWoE). METHODS The Pregnancy Risk Assessment Monitoring System (PRAMS) is an annual weighted survey of randomly sampled postpartum women administered by the Centers for Disease Control and Prevention. We used data from the PRAMS from 2012 to 2020 in 13 states to assess the life stressors reported by WWE compared with WWoE. We adjusted the data for maternal age, race, ethnicity, marital status, education, and socioeconomic status (SES; using income, Women, Infants, and Children program [WIC], and Medicaid use). We also examined reported abuse in WWE compared with WWoE. RESULTS This study included data from 64,951 postpartum women, representing 4,072,189 women through weighted sampling. Of these, 1,140 reported having a diagnosis of epilepsy in the 3 months before their pregnancies (representing 81,021 WWE). WWE experienced a higher number of stressors compared with WWoE. WWE were more likely to have experienced 9 of the 14 stressors asked in the PRAMS questionnaire: severe illness of a close family member, separation or divorce, homelessness, loss of a partner's job, cut in work hours or pay, arguing more than usual with their partner, serving jail time, substance abuse problem in a close contact, and death of a close contact. After adjusting for demographics (age, race, and SES), epilepsy was still associated with a higher number of stressors in pregnant women. Other factors associated with stressors were younger age, Indigenous or mixed race, non-Hispanic ethnicity, lower income, and WIC or Medicaid use. Those who were married were less likely to report stressors. WWE were also more likely to report abuse before or during their pregnancies. DISCUSSION Although managing stress is important in both epilepsy and pregnancy, WWE experience more stressors than do WWoE. After adjusting for maternal age, race, and SES, this increase in stressors persisted. Women who were younger, with lower income, on WIC or Medicaid, or not married were also more likely to experience life stressors. Alarmingly, reported abuse was also higher in WWE compared with WWoE. Attention from clinicians and support services for WWE are needed to optimize good pregnancy outcomes.
Collapse
Affiliation(s)
- Naveed Chaudhry
- From the Department of Neurology (N.C.), University of Colorado School of Medicine, Denver; and Department of Neurology (G.K.B., P.W.K., E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD.
| | - Gregory K Bergey
- From the Department of Neurology (N.C.), University of Colorado School of Medicine, Denver; and Department of Neurology (G.K.B., P.W.K., E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Peter W Kaplan
- From the Department of Neurology (N.C.), University of Colorado School of Medicine, Denver; and Department of Neurology (G.K.B., P.W.K., E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD
| | - Emily L Johnson
- From the Department of Neurology (N.C.), University of Colorado School of Medicine, Denver; and Department of Neurology (G.K.B., P.W.K., E.L.J.), Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
Abstract
Objective: Anxiety is among the most common psychiatric illnesses, and it commonly co-occurs with epilepsy. This review of the existing literature on anxiety comorbid with epilepsy aims to generate new insights into strategies for assessment and treatment. Methods: The authors conducted a narrative literature review to select key publications that help clarify the phenomenology and management of comorbid anxiety and epilepsy. Results: Anxiety symptoms may be relevant even if the criteria for a diagnosis of an anxiety disorder are not met. Associating specific seizure types or seizure localization with anxiety symptoms remains difficult; however, the amygdala is a brain region commonly associated with seizure foci and panic or fear sensations. The hypothalamic-pituitary-adrenal axis may also be relevant for anxiety symptoms, particularly for the selection of treatments. Nonpharmacological treatment is appropriate for anxiety comorbid with epilepsy, particularly because relaxation techniques may reduce hypersympathetic states, which improve symptoms. Medication options include antidepressants and anticonvulsants that may have efficacy for anxiety symptoms. Benzodiazepines are a good choice to address this comorbid condition, although side effects may limit utility. Conclusions: Ultimately, there are numerous treatment options, and although there is a limited evidence base, quality of life may be improved with appropriate treatment for individuals experiencing comorbid anxiety and epilepsy.
Collapse
Affiliation(s)
- Jay A Salpekar
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| | - Grace J Ma
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| | - Jonathan Mietchen
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| | - Jeremy Mani
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| | - Jana E Jones
- Johns Hopkins University School of Medicine, Baltimore (Salpekar); Department of Psychiatry, Brigham and Women's Hospital, Boston (Ma); Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison (Mietchen, Jones); Howard University College of Medicine, Washington, D.C. (Mani)
| |
Collapse
|
17
|
The Effectiveness of Mindfulness-Based Stress Reduction Intervention for Cognitive Emotion Regulation and Cognitive Reactivity in Patients with Epilepsy. Int J Cogn Ther 2022. [DOI: 10.1007/s41811-022-00144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Druzhkova TA, Yakovlev AA, Rider FK, Zinchuk MS, Guekht AB, Gulyaeva NV. Elevated Serum Cortisol Levels in Patients with Focal Epilepsy, Depression, and Comorbid Epilepsy and Depression. Int J Mol Sci 2022; 23:ijms231810414. [PMID: 36142325 PMCID: PMC9499608 DOI: 10.3390/ijms231810414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The hypothalamic-pituitary-adrenal (HPA) axis, inflammatory processes and neurotrophic factor systems are involved in pathogenesis of both epilepsy and depressive disorders. The study aimed to explore these systems in patients with focal epilepsy (PWE, n = 76), epilepsy and comorbid depression (PWCED n = 48), and major depressive disorder (PWMDD, n = 62) compared with healthy controls (HC, n = 78). Methods: Parameters of the HPA axis, neurotrophic factors, and TNF-α were measured in blood serum along with the hemogram. Results: Serum cortisol level was augmented in PWE, PWCED, and PWMDD compared with HC and was higher in PWMDD than in PWE. Serum cortisol negatively correlated with Mini–Mental State Examination (MMSE) score in PWE, and positively with depression inventory–II (BDI-II) score in PWMDD. Only PWMDD demonstrated elevated plasma ACTH. Serum TNF-α, lymphocytes, and eosinophils were augmented in PWMDD; monocytes elevated in PWE and PWCED, while neutrophils were reduced in PWE and PWMDD. Serum BDNF was decreased in PWE and PWCED, CNTF was elevated in all groups of patients. In PWE, none of above indices depended on epilepsy etiology. Conclusions: The results confirm the involvement of HPA axis and inflammatory processes in pathogenesis of epilepsy and depression and provide new insights in mechanisms of epilepsy and depression comorbidity.
Collapse
Affiliation(s)
- Tatyana A. Druzhkova
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Alexander A. Yakovlev
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Flora K. Rider
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Mikhail S. Zinchuk
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Alla B. Guekht
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 119049 Moscow, Russia
| | - Natalia V. Gulyaeva
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
- Department of Functional Biochemistry of Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
19
|
GABAA receptor participation in anxiolytic and anticonvulsant effects of (E)-3-(furan-2-yl)-1-(2hydroxy-3,4,6-trimethoxyphenyl)prop-2-en-1-one in adult zebrafish. Neurochem Int 2022; 155:105303. [DOI: 10.1016/j.neuint.2022.105303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/04/2023]
|
20
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|
21
|
Ding M, Lang Y, Shu H, Shao J, Cui L. Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Front Immunol 2021; 12:742449. [PMID: 34707612 PMCID: PMC8542678 DOI: 10.3389/fimmu.2021.742449] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and brain, and regulates intestinal homeostasis and the central nervous system via neural networks and neuroendocrine, immune, and inflammatory pathways. The development of sequencing technology has evidenced the key regulatory role of the gut microbiota in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be controlled with drugs. Interestingly, patients with inflammatory bowel disease are more susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut-brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship between the gut microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota. A better understanding of the role of the microbiota in the gut-brain axis, especially the intestinal one, would help investigate the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.
Collapse
Affiliation(s)
| | | | | | | | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Strickland JC, Jackson H, Schlienz NJ, Salpekar JA, Martin EL, Munson J, Bonn-Miller MO, Vandrey R. Cross-sectional and longitudinal evaluation of cannabidiol (CBD) product use and health among people with epilepsy. Epilepsy Behav 2021; 122:108205. [PMID: 34311183 DOI: 10.1016/j.yebeh.2021.108205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/21/2022]
Abstract
Recent approval of Epidiolex® (pharmaceutical cannabidiol/CBD) for the treatment of Lennox Gastaut syndrome (LGS) and Dravet syndrome highlights a therapeutic efficacy of CBD in the treatment of epilepsy. However, a large number of patients with epilepsy elect to use alternative artisanal CBD products due to cost or access constraints. Despite widespread availability and variety of these artisanal CBD products, studies evaluating their safety or efficacy are rare, making conclusions about clinical utility uncertain. The purpose of the present study was to evaluate cross-sectional and longitudinal associations of artisanal CBD product use with quality of life, mental health, healthcare utilization, and epilepsy-specific outcomes within a large, observational cohort of people with epilepsy. Participants who reported using artisanal CBD products at baseline (Artisanal CBD Users; n = 280) and participants who used no cannabis-based products (Controls; n = 138) completed web-based assessments evaluating psychiatric symptoms, healthcare utilization, and epilepsy-specific factors. Follow-up surveys were collected in a subset of participants (n = 190) following baseline assessment for longitudinal comparison. Cross-sectionally, higher quality of life, lower psychiatric symptom severity, and improved sleep were observed among Artisanal CBD Users at baseline compared with Controls. Initiation of artisanal CBD product use was also related to improved health outcomes longitudinally. No group differences were observed for seizure control, but both groups included a high number of individuals with no past month seizures. Artisanal CBD Users reported significantly better epilepsy medication tolerability, use of fewer prescription medications overall, and reduced healthcare utilization compared with Controls. These findings are consistent with research indicating that practitioners recommending CBD in clinical care for epilepsy report integrating the use of CBD both as a means to improve patient quality of life as well as for seizure control.
Collapse
Affiliation(s)
- Justin C Strickland
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA.
| | - Heather Jackson
- Realm of Caring Foundation, PO Box 15224, Colorado Springs, CO, USA
| | | | - Jay A Salpekar
- Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Departments of Psychiatry and Neurology, Baltimore, MD, USA
| | - Erin L Martin
- Medical University of South Carolina, Department of Neuroscience, Charleston, SC, USA
| | - Joel Munson
- Realm of Caring Foundation, PO Box 15224, Colorado Springs, CO, USA
| | | | - Ryan Vandrey
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| |
Collapse
|
23
|
Sex differences in factors associated with quality of life in patients with epilepsy in Northeast China. Epilepsy Behav 2021; 121:108076. [PMID: 34082318 DOI: 10.1016/j.yebeh.2021.108076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/10/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We aimed to investigate sex differences in factors associated with poor quality of life (QOL) in a cohort of patients with epilepsy (PWE) in Northeast China. METHODS A consecutive cohort of 221 PWE from the First Hospital of Jilin University was recruited. The Chinese versions of the Patient Health Questionnaire-9 (PHQ-9), the Beck Anxiety Inventory (BAI), and the Quality of Life in Epilepsy Inventory (QOLIE-31) were used to measure depressive symptoms, anxiety symptoms, and the QOL. RESULTS A total of 221 adult PWE participated in this study. In the multivariate regression model, three independent factors were found to be significantly associated with the total QOLIE-31 score in men: epilepsy duration (p = 0.007), the PHQ-9 score (p < 0.001), and the BAI score (p < 0.001). As for the subscale domain of QOL, marital status showed a relationship with cognitive function (p = 0.047), and residence was related with medication effects (p = 0.034). Two independent factors were found to be significantly associated with the total QOLIE-31 score in women: the PHQ-9 score (p < 0.001) and the BAI score (p < 0.001). The education level of women was positively associated with three subdomain scores of QOL, including overall QOL (p < 0.001), emotional well-being (p = 0.028), and energy/fatigue (p = 0.025). CONCLUSION We found that high levels of depressive and anxiety symptoms are strong predictors of a poor QOL in both men and women. Sex differences also occur in several demographic and clinical factors influencing the overall QOL or subscale domain scores such as epilepsy duration, marital status, and educational level. Timely diagnosis and treatment of psychiatric comorbidities might be crucial for improving the QOL in both men and women.
Collapse
|
24
|
Conde-Blanco E, Reyes-Leiva D, Pintor L, Donaire A, Manzanares I, Rumia J, Roldan P, Boget T, Bargalló N, Gil-López FJ, Khawaja M, Setoain X, Centeno M, Carreño M. Psychotic symptoms in drug resistant epilepsy patients after cortical stimulation. Epilepsy Res 2021; 173:106630. [PMID: 33865048 DOI: 10.1016/j.eplepsyres.2021.106630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/21/2021] [Accepted: 03/31/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The use of invasive EEG (iEEG) recordings before epilepsy surgery has increased as more complex focal epilepsies are evaluated. Psychotic symptoms (PS) during iEEG have been scarcely reviewed. We aim to report our series of patients with psychotic symptoms (PS) brought about by cortical stimulation (CS) and to identify triggers. METHODS Retrospective cohort of patients who underwent iEEG and CS. We report patients who developed delusional thinking and/or disorganized behaviour within 24 h after CS. Exclusion criteria were primary psychiatric disorders or absence of CS. RESULTS We evaluated 32 (SEEG 23; subdural 9) patients with a median age of 38 years, 6 with PS. Patients underwent 2586 stimulations over 1130 contacts. Age at CS was significantly higher in patients with PS. Temporal lobe epilepsy was significantly more often documented in patients with PS (χ2: 3.94; p< 0.05). We found no correlation between stimulation of the limbic system and development of psychosis. Four (66.7 %) patients were stimulated in the non-dominant limbic system and developed psychosis compared to 7 (27 %) who did not [χ2: 3.41; p= 0.06].Epilepsy duration was significantly higher in PS patients (p=0.002). Patients with history of postictal psychosis were twice more likely to experience PS(p=0.04). CONCLUSIONS PS may arise more frequently in patients with PIP history, older age and longer epilepsy duration. The neurobiology and physiology of psychosis, that may share common mechanisms with epilepsy, is yet to be identified but we hypothesize that it may be triggered by CS due to alteration of brain networks dynamics.
Collapse
Affiliation(s)
- Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, 08036, Spain.
| | - David Reyes-Leiva
- Department of Neurology, Hospital Sant Pau de Barcelona, Barcelona, Spain
| | - Luís Pintor
- Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Epilepsy Program, Psychiatry Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Isabel Manzanares
- Epilepsy Program, Neurology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Jordi Rumia
- Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Epilepsy Program, Neurosurgery Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Pedro Roldan
- Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Epilepsy Program, Neurosurgery Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Teresa Boget
- Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Epilepsy Program, Neuropsychology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Núria Bargalló
- Epilepsy Program, Neuroradiology Department, Magnetic Resonance Imaging Core Facility, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | | | - Mariam Khawaja
- Epilepsy Program, Neurology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Xavier Setoain
- University of Barcelona (UB), Barcelona, 08007, Spain; Epilepsy Program, Nuclear Medicine Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Diagnostic Imaging Centre, Hospital Clínic de Barcelona, Universitat de Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - María Centeno
- Epilepsy Program, Neurology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Clinical Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, 08036, Spain; Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, Barcelona, 08036, Spain
| |
Collapse
|
25
|
Reddy DS, Thompson W, Calderara G. Does Stress Trigger Seizures? Evidence from Experimental Models. Curr Top Behav Neurosci 2021; 55:41-64. [PMID: 33547597 DOI: 10.1007/7854_2020_191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This chapter describes the experimental evidence of stress modulation of epileptic seizures and the potential role of corticosteroids and neurosteroids in regulating stress-linked seizure vulnerability. Epilepsy is a chronic neurological disorder that is characterized by repeated seizures. There are many potential causes for epilepsy, including genetic predispositions, infections, brain injury, and neurotoxicity. Stress is a known precipitating factor for seizures in individuals suffering from epilepsy. Severe acute stress and persistent exposure to stress may increase susceptibility to seizures, thereby resulting in a higher frequency of seizures. This occurs through the stress-mediated release of cortisol, which has both excitatory and proconvulsant properties. Stress also causes the release of endogenous neurosteroids from central and adrenal sources. Neurosteroids such as allopregnanolone and THDOC, which are allosteric modulators of GABA-A receptors, are powerful anticonvulsants and neuroprotectants. Acute stress increases the release of neurosteroids, while chronic stress is associated with severe neurosteroid depletion and reduced inhibition in the brain. This diminished inhibition occurs largely as a result of neurosteroid deficiencies. Thus, exogenous administration of neurosteroids (neurosteroid replacement therapy) may offer neuroprotection in epilepsy. Synthetic neurosteroid could offer a rational approach to control neurosteroid-sensitive, stress-related epileptic seizures.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| | - Wesley Thompson
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Gianmarco Calderara
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| |
Collapse
|
26
|
Abstract
The episodic nature of both epilepsy and psychiatric illnesses suggests that the brain switches between healthy and pathological states. The most obvious example of transitions between network states related to epilepsy is the manifestation of ictal events. In addition to seizures, there are more subtle changes in network communication within and between brain regions, which we propose may contribute to psychiatric illnesses associated with the epilepsies. This review will highlight evidence supporting aberrant network activity associated with epilepsy and the contribution to cognitive impairments and comorbid psychiatric illnesses. Further, we discuss potential mechanisms mediating the network dysfunction associated with comorbidities in epilepsy, including interneuron loss and hypothalamic–pituitary–adrenal axis dysfunction. Conceptually, it is necessary to think beyond ictal activity to appreciate the breadth of network dysfunction contributing to the spectrum of symptoms associated with epilepsy, including psychiatric comorbidities.
Collapse
Affiliation(s)
- Phillip L W Colmers
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie Maguire
- Neuroscience Department, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Abstract
Psychiatric illnesses, including depression and anxiety, are highly comorbid with epilepsy (for review see Josephson and Jetté (Int Rev Psychiatry 29:409-424, 2017), Salpekar and Mula (Epilepsy Behav 98:293-297, 2019)). Psychiatric comorbidities negatively impact the quality of life of patients (Johnson et al., Epilepsia 45:544-550, 2004; Cramer et al., Epilepsy Behav 4:515-521, 2003) and present a significant challenge to treating patients with epilepsy (Hitiris et al., Epilepsy Res 75:192-196, 2007; Petrovski et al., Neurology 75:1015-1021, 2010; Fazel et al., Lancet 382:1646-1654, 2013) (for review see Kanner (Seizure 49:79-82, 2017)). It has long been acknowledged that there is an association between psychiatric illnesses and epilepsy. Hippocrates, in the fourth-fifth century B.C., considered epilepsy and melancholia to be closely related in which he writes that "melancholics ordinarily become epileptics, and epileptics, melancholics" (Lewis, J Ment Sci 80:1-42, 1934). The Babylonians also recognized the frequency of psychosis in patients with epilepsy (Reynolds and Kinnier Wilson, Epilepsia 49:1488-1490, 2008). Despite the fact that the relationship between psychiatric comorbidities and epilepsy has been recognized for thousands of years, psychiatric illnesses in people with epilepsy still commonly go undiagnosed and untreated (Hermann et al., Epilepsia 41(Suppl 2):S31-S41, 2000) and systematic research in this area is still lacking (Devinsky, Epilepsy Behav 4(Suppl 4):S2-S10, 2003). Thus, although it is clear that these are not new issues, there is a need for improvements in the screening and management of patients with psychiatric comorbidities in epilepsy (Lopez et al., Epilepsy Behav 98:302-305, 2019) and progress is needed to understand the underlying neurobiology contributing to these comorbid conditions. To that end, this chapter will raise awareness regarding the scope of the problem as it relates to comorbid psychiatric illnesses and epilepsy and review our current understanding of the potential mechanisms contributing to these comorbidities, focusing on both basic science and clinical research findings.
Collapse
|