1
|
Chen T, Zheng W, Zhang Y, Xu Q. The relationship between triglyceride-glucose index and serum neurofilament light chain: Findings from NHANES 2013-2014. PLoS One 2025; 20:e0321226. [PMID: 40208889 PMCID: PMC11984729 DOI: 10.1371/journal.pone.0321226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/03/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND The Triglyceride-Glucose (TyG) index has become a reliable indicator for evaluating the level of insulin resistance, a pivotal factor in both metabolic and neurodegenerative disorders. Serum neurofilament light chain (sNfL) serves as a responsive biomarker for detecting neuroaxonal injury. Despite this, the interplay between the TyG index and sNfL levels has not been sufficiently investigated. The aim of this research is to scrutinize the correlation between TyG index and sNfL levels across a substantial, population-based cohort. METHODS Our study involved an examination of the dataset from the 2013-2014 round of the National Health and Nutrition Examination Survey (NHANES), encompassing a total of 2029 enrolled subjects. The TyG index was calculated using fasting triglycerides and glucose levels. Multivariable linear regression models were conducted to evaluate the relationship between TyG index and sNfL levels, adjusting for potential confounders such as age, sex, race, BMI, hypertension, stroke, congestive heart failure, alcohol consumption and NHHR (Non-High-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol Ratio). Nonlinear associations were investigated using regression models based on restricted cubic splines (RCS). RESULTS Both the unadjusted and adjusted regression analyses revealed a substantial positive correlation between the TyG index and ln-sNfL levels. After accounting for all covariates, each unit increase in the TyG index was associated with a 0.15 (95% CI: 0.02-0.27, p = 0.04) increase in ln-sNfL levels. RCS analysis revealed a nonlinear relationship, with a threshold around a TyG index value of 9.63, beyond which ln-sNfL levels increased more rapidly. The association was consistent across subgroups. CONCLUSION Our study links higher TyG index with increased sNfL levels, indicating insulin resistance's role in neuroaxonal injury. The nonlinear relationship implies a heightened risk of neurodegeneration beyond a certain insulin resistance threshold. This underscores the need for early metabolic interventions to prevent neurodegenerative processes.
Collapse
Affiliation(s)
- Tong Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Zheng
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yan Zhang
- Department of Outpatient, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Xu
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Jackson ON, Keenan TF, Nelson-Maney NP, Rommel SA, McLellan WA, Pabst DA, Costidis AM, Caron KM, Kernagis DN, Rotstein DS, Thayer VG, Harms CA, Piscitelli-Doshkov MA, Doshkov P, Schweikert LE, Yopak KE, Braun M, Tift MS. Meningeal Lymphatic and Glymphatic Structures in a Pelagic Delphinid ( Delphinus delphis). Animals (Basel) 2025; 15:729. [PMID: 40076012 PMCID: PMC11899484 DOI: 10.3390/ani15050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The glymphatic system, an analog of the peripheral lymphatic system in the brain, and the meningeal lymphatic system are critical to central nervous system health. The glymphatic system functions to distribute cerebrospinal fluid and important compounds throughout the brain and to remove metabolic waste. The flow of cerebrospinal fluid through this system is affected by changes in cerebral blood flow, intracranial pressure, and vascular tone. Cetaceans experience profound cardiorespiratory alterations while diving that can directly affect cerebrospinal fluid and blood flow and, thus, glymphatic function. Our goal was to investigate glymphatic and lymphatic system structures, including perivascular spaces, aquaporin-4 water channels, meningeal lymphatic, and dural venous sinus vessels in the common dolphin (Delphinus delphis), using immunofluorescent labeling, histochemical staining, and postmortem computed tomography (CT) angiography. We highlight perivascular spaces and aquaporin-4 water channels surrounding blood vessels in the parenchyma and demonstrate evidence of meningeal lymphatic vessels and associated dural venous sinuses. These results demonstrate that common dolphins possess the key anatomical structures required for functional glymphatic and meningeal lymphatic systems. Future studies can build upon these anatomical discoveries to study the function and role of these systems in brain health in this species.
Collapse
Affiliation(s)
- Olivia N. Jackson
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Tiffany F. Keenan
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Nathan P. Nelson-Maney
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.P.N.-M.); (K.M.C.)
| | - Sentiel A. Rommel
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - William A. McLellan
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - D. Ann Pabst
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Alexander M. Costidis
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
- Marine Mammal Solutions LLC, Norfolk, VA 23502, USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (N.P.N.-M.); (K.M.C.)
| | - Dawn N. Kernagis
- DEEP, Bristol BS11 8AR, UK;
- Department of Neurosurgery, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Victoria G. Thayer
- Center for Marine Science and Technologies, North Carolina State University, Morehead City, NC 28557, USA; (V.G.T.); (C.A.H.)
- North Carolina Marine Fisheries, Department of Environmental Quality, Morehead City, NC 28557, USA
| | - Craig A. Harms
- Center for Marine Science and Technologies, North Carolina State University, Morehead City, NC 28557, USA; (V.G.T.); (C.A.H.)
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Paul Doshkov
- Cape Hatteras National Seashore, Manteo, NC 27954, USA;
| | - Lorian E. Schweikert
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Kara E. Yopak
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| | - Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Science and Engineering, University of North Carolina Wilmington, Wilmington, NC 28403, USA; (T.F.K.); (S.A.R.); (W.A.M.); (D.A.P.); (L.E.S.); (K.E.Y.); (M.S.T.)
| |
Collapse
|
3
|
Rhind SG, Shiu MY, Tenn C, Nakashima A, Jetly R, Sajja VSSS, Long JB, Vartanian O. Repetitive Low-Level Blast Exposure Alters Circulating Myeloperoxidase, Matrix Metalloproteinases, and Neurovascular Endothelial Molecules in Experienced Military Breachers. Int J Mol Sci 2025; 26:1808. [PMID: 40076437 PMCID: PMC11898641 DOI: 10.3390/ijms26051808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Repeated exposure to low-level blast overpressure, frequently experienced during explosive breaching and heavy weapons use in training and operations, is increasingly recognised as a serious risk to the neurological health of military personnel. Although research on the underlying pathobiological mechanisms in humans remains limited, this study investigated the effects of such exposure on circulating molecular biomarkers associated with inflammation, neurovascular damage, and endothelial injury. Blood samples from military breachers were analysed for myeloperoxidase (MPO), matrix metalloproteinases (MMPs), and junctional proteins indicative of blood-brain barrier (BBB) disruption and endothelial damage, including occludin (OCLN), zonula occludens-1 (ZO-1), aquaporin-4 (AQP4), and syndecan-1 (SD-1). The results revealed significantly elevated levels of MPO, MMP-3, MMP-9, and MMP-10 in breachers compared to unexposed controls, suggesting heightened inflammation, oxidative stress, and vascular injury. Increased levels of OCLN and SD-1 further indicated BBB disruption and endothelial glycocalyx degradation in breachers. These findings highlight the potential for chronic neurovascular unit damage/dysfunction from repeated blast exposure and underscore the importance of early targeted interventions-such as reducing oxidative stress, reinforcing BBB integrity, and managing inflammation-that could be essential in mitigating the risk of long-term neurological impairment associated with blast exposure.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | | | - Joseph B. Long
- Blast-Induced NeuroTrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (J.B.L.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
4
|
Saad MA, Rastanawi AA, El-Sahar AE, A Z El-Bahy A. Ascorbic acid Mitigates behavioural disturbances associated with letrozole-induced PCOS via switching-off JAK2/STAT5 and JAK2/ERK1/2 pathways in rat hippocampus. Steroids 2025; 213:109528. [PMID: 39528020 DOI: 10.1016/j.steroids.2024.109528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is an endocrine disorder with the highest prevalence among other disorders in sexually-active women. It is associated with broad-spectrum hormonal and metabolic disturbances with behavioural difficulties. Experimentally, letrozole administration causes similar findings. Ascorbic acid is powerful anti-oxidant; and its cellular levels decrease with "hyperglycemic and poor anti-oxidative" status, which is, a main hallmark of PCOS. Thus, ascorbic acid administration may prevent the induction of PCOS and its consequences. BASIC PROCEDURES Forty female rats were divided into four groups (n = 10 in each): normal control (CTRL), ascorbic acid (ASC), letrozole (LTZ), and ascorbic acid + letrozole (ASC + LTZ) group. Behavioural tests (Y-maze spontaneous alteration, tail suspension test, forced swimming test) were performed. In serum, hormones (testosterone, estradiol, progesterone), glycemia (blood glucose, insulin and HOMA-IR) and oxidative stress (SOD activity, GSH) markers were measured. In hippocampus, inflammation and apoptosis indicators (p-JAK2, p-STAT5, p-ERK1/2, NF-κB, BAX, Bcl2, BAX/Bcl2 ratio) and neurotransmitters (DA, 5-HT, NE, BDNF) were determined. Lastly, ovary histopathological investigation was conducted to confirm PCOS induction. PRINCIPAL RESULTS Letrozole induced PCOS with subsequent disturbances. Testosterone levels were augmented while estradiol and progesterone were declined. Fasting blood glucose, insulin, HOMA-IR and oxidative stress markers were elevated. The expression of p-JAK2, p-STAT5, p-ERK1/2, BAX and the levels of NF-κB were increased, but Bcl2 expression, monoamines and BDNF levels were lowered. Importantly, ASC restored the last mentioned parameters markedly. MAJOR CONCLUSIONS Ascorbic acid mitigated the behavioural difficulties of PCOS possibly by switching-off JAK2/STAT5 and JAK2/ERK1/2 pathways in hippocampus along with its neurotransmission-improving, hormonal-normalizing, anti-hyperglycemic and anti-oxidative effects.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates.
| | - Alyasaa A Rastanawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Wataniya Private University, Hama, Syria.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, School of Pharmacy, New Giza University, Egypt.
| | - Alshaymaa A Z El-Bahy
- Department of Pharmacology and Toxicology, School of Pharmaceutical Science, University of Hertfordshire (LMS)-Hosted by Global Academic Foundation (UH-GAF), Cairo, Egypt.
| |
Collapse
|
5
|
Meng L, Rasmussen M, Meng DM, White FA, Wu LJ. Integrated Feedforward and Feedback Mechanisms in Neurovascular Coupling. Anesth Analg 2024; 139:1283-1293. [PMID: 38345932 DOI: 10.1213/ane.0000000000006891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Neurovascular coupling (NVC) is the mechanism that drives the neurovascular response to neural activation, and NVC dysfunction has been implicated in various neurologic diseases. NVC is driven by (1) nonmetabolic feedforward mechanisms that are mediated by various signaling pathways and (2) metabolic feedback mechanisms that involve metabolic factors. However, the interplay between these feedback and feedforward mechanisms remains unresolved. We propose that feedforward mechanisms normally drive a swift, neural activation-induced regional cerebral blood flow (rCBF) overshoot, which floods the tissue beds, leading to local hypocapnia and hyperoxia. The feedback mechanisms are triggered by the resultant hypocapnia (not hyperoxia), which causes cerebral vasoconstriction in the neurovascular unit that counterbalances the rCBF overshoot and returns rCBF to a level that matches the metabolic activity. If feedforward mechanisms function improperly (eg, in a disease state), the rCBF overshoot, tissue-bed flooding, and local hypocapnia fail to occur or occur on a smaller scale. Consequently, the neural activation-related increase in metabolic activity results in local hypercapnia and hypoxia, both of which drive cerebral vasodilation and increase rCBF. Thus, feedback mechanisms ensure the brain milieu's stability when feedforward mechanisms are impaired. Our proposal integrates the feedforward and feedback mechanisms underlying NVC and suggests that these 2 mechanisms work like a fail-safe system, to a certain degree. We also discussed the difference between NVC and cerebral metabolic rate-CBF coupling and the clinical implications of our proposed framework.
Collapse
Affiliation(s)
- Lingzhong Meng
- From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mads Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| | - Deyi M Meng
- Choate Rosemary Hall School, Wallingford, Connecticut
| | - Fletcher A White
- From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana
| | - Long-Jun Wu
- Departments of Neurology and Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Menze I, Bernal J, Kaya P, Aki Ç, Pfister M, Geisendörfer J, Yakupov R, Coello RD, Valdés-Hernández MDC, Heneka MT, Brosseron F, Schmid MC, Glanz W, Incesoy EI, Butryn M, Rostamzadeh A, Meiberth D, Peters O, Preis L, Lammerding D, Gref D, Priller J, Spruth EJ, Altenstein S, Lohse A, Hetzer S, Schneider A, Fliessbach K, Kimmich O, Vogt IR, Wiltfang J, Bartels C, Schott BH, Hansen N, Dechent P, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Sanzenbacher C, Hinderer P, Scheffler K, Spottke A, Roy-Kluth N, Lüsebrink F, Neumann K, Wardlaw J, Jessen F, Schreiber S, Düzel E, Ziegler G. Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study. Alzheimers Res Ther 2024; 16:242. [PMID: 39482759 PMCID: PMC11526621 DOI: 10.1186/s13195-024-01603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD. METHODS We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; meanage = 70.78 ± 5.78) of the ongoing observational multicentre "DZNE Longitudinal Cognitive Impairment and Dementia Study" (DELCODE) cohort. We analysed data from subjects who were cognitively unimpaired (n = 401), had amnestic mild cognitive impairment (n = 71), or had AD (n = 31). We used linear mixed-effects modelling to test for changes of PVS volumes in relation to cross-sectional and longitudinal age, as well as sex, years of education, hypertension, white matter hyperintensities, AD diagnosis, and cerebrospinal-fluid-derived amyloid (A) and tau (T) status (available for 46.71%; A-T-/A + T-/A + T + n = 143/48/39). RESULTS PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρspearman = -0.17, pFDR = 0.001) and was more pronounced in individuals who presented with combined amyloid and tau positivity versus negativity (A + T + > A-T-, pFDR = 0.004) or who were amyloid positive but tau negative (A + T + > A + T-, pFDR = 0.07). CSO-PVS volumes increased at a faster rate with amyloid positivity as compared to amyloid negativity (A + T-/A + T + > A-T-, pFDR = 0.021). CONCLUSION Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies. TRIAL REGISTRATION German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .
Collapse
Affiliation(s)
- Inga Menze
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.
| | - Jose Bernal
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Pinar Kaya
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Çağla Aki
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Malte Pfister
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jonas Geisendörfer
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Renat Yakupov
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Roberto Duarte Coello
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Maria D C Valdés-Hernández
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 6 Avenue du Swing 4367 , Esch-Belval, Luxembourg
| | - Frederic Brosseron
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Matthias C Schmid
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Wenzel Glanz
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Enise I Incesoy
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Michaela Butryn
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
| | - Dix Meiberth
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
| | - Oliver Peters
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Lukas Preis
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Dominik Lammerding
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Daria Gref
- Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Josef Priller
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Eike J Spruth
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Slawek Altenstein
- German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Andrea Lohse
- Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité, Charitéplatz 1, Berlin, 10117, Germany
| | - Anja Schneider
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Klaus Fliessbach
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Okka Kimmich
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Ina R Vogt
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Jens Wiltfang
- German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
| | - Björn H Schott
- German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
- Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, 39118, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, MR-Research in Neurosciences, Georg-August-University Goettingen, Robert-Koch-Straße 40, Göttingen, 37075, Germany
| | - Katharina Buerger
- German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany
| | - Robert Perneczky
- German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, Munich, 81377, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London, W6 8RP, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Rd, Sheffield, Broomhall, Sheffield, S10 2HQ, UK
- Department of Neuroradiology, University Hospital LMU, Marchioninistr. 15, Munich, 81377, Germany
| | - Stefan Teipel
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Ingo Kilimann
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Doreen Goerss
- German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Christoph Laske
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076, Germany
| | - Matthias H Munk
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076 , Germany
| | - Carolin Sanzenbacher
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Petra Hinderer
- German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Straße 51, Tübingen, 72076, Germany
| | - Annika Spottke
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Neurology, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Nina Roy-Kluth
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
| | - Falk Lüsebrink
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Katja Neumann
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK
| | - Frank Jessen
- German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Stefanie Schreiber
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Emrah Düzel
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Gabriel Ziegler
- German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| |
Collapse
|
7
|
Ikeda L, Capel AV, Doddaballapur D, Miyan J. Accumulation of Cerebrospinal Fluid, Ventricular Enlargement, and Cerebral Folate Metabolic Errors Unify a Diverse Group of Neuropsychiatric Conditions Affecting Adult Neocortical Functions. Int J Mol Sci 2024; 25:10205. [PMID: 39337690 PMCID: PMC11432090 DOI: 10.3390/ijms251810205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a fluid critical to brain development, function, and health. It is actively secreted by the choroid plexus, and it emanates from brain tissue due to osmolar exchange and the constant contribution of brain metabolism and astroglial fluid output to interstitial fluid into the ventricles of the brain. CSF acts as a growth medium for the developing cerebral cortex and a source of nutrients and signalling throughout life. Together with perivascular glymphatic and interstitial fluid movement through the brain and into CSF, it also acts to remove toxins and maintain metabolic balance. In this study, we focused on cerebral folate status, measuring CSF concentrations of folate receptor alpha (FOLR1); aldehyde dehydrogenase 1L1, also known as 10-formyl tetrahydrofolate dehydrogenase (ALDH1L1 and FDH); and total folate. These demonstrate the transport of folate from blood across the blood-CSF barrier and into CSF (FOLR1 + folate), and the transport of folate through the primary FDH pathway from CSF into brain FDH + ve astrocytes. Based on our hypothesis that CSF flow, drainage issues, or osmotic forces, resulting in fluid accumulation, would have an associated cerebral folate imbalance, we investigated folate status in CSF from neurological conditions that have a severity association with enlarged ventricles. We found that all the conditions we examined had a folate imbalance, but these folate imbalances were not all the same. Given that folate is essential for key cellular processes, including DNA/RNA synthesis, methylation, nitric oxide, and neurotransmitter synthesis, we conclude that ageing or some form of trauma in life can lead to CSF accumulation and ventricular enlargement and result in a specific folate imbalance/deficiency associated with the specific neurological condition. We believe that addressing cerebral folate imbalance may therefore alleviate many of the underlying deficits and symptoms in these conditions.
Collapse
Affiliation(s)
| | | | | | - Jaleel Miyan
- Division of Neuroscience, Faculty of Biology, Medicine & Health, School of Biological Science, The University of Manchester, 3.540 Stopford Building, Oxford Road, Manchester M13 9PT, UK; (L.I.); (A.V.C.); (D.D.)
| |
Collapse
|
8
|
Dong S, Zhao H, Nie M, Sha Z, Feng J, Liu M, Lv C, Chen Y, Jiang W, Yuan J, Qian Y, Wan H, Gao C, Jiang R. Cannabidiol Alleviates Neurological Deficits After Traumatic Brain Injury by Improving Intracranial Lymphatic Drainage. J Neurotrauma 2024; 41:e2009-e2025. [PMID: 38553903 DOI: 10.1089/neu.2023.0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024] Open
Abstract
Traumatic brain injury (TBI) persists as a substantial clinical dilemma, largely because of the absence of effective treatments. This challenge is exacerbated by the hindered clearance of intracranial metabolic byproducts and the continual accrual of deleterious proteins. The glymphatic system (GS) and meningeal lymphatic vessels (MLVs), key elements of the intracranial lymphatic network, play critical roles in the clearance of harmful substances. Cannabidiol (CBD) has shown promise in reducing metabolite overload and bolstering cognitive performance in various neurodegenerative diseases. The precise mechanisms attributing to its beneficial effects in TBI scenarios, however, are yet to be distinctly understood. Utilizing a fluid percussion injury paradigm, our research adopted a multifaceted approach, encompassing behavioral testing, immunofluorescence and immunohistochemical analyses, laser speckle imaging, western blot techniques, and bilateral cervical efferent lymphatic ligation. This methodology aimed to discern the influence of CBD on both neurological outcomes and intracranial lymphatic clearance in a murine TBI model. We observed that CBD administration notably ameliorated motor, memory, and cognitive functions, concurrently with a significant reduction in the concentration of phosphorylated tau protein and amyloid-β. In addition, CBD expedited the turnover and elimination of intracranial tracers, increased cerebral blood flow, and enhanced the efficacy of fluorescent tracer migration from MLVs to deep cervical lymph nodes (dCLNs). Remarkably, CBD treatment also induced a reversion in aquaporin-4 (AQP-4) polarization and curtailed neuroinflammatory indices. A pivotal discovery was that the surgical interruption of efferent lymphatic conduits in the neck nullified CBD's positive contributions to intracranial waste disposal and cognitive improvement, yet the anti-neuroinflammatory actions remained unaffected. These insights suggest that CBD may enhance intracranial metabolite clearance, potentially via the regulation of the intracranial lymphatic system, thereby offering neurofunctional prognostic improvement in TBI models. Our findings underscore the potential therapeutic applicability of CBD in TBI interventions, necessitating further comprehensive investigations and clinical validations to substantiate these initial conclusions.
Collapse
Affiliation(s)
- Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Hongwei Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiancheng Feng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin University, Changchun, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Yu Qian
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Honggang Wan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin, Tianjin, China
- State Key Laboratory of Experimental Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Li J, Jia S, Song Y, Xu W, Lin J. Ginkgolide B can alleviate spinal cord glymphatic system dysfunction and provide neuroprotection in painful diabetic neuropathy rats by inhibiting matrix metalloproteinase-9. Neuropharmacology 2024; 250:109907. [PMID: 38492884 DOI: 10.1016/j.neuropharm.2024.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
The glymphatic system plays a crucial role in maintaining optimal central nervous system (CNS) function by facilitating the removal of metabolic wastes. Aquaporin-4 (AQP4) protein, predominantly located on astrocyte end-feet, is a key pathway for metabolic waste excretion. β-Dystroglycan (β-DG) can anchor AQP4 protein to the end-feet membrane of astrocytes and can be cleaved by matrix metalloproteinase (MMP)-9 protein. Studies have demonstrated that hyperglycemia upregulates MMP-9 expression in the nervous system, leading to neuropathic pain. Ginkgolide B (GB) exerts an inhibitory effect on the MMP-9 protein. In this study, we investigated whether inhibition of MMP-9-mediated β-DG cleavage by GB is involved in the regulation of AQP4 polarity within the glymphatic system in painful diabetic neuropathy (PDN) and exerts neuroprotective effects. The PDN model was established by injecting streptozotocin (STZ). Functional changes in the glymphatic system were observed using magnetic resonance imaging (MRI). The paw withdrawal threshold (PWT) was measured to assess mechanical allodynia. The protein expressions of MMP-9, β-DG, and AQP4 were detected by Western blotting and immunofluorescence. Our findings revealed significant decreases in the efficiency of contrast agent clearance within the spinal glymphatic system of the rats, accompanied by decreased PWT, increased MMP-9 protein expression, decreased β-DG protein expression, and loss of AQP4 polarity. Notably, GB treatment demonstrated the capacity to ameliorate spinal cord glymphatic function by modulating AQP4 polarity through MMP-9 inhibition, offering a promising therapeutic avenue for PDN.
Collapse
Affiliation(s)
- Jiang Li
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Shuaiying Jia
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | | | - Wenmei Xu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| | - Jingyan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
10
|
Reis J, Buguet A, Radomski M, Stella AB, Vásquez TC, Spencer PS. Neurological patients confronting climate change: A potential role for the glymphatic system and sleep. J Neurol Sci 2024; 458:122900. [PMID: 38310733 DOI: 10.1016/j.jns.2024.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Interest in the health consequences of climate change (global warming, heatwaves) has increased in the neurological community. This review addresses the impact of elevated ambient temperatures and heatwaves on patients with neurological and mental health disorders, including multiple sclerosis, synucleinopathies, dementia, epilepsies, mental health, and stroke. Patients with such conditions are highly vulnerable during heatwaves because of functional disorders affecting sleep, thermoregulation, autonomic system reactivity, mood, and cognitive ability. Several medications may also increase the risk of heatstroke. Special attention is devoted to the involvement of common underlying mechanisms, such as sleep and the glymphatic system. Disease prevention and patient care during heatwaves are major issues for caregivers. Beyond the usual recommendations for individuals, we favor artificially induced acclimation to heat, which provides preventive benefits with proven efficacy for healthy adults.
Collapse
Affiliation(s)
- Jacques Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 3 rue du Loir, 67205 Oberhausbergen, France.
| | - Alain Buguet
- Malaria Research Unit, UMR 5246 CNRS, Claude-Bernard Lyon-1 University, 69622 Villeurbanne, France; 21 rue de Champfranc, 38630 Les Avenières Veyrins-Thuellin, France
| | - Manny Radomski
- Emeritus at the University of Toronto, Apt n° 2501, 2010 Islington Avenue, Toronto, ON M9P3S8, Canada
| | - Alex Buoite Stella
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital, University of Trieste, Trieste, Italy
| | - Teresa Corona Vásquez
- División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico City, Mexico; Clinical Neurodegenerative Diseases Laboratory, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Peter S Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
11
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
12
|
Li Z, Chen D, Li Z, Fan H, Guo L, Sui B, Ventikos Y. A computational study of fluid transport characteristics in the brain parenchyma of dementia subtypes. J Biomech 2023; 159:111803. [PMID: 37734184 DOI: 10.1016/j.jbiomech.2023.111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The cerebral environment is a complex system consisting of parenchymal tissue and multiple fluids. Dementia is a common class of neurodegenerative diseases, caused by structural damages and functional deficits in the cerebral environment. In order to better understand the pathology of dementia from a cerebral fluid transport angle and provide clearer evidence that could help differentiate between dementia subtypes, such as Alzheimer's disease and vascular dementia, we conducted fluid-structure interaction modelling of the brain using a multiple-network poroelasticity model, which considers both neuropathological and cerebrovascular factors. The parenchyma was further subdivided and labelled into parcellations to obtain more localised and detailed data. The numerical results were converted to computed functional images by an in-house workflow. Different cerebral blood flow (CBF) and cerebrospinal fluid (CSF) clearance abnormalities were identified in the modelling results, when comparing Alzheimer's disease and vascular dementia. This paper presents our preliminary results as a proof of concept for a novel clinical diagnostic tool, and paves the way for a larger clinical study.
Collapse
Affiliation(s)
- Zeyan Li
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Duanduan Chen
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China; School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhiye Li
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Haojun Fan
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Liwei Guo
- Department of Mechanical Engineering, University College London, London, United Kingdom.
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China.
| | - Yiannis Ventikos
- Department of Mechanical Engineering, University College London, London, United Kingdom; School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
13
|
Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. J Cereb Blood Flow Metab 2023; 43:1042-1059. [PMID: 37086081 PMCID: PMC10291461 DOI: 10.1177/0271678x231169133] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Weiner S, Junkkari A, Sauer M, Luikku A, Rauramaa T, Kokkola T, Herukka SK, Blennow K, Zetterberg H, Leinonen V, Gobom J. Novel cerebrospinal fluid biomarkers correlating with shunt responsiveness in patients with idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2023; 20:40. [PMID: 37277809 PMCID: PMC10243080 DOI: 10.1186/s12987-023-00440-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Idiopathic Normal pressure hydrocephalus (iNPH) is a form of adult hydrocephalus that is clinically characterized by progressive gait impairment, cognitive dysfunction, and urinary incontinence. The current standard method of treatment involves surgical installation of a CSF diversion shunt. However, only a fraction of patients shows an alleviation of symptoms from shunt surgery. Thus, the purpose of this prospective explorative proteomic study was to identify prognostic CSF biomarkers to predict shunt responsiveness in iNPH patients. Further, we evaluated the ability of the core Alzheimer's disease (AD) CSF biomarkers phosphorylated (p)-tau, total (t)-tau, and amyloid-β 1-42 (Aβ1-42) to serve as predictors of shunt response. METHODS We conducted a tandem mass tag (TMT) proteomic analysis of lumbar CSF from 68 iNPH patients, sampled pre-shunt surgery. Tryptic digests of CSF samples were labelled with TMTpro reagents. The TMT multiplex samples were fractionated in 24 concatenated fractions by reversed-phase chromatography at basic pH and analysed by liquid chromatography coupled to mass spectrometry (LC-MS) on an Orbitrap Lumos mass spectrometer. The relative abundances of the identified proteins were correlated with (i) iNPH grading scale (iNPHGS) and (ii) gait speed change 1 year after surgery from baseline to identify predictors of shunt responsiveness. RESULTS We identified four CSF biomarker candidates which correlated most strongly with clinical improvement on the iNPHGS and were significantly changed in shunt-responsive compared to shunt-unresponsive iNPH patients 1 year post-surgery: FABP3 (R = - 0.46, log2(fold change (FC)) = - 0.25, p < 0.001), ANXA4 (R = 0.46, log2(FC) = 0.32, p < 0.001), MIF (R = -0.49, log2(FC) = - 0.20, p < 0.001) and B3GAT2 (R = 0.54, log2(FC) = 0.20, p < 0.001). In addition, five biomarker candidates were selected based on their strong correlation with gait speed change 1 year after shunt installation: ITGB1 (R = - 0.48, p < 0.001), YWHAG (R = - 0.41, p < 0.01), OLFM2 (R = 0.39, p < 0.01), TGFBI (R = - 0.38, p < 0.01), and DSG2 (R = 0.37, p < 0.01). Concentrations of the CSF AD core biomarkers did not differ significantly with shunt responsiveness. CONCLUSION FABP3, MIF, ANXA4, B3GAT2, ITGB1, YWHAG, OLFM2, TGFBI and DSG2 in CSF are promising prognostic biomarker candidates to predict shunt responsiveness in iNPH patients.
Collapse
Affiliation(s)
- Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| | - Antti Junkkari
- Department of Neurosurgery, NeuroCenter, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mathias Sauer
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Antti Luikku
- Department of Neurosurgery, NeuroCenter, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Tarja Kokkola
- Department of Neurology, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ville Leinonen
- Department of Neurosurgery, NeuroCenter, Kuopio University Hospital and Neurosurgery, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
15
|
Bernal J, Schreiber S, Menze I, Ostendorf A, Pfister M, Geisendörfer J, Nemali A, Maass A, Yakupov R, Peters O, Preis L, Schneider L, Herrera AL, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Schott BH, Rostamzadeh A, Glanz W, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Laske C, Munk MH, Spottke A, Roy N, Dobisch L, Dechent P, Scheffler K, Hetzer S, Wolfsgruber S, Kleineidam L, Schmid M, Berger M, Jessen F, Wirth M, Düzel E, Ziegler G. Arterial hypertension and β-amyloid accumulation have spatially overlapping effects on posterior white matter hyperintensity volume: a cross-sectional study. Alzheimers Res Ther 2023; 15:97. [PMID: 37226207 PMCID: PMC10207740 DOI: 10.1186/s13195-023-01243-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND White matter hyperintensities (WMH) in subjects across the Alzheimer's disease (AD) spectrum with minimal vascular pathology suggests that amyloid pathology-not just arterial hypertension-impacts WMH, which in turn adversely influences cognition. Here we seek to determine the effect of both hypertension and Aβ positivity on WMH, and their impact on cognition. METHODS We analysed data from subjects with a low vascular profile and normal cognition (NC), subjective cognitive decline (SCD), and amnestic mild cognitive impairment (MCI) enrolled in the ongoing observational multicentre DZNE Longitudinal Cognitive Impairment and Dementia Study (n = 375, median age 70.0 [IQR 66.0, 74.4] years; 178 female; NC/SCD/MCI 127/162/86). All subjects underwent a rich neuropsychological assessment. We focused on baseline memory and executive function-derived from multiple neuropsychological tests using confirmatory factor analysis-, baseline preclinical Alzheimer's cognitive composite 5 (PACC5) scores, and changes in PACC5 scores over the course of three years (ΔPACC5). RESULTS Subjects with hypertension or Aβ positivity presented the largest WMH volumes (pFDR < 0.05), with spatial overlap in the frontal (hypertension: 0.42 ± 0.17; Aβ: 0.46 ± 0.18), occipital (hypertension: 0.50 ± 0.16; Aβ: 0.50 ± 0.16), parietal lobes (hypertension: 0.57 ± 0.18; Aβ: 0.56 ± 0.20), corona radiata (hypertension: 0.45 ± 0.17; Aβ: 0.40 ± 0.13), optic radiation (hypertension: 0.39 ± 0.18; Aβ: 0.74 ± 0.19), and splenium of the corpus callosum (hypertension: 0.36 ± 0.12; Aβ: 0.28 ± 0.12). Elevated global and regional WMH volumes coincided with worse cognitive performance at baseline and over 3 years (pFDR < 0.05). Aβ positivity was negatively associated with cognitive performance (direct effect-memory: - 0.33 ± 0.08, pFDR < 0.001; executive: - 0.21 ± 0.08, pFDR < 0.001; PACC5: - 0.29 ± 0.09, pFDR = 0.006; ΔPACC5: - 0.34 ± 0.04, pFDR < 0.05). Splenial WMH mediated the relationship between hypertension and cognitive performance (indirect-only effect-memory: - 0.05 ± 0.02, pFDR = 0.029; executive: - 0.04 ± 0.02, pFDR = 0.067; PACC5: - 0.05 ± 0.02, pFDR = 0.030; ΔPACC5: - 0.09 ± 0.03, pFDR = 0.043) and WMH in the optic radiation partially mediated that between Aβ positivity and memory (indirect effect-memory: - 0.05 ± 0.02, pFDR = 0.029). CONCLUSIONS Posterior white matter is susceptible to hypertension and Aβ accumulation. Posterior WMH mediate the association between these pathologies and cognitive dysfunction, making them a promising target to tackle the downstream damage related to the potentially interacting and potentiating effects of the two pathologies. TRIAL REGISTRATION German Clinical Trials Register (DRKS00007966, 04/05/2015).
Collapse
Affiliation(s)
- Jose Bernal
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Neurology, Medical Faculty, University Hospital Magdeburg, Magdeburg, Germany
| | - Inga Menze
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Anna Ostendorf
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Malte Pfister
- Department of Neurology, Medical Faculty, University Hospital Magdeburg, Magdeburg, Germany
| | - Jonas Geisendörfer
- Department of Neurology, Medical Faculty, University Hospital Magdeburg, Magdeburg, Germany
| | - Aditya Nemali
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Lukas Preis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Luisa Schneider
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Ana Lucia Herrera
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
| | - Eike Jakob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Clinic for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Clinic for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Wenzel Glanz
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Clinic for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Goettingen, Göttingen, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Clinic for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Clinic for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, University of Cologne, Cologne, Germany
- Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Tatzberg 41, Dresden, 01307, Germany.
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Gabriel Ziegler
- Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
16
|
Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS. Vascular contributions to Alzheimer's disease. Transl Res 2023; 254:41-53. [PMID: 36529160 PMCID: PMC10481451 DOI: 10.1016/j.trsl.2022.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony Peret
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bolanle M Famakin
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jeremy H Bockholt
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
17
|
Georgakopoulou T, van der Wijk AE, van Bavel E, Bakker ENTP. Perivascular clearance of blood proteins after blood-brain barrier disruption in a rat model of microinfarcts. Microvasc Res 2023; 148:104515. [PMID: 36893583 DOI: 10.1016/j.mvr.2023.104515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Microinfarcts result in a transient loss of the blood-brain barrier (BBB) in the ischemic territory. This leads to the extravasation of blood proteins into the brain parenchyma. It is not clear how these proteins are removed. Here we studied the role of perivascular spaces in brain clearance from extravasated blood proteins. Male and female Wistar rats were infused with microspheres of either 15, 25, or 50 μm in diameter (n = 6 rats per group) via the left carotid artery. We infused either 25,000 microspheres of 15 μm, 5500 of 25 μm, or 1000 of 50 μm. One day later, rats were infused with lectin and hypoxyprobe to label perfused blood vessels and hypoxic areas, respectively. Rats were then euthanized and perfusion-fixed. Brains were excised, sectioned, and analyzed using immunostaining and confocal imaging. Microspheres induced a size-dependent increase in ischemic volume per territory, but the cumulative ischemic volume was similar in all groups. The total volumes of ischemia, hypoxia and infarction affected 1-2 % of the left hemisphere. Immunoglobulins (IgG) were present in ischemic brain tissue surrounding lodged microspheres in all groups. In addition, staining for IgG was found in perivascular spaces of blood vessels nearby areas of BBB disruption. About 2/3 of these vessels were arteries, while the remaining 1/3 of these vessels were veins. The subarachnoid space (SAS) of the affected hemisphere stained stronger for IgG than the contralateral hemisphere in all groups: +27 %, +44 % and +27 % respectively. Microspheres of various sizes induce a local loss of BBB integrity, evidenced by parenchymal IgG staining. The presence of IgG in perivascular spaces of both arteries and veins distinct from the ischemic territories suggests that both contribute to the removal of blood proteins. The strong staining for IgG in the SAS of the affected hemisphere suggests that this perivascular route egresses via the CSF. Perivascular spaces therefore play a previously unrecognized role in tissue clearance of fluid and extravasated proteins after BBB disruption induced by microinfarcts.
Collapse
Affiliation(s)
- Theodosia Georgakopoulou
- Amsterdam UMC Location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anne-Eva van der Wijk
- Amsterdam UMC Location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Ed van Bavel
- Amsterdam UMC Location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurovascular Disorders, Amsterdam, the Netherlands
| | - Erik N T P Bakker
- Amsterdam UMC Location University of Amsterdam, Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurovascular Disorders, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Zhang Y, Zhao X, Zhang Y, Zeng F, Yan S, Chen Y, Li Z, Zhou D, Liu L. The role of circadian clock in astrocytes: From cellular functions to ischemic stroke therapeutic targets. Front Neurosci 2022; 16:1013027. [PMID: 36570843 PMCID: PMC9772621 DOI: 10.3389/fnins.2022.1013027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that astrocytes, the abundant cell type in the central nervous system (CNS), play a critical role in maintaining the immune response after cerebral infarction, regulating the blood-brain barrier (BBB), providing nutrients to the neurons, and reuptake of glutamate. The circadian clock is an endogenous timing system that controls and optimizes biological processes. The central circadian clock and the peripheral clock are consistent, controlled by various circadian components, and participate in the pathophysiological process of astrocytes. Existing evidence shows that circadian rhythm controls the regulation of inflammatory responses by astrocytes in ischemic stroke (IS), regulates the repair of the BBB, and plays an essential role in a series of pathological processes such as neurotoxicity and neuroprotection. In this review, we highlight the importance of astrocytes in IS and discuss the potential role of the circadian clock in influencing astrocyte pathophysiology. A comprehensive understanding of the ability of the circadian clock to regulate astrocytes after stroke will improve our ability to predict the targets and biological functions of the circadian clock and gain insight into the basis of its intervention mechanism.
Collapse
Affiliation(s)
- Yuxing Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yao Chen
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhong Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,Desheng Zhou,
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Lijuan Liu,
| |
Collapse
|
19
|
Uskoković V. Micronesian maritime piloting charts as bioimaging proxies for the rescue of cells on the apoptotic trajectory. Heliyon 2022; 8:e12035. [PMID: 36582720 PMCID: PMC9792799 DOI: 10.1016/j.heliyon.2022.e12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
This interdisciplinary study falls within the realm of ethnoscience thanks to its resorting to the scientific methods behind the Micronesian canoe voyaging in search of bioimaging tools for the early prediction of cell fate in response to a therapy. Two distinct indigenous methods for navigation across the ocean were assessed as bridges for correlating (i) the interaction of oceanic swells near atolls with the way microcurrents in the cell culture dish may shape the morphology of cells, and (ii) the spatial arrangement of cultured cells with the canoe voyaging from one island to the next. Both methods effectively predicted the cell fate at early time points in the treatment with superparamagnetic nanoparticles, when the adverse effects were still reversible and not apparent yet at the levels of cell morphology, proliferation rate or confluence. The mattang chart, the most fundamental and theoretical of navigational devices used in the Marshallese seafaring tradition, was used to measure subtle morphological changes occurring in cells due to the treatment. The cells subjected to the treatment were consistently withdrawing their bodies from the areas of intense swell interaction activity on the superimposed mattangs. Given that the cytoskeletal microfilaments defining the features of control cells were largely filling up these areas, this metric proved useful for deducing the course of the treatment at its early stages. The same deduction was proven feasible with the use of a Carolinian navigational technique based on the concept of the etak, in which case the distances traversable between cells in a population subjected to the treatment were divisible to a significantly higher number of etaks than the same distances in the population of control cells. Therefore, treating cells and their nuclei as analogous to Pacific atolls navigable to and fro with the use of imaginary microscopic canoes and the navigational principles native to the Marshall and the Caroline Islands proves as a clever, but also very effective cell fate prediction approach, which various branches of biomedical science could take advantage of. These practical benefits notwithstanding, this conceptual study was performed primarily with a goal to spark the interest in studying these and other ancient ethnoscientific inventions as potential addenda to the broad repertoire of techniques used in biomedical and other sciences to combat some of their greatest challenges.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano, 7 Park Vista, Irvine, CA, 92604, USA
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
20
|
Lower White Matter Volume and Worse Executive Functioning Reflected in Higher Levels of Plasma GFAP among Older Adults with and Without Cognitive Impairment. J Int Neuropsychol Soc 2022; 28:588-599. [PMID: 34158138 PMCID: PMC8692495 DOI: 10.1017/s1355617721000813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There are minimal data directly comparing plasma neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in aging and neurodegenerative disease research. We evaluated associations of plasma NfL and plasma GFAP with brain volume and cognition in two independent cohorts of older adults diagnosed as clinically normal (CN), mild cognitive impairment (MCI), or Alzheimer's dementia. METHODS We studied 121 total participants (Cohort 1: n = 50, age 71.6 ± 6.9 years, 78% CN, 22% MCI; Cohort 2: n = 71, age 72.2 ± 9.2 years, 45% CN, 25% MCI, 30% dementia). Gray and white matter volumes were obtained for total brain and broad subregions of interest (ROIs). Neuropsychological testing evaluated memory, executive functioning, language, and visuospatial abilities. Plasma samples were analyzed in duplicate for NfL and GFAP using single molecule array assays (Quanterix Simoa). Linear regression models with structural MRI and cognitive outcomes included plasma NfL and GFAP simultaneously along with relevant covariates. RESULTS Higher plasma GFAP was associated with lower white matter volume in both cohorts for temporal (Cohort 1: β = -0.33, p = .002; Cohort 2: β = -0.36, p = .03) and parietal ROIs (Cohort 1: β = -0.31, p = .01; Cohort 2: β = -0.35, p = .04). No consistent findings emerged for gray matter volumes. Higher plasma GFAP was associated with lower executive function scores (Cohort 1: β = -0.38, p = .01; Cohort 2: β = -0.36, p = .007). Plasma NfL was not associated with gray or white matter volumes, or cognition after adjusting for plasma GFAP. CONCLUSIONS Plasma GFAP may be more sensitive to white matter and cognitive changes than plasma NfL. Biomarkers reflecting astroglial pathophysiology may capture complex dynamics of aging and neurodegenerative disease.
Collapse
|
21
|
Yang HC(S, Inglis B, Talavage TM, Nair VV, Yao J(F, Fitzgerald B, Schwichtenberg AJ, Tong Y. Coupling between cerebrovascular oscillations and CSF flow fluctuations during wakefulness: An fMRI study. J Cereb Blood Flow Metab 2022; 42:1091-1103. [PMID: 35037498 PMCID: PMC9125495 DOI: 10.1177/0271678x221074639] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/08/2021] [Accepted: 12/26/2021] [Indexed: 01/18/2023]
Abstract
It is commonly believed that cerebrospinal fluid (CSF) movement is facilitated by blood vessel wall movements (i.e., hemodynamic oscillations) in the brain. A coherent pattern of low frequency hemodynamic oscillations and CSF movement was recently found during non-rapid eye movement (NREM) sleep via functional MRI. This finding raises other fundamental questions: 1) the explanation of coupling between hemodynamic oscillations and CSF movement from fMRI signals; 2) the existence of the coupling during wakefulness; 3) the direction of CSF movement. In this resting state fMRI study, we proposed a mechanical model to explain the coupling between hemodynamics and CSF movement through the lens of fMRI. Time delays between CSF movement and global hemodynamics were calculated. The observed delays between hemodynamics and CSF movement match those predicted by the model. Moreover, by conducting separate fMRI scans of the brain and neck, we confirmed the low frequency CSF movement at the fourth ventricle is bidirectional. Our finding also demonstrates that CSF movement is facilitated by changes in cerebral blood volume mainly in the low frequency range, even when the individual is awake.
Collapse
Affiliation(s)
| | - Ben Inglis
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Thomas M Talavage
- Department of Biomedical Engineering, University of Cincinnati, OH, USA
| | | | - Jinxia (Fiona) Yao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bradley Fitzgerald
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Amy J Schwichtenberg
- Department of Human Development and Family Studies, Purdue University, College of Health and Human Sciences, Purdue University, West Lafayette, IN, USA
| | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
22
|
Folate Related Pathway Gene Analysis Reveals a Novel Metabolic Variant Associated with Alzheimer’s Disease with a Change in Metabolic Profile. Metabolites 2022; 12:metabo12060475. [PMID: 35736408 PMCID: PMC9230919 DOI: 10.3390/metabo12060475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic disorders may be important potential causative pathways to Alzheimer’s disease (AD). Cerebrospinal fluid (CSF) decreasing output, raised intracranial pressure, and ventricular enlargement have all been linked to AD. Cerebral folate metabolism may be a key player since this is significantly affected by such changes in CSF, and genetic susceptibilities may exist in this pathway. In the current study, we aimed to identify whether any single nucleotide polymorphism (SNPs) affecting folate and the associated metabolic pathways were significantly associated with AD. We took a functional nutrigenomics approach to look for SNPs in genes for the linked folate, methylation, and biogenic amine neurotransmitter pathways. Changes in metabolism were found with the SNPs identified. An abnormal SNP in methylene tetrahydrofolate dehydrogenase 1 (MTHFD1) was significantly predictive of AD and associated with an increase in tissue glutathione. Individuals without these SNPs had normal levels of glutathione but significantly raised MTHFD1. Both changes would serve to decrease potentially neurotoxic levels of homocysteine. Seven additional genes were associated with Alzheimer’s and five with normal ageing. MTHFD1 presents a strong prediction of susceptibility and disease among the SNPs associated with AD. Associated physiological changes present potential biomarkers for identifying at-risk individuals.
Collapse
|
23
|
Haynes EM, Ulland TK, Eliceiri KW. A Model of Discovery: The Role of Imaging Established and Emerging Non-mammalian Models in Neuroscience. Front Mol Neurosci 2022; 15:867010. [PMID: 35493325 PMCID: PMC9046975 DOI: 10.3389/fnmol.2022.867010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Rodents have been the dominant animal models in neurobiology and neurological disease research over the past 60 years. The prevalent use of rats and mice in neuroscience research has been driven by several key attributes including their organ physiology being more similar to humans, the availability of a broad variety of behavioral tests and genetic tools, and widely accessible reagents. However, despite the many advances in understanding neurobiology that have been achieved using rodent models, there remain key limitations in the questions that can be addressed in these and other mammalian models. In particular, in vivo imaging in mammals at the cell-resolution level remains technically difficult and demands large investments in time and cost. The simpler nervous systems of many non-mammalian models allow for precise mapping of circuits and even the whole brain with impressive subcellular resolution. The types of non-mammalian neuroscience models available spans vertebrates and non-vertebrates, so that an appropriate model for most cell biological questions in neurodegenerative disease likely exists. A push to diversify the models used in neuroscience research could help address current gaps in knowledge, complement existing rodent-based bodies of work, and bring new insight into our understanding of human disease. Moreover, there are inherent aspects of many non-mammalian models such as lifespan and tissue transparency that can make them specifically advantageous for neuroscience studies. Crispr/Cas9 gene editing and decreased cost of genome sequencing combined with advances in optical microscopy enhances the utility of new animal models to address specific questions. This review seeks to synthesize current knowledge of established and emerging non-mammalian model organisms with advances in cellular-resolution in vivo imaging techniques to suggest new approaches to understand neurodegeneration and neurobiological processes. We will summarize current tools and in vivo imaging approaches at the single cell scale that could help lead to increased consideration of non-mammalian models in neuroscience research.
Collapse
Affiliation(s)
- Elizabeth M. Haynes
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
| | - Tyler K. Ulland
- Department of Pathology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, WI, United States
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Ford JN, Zhang Q, Sweeney EM, Merkler AE, de Leon MJ, Gupta A, Nguyen TD, Ivanidze J. Quantitative Water Permeability Mapping of Blood-Brain-Barrier Dysfunction in Aging. Front Aging Neurosci 2022; 14:867452. [PMID: 35462701 PMCID: PMC9024318 DOI: 10.3389/fnagi.2022.867452] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Blood-brain-barrier (BBB) dysfunction is a hallmark of aging and aging-related disorders, including cerebral small vessel disease and Alzheimer's disease. An emerging biomarker of BBB dysfunction is BBB water exchange rate (kW) as measured by diffusion-weighted arterial spin labeling (DW-ASL) MRI. We developed an improved DW-ASL sequence for Quantitative Permeability Mapping and evaluated whole brain and region-specific kW in a cohort of 30 adults without dementia across the age spectrum. In this cross-sectional study, we found higher kW values in the cerebral cortex (mean = 81.51 min-1, SD = 15.54) compared to cerebral white matter (mean = 75.19 min-1, SD = 13.85) (p < 0.0001). We found a similar relationship for cerebral blood flow (CBF), concordant with previously published studies. Multiple linear regression analysis with kW as an outcome showed that age was statistically significant in the cerebral cortex (p = 0.013), cerebral white matter (p = 0.033), hippocampi (p = 0.043), orbitofrontal cortices (p = 0.042), and precunei cortices (p = 0.009), after adjusting for sex and number of vascular risk factors. With CBF as an outcome, age was statistically significant only in the cerebral cortex (p = 0.026) and precunei cortices (p = 0.020). We further found moderate negative correlations between white matter hyperintensity (WMH) kW and WMH volume (r = -0.51, p = 0.02), and normal-appearing white matter (NAWM) and WMH volume (r = -0.44, p = 0.05). This work illuminates the relationship between BBB water exchange and aging and may serve as the basis for BBB-targeted therapies for aging-related brain disorders.
Collapse
Affiliation(s)
- Jeremy N. Ford
- Department of Radiology, Massachusetts General Hospital, Boston, MA, United States,Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Qihao Zhang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Elizabeth M. Sweeney
- Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Mony J. de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jana Ivanidze
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: Jana Ivanidze,
| |
Collapse
|
25
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
26
|
Pessa JE. Ventricular Infusion and Nanoprobes Identify Cerebrospinal Fluid and Glymphatic Circulation in Human Nerves. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2022; 10:e4126. [PMID: 35198353 PMCID: PMC8856590 DOI: 10.1097/gox.0000000000004126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022]
Abstract
Growing evidence suggests that cerebrospinal fluid circulates in human nerves. Several conditions encountered by the plastic surgeon may be related to dysregulation of this system, including nerve transection, stretch injuries, and peripheral neuropathy. The purpose of this study was to show how ventricular infusion and nanoprobes identify CSF and glymphatic circulation in neural sheaths of human nerves. METHODS The technique of ventricular infusion using buffered saline was developed in 2017. The technique was used in a series of eight fresh cadavers before dissection of the median nerve, and combined with fluorescent imaging and nanoprobe injections in selected specimens. RESULTS Eight cadaver specimens underwent ventricular infusion. There were six female and two male specimens, ages 46-97 (mean 76.6). Ventricular cannulation was performed successfully using coordinates 2 cm anterior to coronal suture and 2.5 cm lateral to sagittal suture. Depth of cannulation ranged from 44 to 56 mm (mean 49.7). Ventricular saline infusion complemented by nanoprobe injection suggests CSF flows in neural sheaths, including pia meninges, epineurial channels, perineurium, and myelin sheaths (neurolemma). CONCLUSIONS Ventricular infusion and nanoprobes identify CSF flow in neural sheaths of human nerves. CSF flow in nerves is an open circulatory system that occurs via channels, intracellular flow, and cell-to-cell transport associated with glial cells. Neural sheaths, including neurolemma, may participate in glucose and solute transport to axons. These techniques may be used in anatomic dissection and live animal models, and have been extended to the central nervous system to identify direct ventricle-to-pia meninges CSF pathways.
Collapse
|
27
|
Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin's Benefits and Risks as a Therapy for Sleep Disturbances in the Elderly: Current Insights. Nat Sci Sleep 2022; 14:1843-1855. [PMID: 36267165 PMCID: PMC9578490 DOI: 10.2147/nss.s380465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 01/19/2023] Open
Abstract
Aging is accompanied by circadian changes, including disruptive alterations in the sleep/wake cycle, as well as the beginning of low-degree inflammation ("inflammaging"), a scenario that leads to several chronic illnesses, including cancer, and metabolic, cardiovascular, and neurological dysfunctions. As a result, any effective approach to healthy aging must consider both the correction of circadian disturbance and the control of low-grade inflammation. One of the most important prerequisites for healthy aging is the preservation of robust circadian rhythmicity (particularly of the sleep/wake cycle). Sleep disturbance disrupts various activities in the central nervous system, including waste molecule elimination. Melatonin is a chemical with extraordinary phylogenetic conservation found in all known aerobic creatures whose alteration plays an important role in sleep changes with aging. Every day, the late afternoon/nocturnal surge in pineal melatonin helps to synchronize both the central circadian pacemaker found in the hypothalamic suprachiasmatic nuclei (SCN) and a plethora of peripheral cellular circadian clocks. Melatonin is an example of an endogenous chronobiotic substance that can influence the timing and amplitude of circadian rhythms. Moreover, melatonin is also an excellent anti-inflammatory agent, buffering free radicals, down-regulating proinflammatory cytokines, and reducing insulin resistance, among other things. We present both scientific and clinical evidence that melatonin is a safe drug for treating sleep disturbances in the elderly.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Gregory M Brown
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Jansson D, Wang M, Thomas RG, Erickson MA, Peskind ER, Li G, Iliff J. Markers of Cerebrovascular Injury, Inflammation, and Plasma Lipids Are Associated with Alzheimer's Disease Cerebrospinal Fluid Biomarkers in Cognitively Normal Persons. J Alzheimers Dis 2022; 86:813-826. [PMID: 35124650 PMCID: PMC10010435 DOI: 10.3233/jad-215400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifactorial process that takes years to manifest clinically. We propose that brain-derived indicators of cerebrovascular dysfunction and inflammation would inform on AD-related pathological processes early in, and perhaps prior to neurodegenerative disease development. OBJECTIVE Define the relationship between cerebrospinal fluid (CSF) markers of cerebrovascular dysfunction and neuroinflammation with AD CSF biomarkers in cognitively normal individuals. METHODS Analytes were measured from CSF and plasma collected at baseline from two randomized control trials. We performed Pearson correlation analysis (adjusting for age, sex, APOE haplotype, and education) between markers of central nervous system (CNS) barrier disruption, cerebrovascular dysfunction, CSF inflammatory cytokines and chemokines, and plasma lipid levels. We then developed a statistical prediction model using machine learning to test the ability of measured CSF analytes and blood lipid profiles to predict CSF AD biomarkers (total tau, phospho-tau (181), Aβ42) in this clinical population. RESULTS Our analysis revealed a significant association between markers of CNS barrier dysfunction and markers of cerebrovascular dysfunction, acute inflammatory responses, and CSF inflammatory cytokines. There was a significant association of blood lipid profiles with cerebrovascular injury markers, and CSF inflammatory cytokine levels. Using machine learning, we show that combinations of blood lipid profiles, CSF markers of CNS barrier disruption, cerebrovascular dysfunction and CSF inflammatory cytokines predict CSF total tau, p-tau, and, to a lesser extent, Aβ42 in cognitively normal subjects. CONCLUSION This suggests that these parallel pathological processes may contribute to the development of AD-related neuropathology in the absence of clinical manifestations.
Collapse
Affiliation(s)
- Deidre Jansson
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA
| | - Marie Wang
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA
| | - Ronald G Thomas
- Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, USA
| | - Michelle A Erickson
- Geriatrics Research Education and Clinical Center (GRECC), VA Puget Sound Healthcare System, Seattle, WA, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Elaine R Peskind
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA
| | - Ge Li
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA.,Geriatrics Research Education and Clinical Center (GRECC), VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Jeffrey Iliff
- VA Northwest Mental Illness Research, Education, and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, WA, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
29
|
Carloni S, Rescigno M. Unveiling the gut-brain axis: structural and functional analogies between the gut and the choroid plexus vascular and immune barriers. Semin Immunopathol 2022; 44:869-882. [PMID: 35861857 PMCID: PMC9301898 DOI: 10.1007/s00281-022-00955-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
The vasculature plays an essential role in the development and maintenance of blood-tissue interface homeostasis. Knowledge on the morphological and functional nature of the blood vessels in every single tissue is, however, very poor, but it is becoming clear that each organ is characterized by the presence of endothelial barriers with different properties fundamental for the maintenance of tissue resident immune homeostasis and for the recruitment of blood-trafficking immune cells. The tissue specificity of the vascular unit is dependent on the presence of differentiated endothelial cells that form continues, fenestrated, or sinusoidal vessels with different grades of permeability and different immune receptors, according to how that particular tissue needs to be protected. The gut-brain axis highlights the prominent role that the vasculature plays in allowing a direct and prompt exchange of molecules between the gut, across the gut vascular barrier (GVB), and the brain. Recently, we identified a new choroid plexus vascular barrier (PVB) which receives and integrates information coming from the gut and is fundamental in the modulation of the gut-brain axis. Several pathologies are linked to functional dysregulation of either the gut or the choroid plexus vascular barriers. In this review, we unveil the structural and functional analogies between the GVB and PVB, comparing their peculiar features and highlighting the functional role of pitcher and catcher of the gut-brain axis, including their role in the establishment of immune homeostasis and response upon systemic stimuli. We propose that when the gut vascular barrier-the main protecting system of the body from the external world-is compromised, the choroid plexus gatekeeper becomes a second barrier that protects the central nervous system from systemic inflammation.
Collapse
Affiliation(s)
- Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 20072, Pieve Emanuele, MI, Italy.
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy.
| |
Collapse
|
30
|
Kikuta J, Kamagata K, Takabayashi K, Taoka T, Yokota H, Andica C, Wada A, Someya Y, Tamura Y, Kawamori R, Watada H, Naganawa S, Aoki S. An Investigation of Water Diffusivity Changes along the Perivascular Space in Elderly Subjects with Hypertension. AJNR Am J Neuroradiol 2022; 43:48-55. [PMID: 34794943 PMCID: PMC8757561 DOI: 10.3174/ajnr.a7334] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Hypertension may be related to alterations of the glymphatic system, a waste metabolite drainage system in the brain. We aimed to investigate analysis along the perivascular space index changes in elderly subjects with hypertension. MATERIALS AND METHODS Diffusion-weighted images were acquired from 126 subjects, including 63 subjects with hypertension (25 men and 38 women; mean age, 72.45 years) and 63 age- and sex-matched controls (25 men and 38 women; mean age, 72.16 years). We calculated the analysis along the perivascular space index as a ratio of the mean of x-axis diffusivities in the projection and association areas to the mean of y-axis diffusivity in the projection area and z-axis diffusivity in the association area. The left, right, and mean analysis along the perivascular space indices of both hemispheres were compared between the hypertension and control groups using a Mann-Whitney U test. The Spearman correlation coefficient was used to assess the correlation between the left, right, and mean ALPS indices and blood pressure and pulse pressure. RESULTS The left (P = .011) and mean (P = .024) analysis along the perivascular space indices of the hypertension group were significantly lower than that of the control group. The left, right, and mean analysis along the perivascular space indices of all subjects were significantly negatively correlated with blood pressure values (r = -0.200 to -0.278, P = .002-0.046) and pulse pressure values (r = -0.221 to -0.245, P = .006-0.013). CONCLUSIONS Our results are consistent with a model in which hypertension causes glymphatic dysfunction.
Collapse
Affiliation(s)
- J. Kikuta
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - K. Kamagata
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - K. Takabayashi
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - T. Taoka
- Department of Innovative Biomedical Visualization (T.T.), Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - H. Yokota
- Department of Diagnostic Radiology and Radiation Oncology (H.Y.), Graduate School of Medicine, Chiba University, Chiba, Japan
| | - C. Andica
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - A. Wada
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| | - Y. Someya
- Sportology Center (Y.S., Y.T., R.K., H.W.)
| | - Y. Tamura
- Sportology Center (Y.S., Y.T., R.K., H.W.),Department of Metabolism & Endocrinology (Y.T., R.K., H.W.), Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - R. Kawamori
- Sportology Center (Y.S., Y.T., R.K., H.W.),Department of Metabolism & Endocrinology (Y.T., R.K., H.W.), Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - H. Watada
- Sportology Center (Y.S., Y.T., R.K., H.W.),Department of Metabolism & Endocrinology (Y.T., R.K., H.W.), Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - S. Naganawa
- Department of Radiology (S.N.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - S. Aoki
- From the Department of Radiology (J.K., K.K., K.T., C.A., A.W., S.A.)
| |
Collapse
|
31
|
Clark A, Barpujari A, Lucke-Wold B, Porche K, Laurent D, Koch M, Decker M. Cerebral amyloid angiopathy: early presentation in a patient with prior neurosurgical interventions. Case report. ROMANIAN NEUROSURGERY 2021; 35:499-502. [PMID: 34992489 PMCID: PMC8730372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) has classically been described as a disease of the elderly. Genetic predisposition has been linked to the APOE e3/e3 allele. Evidence suggests that brain insult in the form of injury, prior surgical intervention, or radiation can exacerbate the clearance of toxic proteins in patients susceptible to CAA. CASE We describe a unique case of CAA in a 30-year-old male who had prior surgical interventions for spina bifida, Chiari malformation, and hydrocephalus as a child. CONCLUSIONS The case is used to teach important components regarding diagnosis, clinical suspicion, and highlight the need for further investigation regarding the emerging role of the glymphatic system and its role in clinical pathology.
Collapse
Affiliation(s)
- Alec Clark
- Medical Student, University of Central Florida, USA
| | | | | | - Ken Porche
- MD, PGY5 Neurosurgery Resident, University of Florida, USA
| | | | - Matthew Koch
- MD, Assistant Professor, Department of Neurosurgery, University of Florida, USA
| | - Matthew Decker
- MD, MBA, MPH, Assistant Professor, Department of Neurosurgery, University of Florida, USA
| |
Collapse
|
32
|
Lemon N, Canepa E, Ilies MA, Fossati S. Carbonic Anhydrases as Potential Targets Against Neurovascular Unit Dysfunction in Alzheimer’s Disease and Stroke. Front Aging Neurosci 2021; 13:772278. [PMID: 34867298 PMCID: PMC8635164 DOI: 10.3389/fnagi.2021.772278] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
The Neurovascular Unit (NVU) is an important multicellular structure of the central nervous system (CNS), which participates in the regulation of cerebral blood flow (CBF), delivery of oxygen and nutrients, immunological surveillance, clearance, barrier functions, and CNS homeostasis. Stroke and Alzheimer Disease (AD) are two pathologies with extensive NVU dysfunction. The cell types of the NVU change in both structure and function following an ischemic insult and during the development of AD pathology. Stroke and AD share common risk factors such as cardiovascular disease, and also share similarities at a molecular level. In both diseases, disruption of metabolic support, mitochondrial dysfunction, increase in oxidative stress, release of inflammatory signaling molecules, and blood brain barrier disruption result in NVU dysfunction, leading to cell death and neurodegeneration. Improved therapeutic strategies for both AD and stroke are needed. Carbonic anhydrases (CAs) are well-known targets for other diseases and are being recently investigated for their function in the development of cerebrovascular pathology. CAs catalyze the hydration of CO2 to produce bicarbonate and a proton. This reaction is important for pH homeostasis, overturn of cerebrospinal fluid, regulation of CBF, and other physiological functions. Humans express 15 CA isoforms with different distribution patterns. Recent studies provide evidence that CA inhibition is protective to NVU cells in vitro and in vivo, in models of stroke and AD pathology. CA inhibitors are FDA-approved for treatment of glaucoma, high-altitude sickness, and other indications. Most FDA-approved CA inhibitors are pan-CA inhibitors; however, specific CA isoforms are likely to modulate the NVU function. This review will summarize the literature regarding the use of pan-CA and specific CA inhibitors along with genetic manipulation of specific CA isoforms in stroke and AD models, to bring light into the functions of CAs in the NVU. Although pan-CA inhibitors are protective and safe, we hypothesize that targeting specific CA isoforms will increase the efficacy of CA inhibition and reduce side effects. More studies to further determine specific CA isoforms functions and changes in disease states are essential to the development of novel therapies for cerebrovascular pathology, occurring in both stroke and AD.
Collapse
Affiliation(s)
- Nicole Lemon
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Elisa Canepa
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marc A. Ilies
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Silvia Fossati
- Alzheimer’s Center at Temple (ACT), Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Silvia Fossati,
| |
Collapse
|
33
|
Lechat B, Scott H, Naik G, Hansen K, Nguyen DP, Vakulin A, Catcheside P, Eckert DJ. New and Emerging Approaches to Better Define Sleep Disruption and Its Consequences. Front Neurosci 2021; 15:751730. [PMID: 34690688 PMCID: PMC8530106 DOI: 10.3389/fnins.2021.751730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Current approaches to quantify and diagnose sleep disorders and circadian rhythm disruption are imprecise, laborious, and often do not relate well to key clinical and health outcomes. Newer emerging approaches that aim to overcome the practical and technical constraints of current sleep metrics have considerable potential to better explain sleep disorder pathophysiology and thus to more precisely align diagnostic, treatment and management approaches to underlying pathology. These include more fine-grained and continuous EEG signal feature detection and novel oxygenation metrics to better encapsulate hypoxia duration, frequency, and magnitude readily possible via more advanced data acquisition and scoring algorithm approaches. Recent technological advances may also soon facilitate simple assessment of circadian rhythm physiology at home to enable sleep disorder diagnostics even for “non-circadian rhythm” sleep disorders, such as chronic insomnia and sleep apnea, which in many cases also include a circadian disruption component. Bringing these novel approaches into the clinic and the home settings should be a priority for the field. Modern sleep tracking technology can also further facilitate the transition of sleep diagnostics from the laboratory to the home, where environmental factors such as noise and light could usefully inform clinical decision-making. The “endpoint” of these new and emerging assessments will be better targeted therapies that directly address underlying sleep disorder pathophysiology via an individualized, precision medicine approach. This review outlines the current state-of-the-art in sleep and circadian monitoring and diagnostics and covers several new and emerging approaches to better define sleep disruption and its consequences.
Collapse
Affiliation(s)
- Bastien Lechat
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Hannah Scott
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Ganesh Naik
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Kristy Hansen
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Duc Phuc Nguyen
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Andrew Vakulin
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Peter Catcheside
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| | - Danny J Eckert
- Adelaide Institute for Sleep Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
34
|
Stackhouse TL, Mishra A. Neurovascular Coupling in Development and Disease: Focus on Astrocytes. Front Cell Dev Biol 2021; 9:702832. [PMID: 34327206 PMCID: PMC8313501 DOI: 10.3389/fcell.2021.702832] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Neurovascular coupling is a crucial mechanism that matches the high energy demand of the brain with a supply of energy substrates from the blood. Signaling within the neurovascular unit is responsible for activity-dependent changes in cerebral blood flow. The strength and reliability of neurovascular coupling form the basis of non-invasive human neuroimaging techniques, including blood oxygen level dependent (BOLD) functional magnetic resonance imaging. Interestingly, BOLD signals are negative in infants, indicating a mismatch between metabolism and blood flow upon neural activation; this response is the opposite of that observed in healthy adults where activity evokes a large oversupply of blood flow. Negative neurovascular coupling has also been observed in rodents at early postnatal stages, further implying that this is a process that matures during development. This rationale is consistent with the morphological maturation of the neurovascular unit, which occurs over a similar time frame. While neurons differentiate before birth, astrocytes differentiate postnatally in rodents and the maturation of their complex morphology during the first few weeks of life links them with synapses and the vasculature. The vascular network is also incomplete in neonates and matures in parallel with astrocytes. Here, we review the timeline of the structural maturation of the neurovascular unit with special emphasis on astrocytes and the vascular tree and what it implies for functional maturation of neurovascular coupling. We also discuss similarities between immature astrocytes during development and reactive astrocytes in disease, which are relevant to neurovascular coupling. Finally, we close by pointing out current gaps in knowledge that must be addressed to fully elucidate the mechanisms underlying neurovascular coupling maturation, with the expectation that this may also clarify astrocyte-dependent mechanisms of cerebrovascular impairment in neurodegenerative conditions in which reduced or negative neurovascular coupling is noted, such as stroke and Alzheimer’s disease.
Collapse
Affiliation(s)
- Teresa L Stackhouse
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, United States.,Knight Cardiovascular Institute, Oregon Health & Sciences University, Portland, OR, United States
| |
Collapse
|
35
|
Lv T, Zhao B, Hu Q, Zhang X. The Glymphatic System: A Novel Therapeutic Target for Stroke Treatment. Front Aging Neurosci 2021; 13:689098. [PMID: 34305569 PMCID: PMC8297504 DOI: 10.3389/fnagi.2021.689098] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The glymphatic system (GS) is a novel defined brain-wide perivascular transit network between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of brain metabolic wastes. The complicated network of the GS consists of the periarterial CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes supported by AQP4 water channels, and perivenous efflux pathway. Recent researches indicate that the GS dysfunction is associated with various neurological disorders, including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated the key anatomical structures of the GS, the relationship between the GS and the meningeal lymphatic system, the interaction between the GS and the BBB, and the crosstalk between astrocytes and other GS cellular components. In addition, we contributed to the current knowledge about the role of the GS in the pathology of stroke and the role of AQP4 in stroke. We further discussed the potential use of the GS in early risk assessment, diagnostics, prognostics, and therapeutics of stroke.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Zhao
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Hu
- Central Laboratory, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Zhang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Turner DA. Contrasting Metabolic Insufficiency in Aging and Dementia. Aging Dis 2021; 12:1081-1096. [PMID: 34221551 PMCID: PMC8219502 DOI: 10.14336/ad.2021.0104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic insufficiency and neuronal dysfunction occur in normal aging but is exaggerated in dementia and Alzheimer's disease (AD). Metabolic insufficiency includes factors important for both substrate supply and utilization in the brain. Metabolic insufficiency occurs through a number of serial mechanisms, particularly changes in cerebrovascular supply through blood vessel abnormalities (ie, small and large vessel vasculopathy, stroke), alterations in neurovascular coupling providing dynamic blood flow supply in relation to neuronal demand, abnormalities in blood brain barrier including decreased glucose and amino acid transport, altered glymphatic flow in terms of substrate supply across the extracellular space to cells and drainage into CSF of metabolites, impaired transport into cells, and abnormal intracellular metabolism with more reliance on glycolysis and less on mitochondrial function. Recent studies have confirmed abnormal neurovascular coupling in a mouse model of AD in response to metabolic challenges, but the supply chain from the vascular system into neurons is disrupted much earlier in dementia than in equivalently aged individuals, contributing to the progressive neuronal degeneration and cognitive dysfunction associated with dementia. We discuss several metabolic treatment approaches, but these depend on characterizing patients as to who would benefit the most. Surrogate biomarkers of metabolism are being developed to include dynamic estimates of neuronal demand, sufficiency of neurovascular coupling, and glymphatic flow to supplement traditional static measurements. These surrogate biomarkers could be used to gauge efficacy of metabolic treatments in slowing down or modifying dementia time course.
Collapse
Affiliation(s)
- Dennis A Turner
- Neurosurgery, Neurobiology, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA.
- Research and Surgery Services, Durham Veterans Affairs Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
37
|
Ferris CF. Rethinking the Conditions and Mechanism for Glymphatic Clearance. Front Neurosci 2021; 15:624690. [PMID: 33897347 PMCID: PMC8060639 DOI: 10.3389/fnins.2021.624690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Critical studies that form the foundation of the glymphatic system and the clearance of metabolic by-products of unwanted proteins from the brain are reviewed. Concerns are raised about studying glymphatic flow in anesthetized animals and making assumptions about the whole brain based upon data collected from a cranial window on the cortex. A new model is proposed arguing that the flow of cerebral spinal fluid and parenchymal clearance in the perivascular system of unwanted proteins is regulated by circadian changes in brain temperature and blood flow at the level of the microvasculature.
Collapse
Affiliation(s)
- Craig F Ferris
- Department Psychology and Pharmaceutical Sciences, Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| |
Collapse
|
38
|
The Neurovascular Unit Dysfunction in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22042022. [PMID: 33670754 PMCID: PMC7922832 DOI: 10.3390/ijms22042022] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide. Histopathologically, AD presents with two hallmarks: neurofibrillary tangles (NFTs), and aggregates of amyloid β peptide (Aβ) both in the brain parenchyma as neuritic plaques, and around blood vessels as cerebral amyloid angiopathy (CAA). According to the vascular hypothesis of AD, vascular risk factors can result in dysregulation of the neurovascular unit (NVU) and hypoxia. Hypoxia may reduce Aβ clearance from the brain and increase its production, leading to both parenchymal and vascular accumulation of Aβ. An increase in Aβ amplifies neuronal dysfunction, NFT formation, and accelerates neurodegeneration, resulting in dementia. In recent decades, therapeutic approaches have attempted to decrease the levels of abnormal Aβ or tau levels in the AD brain. However, several of these approaches have either been associated with an inappropriate immune response triggering inflammation, or have failed to improve cognition. Here, we review the pathogenesis and potential therapeutic targets associated with dysfunction of the NVU in AD.
Collapse
|
39
|
An Enriched Environment Enhances Angiogenesis Surrounding the Cingulum in Ischaemic Stroke Rats. Neural Plast 2020; 2020:8840319. [PMID: 33273907 PMCID: PMC7676980 DOI: 10.1155/2020/8840319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
An enriched environment (EE) has been demonstrated to improve functional recovery in animal models of ischaemic stroke through enhancing vascular endothelial growth factor- (VEGF-) mediated neuroprotection accompanied by angiogenesis in the ischaemic hemisphere. Whether EEs also promote VEGF-mediated neuroprotection and angiogenesis in the contralateral hemisphere remains unclear. Here, we explored the effect of EEs on VEGF expression and angiogenesis within the contralateral cerebral cortex in a rat middle cerebral artery occlusion/reperfusion (MCAO/r) model. We assessed the expression levels of platelet endothelial cell adhesion molecule-1 (CD31), VEGF, and endothelial nitric oxide synthase (eNOS) in the whole contralateral cerebral cortex using Western blotting assay but did not find an increase in the expression of CD31, VEGF, or eNOS in MCAO/r rats housed in EEs, which suggested that EEs did not enhance the overall expression of VEGF and eNOS or angiogenesis in the entire contralateral cortex. We further analysed the local effect of EEs by immunohistochemistry and found that in and around the bilateral cingulum in MCAO/r rats housed in EEs, haematopoietic progenitor cell antigen- (CD34-) positive endothelial progenitor cells were significantly increased compared with those of rats housed in standard cages (SCs). Further experiments showed that EEs increased neuronal VEGF expression surrounding the cingulum in MCAO/r rats and robustly upregulated eNOS expression. These results revealed that EEs enhanced angiogenesis, VEGF expression, and activation of the VEGF-eNOS pathway in and/or around the cingulum in MCAO/r rats, which were involved in the functional recovery of MCAO/r rats.
Collapse
|
40
|
Sharma A, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Sahib S, Tian ZR, Buzoianu AD, Patnaik R, Wiklund L, Sharma HS. Mild traumatic brain injury exacerbates Parkinson's disease induced hemeoxygenase-2 expression and brain pathology: Neuroprotective effects of co-administration of TiO 2 nanowired mesenchymal stem cells and cerebrolysin. PROGRESS IN BRAIN RESEARCH 2020; 258:157-231. [PMID: 33223035 DOI: 10.1016/bs.pbr.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the leading predisposing factors in the development of Parkinson's disease (PD). Mild or moderate TBI induces rapid production of tau protein and alpha synuclein (ASNC) in the cerebrospinal fluid (CSF) and in several brain areas. Enhanced tau-phosphorylation and ASNC alters the molecular machinery of the brain leading to PD pathology. Recent evidences show upregulation of constitutive isoform of hemeoxygenase (HO-2) in PD patients that correlates well with the brain pathology. mTBI alone induces profound upregulation of HO-2 immunoreactivity. Thus, it would be interesting to explore whether mTBI exacerbates PD pathology in relation to tau, ASNC and HO-2 expression. In addition, whether neurotrophic factors and stem cells known to reduce brain pathology in TBI could induce neuroprotection in PD following mTBI. In this review role of mesenchymal stem cells (MSCs) and cerebrolysin (CBL), a well-balanced composition of several neurotrophic factors and active peptide fragments using nanowired delivery in PD following mTBI is discussed based on our own investigation. Our results show that mTBI induces concussion exacerbates PD pathology and nanowired delivery of MSCs and CBL induces superior neuroprotection. This could be due to reduction in tau, ASNC and HO-2 expression in PD following mTBI, not reported earlier. The functional significance of our findings in relation to clinical strategies is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
41
|
Abstract
Sleep is evolutionarily conserved across all species, and impaired sleep is a common trait of the diseased brain. Sleep quality decreases as we age, and disruption of the regular sleep architecture is a frequent antecedent to the onset of dementia in neurodegenerative diseases. The glymphatic system, which clears the brain of protein waste products, is mostly active during sleep. Yet the glymphatic system degrades with age, suggesting a causal relationship between sleep disturbance and symptomatic progression in the neurodegenerative dementias. The ties that bind sleep, aging, glymphatic clearance, and protein aggregation have shed new light on the pathogenesis of a broad range of neurodegenerative diseases, for which glymphatic failure may constitute a therapeutically targetable final common pathway.
Collapse
Affiliation(s)
- Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|