1
|
Tavsanli N, Erözden AA, Çalışkan M. Evaluation of small-molecule modulators of the circadian clock: promising therapeutic approach to cancer. Mol Biol Rep 2024; 51:848. [PMID: 39046562 DOI: 10.1007/s11033-024-09813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/06/2024] [Indexed: 07/25/2024]
Abstract
The circadian clock is an important regulator of human homeostasis. Circadian rhythms are closely related to cell fate because they are necessary for regulating the cell cycle, cellular proliferation, and apoptosis. Clock dysfunction can result in the development of diseases such as cancer. Although certain tumors have been shown to have a malfunctioning clock, which may affect prognosis or treatment, this has been postulated but not proven in many types of cancer. Recently, important information has emerged about the basic characteristics that underpin the overt circadian rhythm and its influence on physiological outputs. This information implies that the circadian rhythm may be managed by using particular small molecules. Small-molecule clock modulators target clock components or different physiological pathways that influence the clock. Identifying new small-molecule modulators will improve our understanding of critical regulatory nodes in the circadian network and cancer. Pharmacological manipulation of the clock may be valuable for treating cancer. The discoveries of small-molecule clock modulators and their possible application in cancer treatment are examined in this review.
Collapse
Affiliation(s)
- Nalan Tavsanli
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Program of Biotechnology, Biology Department, Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Ahmet Arıhan Erözden
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Program of Biotechnology, Biology Department, Institute of Graduate Studies in Sciences, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Mahmut Çalışkan
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey.
| |
Collapse
|
2
|
Laothamatas I, Rasmussen ES, Green CB, Takahashi JS. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem Biol 2023; 30:1033-1052. [PMID: 37708890 PMCID: PMC10631358 DOI: 10.1016/j.chembiol.2023.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Circadian rhythms are endogenous periodic biological processes that occur on a daily timescale. These rhythms are generated by a transcriptional/translational feedback loop that consists of the CLOCK-BMAL1 heterodimeric transcriptional activator complex and the PER1/2-CRY1/2-CK1δ/ε repressive complex. The output pathways of this molecular feedback loop generate circadian rhythmicity in various biological processes. Among these, metabolism is a primary regulatory target of the circadian clock which can also feedback to modulate clock function. This intertwined relationship between circadian rhythms and metabolism makes circadian clock components promising therapeutic targets. Despite this, pharmacological therapeutics that target the circadian clock are relatively rare. In this review, we hope to stimulate interest in chemical chronobiology by providing a comprehensive background on the molecular mechanism of mammalian circadian rhythms and their connection to metabolism, highlighting important studies in the chemical approach to circadian research, and offering our perspectives on future developments in the field.
Collapse
Affiliation(s)
- Isara Laothamatas
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emil Sjulstok Rasmussen
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
3
|
Rasmussen ES, Takahashi JS, Green CB. Time to target the circadian clock for drug discovery. Trends Biochem Sci 2022; 47:745-758. [PMID: 35577675 PMCID: PMC9378619 DOI: 10.1016/j.tibs.2022.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
The circadian clock is an intracellular timekeeping device that drives daily rhythms in diverse and extensive processes throughout the body. The clock mechanism comprises a core transcription/translation negative feedback loop that is modulated by a complex set of additional interlocking feedback loops. Pharmacological manipulation of the clock may be valuable for treating many maladies including jet lag, shift work and related sleep disorders, various metabolic diseases, and cancer. We review recent identification of small-molecule clock modulators and discuss the biochemical features of the core clock that may be amenable to future drug discovery.
Collapse
Affiliation(s)
- Emil Sjulstok Rasmussen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Xiong X, Hu T, Yin Z, Zhang Y, Chen F, Lei P. Research advances in the study of sleep disorders, circadian rhythm disturbances and Alzheimer’s disease. Front Aging Neurosci 2022; 14:944283. [PMID: 36062143 PMCID: PMC9428322 DOI: 10.3389/fnagi.2022.944283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although there are still no satisfactory answers to the question of why we need to sleep, a better understanding of its function will help to improve societal attitudes toward sleep. Sleep disorders are very common in neurodegenerative diseases and are a key factor in the quality of life of patients and their families. Alzheimer’s disease (AD) is an insidious and irreversible neurodegenerative disease. Along with progressive cognitive impairment, sleep disorders and disturbances in circadian rhythms play a key role in the progression of AD. Sleep and circadian rhythm disturbances are more common in patients with AD than in the general population and can appear early in the course of the disease. Therefore, this review discusses the bidirectional relationships among circadian rhythm disturbances, sleep disorders, and AD. In addition, pharmacological and non-pharmacological treatment options for patients with AD and sleep disorders are outlined.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaodan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Ping Lei,
| |
Collapse
|
5
|
Minami Y, Yuan Y, Ueda HR. High-throughput Genetically Modified Animal Experiments Achieved by Next-generation Mammalian Genetics. J Biol Rhythms 2022; 37:135-151. [PMID: 35137623 DOI: 10.1177/07487304221075002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animal models are essential tools for modern scientists to conduct biological experiments and investigate their hypotheses in vivo. However, for the past decade, raising the throughput of such animal experiments has been a great challenge. Conventionally, in vivo high-throughput assay was achieved through large-scale mutagen-driven forward genetic screening, which took years to find causal genes. In contrast, reverse genetics accelerated the causal gene identification process, but its throughput was also limited by 2 barriers, that is, the genome modification step and the time-consuming crossing step. Defined as genetics without crossing, next-generation genetics is able to produce gene-modified animals that can be analyzed at the founder generation (F0). This method is or can be accomplished through recent technological advances in gene editing and virus-based efficient gene modifications. Notably, next-generation genetics has accelerated the process of cross-species studies, and it will be a useful technique during animal experiments as it can provide genetic perturbation at an individual level without crossing. In this review, we begin by introducing the history of animal-based high-throughput analysis, with a specific focus on chronobiology. We then describe ways that gene modification efficiency during animal experiments was enhanced and why crossing remained a barrier to reaching higher efficiency. Moreover, we mention the Triple CRISPR as a critical technique for achieving next-generation genetics. Finally, we discuss the potential applications and limitations of next-generation mammalian genetics.
Collapse
Affiliation(s)
- Yoichi Minami
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yufei Yuan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| |
Collapse
|
6
|
Miller S, Hirota T. Structural and Chemical Biology Approaches Reveal Isoform-Selective Mechanisms of Ligand Interactions in Mammalian Cryptochromes. Front Physiol 2022; 13:837280. [PMID: 35153842 PMCID: PMC8831909 DOI: 10.3389/fphys.2022.837280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptochromes (CRYs) are core components of the circadian feedback loop in mammals, which regulates circadian rhythmicity in a variety of physiological processes including sleep–wake cycles and metabolism. Dysfunction of CRY1 and CRY2 isoforms has been associated with a host of diseases, such as sleep phase disorder and metabolic diseases. Accumulating evidence for distinct roles of CRY1 and CRY2 has highlighted the need for CRY isoform-selective regulation; however, highly conserved sequences in CRY ligand-binding sites have hindered the design of isoform-selective compounds. Chemical biology approaches have been identifying small-molecule modulators of CRY proteins, which act in isoform-non-selective and also isoform-selective manners. In this review, we describe advances in our understanding of CRY isoform selectivity by comparing X-ray crystal structures of mammalian CRY isoforms in apo form and in complexes with compounds. We discuss how intrinsic conformational differences in identical residues of CRY1 and CRY2 contribute to unique interactions with different compound moieties for isoform selectivity.
Collapse
|
7
|
Gul S, Kavakli IH. The Structure-Based Molecular-Docking Screen Against Core Clock Proteins to Identify Small Molecules to Modulate the Circadian Clock. Methods Mol Biol 2022; 2482:15-34. [PMID: 35610417 DOI: 10.1007/978-1-0716-2249-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circadian rhythms are part of the body's clock, which regulates several physiological and biochemical variables according to the 24-h cycle. Ample evidence indicated disturbance of the circadian clock leads to an increased susceptibility to several diseases. Therefore, a great effort has been made to find small molecules that regulate circadian rhythm by high-throughput methods. Having crystal structures of core clock proteins, makes them amenable to structure-based drug design studies. Here, we describe virtual screening methods that can be utilized for the identification of small molecules regulating the activity of core clock protein Cryptochrome 1.
Collapse
Affiliation(s)
- Seref Gul
- Chemical and Biological Engineering, Koç University, Istanbul, Turkey
| | - Ibrahim Halil Kavakli
- Chemical and Biological Engineering, Koç University, Istanbul, Turkey.
- Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
| |
Collapse
|
8
|
Lin HH, Robertson KL, Bisbee HA, Farkas ME. Oncogenic and Circadian Effects of Small Molecules Directly and Indirectly Targeting the Core Circadian Clock. Integr Cancer Ther 2021; 19:1534735420924094. [PMID: 32493076 PMCID: PMC7273620 DOI: 10.1177/1534735420924094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Circadian rhythms are essential for controlling the cell cycle, cellular
proliferation, and apoptosis, and hence are tightly linked to cell fate. Several
recent studies have used small molecules to affect circadian oscillations;
however, their concomitant cellular effects were not assessed, and they have not
been compared under similar experimental conditions. In this work, we use five
molecules, grouped into direct versus indirect effectors of the circadian clock,
to modulate periods in a human osteosarcoma cell line (U2OS) and determine their
influences on cellular behaviors, including motility and colony formation.
Luciferase reporters, whose expression was driven via Bmal1- or
Per2-promoters, were used to facilitate the visualization
and quantitative analysis of circadian oscillations. We show that all molecules
increase or decrease the circadian periods of Bmal1 and
Per2 in a dose-dependent manner, but period length does not
correlate with the extent of cell migration or proliferation. Nonetheless,
molecules that affected circadian oscillations to a greater degree resulted in
substantial influence on cellular behaviors (ie, motility and colony formation),
which may also be attributable to noncircadian targets. Furthermore, we find
that the ability and extent to which the molecules are able to affect
oscillations is independent of whether they are direct or indirect modulators.
Because of the numerous connections and feedback between the circadian clock and
other pathways, it is important to consider the effects of both in assessing
these and other compounds.
Collapse
Affiliation(s)
- Hui-Hsien Lin
- University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | | |
Collapse
|
9
|
Kim E, Nohara K, Wirianto M, Escobedo G, Lim JY, Morales R, Yoo SH, Chen Z. Effects of the Clock Modulator Nobiletin on Circadian Rhythms and Pathophysiology in Female Mice of an Alzheimer's Disease Model. Biomolecules 2021; 11:biom11071004. [PMID: 34356628 PMCID: PMC8301787 DOI: 10.3390/biom11071004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder and the most common cause of dementia. Various pathogenic mechanisms have been proposed to contribute to disease progression, and recent research provided evidence linking dysregulated circadian rhythms/sleep and energy metabolism with AD. Previously, we found that the natural compound Nobiletin (NOB) can directly activate circadian cellular oscillators to promote metabolic health in disease models and healthy aging in naturally aged mice. In the current study, using the amyloid-β AD model APP/PS1, we investigated circadian, metabolic and amyloid characteristics of female mice and the effects of NOB. Female APP/PS1 mice showed reduced sleep bout duration, and NOB treatment exhibited a trend to improve it. While glucose tolerance was unchanged, female APP/PS1 mice displayed exaggerated oxygen consumption and CO2 production, which was mitigated by NOB. Likewise, cold tolerance in APP/PS1 was impaired relative to WT, and interestingly was markedly enhanced in NOB-treated APP/PS1 mice. Although circadian behavioral rhythms were largely unchanged, real-time qPCR analysis revealed altered expression of several core clock genes by NOB in the cerebral cortex, notably Bmal1, Npas2, and Rora. Moreover, NOB was also able to activate various clock-controlled metabolic genes involved in insulin signaling and mitochondrial function, including Igf1, Glut1, Insr, Irs1, Ucp2, and Ucp4. Finally, we observed that NOB attenuated the expression of several AD related genes including App, Bace1, and ApoE, reduced APP protein levels, and strongly ameliorated Aβ pathology in the cortex. Collectively, these results reveal novel genotype differences and importantly beneficial effects of a natural clock-enhancing compound in biological rhythms and related pathophysiology, suggesting the circadian clock as a modifiable target for AD.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.K.); (K.N.); (M.W.); (J.Y.L.); (S.-H.Y.)
| | - Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.K.); (K.N.); (M.W.); (J.Y.L.); (S.-H.Y.)
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.K.); (K.N.); (M.W.); (J.Y.L.); (S.-H.Y.)
| | - Gabriel Escobedo
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (G.E.J.); (R.M.)
| | - Ji Ye Lim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.K.); (K.N.); (M.W.); (J.Y.L.); (S.-H.Y.)
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (G.E.J.); (R.M.)
- Centro Integrativo de Biologia y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.K.); (K.N.); (M.W.); (J.Y.L.); (S.-H.Y.)
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (E.K.); (K.N.); (M.W.); (J.Y.L.); (S.-H.Y.)
- Correspondence:
| |
Collapse
|
10
|
Ribeiro RFN, Cavadas C, Silva MMC. Small-molecule modulators of the circadian clock: Pharmacological potentials in circadian-related diseases. Drug Discov Today 2021; 26:1620-1641. [PMID: 33781946 DOI: 10.1016/j.drudis.2021.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022]
Abstract
Disruption of circadian oscillations has a wide-ranging impact on health, with the potential to induce the development of clock-related diseases. Small-molecule modulators of the circadian clock (SMMCC) target core or noncore clock proteins, modulating physiological effects as a consequence of agonist, inverse agonist, or antagonist interference. These pharmacological modulators are usually identified using chemical screening of large libraries of active compounds. However, target-based screens, chemical optimization, and circadian crystallography have recently assisted in the identification of these compounds. In this review, we focus on established and novel SMMCCs targeting both core and noncore clock proteins, identifying their circadian targets, detailed circadian effects, and specific physiological effects. In addition, we discuss their therapeutic potential for the treatment of diverse clock-related disorders (such as metabolic-associated disorders, autoimmune diseases, mood disorders, and cancer) and as chronotherapeutics. Future perspectives are also considered, such as clinical trials, and potential safety hazards, including those in the absence of clinical trials.
Collapse
Affiliation(s)
- Rodrigo F N Ribeiro
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| | - Maria Manuel C Silva
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Centre for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
11
|
Narasimamurthy R, Virshup DM. The phosphorylation switch that regulates ticking of the circadian clock. Mol Cell 2021; 81:1133-1146. [PMID: 33545069 DOI: 10.1016/j.molcel.2021.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
In our 24/7 well-lit world, it's easy to skip or delay sleep to work, study, and play. However, our circadian rhythms are not easily fooled; the consequences of jet lag and shift work are many and severe, including metabolic, mood, and malignant disorders. The internal clock that keeps track of time has at its heart the reversible phosphorylation of the PERIOD proteins, regulated by isoforms of casein kinase 1 (CK1). In-depth biochemical, genetic, and structural studies of these kinases, their mutants, and their splice variants have combined over the past several years to provide a robust understanding of how the core clock is regulated by a phosphoswitch whereby phosphorylation of a stabilizing site on PER blocks phosphorylation of a distant phosphodegron. The recent structure of a circadian mutant form of CK1 implicates an internal activation loop switch that regulates this phosphoswitch and points to new approaches to regulation of the clock.
Collapse
Affiliation(s)
- Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Kolarski D, Miller S, Oshima T, Nagai Y, Aoki Y, Kobauri P, Srivastava A, Sugiyama A, Amaike K, Sato A, Tama F, Szymanski W, Feringa BL, Itami K, Hirota T. Photopharmacological Manipulation of Mammalian CRY1 for Regulation of the Circadian Clock. J Am Chem Soc 2021; 143:2078-2087. [PMID: 33464888 PMCID: PMC7863067 DOI: 10.1021/jacs.0c12280] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
CRY1
and CRY2 proteins are highly conserved components of the circadian
clock that controls daily physiological rhythms. Disruption of CRY
functions are related to many diseases, including circadian sleep
phase disorder. Development of isoform-selective and spatiotemporally
controllable tools will facilitate the understanding of shared and
distinct functions of CRY1 and CRY2. Here, we developed CRY1-selective
compounds that enable light-dependent manipulation of the circadian
clock. From phenotypic chemical screening in human cells, we identified
benzophenone derivatives that lengthened the circadian period. These
compounds selectively interacted with the CRY1 photolyase homology
region, resulting in activation of CRY1 but not CRY2. The benzophenone
moiety rearranged a CRY1 region called the “lid loop”
located outside of the compound-binding pocket and formed a unique
interaction with Phe409 in the lid loop. Manipulation of this key
interaction was achieved by rationally designed replacement of the
benzophenone with a switchable azobenzene moiety whose cis–trans isomerization can be controlled by light. The metastable cis form exhibited sufficiently high half-life in aqueous
solutions and structurally mimicked the benzophenone unit, enabling
reversible period regulation over days by cellular irradiation with
visible light. This study revealed an unprecedented role of the lid
loop in CRY-compound interaction and paves the way for spatiotemporal
regulation of CRY1 activity by photopharmacology for molecular understanding
of CRY1-dependent functions in health and disease.
Collapse
Affiliation(s)
- Dušan Kolarski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Tsuyoshi Oshima
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Yugo Aoki
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Piermichele Kobauri
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Ashutosh Srivastava
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuma Amaike
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Florence Tama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan.,Computational Structural Biology Unit, RIKEN-Center for Computational Science, Hyogo 650-0047, Japan
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Kolarski D, Sugiyama A, Rodat T, Schulte A, Peifer C, Itami K, Hirota T, Feringa BL, Szymanski W. Reductive stability evaluation of 6-azopurine photoswitches for the regulation of CKIα activity and circadian rhythms. Org Biomol Chem 2021; 19:2312-2321. [DOI: 10.1039/d1ob00014d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
6-Azopurines were evaluated for their reductive stability, and the ability to modulate CKIα activity and cellular circadian rhythms, revealing key challenges for long-term activity modulation utilizing chronophotopharmacology.
Collapse
Affiliation(s)
- Dušan Kolarski
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Theo Rodat
- Department of Pharmaceutical and Medicinal Chemistry
- Christian-Albrechts-University of Kiel
- 24118 Kiel
- Germany
| | - Albert Schulte
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Christian Peifer
- Department of Pharmaceutical and Medicinal Chemistry
- Christian-Albrechts-University of Kiel
- 24118 Kiel
- Germany
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya 464-8601
- Japan
| | - Ben L. Feringa
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen
- The Netherlands
- Medical Imaging Center
| |
Collapse
|
14
|
Huang S, Jiao X, Lu D, Pei X, Qi D, Li Z. Recent advances in modulators of circadian rhythms: an update and perspective. J Enzyme Inhib Med Chem 2020; 35:1267-1286. [PMID: 32506972 PMCID: PMC7717701 DOI: 10.1080/14756366.2020.1772249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Circadian rhythm is a universal life phenomenon that plays an important role in maintaining the multiple physiological functions and regulating the adaptability to internal and external environments of flora and fauna. Circadian alignment in humans has the greatest effect on human health, and circadian misalignment is closely associated with increased risk for metabolic syndrome, cardiovascular diseases, neurological diseases, immune diseases, cancer, sleep disorders, and ophthalmic diseases. The recent description of clock proteins and related post-modification targets was involved in several diseases, and numerous lines of evidence are emerging that small molecule modulators of circadian rhythms can be used to rectify circadian disorder. Herein, we attempt to update the disclosures about the modulators targeting core clock proteins and related post-modification targets, as well as the relationship between circadian rhythm disorders and human health as well as the therapeutic role and prospect of these small molecule modulators in circadian rhythm related disease.
Collapse
Affiliation(s)
- Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, China
| |
Collapse
|
15
|
Miller S, Aikawa Y, Sugiyama A, Nagai Y, Hara A, Oshima T, Amaike K, Kay SA, Itami K, Hirota T. An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals. Cell Chem Biol 2020; 27:1192-1198.e5. [PMID: 32502390 DOI: 10.1016/j.chembiol.2020.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/12/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Cryptochrome 1 (CRY1) and CRY2 are core regulators of the circadian clock, and the development of isoform-selective modulators is important for the elucidation of their redundant and distinct functions. Here, we report the identification and functional characterization of a small-molecule modulator of the mammalian circadian clock that selectively controls CRY1. Cell-based circadian chemical screening identified a thienopyrimidine derivative KL201 that lengthened the period of circadian rhythms in cells and tissues. Functional assays revealed stabilization of CRY1 but not CRY2 by KL201. A structure-activity relationship study of KL201 derivatives in combination with X-ray crystallography of the CRY1-KL201 complex uncovered critical sites and interactions required for CRY1 regulation. KL201 bound to CRY1 in overlap with FBXL3, a subunit of ubiquitin ligase complex, and the effect of KL201 was blunted by knockdown of FBXL3. KL201 will facilitate isoform-selective regulation of CRY1 to accelerate chronobiology research and therapeutics against clock-related diseases.
Collapse
Affiliation(s)
- Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshiki Aikawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Aya Hara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Tsuyoshi Oshima
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
| | - Kazuma Amaike
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan; Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
16
|
Amaike K, Oshima T, Skoulding NS, Toyama Y, Hirota T, Itami K. Small Molecules Modulating Mammalian Biological Clocks: Exciting New Opportunities for Synthetic Chemistry. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Uddin MS, Tewari D, Mamun AA, Kabir MT, Niaz K, Wahed MII, Barreto GE, Ashraf GM. Circadian and sleep dysfunction in Alzheimer's disease. Ageing Res Rev 2020; 60:101046. [PMID: 32171783 DOI: 10.1016/j.arr.2020.101046] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating and irreversible cognitive impairment and the most common type of dementia. Along with progressive cognitive impairment, dysfunction of the circadian rhythms also plays a pivotal role in the progression of AD. A mutual relationship among circadian rhythms, sleep, and AD has been well-recommended. The etiopathogenesis of the disturbances of the circadian system and AD share some general features that also unlock the outlook of observing them as a mutually dependent pathway. Indeed, the burden of amyloid β (Aβ), neurofibrillary tangles (NFTs), neuroinflammation, oxidative stress, and dysfunction of circadian rhythms may lead to AD. Aging can alter both sleep timings and quality that can be strongly disrupted in AD. Increased production of Aβ and reduced Aβ clearance are caused by a close interplay of Aβ, sleep disturbance and raised wakefulness. Besides Aβ, the impact of tau pathology is possibly noteworthy to the sleep deprivation found in AD. Hence, this review is focused on the primary mechanistic complexities linked to disruption of circadian rhythms, sleep deprivation, and AD. Furthermore, this review also highlights the potential therapeutic strategies to abate AD pathogenesis.
Collapse
|
18
|
Miller S, Hirota T. Pharmacological Interventions to Circadian Clocks and Their Molecular Bases. J Mol Biol 2020; 432:3498-3514. [DOI: 10.1016/j.jmb.2020.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/31/2022]
|
19
|
Miller S, Son YL, Aikawa Y, Makino E, Nagai Y, Srivastava A, Oshima T, Sugiyama A, Hara A, Abe K, Hirata K, Oishi S, Hagihara S, Sato A, Tama F, Itami K, Kay SA, Hatori M, Hirota T. Isoform-selective regulation of mammalian cryptochromes. Nat Chem Biol 2020; 16:676-685. [PMID: 32231341 DOI: 10.1038/s41589-020-0505-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
CRY1 and CRY2 are essential components of the circadian clock controlling daily physiological rhythms. Accumulating evidences indicate distinct roles of these highly homologous proteins, in addition to redundant functions. Therefore, the development of isoform-selective compounds represents an effective approach towards understanding the similarities and differences of CRY1 and CRY2 by controlling each isoform individually. We conducted phenotypic screenings of circadian clock modulators, and identified KL101 and TH301 that selectively stabilize CRY1 and CRY2, respectively. Crystal structures of CRY-compound complexes revealed conservation of compound-binding sites between CRY1 and CRY2. We further discovered a unique mechanism underlying compound selectivity in which the disordered C-terminal region outside the pocket was required for the differential effects of KL101 and TH301 against CRY isoforms. By using these compounds, we found a new role of CRY1 and CRY2 as enhancers of brown adipocyte differentiation, providing the basis of CRY-mediated regulation of energy expenditure.
Collapse
Affiliation(s)
- Simon Miller
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - You Lee Son
- Laboratory of Chronobiology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiki Aikawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Eri Makino
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yoshiko Nagai
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | | | - Tsuyoshi Oshima
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Aya Hara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Kazuhiro Abe
- Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | | | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Florence Tama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan.,Computational Structural Biology Unit, RIKEN-Center for Computational Science, Hyogo, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Megumi Hatori
- Laboratory of Chronobiology, Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan.
| |
Collapse
|
20
|
Kolarski D, Sugiyama A, Breton G, Rakers C, Ono D, Schulte A, Tama F, Itami K, Szymanski W, Hirota T, Feringa BL. Controlling the Circadian Clock with High Temporal Resolution through Photodosing. J Am Chem Soc 2019; 141:15784-15791. [PMID: 31509406 PMCID: PMC6787957 DOI: 10.1021/jacs.9b05445] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Circadian clocks,
biological timekeepers that are present in almost
every cell of our body, are complex systems whose disruption is connected
to various diseases. Controlling cellular clock function with high
temporal resolution in an inducible manner would yield an innovative
approach for the circadian rhythm regulation. In the present study,
we present structure-guided incorporation of photoremovable protecting
groups into a circadian clock modifier, longdaysin, which inhibits
casein kinase I (CKI). Using photodeprotection by UV or visible light
(400 nm) as the external stimulus, we have achieved quantitative and
light-inducible control over the CKI activity accompanied by an accurate
regulation of circadian period in cultured human cells and mouse tissues,
as well as in living zebrafish. This research paves the way for the
application of photodosing in achieving precise temporal control over
the biological timing and opens the door for chronophotopharmacology
to deeper understand the circadian clock system.
Collapse
Affiliation(s)
- Dušan Kolarski
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School , University of Texas Health Science Center at Houston , 6431 Fannin St, MSB 4.216 , 77030 Houston , United States
| | - Christin Rakers
- Graduate School of Pharmaceutical Sciences , Kyoto University , 46-29 Yoshida-shimoadachi-cho, Sakyo-ku , Kyoto 606-8501 , Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8601 , Japan
| | - Albert Schulte
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan.,Department of Physics, Graduate School of Science , Nagoya University , Nagoya 464-8601 , Japan.,Computational Structural Biology Unit , RIKEN-Center for Computational Science , Kobe , Hyogo 650-0047 , Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Wiktor Szymanski
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands.,University Medical Center Groningen, Department of Radiology, Medical Imaging Center , University of Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8601 , Japan
| | - Ben L Feringa
- Centre for Systems Chemistry , Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 4 , 9747 AG , Groningen , The Netherlands
| |
Collapse
|
21
|
Lin YH, Wong BY, Pan YC, Chiu YC, Lee YH. Validation of the Mobile App-Recorded Circadian Rhythm by a Digital Footprint. JMIR Mhealth Uhealth 2019; 7:e13421. [PMID: 31099340 PMCID: PMC6542252 DOI: 10.2196/13421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Modern smartphone use is pervasive and could be an accessible method of evaluating the circadian rhythm and social jet lag via a mobile app. Objective This study aimed to validate the app-recorded sleep time with daily self-reports by examining the consistency of total sleep time (TST), as well as the timing of sleep onset and wake time, and to validate the app-recorded circadian rhythm with the corresponding 30-day self-reported midpoint of sleep and the consistency of social jetlag. Methods The mobile app, Rhythm, recorded parameters and these parameters were hypothesized to be used to infer a relative long-term pattern of the circadian rhythm. In total, 28 volunteers downloaded the app, and 30 days of automatically recorded data along with self-reported sleep measures were collected. Results No significant difference was noted between app-recorded and self-reported midpoint of sleep time and between app-recorded and self-reported social jetlag. The overall correlation coefficient of app-recorded and self-reported midpoint of sleep time was .87. Conclusions The circadian rhythm for 1 month, daily TST, and timing of sleep onset could be automatically calculated by the app and algorithm.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Psychiatry, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Health Behaviors and Community Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Bo-Yu Wong
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yuan-Chien Pan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Yu-Chuan Chiu
- Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yang-Han Lee
- Department and Graduate School of Electrical Engineering, Tamkang University, New Taipei City, Taiwan
| |
Collapse
|
22
|
Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1439. [PMID: 30328684 PMCID: PMC6375788 DOI: 10.1002/wsbm.1439] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Circadian rhythms are endogenous ~24-hr oscillations usually entrained to daily environmental cycles of light/dark. Many biological processes and physiological functions including mammalian body temperature, the cell cycle, sleep/wake cycles, neurobehavioral performance, and a wide range of diseases including metabolic, cardiovascular, and psychiatric disorders are impacted by these rhythms. Circadian clocks are present within individual cells and at tissue and organismal levels as emergent properties from the interaction of cellular oscillators. Mathematical models of circadian rhythms have been proposed to provide a better understanding of and to predict aspects of this complex physiological system. These models can be used to: (a) manipulate the system in silico with specificity that cannot be easily achieved using in vivo and in vitro experimental methods and at lower cost, (b) resolve apparently contradictory empirical results, (c) generate hypotheses, (d) design new experiments, and (e) to design interventions for altering circadian rhythms. Mathematical models differ in structure, the underlying assumptions, the number of parameters and variables, and constraints on variables. Models representing circadian rhythms at different physiologic scales and in different species are reviewed to promote understanding of these models and facilitate their use. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
|
23
|
Oshima T, Niwa Y, Kuwata K, Srivastava A, Hyoda T, Tsuchiya Y, Kumagai M, Tsuyuguchi M, Tamaru T, Sugiyama A, Ono N, Zolboot N, Aikawa Y, Oishi S, Nonami A, Arai F, Hagihara S, Yamaguchi J, Tama F, Kunisaki Y, Yagita K, Ikeda M, Kinoshita T, Kay SA, Itami K, Hirota T. Cell-based screen identifies a new potent and highly selective CK2 inhibitor for modulation of circadian rhythms and cancer cell growth. SCIENCE ADVANCES 2019; 5:eaau9060. [PMID: 30746467 PMCID: PMC6357737 DOI: 10.1126/sciadv.aau9060] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/11/2018] [Indexed: 05/08/2023]
Abstract
Compounds targeting the circadian clock have been identified as potential treatments for clock-related diseases, including cancer. Our cell-based phenotypic screen revealed uncharacterized clock-modulating compounds. Through affinity-based target deconvolution, we identified GO289, which strongly lengthened circadian period, as a potent and selective inhibitor of CK2. Phosphoproteomics identified multiple phosphorylation sites inhibited by GO289 on clock proteins, including PER2 S693. Furthermore, GO289 exhibited cell type-dependent inhibition of cancer cell growth that correlated with cellular clock function. The x-ray crystal structure of the CK2α-GO289 complex revealed critical interactions between GO289 and CK2-specific residues and no direct interaction of GO289 with the hinge region that is highly conserved among kinases. The discovery of GO289 provides a direct link between the circadian clock and cancer regulation and reveals unique design principles underlying kinase selectivity.
Collapse
Affiliation(s)
- Tsuyoshi Oshima
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshimi Niwa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Ashutosh Srivastava
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Tomoko Hyoda
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshiki Tsuchiya
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Megumi Kumagai
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Masato Tsuyuguchi
- Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Teruya Tamaru
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, Tokyo 143-8540, Japan
| | - Akiko Sugiyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Natsuko Ono
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Norjin Zolboot
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshiki Aikawa
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
| | - Atsushi Nonami
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
- PRESTO, JST, Nagoya 464-8601, Japan
| | | | - Florence Tama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan, and RIKEN Center for Computational Science, Kobe 650-0047, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine/Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Kazuhiro Yagita
- Department of Physiology and Systems Bioscience, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masaaki Ikeda
- Department of Physiology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Takayoshi Kinoshita
- Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Steve A. Kay
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8601, Japan
- ERATO Itami Molecular Nanocarbon Project, JST, Nagoya 464-8601, Japan
- Corresponding author. (T.H.); (K.I.)
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8601, Japan
- PRESTO, JST, Nagoya 464-8601, Japan
- Corresponding author. (T.H.); (K.I.)
| |
Collapse
|
24
|
Chun SK, Chung S, Kim HD, Lee JH, Jang J, Kim J, Kim D, Son GH, Oh YJ, Suh YG, Lee CS, Kim K. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells. Biochem Biophys Res Commun 2015; 467:441-6. [PMID: 26407844 DOI: 10.1016/j.bbrc.2015.09.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023]
Abstract
Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer.
Collapse
Affiliation(s)
- Sung Kook Chun
- Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Sooyoung Chung
- Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705, South Korea
| | - Hee-Dae Kim
- Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Ju Hyung Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, South Korea
| | - Jaebong Jang
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Jeongah Kim
- Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Doyeon Kim
- Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705, South Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, South Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Cheol Soon Lee
- Gachon Clinical Trials Center, Gachon University, Incheon, 417-842, South Korea
| | - Kyungjin Kim
- Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747, South Korea.
| |
Collapse
|