1
|
Samarin AM, Samarin AM, Waghmare SG, Danielsen M, Møller HS, Policar T, Linhart O, Dalsgaard TK. In vitro post-ovulatory oocyte ageing in grass carp Ctenopharyngodon idella affects H4K12 acetylation pattern and histone acetyltransferase activity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2013-2024. [PMID: 38019384 DOI: 10.1007/s10695-023-01273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
Delayed fertilization leads to the ageing of post-ovulatory oocytes and reduces the developmental competence of arising embryos. Little information is available about the molecular processes during fish oocyte ageing. The current study investigated the functional consequences of oocyte ageing in grass carp Ctenopharyngodon idella embryos. In addition, the dynamics of selected post-transcriptionally modified histones (acetylation of H3K9, H3K14, H4K5, H4K8, H4K12, and H4K16) were analyzed during oocyte ageing. Ovulated oocytes were aged in vitro for 4 h in the laboratory incubator at 20 °C and studied for selected post-translational modification of histones. In addition, histone acetyltransferase activity was investigated as an important regulator of histone acetylation modification. The results indicated a significant decrease in oocyte fertilizing ability through 1 h of post-ovulatory ageing, and a complete loss of egg fertilizing abilities was detected at 4-h aged oocytes. Furthermore, post-ovulatory oocyte ageing for 1 and 4 h led to decreased levels of H4K12 acetylation. The activity of histone acetyltransferases increased significantly after ageing of the oocytes for 30 h in vitro. This modification may partly contribute to explaining the failures of egg viability and embryo development in the offspring from the aged oocytes. The results are the first to report histone modifications as a crucial epigenetic regulator during oocyte ageing in fish and might also benefit other vertebrates.
Collapse
Affiliation(s)
- Azin Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, České Budějovice, Czech Republic.
| | - Azadeh Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, České Budějovice, Czech Republic
| | - Swapnil Gorakh Waghmare
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, České Budějovice, Czech Republic
| | - Marianne Danielsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus, Denmark
- CiFood Centre of Innovative Food Research, Aarhus University, 8200, Aarhus, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830, Tjele, Denmark
| | | | - Tomáš Policar
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, České Budějovice, Czech Republic
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, České Budějovice, Czech Republic
| | - Trine Kastrup Dalsgaard
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200, Aarhus, Denmark
- CiFood Centre of Innovative Food Research, Aarhus University, 8200, Aarhus, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8830, Tjele, Denmark
| |
Collapse
|
2
|
Zhang Y, Guo J, Tang C, Xu K, Li Z, Wang C. Early life stage exposure to fenbuconazole causes multigenerational cardiac developmental defects in zebrafish and potential reasons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123938. [PMID: 38588970 DOI: 10.1016/j.envpol.2024.123938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
With the increasing use of triazole fungicides in agriculture, triazole pesticides have aroused great concern about their toxicity and ecological risk. The current study investigated the impairments of embryonic exposure to fenbuconazole (FBZ) on cardiac transgenerational toxicity and related mechanisms. The fertilized eggs were exposed to 5, 50 and 500 ng/L FBZ for 72 h, and the larvae were then raised to adulthood in clean water. The adult fish were mated with unexposed fish to produce maternal and paternal F1 and F2 embryos, respectively. The results showed that increased arrhythmia were observed in F0, F1 and F2 larvae. Transcriptome sequencing indicated that the pathway of adrenergic signaling in cardiomyocytes was enriched in F0 and F2 larvae. In both F0 and F1 adult zebrafish hearts, ADRB2 protein expression decreased, and transcription of genes related to cardiac development and Ca2+ homeostasis was downregulated. These alterations might cause cardiac developmental defects. Significantly decreased protein levels of H3K9Ac and H3K14Ac might be linked with the downregulation in transcription of cardiac development genes. Protein‒protein interaction analysis exhibited that the pathway affecting the heart was well inherited in the paternal line. These results provide new ideas for the analysis and prevention of congenital heart disease.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zihui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
3
|
Zhang Y, Chen Y, Xu K, Xia S, Aihaiti A, Zhu M, Wang C. Exposure of embryos to phenanthrene impacts the cardiac development in F1 zebrafish larvae and potential reasons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52369-52379. [PMID: 36840880 DOI: 10.1007/s11356-023-26165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
To explore the impact of embryonic exposure to phenanthrene (Phe), a typical tricyclic polycyclic aromatic hydrocarbon, on cardiac development in next generation, fertilized zebrafish embryos were exposed to 0.05, 0.5, 5 and 50 nM Phe for 96 h, and then transferred to clear water and raised to adulthood. The cardiac development in F1 larvae generated by adult females or males mated with unexposed zebrafish was assessed. Malformation and dysfunction of the heart, such as increased heart rate, arrhythmia, enlarged heart and abnormal contraction, were shown in both paternal and maternal F1 larvae. A greater impact on the distance between the sinus venosus and bulbus arteriosus was exhibited in maternal F1 larvae, while paternal F1 larvae displayed a more severe impact on heart rate and arrhythmia. The transcription of genes related to cardiac development was disturbed in F1 larvae. DNA methylation levels in the promoter of some genes were associated with their transcription. The expression of acetylated histone H3K9Ac and H3K14Ac in maternal F1 larvae was no significantly changed, but was significantly downregulated in paternal F1 larvae, which might be associated with the downregulated transcription of tbx5. These results indicate that exposure to Phe during embryogenesis adversely affects cardiac development in F1 generation, and the effects and toxic mechanisms showed sex-linked hereditary differences, highlighting the risk of Phe exposure in early life to heart health in next generation.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Ailifeire Aihaiti
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Mingxia Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
4
|
Waghmare SG, Samarin AM, Samarin AM, Danielsen M, Møller HS, Policar T, Linhart O, Dalsgaard TK. Histone Acetylation Dynamics during In Vivo and In Vitro Oocyte Aging in Common Carp Cyprinus carpio. Int J Mol Sci 2021; 22:ijms22116036. [PMID: 34204879 PMCID: PMC8199789 DOI: 10.3390/ijms22116036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022] Open
Abstract
Aging is the most critical factor that influences the quality of post-ovulatory oocytes. Age-related molecular pathways remain poorly understood in fish oocytes. In this study, we examined the effect of oocyte aging on specific histone acetylation in common carp Cyprinus carpio. The capacity to progress to the larval stage in oocytes that were aged for 28 h in vivo and in vitro was evaluated. Global histone modifications and specific histone acetylation (H3K9ac, H3K14ac, H4K5ac, H4K8ac, H4K12ac, and H4K16ac) were investigated during oocyte aging. Furthermore, the activity of histone acetyltransferase (HAT) was assessed in fresh and aged oocytes. Global histone modifications did not exhibit significant alterations during 8 h of oocyte aging. Among the selected modifications, H4K12ac increased significantly at 28 h post-stripping (HPS). Although not significantly different, HAT activity exhibited an upward trend during oocyte aging. Results of our current study indicate that aging of common carp oocytes for 12 h results in complete loss of egg viability rates without any consequence in global and specific histone modifications. However, aging oocytes for 28 h led to increased H4K12ac. Thus, histone acetylation modification as a crucial epigenetic mediator may be associated with age-related defects, particularly in oocytes of a more advanced age.
Collapse
Affiliation(s)
- Swapnil Gorakh Waghmare
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
- Correspondence:
| | - Azin Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
| | - Azadeh Mohagheghi Samarin
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
| | - Marianne Danielsen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (M.D.); (H.S.M.); (T.K.D.)
- Center of Innovative Food Research, Aarhus University Centre for Innovative Food Research, 8000 Aarhus, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8000 Aarhus, Denmark
| | - Hanne Søndergård Møller
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (M.D.); (H.S.M.); (T.K.D.)
| | - Tomáš Policar
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic; (A.M.S.); a (A.M.S.); (T.P.); (O.L.)
| | - Trine Kastrup Dalsgaard
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (M.D.); (H.S.M.); (T.K.D.)
- Center of Innovative Food Research, Aarhus University Centre for Innovative Food Research, 8000 Aarhus, Denmark
- CBIO, Aarhus University Centre for Circular Bioeconomy, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Zeng X, Tsui JCC, Shi M, Peng J, Cao CY, Kan LLY, Lau CPY, Liang Y, Wang L, Liu L, Chen Z, Tsui SKW. Genome-Wide Characterization of Host Transcriptional and Epigenetic Alterations During HIV Infection of T Lymphocytes. Front Immunol 2020; 11:2131. [PMID: 33013899 PMCID: PMC7511662 DOI: 10.3389/fimmu.2020.02131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background and methods: Host genomic alterations are closely related to dysfunction of CD4+ T lymphocytes in the HIV-host interplay. However, the roles of aberrant DNA methylation and gene expression in the response to HIV infection are not fully understood. We investigated the genome-wide DNA methylation and transcriptomic profiles in two HIV-infected T lymphocyte cell lines using high-throughput sequencing. Results: Based on DNA methylation data, we identified 3,060 hypomethylated differentially methylated regions (DMRs) and 2,659 hypermethylated DMRs in HIV-infected cells. Transcription-factor-binding motifs were significantly associated with methylation alterations, suggesting that DNA methylation modulates gene expression by affecting the binding to transcription factors during HIV infection. In support of this hypothesis, genes with promoters overlapping with DMRs were enriched in the biological function related to transcription factor activities. Furthermore, the analysis of gene expression data identified 1,633 upregulated genes and 2,142 downregulated genes on average in HIV-infected cells. These differentially expressed genes (DEGs) were significantly enriched in apoptosis-related pathways. Our results suggest alternative splicing as an additional mechanism that may contribute to T-cell apoptosis during HIV infection. We also demonstrated a genome-scale correlation between DNA methylation and gene expression in HIV-infected cells. We identified 831 genes with alterations in both DNA methylation and gene expression, which were enriched in apoptosis. Our results were validated using various experimental methods. In addition, consistent with our in silico results, a luciferase assay showed that the activity of the PDX1 and SMAD3 promoters was significantly decreased in the presence of HIV proteins, indicating the potential of these genes as genetic markers of HIV infection. Conclusions: Our results suggest important roles for DNA methylation and gene expression regulation in T-cell apoptosis during HIV infection. We propose a list of novel genes related to these processes for further investigation. This study also provides a comprehensive characterization of changes occurring at the transcriptional and epigenetic levels in T cells in response to HIV infection.
Collapse
Affiliation(s)
- Xi Zeng
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Chi-Ching Tsui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Mai Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Peng
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Cyanne Ye Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lea Ling-Yu Kan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Carol Po-Ying Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonghao Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lingyi Wang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Liu
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Zhiwei Chen
- Acquired Immunodeficiency Syndrome (AIDS) Institute, The University of Hong Kong, Hong Kong, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
7
|
Packaging development: how chromatin controls transcription in zebrafish embryogenesis. Biochem Soc Trans 2019; 47:713-724. [DOI: 10.1042/bst20180617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
Abstract
How developmental gene expression is activated, co-ordinated and maintained is one of the biggest questions in developmental biology. While transcription factors lead the way in directing developmental gene expression, their accessibility to the correct repertoire of genes can depend on other factors such as DNA methylation, the presence of particular histone variants and post-translational modifications of histones. Collectively, factors that modify DNA or affect its packaging and accessibility contribute to a chromatin landscape that helps to control the timely expression of developmental genes. Zebrafish, perhaps better known for their strength as a model of embryology and organogenesis during development, are coming to the fore as a powerful model for interpreting the role played by chromatin in gene expression. Several recent advances have shown that zebrafish exhibit both similarities and differences to other models (and humans) in the way that they employ chromatin mechanisms of gene regulation. Here, I review how chromatin influences developmental transcriptional programmes during early zebrafish development, patterning and organogenesis. Lastly, I briefly highlight the importance of zebrafish chromatin research towards the understanding of human disease and transgenerational inheritance.
Collapse
|
8
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
9
|
Deimling SJ, Olsen JB, Tropepe V. The expanding role of the Ehmt2/G9a complex in neurodevelopment. NEUROGENESIS 2017; 4:e1316888. [PMID: 28596979 DOI: 10.1080/23262133.2017.1316888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Epigenetic regulators play a crucial role in neurodevelopment. One such epigenetic complex, Ehmt1/2 (G9a/GLP), is essential for repressing gene transcription by methylating H3K9 in a highly tissue- and temporal-specific manner. Recently, data has emerged suggesting that this complex plays additional roles in regulating the activity of numerous other non-histone proteins. While much is known about the downstream effects of Ehmt1/2 function, evidence is only beginning to come to light suggesting the control of Ehmt1/2 function may be, at least in part, due to context-dependent binding partners. Here we review emerging roles for the Ehmt1/2 complex suggesting that it may play a much larger role than previously recognized, and discuss binding partners that we and others have recently characterized which act to coordinate its activity during early neurodevelopment.
Collapse
Affiliation(s)
- Steven J Deimling
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Jonathan B Olsen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vincent Tropepe
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada; Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|