1
|
Yang Y, Karin O, Mayo A, Song X, Chen P, Santos AL, Lindner AB, Alon U. Damage dynamics and the role of chance in the timing of E. coli cell death. Nat Commun 2023; 14:2209. [PMID: 37072447 PMCID: PMC10113371 DOI: 10.1038/s41467-023-37930-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/01/2023] [Indexed: 04/20/2023] Open
Abstract
Genetically identical cells in the same stressful condition die at different times. The origin of this stochasticity is unclear; it may arise from different initial conditions that affect the time of demise, or from a stochastic damage accumulation mechanism that erases the initial conditions and instead amplifies noise to generate different lifespans. To address this requires measuring damage dynamics in individual cells over the lifespan, but this has rarely been achieved. Here, we used a microfluidic device to measure membrane damage in 635 carbon-starved Escherichia coli cells at high temporal resolution. We find that initial conditions of damage, size or cell-cycle phase do not explain most of the lifespan variation. Instead, the data points to a stochastic mechanism in which noise is amplified by a rising production of damage that saturates its own removal. Surprisingly, the relative variation in damage drops with age: cells become more similar to each other in terms of relative damage, indicating increasing determinism with age. Thus, chance erases initial conditions and then gives way to increasingly deterministic dynamics that dominate the lifespan distribution.
Collapse
Affiliation(s)
- Yifan Yang
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel.
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France.
| | - Omer Karin
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel
| | - Avi Mayo
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel
| | - Xiaohu Song
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
| | - Peipei Chen
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
- National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Ana L Santos
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Ariel B Lindner
- Université de Paris - INSERM Unit 1284, Center for Research and Interdisciplinarity (CRI), Paris, F-75004, France
| | - Uri Alon
- Department of molecular Cell biology, Weizmann Institute of Science, 71600, Rehovot, Israel.
| |
Collapse
|
2
|
Guo H, Ryan JC, Song X, Mallet A, Zhang M, Pabst V, Decrulle AL, Ejsmont P, Wintermute EH, Lindner AB. Spatial engineering of E. coli with addressable phase-separated RNAs. Cell 2022; 185:3823-3837.e23. [PMID: 36179672 DOI: 10.1016/j.cell.2022.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
Biochemical processes often require spatial regulation and specific microenvironments. The general lack of organelles in bacteria limits the potential of bioengineering complex intracellular reactions. Here, we demonstrate synthetic membraneless organelles in Escherichia coli termed transcriptionally engineered addressable RNA solvent droplets (TEARS). TEARS are assembled from RNA-binding protein recruiting domains fused to poly-CAG repeats that spontaneously drive liquid-liquid phase separation from the bulk cytoplasm. Targeting TEARS with fluorescent proteins revealed multilayered structures with composition and reaction robustness governed by non-equilibrium dynamics. We show that TEARS provide organelle-like bioprocess isolation for sequestering biochemical pathways, controlling metabolic branch points, buffering mRNA translation rates, and scaffolding protein-protein interactions. We anticipate TEARS to be a simple and versatile tool for spatially controlling E. coli biochemistry. Particularly, the modular design of TEARS enables applications without expression fine-tuning, simplifying the design-build-test cycle of bioengineering.
Collapse
Affiliation(s)
- Haotian Guo
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France.
| | - Joseph C Ryan
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Xiaohu Song
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Adeline Mallet
- Ultrastructural BioImaging UTechS, C2RT, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Mengmeng Zhang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| | - Victor Pabst
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Antoine L Decrulle
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Paulina Ejsmont
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Edwin H Wintermute
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France
| | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), 75006 Paris, France.
| |
Collapse
|
3
|
Kim JM, Garcia-Alcala M, Balleza E, Cluzel P. Stochastic transcriptional pulses orchestrate flagellar biosynthesis in Escherichia coli. SCIENCE ADVANCES 2020; 6:eaax0947. [PMID: 32076637 PMCID: PMC7002133 DOI: 10.1126/sciadv.aax0947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/22/2019] [Indexed: 05/28/2023]
Abstract
The classic picture of flagellum biosynthesis in Escherichia coli, inferred from population measurements, depicts a deterministic program where promoters are sequentially up-regulated and are maintained steadily active throughout exponential growth. However, complex regulatory dynamics at the single-cell level can be masked by bulk measurements. Here, we discover that in individual E. coli cells, flagellar promoters are stochastically activated in pulses. These pulses are coordinated within specific classes of promoters and comprise "on" and "off" states, each of which can span multiple generations. We demonstrate that in this pulsing program, the regulatory logic of flagellar assembly dictates which promoters skip pulses. Surprisingly, pulses do not require specific transcriptional or translational regulation of the flagellar master regulator, FlhDC, but instead appears to be essentially governed by an autonomous posttranslational circuit. Our results suggest that even topologically simple transcriptional networks can generate unexpectedly rich temporal dynamics and phenotypic heterogeneities.
Collapse
Affiliation(s)
- J. Mark Kim
- Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mayra Garcia-Alcala
- Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Enrique Balleza
- Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Philippe Cluzel
- Department of Molecular and Cellular Biology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Yang Y, Santos AL, Xu L, Lotton C, Taddei F, Lindner AB. Temporal scaling of aging as an adaptive strategy of Escherichia coli. SCIENCE ADVANCES 2019; 5:eaaw2069. [PMID: 31149637 PMCID: PMC6541466 DOI: 10.1126/sciadv.aaw2069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/22/2019] [Indexed: 05/03/2023]
Abstract
Natural selection is thought to shape the evolution of aging patterns, although how life-history trajectories orchestrate the inherently stochastic processes associated with aging is unclear. Tracking clonal growth-arrested Escherichia coli cohorts in an homogeneous environment at single-cell resolution, we demonstrate that the Gompertz law of exponential mortality characterizes bacterial lifespan distributions. By disentangling the rate of aging from age-independent components of longevity, we find that increasing cellular maintenance through the general stress pathway reduces the aging rate and rescales the lifespan distribution at the expense of growth. This trade-off between aging and growth underpins the evolutionary tuning of the general stress response pathway in adaptation to the organism's feast-or-famine lifestyle. It is thus necessary to involve both natural selection and stochastic physiology to explain aging patterns.
Collapse
Affiliation(s)
- Yifan Yang
- INSERM U1001, Paris F-75014, France
- Center for Research and Interdisciplinarity, Faculté de Médecine, Université Paris Descartes, Paris, France
- Corresponding author. (Y.Y.); (A.B.L.)
| | | | - Luping Xu
- INSERM U1001, Paris F-75014, France
- Center for Research and Interdisciplinarity, Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | - François Taddei
- INSERM U1001, Paris F-75014, France
- Center for Research and Interdisciplinarity, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Ariel B. Lindner
- INSERM U1001, Paris F-75014, France
- Center for Research and Interdisciplinarity, Faculté de Médecine, Université Paris Descartes, Paris, France
- Corresponding author. (Y.Y.); (A.B.L.)
| |
Collapse
|
5
|
Potvin-Trottier L, Luro S, Paulsson J. Microfluidics and single-cell microscopy to study stochastic processes in bacteria. Curr Opin Microbiol 2018; 43:186-192. [PMID: 29494845 PMCID: PMC6044433 DOI: 10.1016/j.mib.2017.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023]
Abstract
Bacteria have molecules present in low and fluctuating numbers that randomize cell behaviors. Understanding these stochastic processes and their impact on cells has, until recently, been limited by the lack of single-cell measurement methods. Here, we review recent developments in microfluidics that enable following individual cells over long periods of time under precisely controlled conditions, and counting individual fluorescent molecules in many cells. We showcase discoveries that were made possible using these devices in various aspects of microbiology, such as antibiotic tolerance/persistence, cell-size control, cell-fate determination, DNA damage response, and synthetic biology.
Collapse
Affiliation(s)
- Laurent Potvin-Trottier
- Biophysics PhD Program, Harvard University, Cambridge, MA 02138, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Scott Luro
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|