1
|
Kotake K, Matsunuma S. GRIK1 genotype and effect of topiramate for alcohol use: a systematic review. J Pharm Health Care Sci 2025; 11:42. [PMID: 40394707 DOI: 10.1186/s40780-025-00449-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Topiramate has shown efficacy in reducing alcohol consumption and is increasingly used off-label for individuals with harmful alcohol use. However, findings regarding the moderating effect of the GRIK1 rs2832407 single nucleotide polymorphism (SNP) on treatment outcomes remain inconsistent, highlighting the need for a review of the current evidence. We evaluated whether the GRIK1 rs2832407 SNP moderates the efficacy and safety of topiramate treatment for alcohol use. METHODS We searched multiple databases including MEDLINE, Cochrane Library, ClinicalTrials.gov, and the International Clinical Trials Registry Platform up to December 1, 2024. Randomized controlled trials (RCTs) comparing treatment outcomes of topiramate in patients with alcohol use who were homozygous for the C allele at rs2832407 with those carrying one or more A alleles at rs2832407 were included. Primary outcomes were heavy drinking days (HDDs) and percentage of days abstinent (PDA), and the secondary outcome was side effects. Each outcome was evaluated using version 2 of the Cochrane Risk of Bias tool. RESULTS Our analysis included four RCTs. Among three studies evaluating HDDs, only one study demonstrated genotype effects, demonstrating a reduction in HDDs among CC carriers. Of two studies examining PDA, only one revealed genotype effects, indicating an increase in PDA. Side effects were evaluated in two studies, both of which assessed the severity of side effects, but with conflicting results regarding the effect of genotype. CONCLUSIONS This systematic review highlights the current lack of sufficient evidence to confirm the pharmacogenetic effect of the GRIK1 rs2832407 SNP on the efficacy or safety of topiramate treatment in individuals with harmful alcohol use. TRIAL REGISTRATION This research was prospectively registered with the Open Science Framework ( https://osf.io/z2awu/ ).
Collapse
Affiliation(s)
- Kazumasa Kotake
- Department of Pharmacy, Zikei Hospital, Zikei Institute of Psychiatry, 100-2 Urayasu Honmachi, Minami-Ku, Okayama-shi, Okayama, 702-8508, Japan.
- Scientific Research WorkS Peer Support Group (SRWS-PSG), Osaka, Japan.
| | - Satoru Matsunuma
- Department of Pharmacy, Tokyo Medical University Hachioji Medical Center, Tatemachi, Hachioji, Tokyo, 1163, 193-0988, Japan
| |
Collapse
|
2
|
Verma H, Kaur S, Kaur S, Gangwar P, Dhiman M, Mantha AK. Role of Cytoskeletal Elements in Regulation of Synaptic Functions: Implications Toward Alzheimer's Disease and Phytochemicals-Based Interventions. Mol Neurobiol 2024; 61:8320-8343. [PMID: 38491338 DOI: 10.1007/s12035-024-04053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD), a multifactorial disease, is characterized by the accumulation of neurofibrillary tangles (NFTs) and amyloid beta (Aβ) plaques. AD is triggered via several factors like alteration in cytoskeletal proteins, a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2), amyloid precursor protein (APP), and post-translational modifications (PTMs) in the cytoskeletal elements. Owing to the major structural and functional role of cytoskeletal elements, like the organization of axon initial segmentation, dendritic spines, synaptic regulation, and delivery of cargo at the synapse; modulation of these elements plays an important role in AD pathogenesis; like Tau is a microtubule-associated protein that stabilizes the microtubules, and it also causes inhibition of nucleo-cytoplasmic transportation by disrupting the integrity of nuclear pore complex. One of the major cytoskeletal elements, actin and its dynamics, regulate the dendritic spine structure and functions; impairments have been documented towards learning and memory defects. The second major constituent of these cytoskeletal elements, microtubules, are necessary for the delivery of the cargo, like ion channels and receptors at the synaptic membranes, whereas actin-binding protein, i.e., Cofilin's activation form rod-like structures, is involved in the formation of paired helical filaments (PHFs) observed in AD. Also, the glial cells rely on their cytoskeleton to maintain synaptic functionality. Thus, making cytoskeletal elements and their regulation in synaptic structure and function as an important aspect to be focused for better management and targeting AD pathology. This review advocates exploring phytochemicals and Ayurvedic plant extracts against AD by elucidating their neuroprotective mechanisms involving cytoskeletal modulation and enhancing synaptic plasticity. However, challenges include their limited bioavailability due to the poor solubility and the limited potential to cross the blood-brain barrier (BBB), emphasizing the need for targeted strategies to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
3
|
Vidya Bernhardt G, Shivappa P, R Pinto J, Ks R, Ramakrishna Pillai J, Kumar Srinivasamurthy S, Paul Samuel V. Probiotics-role in alleviating the impact of alcohol liver disease and alcohol deaddiction: a systematic review. Front Nutr 2024; 11:1372755. [PMID: 39290562 PMCID: PMC11406471 DOI: 10.3389/fnut.2024.1372755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Background There are few efficient treatment options for alcohol addiction, which continues to be a serious public health concern. The possible contribution of gut microbiota to the onset and progression of alcohol addiction has been brought to light by recent studies. Probiotics have become a cutting-edge intervention in the treatment of alcohol consumption disorder because of its favorable effects on gut health. The purpose of this systematic review is to assess the body of research on the advantages of probiotics in treating alcoholism and associated neuroinflammatory conditions. Methods To find pertinent research published from January 2012 to 2023, a thorough search of electronic databases, including PubMed, Scopus, Google Scholar and Web of Science, was carried out. Included were studies looking at how probiotics affect neuroinflammation, gut- brain axis regulation, alcohol addiction, and related behaviors. Findings Several investigations have shown how beneficial probiotics are in reducing systemic inflammation and alcoholic liver disease (ALD). Probiotic treatments successfully corrected the imbalance of microbiota, decreased intestinal permeability, and stopped the passage of bacterial constituents such lipopolysaccharides (LPS) into the bloodstream. Additionally, probiotics helped to regulate neurotransmitter pathways, especially those connected to GABA, glutamate, and dopamine, which are intimately linked to behaviors related to addiction. Furthermore, it was shown that probiotics altered the expression of neurotransmitter signaling and dopamine receptors. Conclusion There is strong evidence from this systematic study that probiotics have potential advantages in treating alcohol addiction. The potential of probiotic therapies is demonstrated by the way they modulate important neurotransmitter pathways implicated in addiction, decrease neuroinflammation, and restore the balance of gut flora. To fully investigate the therapeutic potential of probiotics in treating alcohol addiction and enhancing the general wellbeing of those afflicted by this condition, more research is necessary.
Collapse
Affiliation(s)
- Grisilda Vidya Bernhardt
- Department of Biochemistry, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Pooja Shivappa
- Department of Biochemistry, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Janita R Pinto
- Department of Biomedical Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Rashmi Ks
- Department of Physiology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, RAKCOPS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Vijay Paul Samuel
- Department of Anatomy, RAKCOMS, Ras Al-Khaimah Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| |
Collapse
|
4
|
Duffus BLM, Haggerty DL, Doud EH, Mosley AL, Yamamoto BK, Atwood BK. The impact of abstinence from chronic alcohol consumption on the mouse striatal proteome: sex and subregion-specific differences. Front Pharmacol 2024; 15:1405446. [PMID: 38887549 PMCID: PMC11180734 DOI: 10.3389/fphar.2024.1405446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Alcohol misuse is the third leading preventable cause of death in the world. The World Health Organization currently estimates that 1 in 20 deaths are directly alcohol related. One of the ways in which consuming excessive levels of alcohol can both directly and indirectly affect human mortality and morbidity, is through chronic inflammation. Recently, studies have suggested a link between increased alcohol use and the incidence of neuroinflammatory-related diseases. However, the mechanism in which alcohol potentially influences neuroinflammatory processes is still being uncovered. We implemented an unbiased proteomics exploration of alcohol-induced changes in the striatum, with a specific emphasis on proteins related to inflammation. The striatum is a brain region that is critically involved with the progression of alcohol use disorder. Using mass spectrometry following voluntary alcohol self-administration in mice, we show that distinct protein abundances and signaling pathways in different subregions of the striatum are disrupted by chronic exposure to alcohol compared to water drinking control mice. Further, in mice that were allowed to experience abstinence from alcohol compared to mice that were non-abstinent, the overall proteome and signaling pathways showed additional differences, suggesting that the responses evoked by chronic alcohol exposure are dependent on alcohol use history. To our surprise we did not find that chronic alcohol drinking or abstinence altered protein abundance or pathways associated with inflammation, but rather affected proteins and pathways associated with neurodegeneration and metabolic, cellular organization, protein translation, and molecular transport processes. These outcomes suggest that in this drinking model, alcohol-induced neuroinflammation in the striatum is not a primary outcome controlling altered neurobehavioral function, but these changes are rather mediated by altered striatal neuronal structure and cellular health.
Collapse
Affiliation(s)
- Brittnie-lee M. Duffus
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | |
Collapse
|
5
|
Kaya-Akyüzlü D. Genetics and Epigenetics of Alcohol Use Disorder. THE PALGRAVE ENCYCLOPEDIA OF DISABILITY 2024:1-12. [DOI: 10.1007/978-3-031-40858-8_203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/23/2024]
|
6
|
Hitzemann R, Ozburn AR, Lockwood D, Phillips TJ. Modeling Brain Gene Expression in Alcohol Use Disorder with Genetic Animal Models. Curr Top Behav Neurosci 2023:10.1007/7854_2023_455. [PMID: 37982929 PMCID: PMC11566292 DOI: 10.1007/7854_2023_455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Animal genetic models have and will continue to provide important new information about the behavioral and physiological adaptations associated with alcohol use disorder (AUD). This chapter focuses on two models, ethanol preference and drinking in the dark (DID), their usefulness in interrogating brain gene expression data and the relevance of the data obtained to interpret AUD-related GWAS and TWAS studies. Both the animal and human data point to the importance for AUD of changes in synaptic transmission (particularly glutamate and GABA transmission), of changes in the extracellular matrix (specifically including collagens, cadherins and protocadherins) and of changes in neuroimmune processes. The implementation of new technologies (e.g., cell type-specific gene expression) is expected to further enhance the value of genetic animal models in understanding AUD.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA.
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Denesa Lockwood
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
7
|
Matthews DB, Rossmann G. Using animal models to identify clinical risk factors in the older population due to alcohol use and misuse. Alcohol 2023; 107:38-43. [PMID: 35659578 DOI: 10.1016/j.alcohol.2022.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023]
Abstract
The number of people over the age of 65 years old is increasing and understanding health risks associated with the aged population is important. Recent research has revealed that alcohol (ethanol) consumption levels in older demographics remains elevated and often occurs in a dangerous binge pattern. Given ethical constraints on investigating high level or binge pattern alcohol consumption in humans, animal models are often used to study the effects of ethanol. The current review highlights ongoing work revealing that aged rats are often more sensitive to the effects of acute ethanol compared to younger rats. Specifically, aged rats are more sensitive to the motor impairing, hypnotic, hypothermic, and often the cognitive effects of ethanol compared to younger rats. In addition, the development of ethanol tolerance following chronic exposure may have a different temporal pattern in aged rats compared to younger rats. However, the neurobiological mechanisms that cause the increased sensitivity to ethanol in aged animals have yet to be identified. Furthermore, the differential age effects of ethanol highlight clinical risk factors for alcohol misuse in the older human population. Future work is needed to determine underlying CNS mechanisms producing altered effects of ethanol in aged subjects and also the development of educational material concerning ethanol's effects across ages for health care providers working with the aged population.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin, Eau Claire, WI 54701, United States.
| | - Gillian Rossmann
- Department of Psychology, University of Wisconsin, Eau Claire, WI 54701, United States
| |
Collapse
|
8
|
Calleja‐Conde J, Morales‐García JA, Echeverry‐Alzate V, Bühler KM, Giné E, López‐Moreno JA. Classic psychedelics and alcohol use disorders: A systematic review of human and animal studies. Addict Biol 2022; 27:e13229. [PMID: 36301215 PMCID: PMC9541961 DOI: 10.1111/adb.13229] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 01/24/2023]
Abstract
Classic psychedelics refer to substances such as lysergic acid diethylamide (LSD), psilocybin, ayahuasca, and mescaline, which induce altered states of consciousness by acting mainly on 5-HT2A receptors. Recently, the interest of psychedelics as pharmacological treatment for psychiatric disorders has increased significantly, including their use on problematic use of alcohol. This systematic review is aimed to analyse the last two decades of studies examining the relationship between classic psychedelics and alcohol consumption. We searched PubMed and PsycInfo for human and preclinical studies published between January 2000 to December 2021. The search identified 639 publications. After selection, 27 studies were included. Human studies (n = 20) generally show promising data and seem to indicate that classic psychedelics could help reduce alcohol consumption. Nevertheless, some of these studies present methodological concerns such as low number of participants, lack of control group or difficulty in determining the effect of classic psychedelics in isolation. On the other hand, preclinical studies (n = 7) investigating the effect of these compounds on voluntary alcohol consumption are scarce and show some conflicting data. Among these compounds, psilocybin seems to show the most consistent data indicating that this compound could be a potential candidate to treat alcohol use disorders. In the absence of understanding the biological and/or psychological mechanisms, more studies including methodological quality parameters are needed to finally determine the effects of classic psychedelics on alcohol consumption.
Collapse
Affiliation(s)
| | | | - Víctor Echeverry‐Alzate
- School of Life and Nature SciencesNebrija UniversityMadridSpain
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| | - Kora Mareen Bühler
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| | - Elena Giné
- Department of Cell Biology, Faculty of MedicineComplutense University of MadridMadridSpain
| | - Jose Antonio López‐Moreno
- Department of Psychobiology and Methodology in Behavioral Sciences, Faculty of Psychology, Somosaguas CampusComplutense University of MadridMadridSpain
| |
Collapse
|
9
|
Katner SN, Sentir AM, Steagall KB, Ding ZM, Wetherill L, Hopf FW, Engleman EA. Modeling Aversion Resistant Alcohol Intake in Indiana Alcohol-Preferring (P) Rats. Brain Sci 2022; 12:brainsci12081042. [PMID: 36009105 PMCID: PMC9406111 DOI: 10.3390/brainsci12081042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/26/2022] Open
Abstract
With the substantial social and medical burden of addiction, there is considerable interest in understanding risk factors that increase the development of addiction. A key feature of alcohol use disorder (AUD) is compulsive alcohol (EtOH) drinking, where EtOH drinking becomes “inflexible” after chronic intake, and animals, such as humans with AUD, continue drinking despite aversive consequences. Further, since there is a heritable component to AUD risk, some work has focused on genetically-selected, EtOH-preferring rodents, which could help uncover critical mechanisms driving pathological intake. In this regard, aversion-resistant drinking (ARD) takes >1 month to develop in outbred Wistar rats (and perhaps Sardinian-P EtOH-preferring rats). However, ARD has received limited study in Indiana P-rats, which were selected for high EtOH preference and exhibit factors that could parallel human AUD (including front-loading and impulsivity). Here, we show that P-rats rapidly developed compulsion-like responses for EtOH; 0.4 g/L quinine in EtOH significantly reduced female and male intake on the first day of exposure but had no effect after one week of EtOH drinking (15% EtOH, 24 h free-choice paradigm). Further, after 4−5 weeks of EtOH drinking, males but not females showed resistance to even higher quinine (0.5 g/L). Thus, P-rats rapidly developed ARD for EtOH, but only males developed even stronger ARD with further intake. Finally, rats strongly reduced intake of quinine-adulterated water after 1 or 5 weeks of EtOH drinking, suggesting no changes in basic quinine sensitivity. Thus, modeling ARD in P-rats may provide insight into mechanisms underlying genetic predispositions for compulsive drinking and lead to new treatments for AUDs.
Collapse
Affiliation(s)
- Simon N. Katner
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alena M. Sentir
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kevin B. Steagall
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zheng-Ming Ding
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Pennsylvania State University College of Medicine, 700 HMC Crescent Road, Hershey, PA 17033, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Frederic W. Hopf
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eric A. Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence:
| |
Collapse
|
10
|
Yang W, Singla R, Maheshwari O, Fontaine CJ, Gil-Mohapel J. Alcohol Use Disorder: Neurobiology and Therapeutics. Biomedicines 2022; 10:1192. [PMID: 35625928 PMCID: PMC9139063 DOI: 10.3390/biomedicines10051192] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Alcohol use disorder (AUD) encompasses the dysregulation of multiple brain circuits involved in executive function leading to excessive consumption of alcohol, despite negative health and social consequences and feelings of withdrawal when access to alcohol is prevented. Ethanol exerts its toxicity through changes to multiple neurotransmitter systems, including serotonin, dopamine, gamma-aminobutyric acid, glutamate, acetylcholine, and opioid systems. These neurotransmitter imbalances result in dysregulation of brain circuits responsible for reward, motivation, decision making, affect, and the stress response. Despite serious health and psychosocial consequences, this disorder still remains one of the leading causes of death globally. Treatment options include both psychological and pharmacological interventions, which are aimed at reducing alcohol consumption and/or promoting abstinence while also addressing dysfunctional behaviours and impaired functioning. However, stigma and social barriers to accessing care continue to impact many individuals. AUD treatment should focus not only on restoring the physiological and neurological impairment directly caused by alcohol toxicity but also on addressing psychosocial factors associated with AUD that often prevent access to treatment. This review summarizes the impact of alcohol toxicity on brain neurocircuitry in the context of AUD and discusses pharmacological and non-pharmacological therapies currently available to treat this addiction disorder.
Collapse
Affiliation(s)
- Waisley Yang
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
| | - Rohit Singla
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
| | - Oshin Maheshwari
- Psychiatry Residency Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8W 3P5, Canada;
| | | | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (W.Y.); (R.S.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| |
Collapse
|
11
|
Filarowska-Jurko J, Komsta L, Smaga I, Surowka P, Marszalek-Grabska M, Grochecki P, Nizio D, Filip M, Kotlinska JH. Maternal Separation Alters Ethanol Drinking and Reversal Learning Processes in Adolescent Rats: The Impact of Sex and Glycine Transporter Type 1 (GlyT1) Inhibitor. Int J Mol Sci 2022; 23:5350. [PMID: 35628160 PMCID: PMC9141364 DOI: 10.3390/ijms23105350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Adverse early life experiences are associated with an enhanced risk for mental and physical health problems, including substance abuse. Despite clinical evidence, the mechanisms underlying these relationships are not fully understood. Maternal separation (MS) is a commonly used animal model of early neglect. The aim of the current study is to determine whether the N-methyl-D-aspartate receptor (NMDAR)/glycine sites are involved in vulnerability to alcohol consumption (two-bottle choice paradigm) and reversal learning deficits (Barnes maze task) in adolescent rats subjected to the MS procedure and whether these effects are sex dependent. By using ELISA, we evaluated MS-induced changes in the NMDAR subunits (GluN1, GluN2A, GluN2B) expression, especially in the glycine-binding subunit, GluN1, in the prefrontal cortex (PFC) and ventral striatum (vSTR) of male/female rats. Next, we investigated whether Org 24598, a glycine transporter 1 (GlyT1) inhibitor, was able to modify ethanol drinking in adolescent and adult male/female rats with prior MS experience and reversal learning in the Barnes maze task. Our findings revealed that adolescent MS female rats consumed more alcohol which may be associated with a substantial increase in GluN1 subunit of NMDAR in the PFC and vSTR. Org 24598 decreased ethanol intake in both sexes with a more pronounced decrease in ethanol consumption in adolescent female rats. Furthermore, MS showed deficits in reversal learning in both sexes. Org 24598 ameliorated reversal learning deficits, and this effect was reversed by the NMDAR/glycine site inhibitor, L-701,324. Collectively, our results suggest that NMDAR/glycine sites might be targeted in the treatment of alcohol abuse in adolescents with early MS, especially females.
Collapse
Affiliation(s)
- Joanna Filarowska-Jurko
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (J.F.-J.); (P.G.)
| | - Lukasz Komsta
- Department of Medicinal Chemistry, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-324 Krakow, Poland; (I.S.); (P.S.); (M.F.)
| | - Paulina Surowka
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-324 Krakow, Poland; (I.S.); (P.S.); (M.F.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (J.F.-J.); (P.G.)
| | - Dorota Nizio
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-324 Krakow, Poland; (I.S.); (P.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland; (J.F.-J.); (P.G.)
| |
Collapse
|
12
|
Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:167-208. [PMID: 34801169 DOI: 10.1016/bs.irn.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period associated with behavioral change, including increased risk-taking and alcohol use. Experimentation with alcohol typically begins in adolescence and transitions to binge-like patterns of consumption. Alcohol exposure during adolescence can alter normative changes in brain structure and function. Understanding mechanisms by which ethanol impacts neurodevelopmental processes is important for preventing and ameliorating the deleterious consequences of adolescent alcohol abuse. This review focuses on the neuroimmune system as a key contributor to ethanol-induced changes in adolescent brain and behavior. After brief review of neuroimmune system development, acute and chronic effects of ethanol on adolescent neuroimmune functioning are addressed. Comparisons between stress/immunological challenges and ethanol on adolescent neuroimmunity are reviewed, as cross-sensitization is relevant during adolescence. The mechanisms by which ethanol alters neuroimmune functioning are then discussed, as they may portend development of neuropathological consequences and thus increase vulnerability to subsequent challenges and potentiate addictive behaviors.
Collapse
Affiliation(s)
- T L Doremus-Fitzwater
- Department of Psychology, Ithaca College, Ithaca, NY, United States; Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States.
| | - T Deak
- Developmental Exposure Alcohol Research Center (DEARC), Binghamton, NY, United States; Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
13
|
Meinhardt MW, Pfarr S, Fouquet G, Rohleder C, Meinhardt ML, Barroso-Flores J, Hoffmann R, Jeanblanc J, Paul E, Wagner K, Hansson AC, Köhr G, Meier N, von Bohlen und Halbach O, Bell RL, Endepols H, Neumaier B, Schönig K, Bartsch D, Naassila M, Spanagel R, Sommer WH. Psilocybin targets a common molecular mechanism for cognitive impairment and increased craving in alcoholism. SCIENCE ADVANCES 2021; 7:eabh2399. [PMID: 34788104 PMCID: PMC8598005 DOI: 10.1126/sciadv.abh2399] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/28/2021] [Indexed: 05/21/2023]
Abstract
Alcohol-dependent patients commonly show impairments in executive functions that facilitate craving and can lead to relapse. However, the molecular mechanisms leading to executive dysfunction in alcoholism are poorly understood, and new effective pharmacological treatments are desired. Here, using a bidirectional neuromodulation approach, we demonstrate a causal link between reduced prefrontal mGluR2 function and both impaired executive control and alcohol craving. A neuron-specific prefrontal mGluR2 knockdown in rats generated a phenotype of reduced cognitive flexibility and excessive alcohol seeking. Conversely, virally restoring prefrontal mGluR2 levels in alcohol-dependent rats rescued these pathological behaviors. In the search for a pharmacological intervention with high translational potential, psilocybin was capable of restoring mGluR2 expression and reducing relapse behavior. Last, we propose a FDG-PET biomarker strategy to identify mGluR2 treatment-responsive individuals. In conclusion, we identified a common molecular pathological mechanism for both executive dysfunction and alcohol craving and provided a personalized mGluR2 mechanism-based intervention strategy for medication development for alcoholism.
Collapse
Affiliation(s)
- Marcus W. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Corresponding author. (M.W.M.); (W.H.S.); (R.S.)
| | - Simone Pfarr
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Grégory Fouquet
- Université de Picardie Jules Verne, INSERM UMRS, 1247 Amiens, France
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Multimodal Imaging, Max Planck Institute for Neurological Research, Cologne, Germany
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Manuela L. Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Janet Barroso-Flores
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Rebecca Hoffmann
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Jérôme Jeanblanc
- Université de Picardie Jules Verne, INSERM UMRS, 1247 Amiens, France
| | - Elisabeth Paul
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Konstantin Wagner
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Georg Köhr
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Department of Neurophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nils Meier
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | | | - Richard L. Bell
- Department of Psychiatry, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heike Endepols
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Multimodal Imaging, Max Planck Institute for Neurological Research, Cologne, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Kai Schönig
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mickaël Naassila
- Université de Picardie Jules Verne, INSERM UMRS, 1247 Amiens, France
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Corresponding author. (M.W.M.); (W.H.S.); (R.S.)
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
- Department of Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Corresponding author. (M.W.M.); (W.H.S.); (R.S.)
| |
Collapse
|
14
|
Quijano Cardé NA, Perez EE, Feinn R, Kranzler HR, De Biasi M. Antagonism of GluK1-containing kainate receptors reduces ethanol consumption by modulating ethanol reward and withdrawal. Neuropharmacology 2021; 199:108783. [PMID: 34509497 PMCID: PMC8572579 DOI: 10.1016/j.neuropharm.2021.108783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Alcohol use disorder (AUD) is a neuropsychiatric condition affecting millions of people worldwide. Topiramate (TPM) is an antiepileptic drug that has been shown to reduce ethanol drinking in humans. However, TPM is associated with a variety of adverse effects due to its interaction with many receptor systems and intracellular pathways. GluK1-containing kainate receptors (GluK1*KARs) are non-selectively inhibited by TPM, and genetic association studies suggest that this receptor system could be targeted to reduce drinking in AUD patients. We examined the efficacy of LY466195, a selective inhibitor of GluK1*KAR, in reducing ethanol consumption in the intermittent two-bottle choice paradigm in mice. The effect of LY466195 on various ethanol-related phenotypes was investigated by quantification of alcohol intake, physical signs of withdrawal, conditioned place preference (CPP) and in vivo microdialysis in the nucleus accumbens. Selective GluK1*KAR inhibition reduced ethanol intake and preference in a dose-dependent manner. LY466195 treatment attenuated the physical manifestations of ethanol withdrawal and influenced the rewarding properties of ethanol. Interestingly, LY466195 injection also normalized changes in dopamine levels in response to acute ethanol in ethanol-dependent mice, but had no effect in ethanol-naïve mice, suggesting ethanol state-dependent effects. The data point to GluK1*KARs as an attractive pharmacological target for the treatment of AUD.
Collapse
Affiliation(s)
- Natalia A Quijano Cardé
- Pharmacology Graduate Group, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erika E Perez
- Department of Neuroscience, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard Feinn
- Department of Medical Sciences, Frank H Netter School of Medicine, Quinnipiac University, CTl Sciences, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania and VISN 4 MIRECC, Crescenz VAMC, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, USA
| | - Mariella De Biasi
- Pharmacology Graduate Group, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, USA.
| |
Collapse
|
15
|
Hitzemann R, Lockwood DR, Ozburn AR, Phillips TJ. On the Use of Heterogeneous Stock Mice to Map Transcriptomes Associated With Excessive Ethanol Consumption. Front Psychiatry 2021; 12:725819. [PMID: 34712155 PMCID: PMC8545898 DOI: 10.3389/fpsyt.2021.725819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
We and many others have noted the advantages of using heterogeneous (HS) animals to map genes and gene networks associated with both behavioral and non-behavioral phenotypes. Importantly, genetically complex Mus musculus crosses provide substantially increased resolution to examine old and new relationships between gene expression and behavior. Here we report on data obtained from two HS populations: the HS/NPT derived from eight inbred laboratory mouse strains and the HS-CC derived from the eight collaborative cross inbred mouse strains that includes three wild-derived strains. Our work has focused on the genes and gene networks associated with risk for excessive ethanol consumption, individual variation in ethanol consumption and the consequences, including escalation, of long-term ethanol consumption. Background data on the development of HS mice is provided, including advantages for the detection of expression quantitative trait loci. Examples are also provided of using HS animals to probe the genes associated with ethanol preference and binge ethanol consumption.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Denesa R. Lockwood
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| |
Collapse
|
16
|
Holmgren EB, Wills TA. Regulation of glutamate signaling in the extended amygdala by adolescent alcohol exposure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:223-250. [PMID: 34696874 DOI: 10.1016/bs.irn.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adolescence is a critical period for brain development and behavioral maturation, marked by increased risk-taking behavior and the initiation of drug use. There are significant changes in gray matter volume and pruning of synapses along with a shift in excitatory to inhibitory balance which marks the maturation of cognition and decision-making. Because of ongoing brain development, adolescents are particularly sensitive to the detrimental effects of drugs, including alcohol, which can cause long-lasting consequences into adulthood. The extended amygdala is a region critically implicated in withdrawal and negative affect such as anxiety and depression. As negative affective disorders develop during adolescence, the effects of adolescent alcohol exposure on extended amygdala circuitry needs further inquiry. Here we aim to provide a framework to discuss the existing literature on the extended amygdala, the neuroadaptations which result from alcohol use, and the intersection of factors which contribute to the long-lasting effects of this exposure.
Collapse
Affiliation(s)
- E B Holmgren
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States
| | - T A Wills
- Department of Cell Biology and Anatomy, LSU Health Sciences Center New Orleans, New Orleans, LA, United States; Neuroscience Center of Excellence, LSU Health Sciences Center New Orleans, New Orleans, LA, United States.
| |
Collapse
|
17
|
Vrettou M, Yan L, Nilsson KW, Wallén-Mackenzie Å, Nylander I, Comasco E. DNA methylation of Vesicular Glutamate Transporters in the mesocorticolimbic brain following early-life stress and adult ethanol exposure-an explorative study. Sci Rep 2021; 11:15322. [PMID: 34321562 PMCID: PMC8319394 DOI: 10.1038/s41598-021-94739-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation and gene expression can be altered by early life stress (ELS) and/or ethanol consumption. The present study aimed to investigate whether DNA methylation of the Vesicular Glutamate Transporters (Vglut)1-3 is related to previously observed Vglut1-3 transcriptional differences in the ventral tegmental area (VTA), nucleus accumbens (Acb), dorsal striatum (dStr) and medial prefrontal cortex (mPFC) of adult rats exposed to ELS, modelled by maternal separation, and voluntary ethanol consumption. Targeted next-generation bisulfite sequencing was performed to identify the methylation levels on 61 5′-cytosine-phosphate-guanosine-3′ sites (CpGs) in potential regulatory regions of Vglut1, 53 for Vglut2, and 51 for Vglut3. In the VTA, ELS in ethanol-drinking rats was associated with Vglut1-2 CpG-specific hypomethylation, whereas bidirectional Vglut2 methylation differences at single CpGs were associated with ELS alone. Exposure to both ELS and ethanol, in the Acb, was associated with lower promoter and higher intronic Vglut3 methylation; and in the dStr, with higher and lower methylation in 26% and 43% of the analyzed Vglut1 CpGs, respectively. In the mPFC, lower Vglut2 methylation was observed upon exposure to ELS or ethanol. The present findings suggest Vglut1-3 CpG-specific methylation signatures of ELS and ethanol drinking, underlying previously reported Vglut1-3 transcriptional differences in the mesocorticolimbic brain.
Collapse
Affiliation(s)
- Maria Vrettou
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Kent W Nilsson
- Centre for Clinical Research Västerås, Uppsala University, Västmanland County Hospital Västerås, Uppsala, Sweden.,The School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
| | | | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
18
|
Villavicencio-Tejo F, Flores-Bastías O, Marambio-Ruiz L, Pérez-Reytor D, Karahanian E. Fenofibrate (a PPAR-α Agonist) Administered During Ethanol Withdrawal Reverts Ethanol-Induced Astrogliosis and Restores the Levels of Glutamate Transporter in Ethanol-Administered Adolescent Rats. Front Pharmacol 2021; 12:653175. [PMID: 33959021 PMCID: PMC8093785 DOI: 10.3389/fphar.2021.653175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
High-ethanol intake induces a neuroinflammatory response, which has been proposed as responsible for the maintenance of chronic ethanol consumption. Neuroinflammation decreases glutamate transporter (GLT-1) expression, increasing levels of glutamate that trigger dopamine release at the corticolimbic reward areas, driving long-term drinking behavior. The activation of peroxisome proliferator-activated receptor alpha (PPARα) by fibrates inhibits neuroinflammation, in models other than ethanol consumption. However, the effect of fibrates on ethanol-induced neuroinflammation has not yet been studied. We previously reported that the administration of fenofibrate to ethanol-drinking rats decreased ethanol consumption. Here, we studied whether fenofibrate effects are related to a decrease in ethanol-induced neuroinflammation and to the normalization of the levels of GLT-1. Rats were administered ethanol on alternate days for 4 weeks (2 g/kg/day). After ethanol withdrawal, fenofibrate was administered for 14 days (50 mg/kg/day) and the levels of glial fibrillary acidic protein (GFAP), phosphorylated NF-κB-inhibitory protein (pIκBα) and GLT-1, were quantified in the prefrontal cortex, hippocampus, and hypothalamus. Ethanol treatment increased the levels of GFAP in the hippocampus and hypothalamus, indicating a clear astrocytic activation. Similarly, ethanol increased the levels of pIκBα in the three areas. The administration of fenofibrate decreased the expression of GFAP and pIκBα in the three areas. These results indicate that fenofibrate reverts both astrogliosis and NF-κB activation. Finally, ethanol decreased GLT-1 expression in the prefrontal cortex and hippocampus. Fenofibrate normalized the levels of GLT-1 in both areas, suggesting that its effect in reducing ethanol consumption could be due to the normalization of glutamatergic tone.
Collapse
Affiliation(s)
| | - Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Lucas Marambio-Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
19
|
Domi E, Domi A, Adermark L, Heilig M, Augier E. Neurobiology of alcohol seeking behavior. J Neurochem 2021; 157:1585-1614. [PMID: 33704789 DOI: 10.1111/jnc.15343] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Alcohol addiction is a chronic relapsing brain disease characterized by an impaired ability to stop or control alcohol use despite adverse consequences. A main challenge of addiction treatment is to prevent relapse, which occurs in more than >50% of newly abstinent patients with alcohol disorder within 3 months. In people suffering from alcohol addiction, stressful events, drug-associated cues and contexts, or re-exposure to a small amount of alcohol trigger a chain of behaviors that frequently culminates in relapse. In this review, we first present the preclinical models that were developed for the study of alcohol seeking behavior, namely the reinstatement model of alcohol relapse and compulsive alcohol seeking under a chained schedule of reinforcement. We then provide an overview of the neurobiological findings obtained using these animal models, focusing on the role of opioids systems, corticotropin-release hormone and neurokinins, followed by dopaminergic, glutamatergic, and GABAergic neurotransmissions in alcohol seeking behavior.
Collapse
Affiliation(s)
- Esi Domi
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Ana Domi
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| | - Eric Augier
- Center for Social and Affective Neuroscience, BKV, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
Montagud-Romero S, Cantacorps L, Fernández-Gómez FJ, Núñez C, Miñarro J, Rodríguez-Arias M, Milanés MV, Valverde O. Unraveling the molecular mechanisms involved in alcohol intake and withdrawal in adolescent mice exposed to alcohol during early life stages. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110025. [PMID: 32599136 DOI: 10.1016/j.pnpbp.2020.110025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/15/2023]
Abstract
Alcohol interferes with foetal development and prenatal alcohol exposure can lead to adverse effects known as foetal alcohol spectrum disorders. We aimed to assess the underlying neurobiological mechanisms involved in alcohol intake and withdrawal in adolescent mice exposed to alcohol during early life stages, in discrete brain areas. Pregnant C57BL/6 female mice were exposed to binge alcohol drinking from gestation to weaning. Subsequently, alcohol seeking and taking behaviour were evaluated in male adolescent offspring, as assessed in the two-bottle choice and oral self-administration paradigms. Brain area samples were analysed to quantify AMPAR subunits GluR1/2 and pCREB/CREB expression following alcohol self-administration. We measured the expression of mu and kappa opioid receptors both during acute alcohol withdrawal (assessing anxiety alterations by the EPM test) and following reinstatement in the two-bottle choice paradigm. In addition, alcohol metabolism was analysed by measuring blood alcohol concentrations under an acute dose of 3 g/kg alcohol. Our findings demonstrate that developmental alcohol exposure enhances alcohol intake during adolescence, which is associated with a decrease in the pCREB/CREB ratio in the hippocampus, prefrontal cortex and striatum, while the GluR1/GluR2 ratio showed a decrease in the hippocampus. Moreover, PLAE mice showed behavioural alterations, such as increased anxiety-like responses during acute alcohol withdrawal, and higher BAC levels. No significant changes were identified for mu and kappa opioid receptors mRNA expression. The current study highlights that early alcohol exposed mice increased alcohol consumption during late adolescence. Furthermore, a diminished CREB signalling and glutamatergic neuroplasticity are proposed as underpinning neurobiological mechanisms involved in the sensitivity to alcohol reinforcing properties.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francisco José Fernández-Gómez
- Murcia Research Institute of Health Sciences (IMIB), Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Cristina Núñez
- Murcia Research Institute of Health Sciences (IMIB), Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Victoria Milanés
- Murcia Research Institute of Health Sciences (IMIB), Department of Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; IMIM-Hospital del Mar Medical Research Institute, Neurosciences Programme, Barcelona, Spain.
| |
Collapse
|
21
|
Stoops WW, Strickland JC, Hays LR, Rayapati AO, Lile JA, Rush CR. Influence of n-acetylcysteine maintenance on the pharmacodynamic effects of oral ethanol. Pharmacol Biochem Behav 2020; 198:173037. [PMID: 32891709 PMCID: PMC7471929 DOI: 10.1016/j.pbb.2020.173037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE Glutamate systems play an important role in the abuse related effects of alcohol. n-Acetylcysteine, a drug that promotes glutamate homeostasis, attenuates a range of alcohol effects in preclinical models. OBJECTIVES This human laboratory study determined the influence of n-acetylcysteine maintenance on alcohol self-administration using a model predictive of treatment effectiveness, along with the subjective, performance and physiological effects of alcohol. We hypothesized that n-acetylcysteine would attenuate alcohol self-administration, as well as positive subjective effects of alcohol. METHODS Nine subjects with alcohol use disorder completed this within-subjects study. Subjects were maintained on placebo, 1.2 and 2.4 g n-acetylcysteine in random order on an outpatient basis. After five days of maintenance on the target dose, subjects completed overnight inpatient experimental sessions in which the pharmacodynamic effects of alcohol were determined. RESULTS Alcohol produced prototypic effects (e.g., increased breath alcohol concentration, increased ratings of Feel Drink). n-Acetylcysteine did not alter the effects of alcohol. CONCLUSIONS These results indicate that although n-acetylcysteine can safely be combined with alcohol, it does not attenuate the abuse related effects of alcohol and is unlikely to be an effective standalone alcohol use disorder treatment. However, considering study limitations, future work is needed to further understand whether and how n-acetylcysteine might be used as a treatment for alcohol use disorder (e.g., in combination with a behavioral treatment or another pharmacological agent).
Collapse
Affiliation(s)
- William W Stoops
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA; Center on Drug and Alcohol Research, University of Kentucky College of Medicine, 845 Angliana Ave, Lexington, KY 40508, USA.
| | - Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Lon R Hays
- Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA
| | - Abner O Rayapati
- Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA
| | - Joshua A Lile
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA
| | - Craig R Rush
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA
| |
Collapse
|
22
|
Suárez J, Khom S, Alén F, Natividad LA, Varodayan FP, Patel RR, Kirson D, Arco R, Ballesta A, Bajo M, Rubio L, Martin-Fardon R, de Fonseca FR, Roberto M. Cessation of fluoxetine treatment increases alcohol seeking during relapse and dysregulates endocannabinoid and glutamatergic signaling in the central amygdala. Addict Biol 2020; 25:e12813. [PMID: 31339221 PMCID: PMC8050940 DOI: 10.1111/adb.12813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Administration of selective serotonin reuptake inhibitors (SSRIs), typically used as antidepressants, induces long-lasting behavioral changes associated with alcohol use disorder (AUD). However, the contribution of SSRI (fluoxetine)-induced alterations in neurobiological processes underlying alcohol relapse such as endocannabinoid and glutamate signaling in the central amygdala (CeA) remains largely unknown. We utilized an integrative approach to study the effects of repeated fluoxetine administration during abstinence on ethanol drinking. Gene expression and biochemical and electrophysiological studies explored the hypothesis that dysregulation in glutamatergic and endocannabinoid mechanisms in the CeA underlie the susceptibility to alcohol relapse. Cessation of daily treatment with fluoxetine (10 mg/kg) during abstinence resulted in a marked increase in ethanol seeking during re-exposure periods. The increase in ethanol self-administration was associated with (a) reductions in levels of the endocannabinoids N-arachidonoylethanolomine and 2-arachidonoylglycerol in the CeA, (b) increased amygdalar gene expression of cannabinoid type-1 receptor (CB1), N-acyl phosphatidylethanolamine phospholipase D (Nape-pld), fatty acid amid hydrolase (Faah), (c) decreased amygdalar gene expression of ionotropic AMPA (GluA2 and GluA4) and metabotropic (mGlu3) glutamate receptors, and (d) increased glutamatergic receptor function. Overall, our data suggest that the administration of the antidepressant fluoxetine during abstinence dysregulates endocannabinoid signaling and glutamatergic receptor function in the amygdala, facts that likely facilitate alcohol drinking behavior during relapse.
Collapse
Affiliation(s)
- Juan Suárez
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Fulbright Visiting Scholar Program, Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Sophia Khom
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Francisco Alén
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Luis A. Natividad
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Florence P. Varodayan
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Reesha R. Patel
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Dean Kirson
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Rocío Arco
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
| | - Antonio Ballesta
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Michal Bajo
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Leticia Rubio
- Department of Anatomy and Forensic and Legal Medicine. Universidad de Málaga, Málaga, Spain
| | - Rémi Martin-Fardon
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Malaga (IBIMA), Mental Health UGC, Hospital Universitario Regional de Málaga, Málaga, Spain
- Department of Psychobiology. Universidad Complutense de Madrid, Madrid, Spain
| | - Marisa Roberto
- Department of Neuroscience, The Scripps Research Institute (TSRI), La Jolla, CA, USA
| |
Collapse
|
23
|
Gruol DL, Melkonian C, Ly K, Sisouvanthong J, Tan Y, Roberts AJ. Alcohol and IL-6 Alter Expression of Synaptic Proteins in Cerebellum of Transgenic Mice with Increased Astrocyte Expression of IL-6. Neuroscience 2020; 442:124-137. [PMID: 32634532 DOI: 10.1016/j.neuroscience.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Recent studies indicate that neuroimmune factors, including the cytokine interleukin-6 (IL-6), play a role in the CNS actions of alcohol. The cerebellum is a sensitive target of alcohol, but few studies have examined a potential role for neuroimmune factors in the actions of alcohol on this brain region. A number of studies have shown that synaptic transmission, and in particular inhibitory synaptic transmission, is an important cerebellar target of alcohol. IL-6 also alters synaptic transmission, although it is unknown if IL-6 targets are also targets of alcohol. This is an important issue because alcohol induces glial production of IL-6, which could then covertly influence the actions of alcohol. The persistent cerebellar effects of both IL-6 and alcohol typically involve chronic exposure and, presumably, altered gene and protein expression. Thus, in the current studies we tested the possibility that proteins involved in inhibitory and excitatory synaptic transmission in the cerebellum are common targets of alcohol and IL-6. We used transgenic mice that express elevated levels of astrocyte produced IL-6 to model persistently elevated expression of IL-6, as would occur in alcohol use disorders, and a chronic intermittent alcohol exposure/withdrawal paradigm (CIE/withdrawal) that is known to produce alcohol dependence. Multiple cerebellar synaptic proteins were assessed by Western blot. Results show that IL-6 and CIE/withdrawal have both unique and common actions that affect synaptic protein expression. These common targets could provide sites for IL-6/alcohol exposure/withdrawal interactions and play an important role in cerebellar symptoms of alcohol use such as ataxia.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Claudia Melkonian
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristine Ly
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jasmin Sisouvanthong
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yvette Tan
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Brenner E, Tiwari GR, Kapoor M, Liu Y, Brock A, Mayfield RD. Single cell transcriptome profiling of the human alcohol-dependent brain. Hum Mol Genet 2020; 29:1144-1153. [PMID: 32142123 PMCID: PMC7206851 DOI: 10.1093/hmg/ddaa038] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Alcoholism remains a prevalent health concern throughout the world. Previous studies have identified transcriptomic patterns in the brain associated with alcohol dependence in both humans and animal models. But none of these studies have systematically investigated expression within the unique cell types present in the brain. We utilized single nucleus RNA sequencing (snRNA-seq) to examine the transcriptomes of over 16 000 nuclei isolated from the prefrontal cortex of alcoholic and control individuals. Each nucleus was assigned to one of seven major cell types by unsupervised clustering. Cell type enrichment patterns varied greatly among neuroinflammatory-related genes, which are known to play roles in alcohol dependence and neurodegeneration. Differential expression analysis identified cell type-specific genes with altered expression in alcoholics. The largest number of differentially expressed genes (DEGs), including both protein-coding and non-coding, were detected in astrocytes, oligodendrocytes and microglia. To our knowledge, this is the first single cell transcriptome analysis of alcohol-associated gene expression in any species and the first such analysis in humans for any addictive substance. These findings greatly advance the understanding of transcriptomic changes in the brain of alcohol-dependent individuals.
Collapse
Affiliation(s)
- Eric Brenner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gayatri R Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Manav Kapoor
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
25
|
Farris SP, Tiwari GR, Ponomareva O, Lopez MF, Mayfield RD, Becker HC. Transcriptome Analysis of Alcohol Drinking in Non-Dependent and Dependent Mice Following Repeated Cycles of Forced Swim Stress Exposure. Brain Sci 2020; 10:E275. [PMID: 32370184 PMCID: PMC7288165 DOI: 10.3390/brainsci10050275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic stress is a known contributing factor to the development of drug and alcohol addiction. Animal models have previously shown that repeated forced swim stress promotes escalated alcohol consumption in dependent animals. To investigate the underlying molecular adaptations associated with stress and chronic alcohol exposure, RNA-sequencing and bioinformatics analyses were conducted on the prefrontal cortex (CTX) of male C57BL/6J mice that were behaviorally tested for either non-dependent alcohol consumption (CTL), chronic intermittent ethanol (CIE) vapor dependent alcohol consumption, repeated bouts of forced swim stress alone (FSS), and chronic intermittent ethanol with forced swim stress (CIE + FSS). Brain tissue from each group was collected at 0-h, 72-h, and 168-h following the final test to determine long-lasting molecular changes associated with maladaptive behavior. Our results demonstrate unique temporal patterns and persistent changes in coordinately regulated gene expression systems with respect to the tested behavioral group. For example, increased expression of genes involved in "transmitter-gated ion channel activity" was only determined for CIE + FSS. Overall, our results provide a summary of transcriptomic adaptations across time within the CTX that are relevant to understanding the neurobiology of chronic alcohol exposure and stress.
Collapse
Affiliation(s)
- Sean P. Farris
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Gayatri R. Tiwari
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (G.R.T.); (O.P.); (R.D.M.)
| | - Olga Ponomareva
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (G.R.T.); (O.P.); (R.D.M.)
| | - Marcelo F. Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 28425, USA;
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA; (G.R.T.); (O.P.); (R.D.M.)
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Howard C. Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 28425, USA;
- Department of Neuroscience, Medical University of South, Charleston, SC 29425, USA
- Department of Veterans Affairs Medical Center, Charleston, SC 20401, USA
| |
Collapse
|
26
|
Baggio S, Zenki K, Martins Silva A, Dos Santos TG, Rech G, Lazzarotto G, Dias RD, Mussulini BH, Rico EP, de Oliveira DL. Fetal alcohol spectrum disorders model alters the functionality of glutamatergic neurotransmission in adult zebrafish. Neurotoxicology 2020; 78:152-160. [PMID: 32173352 DOI: 10.1016/j.neuro.2020.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) describe a wide range of ethanol-induced developmental disabilities, including craniofacial dysmorphology, and neurochemical and behavioral impairments. Zebrafish has become a popular animal model to evaluate the long-lasting effects of, both, severe and milder forms of FASD, including alterations to neurotransmission. Glutamate is one of the most affected neurotransmitter systems in ethanol-induced developmental disabilities. Therefore, the aim of the present study was to evaluate the functionality of the glutamatergic neurotransmitter system in an adult zebrafish FASD model. Zebrafish larvae (24 h post-fertilization) were exposed to ethanol (0.1 %, 0.25 %, 0.5 %, and 1%) for 2 h. After 4 months, the animals were euthanized and their brains were removed. The following variables were measured: glutamate uptake, glutamate binding, glutamine synthetase activity, Na+/K + ATPase activity, and high-resolution respirometry. Embryonic ethanol exposure reduced Na+-dependent glutamate uptake in the zebrafish brain. This reduction was positively modulated by ceftriaxone treatment, a beta-lactam antibiotic that promotes the expression of the glutamate transporter EAAT2. Moreover, the 0.5 % and 1% ethanol groups demonstrated reduced glutamate binding to brain membranes and decreased Na+/K + ATPase activity in adulthood. In addition, ethanol reduced glutamine synthetase activity in the 1% EtOH group. Embryonic ethanol exposure did not alter the immunocontent of the glutamate vesicular transporter VGLUT2 and the mitochondrial energetic metabolism of the brain in adulthood. Our results suggest that embryonic ethanol exposure may cause significant alterations in glutamatergic neurotransmission in the adult zebrafish brain.
Collapse
Affiliation(s)
- Suelen Baggio
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| | - Kamila Zenki
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alberto Martins Silva
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Thainá Garbino Dos Santos
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Giovana Rech
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Lazzarotto
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Renato Dutra Dias
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ben Hur Mussulini
- Centre of New Technologies, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland; ReMedy International Research Agenda Unit, University of Warsaw, Banacha 2C, Warsaw 02-097, Poland
| | - Eduardo Pacheco Rico
- Programa De Pós-Graduação Em Ciências Da Saúde, Universidade Do Extremo Sul Catarinense - UNESC, Av. Universitária, 1105, Bairro Universitário, 88806-000 Criciúma, SC, Brazil
| | - Diogo Losch de Oliveira
- Laboratory of Cellular Neurochemistry, Programa De Pós-graduação Em Ciências Biológicas: Bioquímica, Departamento De Bioquímica, Instituto De Ciências Básicas Da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
27
|
Johnson KA, Lovinger DM. Allosteric modulation of metabotropic glutamate receptors in alcohol use disorder: Insights from preclinical investigations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:193-232. [PMID: 32416868 DOI: 10.1016/bs.apha.2020.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are family C G protein-coupled receptors (GPCRs) that modulate neuronal excitability and synaptic transmission throughout the nervous system. Owing to recent advances in development of subtype-selective allosteric modulators of mGlu receptors, individual members of the mGlu receptor family have been proposed as targets for treating a variety of neurological and psychiatric disorders, including substance use disorders. In this chapter, we highlight preclinical evidence that allosteric modulators of mGlu receptors could be useful for reducing alcohol consumption and preventing relapse in alcohol use disorder (AUD). We begin with an overview of the preclinical models that are used to study mGlu receptor involvement in alcohol-related behaviors. Alcohol exposure causes adaptations in both expression and function of various mGlu receptor subtypes, and pharmacotherapies aimed at reversing these adaptations have the potential to reduce alcohol consumption and seeking. Positive allosteric modulators (PAMs) of mGlu2 and negative allosteric modulators of mGlu5 show particular promise for reducing alcohol intake and/or preventing relapse. Finally, this chapter discusses important considerations for translating preclinical findings toward the development of clinically useful drugs, including the potential for PAMs to avoid tolerance issues that are frequently observed with repeated administration of GPCR agonists.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
28
|
Krupitsky EM, Rybakova KV, Skurat EP, Semenova NV, Neznanov NG. [A double blind placebo controlled randomized clinical trial of the efficacy and safety of pregabalin in induction of remission in patients with alcohol dependence]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:33-43. [PMID: 32105267 DOI: 10.17116/jnevro202012001133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIM To study the efficacy of pregabalin for relapse prevention and reduction of drinking in patients with alcohol dependence. MATERIAL AND METHODS One hundred recently detoxified out-patients with alcohol dependence were randomly assigned to one of two treatment groups. Patients of the first group (n=50; 38 men, 12 women, age 43.0±1.27) received pregabalin (150 mg once a day at night time) for 3 months, while patients of the second group (n=50; 45 men, 5 women, age 45.92±1.4) received identically looking placebo. All patients received standardized manualized weekly counseling (medical management). Drinking was measured on the weekly basis with Time Line Follow Back technique and GGT enzyme activity. Also, craving for alcohol, depression, and anxiety were measured weekly with the number of scales. RESULTS Kaplan-Meier survival analysis demonstrated significantly higher retention in treatment and in remission in the pregabalin group (lower drop out and relapse rate) mediana (CL)-12 (10.4-13.6) weeks in the pregabalin group vs. 6 (4.5-7.5) in the placebo group, Log Rank Mantel-Cox test = 0.005). Proportion of patients, who completed treatment in the pregabalin group, was significantly higher compared to the placebo group: 50% vs. 24%. Mean duration of participation in the treatment program was also higher in the pregabalin group: 9.1±0.5 weeks vs. 7.1±0.5 in the placebo group. General linear model demonstrated the significant treatment group effect on: (1) total alcohol consumption (TAC) (mean grams of alcohol per day) with lower TAC in the pregabalin group and (2) on the number of heavy drinking days (NHDD) with lower NHDD in the pregabalin group. Mean NHDD per patient for the period of participation in the study was lower in the pregabalin group (3.6±0.7 vs. 6.4±0.8; p=0.009), while the mean number of abstinent (sober) days was higher (55.9±3.6 vs. 40.0±3.3; p=0.001). No significant differences between the two groups were found in the scores on craving for alcohol, depression and anxiety scales. GGT activity was also similar in both groups throughout the study with no significant between group differences. The rate of adverse events (sleepiness, dizziness, and headache) was insignificantly higher in the pregabalin group compared with the placebo group. All adverse events were mild, gradually disappeared, and did not require any medication. CONCLUSION Results of this study provide evidence that pregabalin in a low dose of 150 mg per day is an effective and safe medication for relapse prevention and reduction of drinking in patients with alcohol dependence.
Collapse
Affiliation(s)
- E M Krupitsky
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia; First St. Petersburg Pavlov State Medical University, St. Petersburg, Russia
| | - K V Rybakova
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - E P Skurat
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - N V Semenova
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - N G Neznanov
- National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia; First St. Petersburg Pavlov State Medical University, St. Petersburg, Russia
| |
Collapse
|
29
|
Pajser A, Limoges A, Long C, Pickens CL. Individual differences in voluntary alcohol consumption are associated with conditioned fear in the fear incubation model. Behav Brain Res 2019; 362:299-310. [PMID: 30664887 PMCID: PMC6415663 DOI: 10.1016/j.bbr.2019.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/24/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022]
Abstract
Previous research in male Long Evans rats has shown a relationship between low voluntary alcohol consumption and high conditioned fear after a single training session. Here, we determined whether chronic intermittent access (CIA) to alcohol during adolescence/early adulthood or during adulthood would alter or be associated with auditory-cued conditioned fear levels using an extended training fear incubation procedure. This training procedure leads to low fear soon after training that grows over one month. Rats received 6 weeks of CIA to 20% alcohol or water from PND 26-66. Ten or eleven days later, the rats began behavioral testing that included 10 sessions of tone-shock pairings. Rats then received 4 weeks of CIA exposure during the 1-month fear incubation period and were tested for conditioned fear 6 days after the end of alcohol access. We found no evidence that voluntary alcohol consumption during adolescence/early adulthood or adulthood altered fear expression. However, we found that rats that consumed more alcohol during early adulthood (PND 54-66) had lower fear than low-consumption rats on day 1 of conditioned fear training and in the day 2 and 1-month tests. This extends associations we previously found between individual differences in alcohol consumption and conditioned fear to a different fear conditioning procedure. Combined with our previous data that show that the rate of instrumental extinction is associated with both alcohol consumption and conditioned fear, these data provide further support for the generality and reliability of a pair of phenotypes that encompass a wide variety of learning traits.
Collapse
Affiliation(s)
- Alisa Pajser
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Aaron Limoges
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Charday Long
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Charles L Pickens
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
30
|
Reglodi D, Toth D, Vicena V, Manavalan S, Brown D, Getachew B, Tizabi Y. Therapeutic potential of PACAP in alcohol toxicity. Neurochem Int 2019; 124:238-244. [PMID: 30682380 DOI: 10.1016/j.neuint.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Alcohol addiction is a worldwide concern as its detrimental effects go far beyond the addicted individual and can affect the entire family as well as the community. Considerable effort is being expended in understanding the neurobiological basis of such addiction in hope of developing effective prevention and/or intervention strategies. In addition, organ damage and neurotoxicological effects of alcohol are intensely investigated. Pharmacological approaches, so far, have only provided partial success in prevention or treatment of alcohol use disorder (AUD) including the neurotoxicological consequences of heavy drinking. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid neuropeptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents including alcohol. In this mini-review, following a brief presentation of alcohol addiction and its neurotoxicity, the potential of PACAP as a therapeutic intervention in toxicological consequences of this devastating disorder is discussed.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary.
| | - Denes Toth
- Department of Forensic Medicine, University of Pecs Medical School, Hungary
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary
| | - Sridharan Manavalan
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Hungary; Department of Basic Sciences, National University of Health Sciences, Florida, USA
| | - Dwayne Brown
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
31
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
32
|
Cheng H, Kellar D, Lake A, Finn P, Rebec GV, Dharmadhikari S, Dydak U, Newman S. Effects of Alcohol Cues on MRS Glutamate Levels in the Anterior Cingulate. Alcohol Alcohol 2018; 53:209-215. [PMID: 29329417 DOI: 10.1093/alcalc/agx119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Growing evidence suggests that glutamate neurotransmission plays a critical role in alcohol addiction. Cue-induced change of glutamate has been observed in animal studies but never been investigated in humans. This work investigates cue-induced change in forebrain glutamate in individuals with alcohol use disorder (AUD). A total of 35 subjects (17 individuals with AUD and 18 healthy controls) participated in this study. The glutamate concentration was measured with single-voxel 1H-MR spectroscopy at the dorsal anterior cingulate. Two MRS sessions were performed in succession, the first to establish basal glutamate levels and the second to measure the change in response to alcohol cues. The changes in glutamate were quantified for both AUD subjects and controls. A mixed model ANOVA and t-tests were performed for statistical analysis. ANOVA revealed a main effect of cue-induced decrease of glutamate level in the anterior cingulate cortex (ACC). A significant interaction revealed that only AUD subjects showed significant decrease of glutamate in the ACC. There were no significant group differences in the level of basal glutamate. However, a negative correlation was found between the basal glutamate level and the number of drinking days in the past 2 weeks for the AUD subjects. Collectively, our results indicate that glutamate in key areas of the forebrain reward circuit is modulated by alcohol cues in early alcohol dependence.
Collapse
Affiliation(s)
- Hu Cheng
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Derek Kellar
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Allison Lake
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Peter Finn
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - George V Rebec
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sharlene Newman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
33
|
Finn DA, Hashimoto JG, Cozzoli DK, Helms ML, Nipper MA, Kaufman MN, Wiren KM, Guizzetti M. Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice. Front Genet 2018; 9:325. [PMID: 30250478 PMCID: PMC6139464 DOI: 10.3389/fgene.2018.00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
We previously determined that repeated binge ethanol drinking produced sex differences in the regulation of signaling downstream of Group 1 metabotropic glutamate receptors in the nucleus accumbens (NAc) of adult C57BL/6J mice. The purpose of the present study was to characterize RNA expression differences in the NAc of adult male and female C57BL/6J mice following 7 binge ethanol drinking sessions, when compared with controls consuming water. This binge drinking procedure produced high intakes (average >2.2 g/kg/30 min) and blood ethanol concentrations (average >1.3 mg/ml). Mice were euthanized at 24 h after the 7th binge session, and focused qPCR array analysis was employed on NAc tissue to quantify expression levels of 384 genes in a customized Mouse Mood Disorder array, with a focus on glutamatergic signaling (3 arrays/group). We identified significant regulation of 50 genes in male mice and 70 genes in female mice after 7 ethanol binges. Notably, 14 genes were regulated in both males and females, representing common targets to binge ethanol drinking. However, expression of 10 of these 14 genes was strongly dimorphic (e.g., opposite regulation for genes such as Crhr2, Fos, Nos1, and Star), and only 4 of the 14 genes were regulated in the same direction (Drd5, Grm4, Ranbp9, and Reln). Interestingly, the top 30 regulated genes by binge ethanol drinking for each sex differed markedly in the male and female mice, and this divergent neuroadaptive response in the NAc could result in dysregulation of distinct biological pathways between the sexes. Characterization of the expression differences with Ingenuity Pathway Analysis was used to identify Canonical Pathways, Upstream Regulators, and significant Biological Functions. Expression differences suggested that hormone signaling and immune function were altered by binge drinking in female mice, whereas neurotransmitter metabolism was a central target of binge ethanol drinking in male mice. Thus, these results indicate that the transcriptional response to repeated binge ethanol drinking was strongly influenced by sex, and they emphasize the importance of considering sex in the development of potential pharmacotherapeutic targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Debra K Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Moriah N Kaufman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
34
|
Colville AM, Iancu OD, Lockwood DR, Darakjian P, McWeeney SK, Searles R, Zheng C, Hitzemann R. Regional Differences and Similarities in the Brain Transcriptome for Mice Selected for Ethanol Preference From HS-CC Founders. Front Genet 2018; 9:300. [PMID: 30210525 PMCID: PMC6120986 DOI: 10.3389/fgene.2018.00300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022] Open
Abstract
The high genetic complexity found in heterogeneous stock (HS-CC) mice, together with selective breeding, can be used to detect new pathways and mechanisms associated with ethanol preference and excessive ethanol consumption. We predicted that these pathways would provide new targets for therapeutic manipulation. Previously (Colville et al., 2017), we observed that preference selection strongly affected the accumbens shell (SH) genes associated with synaptic function and in particular genes associated with synaptic tethering. Here we expand our analyses to include substantially larger sample sizes and samples from two additional components of the “addiction circuit,” the central nucleus of the amygdala (CeA) and the prelimbic cortex (PL). At the level of differential expression (DE), the majority of affected genes are region-specific; only in the CeA did the DE genes show a significant enrichment in GO annotation categories, e.g., neuron part. In all three brain regions the differentially variable genes were significantly enriched in a single network module characterized by genes associated with cell-to-cell signaling. The data point to glutamate plasticity as being a key feature of selection for ethanol preference. In this context the expression of Dlg2 which encodes for PSD-93 appears to have a key role. It was also observed that the expression of the clustered protocadherins was strongly associated with preference selection.
Collapse
Affiliation(s)
- Alexandre M Colville
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Ovidiu D Iancu
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Denesa R Lockwood
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Shannon K McWeeney
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Robert Searles
- Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR, United States
| | - Christina Zheng
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
35
|
Quintanilla ME, Morales P, Ezquer F, Ezquer M, Herrera-Marschitz M, Israel Y. Commonality of Ethanol and Nicotine Reinforcement and Relapse in Wistar-Derived UChB Rats: Inhibition by N
-Acetylcysteine. Alcohol Clin Exp Res 2018; 42:1988-1999. [DOI: 10.1111/acer.13842] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/15/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Maria Elena Quintanilla
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
- Neuroscience Department; Faculty of Medicine; University of Chile; Santiago Chile
| | - Fernando Ezquer
- Facultad de Medicina Clínica; Centro de Medicina Regenerativa; Alemana-Universidad del Desarrollo; Santiago Chile
- Facultad de Medicina; Centro de Medicina Regenerativa; Clinica Alemana-Universidad del Desarrollo; Santiago Chile
| | - Marcelo Ezquer
- Facultad de Medicina Clínica; Centro de Medicina Regenerativa; Alemana-Universidad del Desarrollo; Santiago Chile
- Facultad de Medicina; Centro de Medicina Regenerativa; Clinica Alemana-Universidad del Desarrollo; Santiago Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program; Institute of Biomedical Sciences; University of Chile; Santiago Chile
| |
Collapse
|
36
|
Alasmari F, Bell RL, Rao PSS, Hammad AM, Sari Y. Peri-adolescent drinking of ethanol and/or nicotine modulates astroglial glutamate transporters and metabotropic glutamate receptor-1 in female alcohol-preferring rats. Pharmacol Biochem Behav 2018; 170:44-55. [PMID: 29753887 PMCID: PMC7714273 DOI: 10.1016/j.pbb.2018.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Impairment in glutamate neurotransmission mediates the development of dependence upon nicotine (NIC) and ethanol (EtOH). Previous work indicates that continuous access to EtOH or phasic exposure to NIC reduces expression of the glutamate transporter-1 (GLT-1) and cystine/glutamate antiporter (xCT) but not the glutamate/aspartate transporter (GLAST). Additionally, metabotropic glutamate receptors (mGluRs) expression was affected following exposure to EtOH or NIC. However, little is known about the effects of EtOH and NIC co-consumption on GLT-1, xCT, GLAST, and mGluR1 expression. In this study, peri-adolescent female alcohol preferring (P) rats were given binge-like access to water, sucrose (SUC), SUC-NIC, EtOH, or EtOH-NIC for four weeks. The present study determined the effects of these reinforcers on GLT-1, xCT, GLAST, and mGluR1 expression in the nucleus accumbens (NAc), hippocampus (HIP) and prefrontal cortex (PFC). GLT-1 and xCT expression were decreased in the NAc following both SUC-NIC and EtOH-NIC. In addition, only xCT expression was downregulated in the HIP in both of these latter groups. Also, glutathione peroxidase (GPx) activity in the HIP was reduced following SUC, SUC-NIC, EtOH, and EtOH-NIC consumption. Similar to previous work, GLAST expression was not altered in any brain region by any of the reinforcers. However, mGluR1 expression was increased in the NAc in the SUC-NIC, EtOH, and EtOH-NIC groups. These results indicate that peri-adolescent binge-like drinking of EtOH or SUC with or without NIC may exert differential effects on astroglial glutamate transporters and receptors. Our data further parallel some of the previous findings observed in adult rats.
Collapse
Affiliation(s)
- Fawaz Alasmari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Richard L Bell
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - P S S Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH 45840, USA
| | - Alaa M Hammad
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
37
|
Lavanco G, Castelli V, Brancato A, Tringali G, Plescia F, Cannizzaro C. The endocannabinoid-alcohol crosstalk: Recent advances on a bi-faceted target. Clin Exp Pharmacol Physiol 2018; 45:889-896. [PMID: 29770478 DOI: 10.1111/1440-1681.12967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Increasing evidence has focusesed on the endocannabinoid system as a relevant player in the induction of aberrant synaptic plasticity and related addictive phenotype following chronic excessive alcohol drinking. In addition, the endocannabinoid system is implicated in the pathogenesis of alcoholic liver disease. Interestingly, whereas the involvement of CB1 receptors in alcohol rewarding properties is established, the central and peripheral action of CB2 signalling is still to be elucidated. This review aims at giving the input to deepen knowledge on the role of the endocannabinoid system, highlighting the advancing evidence that suggests that CB1 and CB2 receptors may play opposite roles in the regulation of both the reinforcing properties of alcohol in the brain and the mechanisms responsible for cell injury and inflammation in the hepatic tissue. The manipulation of the endocannabinoid system could represent a bi-faceted strategy to counteract alcohol-related dysfunction in central transmission and liver structural and functional disarrangement.
Collapse
Affiliation(s)
- Gianluca Lavanco
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Valentina Castelli
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
38
|
Gene expression changes in the ventral hippocampus and medial prefrontal cortex of adolescent alcohol-preferring (P) rats following binge-like alcohol drinking. Alcohol 2018; 68:37-47. [PMID: 29448234 DOI: 10.1016/j.alcohol.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/23/2022]
Abstract
Binge drinking of alcohol during adolescence is a serious public health concern with long-term consequences, including decreased hippocampal and prefrontal cortex volume and deficits in memory. We used RNA sequencing to assess the effects of adolescent binge drinking on gene expression in these regions. Male adolescent alcohol-preferring (P) rats were exposed to repeated binge drinking (three 1-h sessions/day during the dark/cycle, 5 days/week for 3 weeks starting at 28 days of age; ethanol intakes of 2.5-3 g/kg/session). Ethanol significantly altered the expression of 416 of 11,727 genes expressed in the ventral hippocampus. Genes and pathways involved in neurogenesis, long-term potentiation, and axonal guidance were decreased, which could relate to the impaired memory function found in subjects with adolescent alcohol binge-like exposure. The decreased expression of myelin and cholesterol genes and apparent decrease in oligodendrocytes in P rats could result in decreased myelination. In the medial prefrontal cortex, 638 of 11,579 genes were altered; genes in cellular stress and inflammatory pathways were increased, as were genes involved in oxidative phosphorylation. Overall, the results of this study suggest that adolescent binge-like alcohol drinking may alter the development of the ventral hippocampus and medial prefrontal cortex and produce long-term consequences on learning and memory, and on control of impulsive behaviors.
Collapse
|
39
|
Schuckit MA. A Critical Review of Methods and Results in the Search for Genetic Contributors to Alcohol Sensitivity. Alcohol Clin Exp Res 2018; 42:822-835. [PMID: 29623680 PMCID: PMC5916326 DOI: 10.1111/acer.13628] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
Attributes of alcohol sensitivity are present before alcohol use disorders (AUDs) develop, they predict those adverse alcohol outcomes, are familial in nature, and many are heritable. Whether measured by alcohol challenges or retrospective reports of numbers of drinks required for effects, alcohol sensitivity reflects multiple phenotypes, including low levels of alcohol response and alcohol-related stimulation. Identification of genes that contribute to alcohol sensitivity could help identify individuals carrying risks for AUDs through their alcohol responses for whom early intervention might mitigate their vulnerability. Such genes could also improve understanding of biological underpinnings of AUDs, which could lead to new treatment approaches. However, the existing literature points to a wide range of genetic mechanisms that might contribute to alcohol responses, and few such genetic findings have been widely replicated. This critical review describes the potential impact of the diverse methods used to study sensitivity on the diversity of genetic findings that have been reported, places the genetic variants mentioned in the literature into broader categories rather than isolated results, and offers suggestions regarding how to advance the field by interpreting findings in light of the methods used to select research subjects and to measure alcohol sensitivity. To date, the most promising results have been for GABA, glutamate, opioid, dopamine, serotonin, and cholinergic system genes. The more gene variants that can be identified as contributors to sensitivity the better future gene screening platforms or polygenic scores are likely to be.
Collapse
Affiliation(s)
- Marc A Schuckit
- Department of Psychiatry, University of California, San Diego School of Medicine, La Jolla, California
| |
Collapse
|
40
|
Prior binge-drinking history promotes the positive affective valence of methamphetamine in mice. Drug Alcohol Depend 2018; 183:150-154. [PMID: 29253796 PMCID: PMC6371796 DOI: 10.1016/j.drugalcdep.2017.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/22/2022]
Abstract
An alcohol use disorder is a major predisposing factor for methamphetamine (MA) abuse. Further, MA-alcohol co-abuse is a risk factor for treatment discontinuation and non-compliance in MA-dependent individuals. No effective treatment exists for MA addiction, let alone treatments directed at those suffering from MA-alcohol addiction co-morbidity. Thus, it is imperative that we develop high-throughput animal models to study the biobehavioral interactions between MA and alcohol of relevance to the etiology and treatment of co-abuse. To this end, we reported that a history of binge alcohol-drinking [5,10, 20 and 40% (v/v); 2 h/day for 10-14 days] reduces MA reinforcement and intake, but it augments MA-preference and intake when drug availability is behaviorally non-contingent. To reconcile this apparent discrepancy in findings, we employed a comparable 2-week binge-drinking paradigm as that employed in our previous studies followed by place-conditioning procedures (4 pairings of 0.25, 0.5, 1, 2 or 4 mg/kg MA, i.p.). This was meant to determine how a prior binge-drinking history impacts the affective valence of MA and sensitivity to MA-induced psychomotor-activation/sensitization. Prior binge-drinking history blunted spontaneous locomotor activity and shifted the MA dose-place-preference function upwards of water drinking controls. The potentiation of MA-conditioned reward by prior binge-drinking history was independent of any alcohol effects upon the locomotor-activating or -sensitizing effects of MA. Based on these results we propose that the reduced MA reinforcement reported previously by our group likely reflects a compensatory response to an increased sensitivity to MA's positive subjective effects rather than increased sensitivity to the drug's psychomotor-activating effects.
Collapse
|
41
|
Sánchez-Marín L, Ladrón de Guevara-Miranda D, Mañas-Padilla MC, Alén F, Moreno-Fernández RD, Díaz-Navarro C, Pérez-Del Palacio J, García-Fernández M, Pedraza C, Pavón FJ, Rodríguez de Fonseca F, Santín LJ, Serrano A, Castilla-Ortega E. Systemic blockade of LPA 1/3 lysophosphatidic acid receptors by ki16425 modulates the effects of ethanol on the brain and behavior. Neuropharmacology 2018; 133:189-201. [PMID: 29378212 DOI: 10.1016/j.neuropharm.2018.01.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/24/2018] [Indexed: 01/08/2023]
Abstract
The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects.
Collapse
Affiliation(s)
- Laura Sánchez-Marín
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - David Ladrón de Guevara-Miranda
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - M Carmen Mañas-Padilla
- Centro de Experimentación Animal, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Francisco Alén
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Román D Moreno-Fernández
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Caridad Díaz-Navarro
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - José Pérez-Del Palacio
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - María García-Fernández
- Departamento de Fisiología Humana, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Medicina, Universidad de Málaga, Spain
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| |
Collapse
|
42
|
Low Vs. High Alcohol: Central Benefits Vs. Detriments. Neurotox Res 2018; 34:860-869. [DOI: 10.1007/s12640-017-9859-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023]
|
43
|
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017; 96:1223-1238. [PMID: 29268093 PMCID: PMC6566861 DOI: 10.1016/j.neuron.2017.10.032] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Ding ZM, Ingraham CM, Hauser SR, Lasek AW, Bell RL, McBride WJ. Reduced Levels of mGlu2 Receptors within the Prelimbic Cortex Are Not Associated with Elevated Glutamate Transmission or High Alcohol Drinking. Alcohol Clin Exp Res 2017; 41:1896-1906. [PMID: 28858384 PMCID: PMC5659915 DOI: 10.1111/acer.13488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND A Grm2 cys407* stop codon mutation, which results in a loss of the metabotropic glutamate 2 (mGlu2) receptor protein, was identified as being associated with high alcohol drinking by alcohol-preferring (P) rats. The objectives of the current study were to characterize the effects of reduced levels of mGlu2 receptors on glutamate transmission and alcohol drinking. METHODS Quantitative no-net-flux microdialysis was used to test the hypothesis that basal extracellular glutamate levels in the prelimbic (PL) cortex and nucleus accumbens shell (NACsh) will be higher in P than Wistar rats. A lentiviral-delivered short-hairpin RNA (shRNA)-mediated knockdown was used to test the hypothesis that reduced levels of mGlu2 receptors within the PL cortex will increase voluntary alcohol drinking by Wistar rats. A linear regression analysis was used to test the hypothesis that there will be a significant correlation between the Grm2 cys407* mutation and level of alcohol intake. RESULTS Extracellular glutamate concentrations within the PL cortex (3.6 ± 0.6 vs. 6.4 ± 0.6 μM) and NACsh (3.2 ± 0.4 vs. 6.6 ± 0.6 μM) were significantly lower in female P than female Wistar rats. Western blot detected the presence of mGlu2 receptors in these regions of female Wistar rats, but not female P rats. Micro-infusion of shRNAs into the PL cortex significantly reduced local mGlu2 receptor levels (by 40%), but did not alter voluntary alcohol drinking in male Wistar rats. In addition, there was no significant correlation between the Grm2 mutation and alcohol intake in 36 rodent lines (r = 0.29, p > 0.05). CONCLUSIONS Collectively, these results suggest a lack of association between the loss of mGlu2 receptors and glutamate transmission in the NACsh and PL cortex of female P rats, and between the level of mGlu2 receptors in the PL cortex and alcohol drinking of male Wistar rats.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Cynthia M. Ingraham
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Sheketha R. Hauser
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612
| | - Richard L. Bell
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| | - William J. McBride
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
45
|
Quadir SG, Guzelian E, Palmer MA, Martin DL, Kim J, Szumlinski KK. Complex interactions between the subject factors of biological sex and prior histories of binge-drinking and unpredictable stress influence behavioral sensitivity to alcohol and alcohol intake. Physiol Behav 2017; 203:100-112. [PMID: 28803118 DOI: 10.1016/j.physbeh.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/08/2017] [Indexed: 11/28/2022]
Abstract
Alcohol use disorders, affective disorders and their comorbidity are sexually dimorphic in humans. However, it is difficult to disentangle the interactions between subject factors influencing alcohol sensitivity in studies of humans. Herein, we combined murine models of unpredictable, chronic, mild stress (UCMS) and voluntary binge-drinking to examine for sex differences in the interactions between prior histories of excessive ethanol-drinking and stress upon ethanol-induced changes in motor behavior and subsequent drinking. In Experiment 1, female mice were insensitive to the UCMS-induced increase in ethanol-induced locomotion and ethanol intake under continuous alcohol-access. Experiment 2 revealed interactions between ethanol dose and sex (females>males), binge-drinking history (water>ethanol), and UCMS history (UCMS>controls), with no additive effect of a sequential prior history of both binge drinking and UCMS observed. We also observed an interaction between UCMS history and sex for righting recovery. UCMS history potentiated subsequent binge-drinking in water controls of both sexes and in male binge-drinking mice. Conversely, a prior binge-drinking history increased subsequent ethanol intake in females only, irrespective of prior UCMS history. In Experiment 3, a concurrent history of binge-drinking and UCMS did not alter ethanol intake, nor did it influence the ethanol dose-locomotor response function, but it did augment alcohol-induced sedation and reduced subsequent alcohol intake over that produced by binge-drinking alone. Thus, the subject factors of biological sex, prior stressor history and prior binge-drinking history interact in complex ways in mice to impact sensitivity to alcohol's motor-stimulating, -incoordinating and intoxicating effects, as well as to influence subsequent heavy drinking.
Collapse
Affiliation(s)
- Sema G Quadir
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Eugenie Guzelian
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Mason A Palmer
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Douglas L Martin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Jennifer Kim
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA; Department of Molecular, Developmental and Cell Biology, Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
46
|
Parira T, Laverde A, Agudelo M. Epigenetic Interactions between Alcohol and Cannabinergic Effects: Focus on Histone Modification and DNA Methylation. JOURNAL OF ALCOHOLISM AND DRUG DEPENDENCE 2017; 5:259. [PMID: 28730160 PMCID: PMC5515243 DOI: 10.4172/2329-6488.1000259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epigenetic studies have led to a more profound understanding of the mechanisms involved in chronic conditions. In the case of alcohol addiction, according to the National Institute on Alcohol Abuse and Alcoholism, 16 million adults suffer from Alcohol Use Disorders (AUDs). Even though therapeutic interventions like behavioral therapy and medications to prevent relapse are currently available, no robust cure exists, which stems from the lack of understanding the mechanisms of action of alcohol and the lack of development of precision medicine approaches to treat AUDs. Another common group of addictive substance, cannabinoids, have been studied extensively to reveal they work through cannabinoid receptors. Therapeutic applications have been found for the cannabinoids and a deeper understanding of the endocannabinoid system has been gained over the years. Recent reports of cannabinergic mechanisms in AUDs has opened an exciting realm of research that seeks to elucidate the molecular mechanisms of alcohol-induced end organ diseases and hopefully provide insight into new therapeutic strategies for the treatment of AUDs. To date, several epigenetic mechanisms have been associated with alcohol and cannabinoids independently. Therefore, the scope of this review is to compile the most recent literature regarding alcohol and cannabinoids in terms of a possible epigenetic connection between the endocannabinoid system and alcohol effects. First, we will provide an overview of epigenetics, followed by an overview of alcohol and epigenetic mechanisms with an emphasis on histone modifications and DNA methylations. Then, we will provide an overview of cannabinoids and epigenetic mechanisms. Lastly, we will discuss evidence of interactions between alcohol and cannabinergic pathways and possible insights into the novel epigenetic mechanisms underlying alcohol-cannabinergic pathway activity. Finalizing the review will be a discussion of future directions and therapeutic applications.
Collapse
Affiliation(s)
- Tiyash Parira
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, FL 33199, USA
| | - Alejandra Laverde
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, FL 33199, USA
| | - Marisela Agudelo
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, FL 33199, USA
| |
Collapse
|
47
|
Hwa L, Besheer J, Kash T. Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective. F1000Res 2017; 6:298. [PMID: 28413623 PMCID: PMC5365217 DOI: 10.12688/f1000research.9609.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Glutamate signaling in the brain is one of the most studied targets in the alcohol research field. Here, we report the current understanding of how the excitatory neurotransmitter glutamate, its receptors, and its transporters are involved in low, episodic, and heavy alcohol use. Specific animal behavior protocols can be used to assess these different drinking levels, including two-bottle choice, operant self-administration, drinking in the dark, the alcohol deprivation effect, intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation. Importantly, these methods are not limited to a specific category, since they can be interchanged to assess different states in the development from low to heavy drinking. We encourage a circuit-based perspective beyond the classic mesolimbic-centric view, as multiple structures are dynamically engaged during the transition from positive- to negative-related reinforcement to drive alcohol drinking. During this shift from lower-level alcohol drinking to heavy alcohol use, there appears to be a shift from metabotropic glutamate receptor-dependent behaviors to N-methyl-D-aspartate receptor-related processes. Despite high efficacy of the glutamate-related pharmaceutical acamprosate in animal models of drinking, it is ineffective as treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.
Collapse
Affiliation(s)
- Lara Hwa
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Department of Psychiatry, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Thomas Kash
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| |
Collapse
|
48
|
Castelli V, Brancato A, Cavallaro A, Lavanco G, Cannizzaro C. Homer2 and Alcohol: A Mutual Interaction. Front Psychiatry 2017; 8:268. [PMID: 29249995 PMCID: PMC5714871 DOI: 10.3389/fpsyt.2017.00268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023] Open
Abstract
The past two decades of data derived from addicted individuals and preclinical animal models of addiction implicate a role for the excitatory glutamatergic transmission within the mesolimbic structures in alcoholism. The cellular localization of the glutamatergic receptor subtypes, as well as their signaling efficiency and function, are highly dependent upon discrete functional constituents of the postsynaptic density, including the Homer family of scaffolding proteins. The consequences of repeated alcohol administration on the expression of the Homer family proteins demonstrate a crucial and active role, particularly for the expression of Homer2 isoform, in regulating alcohol-induced behavioral and cellular neuroplasticity. The interaction between Homer2 and alcohol can be defined as a mutual relation: alcohol consumption enhances the expression of Homer2 protein isoform within the nucleus accumbens and the extended amygdala, cerebral areas where, in turn, Homer2 is able to mediate the development of the "pro-alcoholic" behavioral phenotype, as a consequence of the morpho-functional synaptic adaptations. Such findings are relevant for the detection of the strategic molecular components that prompt alcohol-induced functional and behavioral disarrangement as targets for future innovative treatment options.
Collapse
Affiliation(s)
- Valentina Castelli
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
49
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|