1
|
Chamessian A, Payne M, Gordon I, Zhou M, Gereau R. Small molecule-mediated targeted protein degradation of voltage-gated sodium channels involved in pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634079. [PMID: 39896637 PMCID: PMC11785090 DOI: 10.1101/2025.01.21.634079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The voltage-gated sodium channels (VGSC) NaV1.8 and NaV1.7 (NaVs) have emerged as promising and high-value targets for the development of novel, non-addictive analgesics to combat the chronic pain epidemic. In recent years, many small molecule inhibitors against these channels have been developed. The recent successful clinical trial of VX-548, a NaV1.8-selective inhibitor, has spurred much interest in expanding the arsenal of subtype-selective voltage-gated sodium channel therapeutics. Toward that end, we sought to determine whether NaVs are amenable to targeted protein degradation with small molecule degraders, namely proteolysis-targeting chimeras (PROTACs) and molecular glues. Here, we report that degron-tagged NaVs are potently and rapidly degraded by small molecule degraders harnessing the E3 ubiquitin ligases cereblon (CRBN) and Von Hippel Lindau (VHL). Using LC/MS analysis, we demonstrate that PROTAC-mediated proximity between NaV1.8 and CRBN results in ubiquitination on the 2nd intracellular loop, pointing toward a potential mechanism of action and demonstrating the ability of CRBN to recognize a VGSC as a neosubstrate. Our foundational findings are an important first step toward realizing the immense potential of NaV-targeting degrader analgesics to combat chronic pain.
Collapse
|
2
|
Cai Y, Zhang J, Zhang H, Qi J, Shi C, Xu Y. The Kv4 potassium channel modulator NS5806 attenuates cardiac hypertrophy in vivo and in vitro. Sci Rep 2024; 14:19839. [PMID: 39191928 PMCID: PMC11349892 DOI: 10.1038/s41598-024-70962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
The compound NS5806 is a Kv4 channel modulator. This study investigated the chronic effects of NS5806 on cardiac hypertrophy induced by transverse aortic constriction (TAC) in mice in vivo and on neonatal rat ventricular cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) in vitro. Four weeks after TAC, NS5806 was administered by gavage for 4 weeks. Echocardiograms revealed pronounced left ventricular (LV) hypertrophy in TAC-treated mice compared with sham mice. NS5806 attenuated LV hypertrophy, as manifested by the restoration of LV wall thickness and weight and the reversal of contractile dysfunction in TAC-treated mice. NS5806 also blunted the TAC-induced increases in the expression of cardiac hypertrophic and fibrotic genes, including ANP, BNP and TGF-β. Electrophysiological recordings revealed a significant prolongation of action potential duration and QT intervals, accompanied by an increase in susceptibility to ventricular arrhythmias in mice with cardiac hypertrophy. However, NS5806 restored these alterations in electrical parameters and thus reduced the incidence of mouse sudden death. Furthermore, NS5806 abrogated the downregulation of the Kv4 protein in the hypertrophic myocardium but did not influence the reduction in Kv4 mRNA expression. In addition, NS5806 suppressed in vitro cardiomyocyte hypertrophy. The results provide novel insight for further ion channel modulator development as a potential treatment option for cardiac hypertrophy.
Collapse
Affiliation(s)
- Yue Cai
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, 050051, China
- Hebei Key Laboratory of Clinical Pharmacy, Shijiazhuang, 050051, China
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hongxue Zhang
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinlong Qi
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, Shijiazhuang, 050017, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
3
|
Davis J, Cornwell JD, Campagna N, Guo J, Li W, Yang T, Wang T, Zhang S. Rescue of expression and function of long QT syndrome-causing mutant hERG channels by enhancing channel stability in the plasma membrane. J Biol Chem 2024; 300:107526. [PMID: 38960041 PMCID: PMC11325228 DOI: 10.1016/j.jbc.2024.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes the Kv11.1 (or hERG) channel that conducts the rapidly activating delayed rectifier potassium current (IKr). Naturally occurring mutations in hERG impair the channel function and cause long QT syndrome type 2. Many missense hERG mutations lead to a lack of channel expression on the cell surface, representing a major mechanism for the loss-of-function of mutant channels. While it is generally thought that a trafficking defect underlies the lack of channel expression on the cell surface, in the present study, we demonstrate that the trafficking defective mutant hERG G601S can reach the plasma membrane but is unstable and quickly degrades, which is akin to WT hERG channels under low K+ conditions. We previously showed that serine (S) residue at 624 in the innermost position of the selectivity filter of hERG is involved in hERG membrane stability such that substitution of serine 624 with threonine (S624T) enhances hERG stability and renders hERG insensitive to low K+ culture. Here, we report that the intragenic addition of S624T substitution to trafficking defective hERG mutants G601S, N470D, and P596R led to a complete rescue of the function of these otherwise loss-of-function mutant channels to a level similar to the WT channel, representing the most effective rescue means for the function of mutant hERG channels. These findings not only provide novel insights into hERG mutation-mediated channel dysfunction but also point to the critical role of S624 in hERG stability on the plasma membrane.
Collapse
Affiliation(s)
- Jordan Davis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - James D Cornwell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Noah Campagna
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
4
|
D'Onofrio AM, Pizzuto DA, Batir R, Perrone E, Cocciolillo F, Cavallo F, Kotzalidis GD, Simonetti A, d'Andrea G, Pettorruso M, Sani G, Di Giuda D, Camardese G. Dopaminergic dysfunction in the left putamen of patients with major depressive disorder. J Affect Disord 2024; 357:107-115. [PMID: 38636713 DOI: 10.1016/j.jad.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Dopaminergic transmission impairment has been identified as one of the main neurobiological correlates of both depression and clinical symptoms commonly associated with its spectrum such as anhedonia and psychomotor retardation. OBJECTIVES We examined the relationship between dopaminergic deficit in the striatum, as measured by 123I-FP-CIT SPECT imaging, and specific psychopathological dimensions in patients with major depressive disorder. METHODS To our knowledge this is the first study with a sample of >120 subjects. After check for inclusion and exclusion criteria, 121 (67 females, 54 males) patients were chosen retrospectively from an extensive 1106 patients database of 123I-FP-CIT SPECT scans obtained at the Nuclear Medicine Unit of Fondazione Policlinico Universitario Agostino Gemelli IRCCS in Rome. These individuals had undergone striatal dopamine transporter (DAT) assessments based on the recommendation of their referring clinicians, who were either neurologists or psychiatrists. At the time of SPECT imaging, each participant underwent psychiatric and psychometric evaluations. We used the following psychometric scales: Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale, Snaith Hamilton Pleasure Scale, and Depression Retardation Rating Scale. RESULTS We found a negative correlation between levels of depression (p = 0.007), anxiety (p = 0.035), anhedonia (p = 0.028) and psychomotor retardation (p = 0.014) and DAT availability in the left putamen. We further stratified the sample and found that DAT availability in the left putamen was lower in seriously depressed patients (p = 0.027) and in patients with significant psychomotor retardation (p = 0.048). CONCLUSION To our knowledge this is the first study to have such a high number of sample. Our study reveals a pivotal role of dopaminergic dysfunction in patients with major depressive disorder. Elevated levels of depression, anxiety, anhedonia, and psychomotor retardation appear to be associated with reduced DAT availability specifically in the left putamen.
Collapse
Affiliation(s)
- Antonio Maria D'Onofrio
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy.
| | - Daniele Antonio Pizzuto
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Rana Batir
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Elisabetta Perrone
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabrizio Cocciolillo
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Cavallo
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alessio Simonetti
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Giacomo d'Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neurosciences, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Di Giuda
- Nuclear Medicine Institute, University Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Medicine Unit, Diagnostic Imaging, Radiotherapy and Hematology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Camardese
- Department of Neuroscience, Section of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; Department of Neurosciences, Section of Psychiatry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Chakraborty A, Paynter A, Szendrey M, Cornwell JD, Li W, Guo J, Yang T, Du Y, Wang T, Zhang S. Ubiquitination is involved in PKC-mediated degradation of cell surface Kv1.5 channels. J Biol Chem 2024; 300:107483. [PMID: 38897569 PMCID: PMC11301065 DOI: 10.1016/j.jbc.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid delayed rectifier K+ current (IKur) in human cells, plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. We previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) induces endocytic degradation of cell-surface Kv1.5 channels, and a point mutation removing the phosphorylation site, T15A, in the N terminus of Kv1.5 abolished the PMA-effect. In the present study, using mutagenesis, patch clamp recording, Western blot analysis, and immunocytochemical staining, we demonstrate that ubiquitination is involved in the PMA-mediated degradation of mature Kv1.5 channels. Since the expression of the Kv1.4 channel is unaffected by PMA treatment, we swapped the N- and/or C-termini between Kv1.5 and Kv1.4. We found that the N-terminus alone did not but both N- and C-termini of Kv1.5 did confer PMA sensitivity to mature Kv1.4 channels, suggesting the involvement of Kv1.5 C-terminus in the channel ubiquitination. Removal of each of the potential ubiquitination residue Lysine at position 536, 565, and 591 by Arginine substitution (K536R, K565R, and K591R) had little effect, but removal of all three Lysine residues with Arginine substitution (3K-R) partially reduced PMA-mediated Kv1.5 degradation. Furthermore, removing the cysteine residue at position 604 by Serine substitution (C604S) drastically reduced PMA-induced channel degradation. Removal of the three Lysines and Cys604 with a quadruple mutation (3K-R/C604S) or a truncation mutation (Δ536) completely abolished the PKC activation-mediated degradation of Kv1.5 channels. These results provide mechanistic insight into PKC activation-mediated Kv1.5 degradation.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amanda Paynter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mark Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - James D Cornwell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Yuan Du
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
6
|
Correia D, Bellot M, Goyenechea J, Prats E, Moro H, Gómez-Canela C, Bedrossiantz J, Tagkalidou N, Ferreira CSS, Raldúa D, Domingues I, Faria M, Oliveira M. Parental exposure to antidepressants has lasting effects on offspring? A case study with zebrafish. CHEMOSPHERE 2024; 355:141851. [PMID: 38579950 DOI: 10.1016/j.chemosphere.2024.141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Fish have common neurotransmitter pathways with humans, exhibiting a significant degree of conservation and homology. Thus, exposure to fluoxetine makes fish potentially susceptible to biochemical and physiological changes, similarly to what is observed in humans. Over the years, several studies demonstrated the potential effects of fluoxetine on different fish species and at different levels of biological organization. However, the effects of parental exposure to unexposed offspring remain largely unknown. The consequences of 15-day parental exposure to relevant concentrations of fluoxetine (100 and 1000 ng/L) were assessed on offspring using zebrafish as a model organism. Parental exposure resulted in offspring early hatching, non-inflation of the swimming bladder, increased malformation frequency, decreased heart rate and blood flow, and reduced growth. Additionally, a significant behavioral impairment was also found (reduced startle response, basal locomotor activity, and altered non-associative learning during early stages and a negative geotaxis and scototaxis, reduced thigmotaxis, and anti-social behavior at later life stages). These behavior alterations are consistent with decreased anxiety, a significant increase in the expression of the monoaminergic genes slc6a4a (sert), slc6a3 (dat), slc18a2 (vmat2), mao, tph1a, and th2, and altered levels of monoaminergic neurotransmitters. Alterations in behavior, expression of monoaminergic genes, and neurotransmitter levels persisted until offspring adulthood. Given the high conservation of neuronal pathways between fish and humans, data show the possibility of potential transgenerational and multigenerational effects of pharmaceuticals' exposure. These results reinforce the need for transgenerational and multigenerational studies in fish, under realistic scenarios, to provide realistic insights into the impact of these pharmaceuticals.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Eva Prats
- Center for Research and Development, Spanish National Research Council (CSIC), Spain.
| | - Hugo Moro
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Juliette Bedrossiantz
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Niki Tagkalidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Greece.
| | - Carla S S Ferreira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Melissa Faria
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
8
|
Souza ACR, Vasconcelos AR, Dias DD, Komoni G, Name JJ. The Integral Role of Magnesium in Muscle Integrity and Aging: A Comprehensive Review. Nutrients 2023; 15:5127. [PMID: 38140385 PMCID: PMC10745813 DOI: 10.3390/nu15245127] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Aging is characterized by significant physiological changes, with the degree of decline varying significantly among individuals. The preservation of intrinsic capacity over the course of an individual's lifespan is fundamental for healthy aging. Locomotion, which entails the capacity for independent movement, is intricately connected with various dimensions of human life, including cognition, vitality, sensory perception, and psychological well-being. Notably, skeletal muscle functions as a pivotal nexus within this intricate framework. Any perturbation in its functionality can manifest as compromised physical performance and an elevated susceptibility to frailty. Magnesium is an essential mineral that plays a central role in approximately 800 biochemical reactions within the human body. Its distinctive physical and chemical attributes render it an indispensable stabilizing factor in the orchestration of diverse cellular reactions and organelle functions, thereby rendering it irreplaceable in processes directly impacting muscle health. This narrative review offers a comprehensive exploration of the pivotal role played by magnesium in maintaining skeletal muscle integrity, emphasizing the critical importance of maintaining optimal magnesium levels for promoting healthy aging.
Collapse
Affiliation(s)
| | | | | | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo 01311-100, Brazil; (A.C.R.S.); (A.R.V.); (D.D.D.); (G.K.)
| |
Collapse
|
9
|
Lazartigues E, Llorens-Cortes C, Danser AHJ. New Approaches Targeting the Renin-Angiotensin System: Inhibition of Brain Aminopeptidase A, ACE2 Ubiquitination, and Angiotensinogen. Can J Cardiol 2023; 39:1900-1912. [PMID: 37348757 PMCID: PMC10730775 DOI: 10.1016/j.cjca.2023.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Despite the availability of various therapeutic classes of antihypertensive drugs, hypertension remains poorly controlled, in part because of poor adherence. Hence, there is a need for the development of antihypertensive drugs acting on new targets to improve control of blood pressure. This review discusses novel insights (including the data of recent clinical trials) with regard to interference with the renin-angiotensin system, focusing on the enzymes aminopeptidase A and angiotensin-converting enzyme 2 (ACE2) in the brain, as well as the substrate of renin- angiotensinogen-in the liver. It raises the possibility that centrally acting amino peptidase A inhibitors (eg, firibastat), preventing the conversion of angiotensin II to angiotensin III in the brain, might be particularly useful in African Americans and patients with obesity. Firibastat additionally upregulates brain ACE2, allowing the conversion of angiotensin II to its protective metabolite angiotensin-(1-7). Furthermore, antisense oligonucleotides or small interfering ribonucleic acids suppress hepatic angiotensinogen for weeks to months after 1 injection and thus could potentially overcome adherence issues. Finally, interference with ACE2 ubiquitination is emerging as a future option for the treatment of neurogenic hypertension, given that ubiquitination resistance might upregulate ACE2 activity.
Collapse
Affiliation(s)
- Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Catherine Llorens-Cortes
- Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France; CEA, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - A H Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Zhang H, Fu T, Sun J, Zou S, Qiu S, Zhang J, Su S, Shi C, Li DP, Xu Y. Pharmacological suppression of Nedd4-2 rescues the reduction of Kv11.1 channels in pathological cardiac hypertrophy. Front Pharmacol 2022; 13:942769. [PMID: 36059970 PMCID: PMC9428276 DOI: 10.3389/fphar.2022.942769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
The human ether-á-go-go-related gene (hERG) encodes the pore-forming subunit (Kv11.1), conducting a rapidly delayed rectifier K+ current (IKr). Reduction of IKr in pathological cardiac hypertrophy (pCH) contributes to increased susceptibility to arrhythmias. However, practical approaches to prevent IKr deficiency are lacking. Our study investigated the involvement of ubiquitin ligase Nedd4-2-dependent ubiquitination in IKr reduction and sought an intervening approach in pCH. Angiotensin II (Ang II) induced a pCH phenotype in guinea pig, accompanied by increased incidences of sudden death and higher susceptibility to arrhythmias. Patch-clamp recordings revealed a significant IKr reduction in pCH cardiomyocytes. Kv11.1 protein expression was decreased whereas its mRNA level did not change. In addition, Nedd4-2 protein expression was increased in pCH, accompanied by an enhanced Nedd4-2 and Kv11.1 binding detected by immunoprecipitation analysis. Cardiac-specific overexpression of inactive form of Nedd4-2 shortened the prolonged QT interval, reversed IKr reduction, and decreased susceptibility to arrhythmias. A synthesized peptide containing the PY motif in Kv11.1 C-terminus binding to Nedd4-2 and a cell-penetrating sequence antagonized Nedd4-2-dependent degradation of the channel and increased the surface abundance and function of hERG channel in HEK cells. In addition, in vivo administration of the PY peptide shortened QT interval and action potential duration, and enhanced IKr in pCH. We conclude that Nedd4-2-dependent ubiquitination is critically involved in IKr deficiency in pCH. Pharmacological suppression of Nedd4-2 represents a novel approach for antiarrhythmic therapy in pCH.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Tian Fu
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jinglei Sun
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Sihao Zou
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Suhua Qiu
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jiali Zhang
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Shi Su
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chenxia Shi
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, Columbia, MO, United States
- *Correspondence: Yanfang Xu, ; De-Pei Li,
| | - Yanfang Xu
- Department of Pharmacology, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, China
- *Correspondence: Yanfang Xu, ; De-Pei Li,
| |
Collapse
|
11
|
Luis E, Anaya-Hernández A, León-Sánchez P, Durán-Pastén ML. The Kv10.1 Channel: A Promising Target in Cancer. Int J Mol Sci 2022; 23:ijms23158458. [PMID: 35955591 PMCID: PMC9369319 DOI: 10.3390/ijms23158458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is a multistage process involving the dysregulation of multiple genes, proteins, and pathways that make any normal cell acquire a cancer cell phenotype. Therefore, it is no surprise that numerous ion channels could be involved in this process. Since their discovery and subsequent cloning, ion channels have been established as therapeutic targets in excitable cell pathologies (e.g., cardiac arrhythmias or epilepsy); however, their involvement in non-excitable cell pathologies is relatively recent. Among all ion channels, the voltage-gated potassium channels Kv10.1 have been established as a promising target in cancer treatment due to their high expression in tumoral tissues compared to low levels in healthy tissues.
Collapse
Affiliation(s)
- Enoch Luis
- Cátedras CONACYT—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
- Correspondence:
| | - Arely Anaya-Hernández
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Km. 10.5 Autopista Tlaxcala-San Martín, Tlaxcala 90120, Mexico;
| | - Paulina León-Sánchez
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
| | - María Luisa Durán-Pastén
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, C.U., Ciudad de México 04510, Mexico; (P.L.-S.); (M.L.D.-P.)
| |
Collapse
|
12
|
Downregulation of hERG Channel Expression By Tyrosine Kinase Inhibitors Nilotinib And Vandetanib Predominantly Contributes To Arrhythmogenesis. Toxicol Lett 2022; 365:11-23. [DOI: 10.1016/j.toxlet.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
13
|
Aisenberg WH, McCray BA, Sullivan JM, Diehl E, DeVine LR, Alevy J, Bagnell AM, Carr P, Donohue JK, Goretzki B, Cole RN, Hellmich UA, Sumner CJ. Multiubiquitination of TRPV4 reduces channel activity independent of surface localization. J Biol Chem 2022; 298:101826. [PMID: 35300980 PMCID: PMC9010760 DOI: 10.1016/j.jbc.2022.101826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (Ub)-mediated regulation of plasmalemmal ion channel activity canonically occurs via stimulation of endocytosis. Whether ubiquitination can modulate channel activity by alternative mechanisms remains unknown. Here, we show that the transient receptor potential vanilloid 4 (TRPV4) cation channel is multiubiquitinated within its cytosolic N-terminal and C-terminal intrinsically disordered regions (IDRs). Mutagenizing select lysine residues to block ubiquitination of the N-terminal but not C-terminal IDR resulted in a marked elevation of TRPV4-mediated intracellular calcium influx, without increasing cell surface expression levels. Conversely, enhancing TRPV4 ubiquitination via expression of an E3 Ub ligase reduced TRPV4 channel activity but did not decrease plasma membrane abundance. These results demonstrate Ub-dependent regulation of TRPV4 channel function independent of effects on plasma membrane localization. Consistent with ubiquitination playing a key negative modulatory role of the channel, gain-of-function neuropathy-causing mutations in the TRPV4 gene led to reduced channel ubiquitination in both cellular and Drosophila models of TRPV4 neuropathy, whereas increasing mutant TRPV4 ubiquitination partially suppressed channel overactivity. Together, these data reveal a novel mechanism via which ubiquitination of an intracellular flexible IDR domain modulates ion channel function independently of endocytic trafficking and identify a contributory role for this pathway in the dysregulation of TRPV4 channel activity by neuropathy-causing mutations.
Collapse
Affiliation(s)
- William H Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeremy M Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Diehl
- Department of Chemistry, Biochemistry Section, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Lauren R DeVine
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jonathan Alevy
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna M Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Patrice Carr
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jack K Donohue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Robert N Cole
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Cluster of Excellence 'Balance of the Microverse', Friedrich-Schiller-Universität, Jena, Germany; Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-Universität, Frankfurt am Main, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
14
|
Almeida CGM, Costa-Higuchi K, Piovesan AR, Moro CF, Venturin GT, Greggio S, Costa-Ferro ZS, Salamoni SD, Peigneur S, Tytgat J, de Lima ME, Silva CND, Vinadé L, Rowan EG, DaCosta JC, Dal Belo CA, Carlini CR. Neurotoxic and convulsant effects induced by jack bean ureases on the mammalian nervous system. Toxicology 2021; 454:152737. [PMID: 33631299 DOI: 10.1016/j.tox.2021.152737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022]
Abstract
Ureases are microbial virulence factors either because of the enzymatic release of ammonia or due to many other non-enzymatic effects. Here we studied two neurotoxic urease isoforms, Canatoxin (CNTX) and Jack Bean Urease (JBU), produced by the plant Canavalia ensiformis, whose mechanisms of action remain elusive. The neurotoxins provoke convulsions in rodents (LD50 ∼2 mg/kg) and stimulate exocytosis in cell models, affecting intracellular calcium levels. Here, electrophysiological and brain imaging techniques were applied to elucidate their mode of action. While systemic administration of the toxins causes tonic-clonic seizures in rodents, JBU injected into rat hippocampus induced spike-wave discharges similar to absence-like seizures. JBU reduced the amplitude of compound action potential from mouse sciatic nerve in a tetrodotoxin-insensitive manner. Hippocampal slices from CNTX-injected animals or slices treated in vitro with JBU failed to induce long term potentiation upon tetanic stimulation. Rat cortical synaptosomes treated with JBU released L-glutamate. JBU increased the intracellular calcium levels and spontaneous firing rate in rat hippocampus neurons. MicroPET scans of CNTX-injected rats revealed increased [18]Fluoro-deoxyglucose uptake in epileptogenesis-related areas like hippocampus and thalamus. Curiously, CNTX did not affect voltage-gated sodium, calcium or potassium channels currents, neither did it interfere on cholinergic receptors, suggesting an indirect mode of action that could be related to the ureases' membrane-disturbing properties. Understanding the neurotoxic mode of action of C. ensiformis ureases could help to unveil the so far underappreciated relevance of these toxins in diseases caused by urease-producing microorganisms, in which the human central nervous system is affected.
Collapse
Affiliation(s)
- Carlos Gabriel Moreira Almeida
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kiyo Costa-Higuchi
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Materials Technology and Engineering, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Regina Piovesan
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Celular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlo Frederico Moro
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gianina Teribele Venturin
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Zaquer Susana Costa-Ferro
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Denise Salamoni
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Steve Peigneur
- Laboratory of Toxicology & Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Jan Tytgat
- Laboratory of Toxicology & Pharmacology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Maria Elena de Lima
- Institute of Teaching and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | | | - Lúcia Vinadé
- Laboratory of Neurobiology and Toxinology (Lanetox), Universidade Federal do Pampa, São Gabriel, RS, Brazil
| | - Edward G Rowan
- Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Jaderson Costa DaCosta
- Laboratory of Neuroscience, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cháriston André Dal Belo
- Laboratory of Neurobiology and Toxinology (Lanetox), Universidade Federal do Pampa, São Gabriel, RS, Brazil.
| | - Celia Regina Carlini
- Laboratory of Neurotoxins, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Scholl of Medicine, Pontificía Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Huo L, Gao Y, Zhang D, Wang S, Han Y, Men H, Yang Z, Qin X, Wang R, Kong D, Bai H, Zhang H, Zhang W, Jia Z. Piezo2 channel in nodose ganglia neurons is essential in controlling hypertension in a pathway regulated directly by Nedd4-2. Pharmacol Res 2021; 164:105391. [PMID: 33352230 DOI: 10.1016/j.phrs.2020.105391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/25/2020] [Accepted: 12/12/2020] [Indexed: 11/24/2022]
Abstract
Baroreflex plays a crucial role in regulation of arterial blood pressure (BP). Recently, Piezo1 and Piezo2, the mechanically-activated (MA) ion channels, have been identified as baroreceptors. However, the underlying molecular mechanism for regulating these baroreceptors in hypertension remains unknown. In this study, we used spontaneously hypertensive rats (SHR) and NG-Nitro-l-Arginine (L-NNA)- and Angiotensin II (Ang II)-induced hypertensive model rats to determine the role and mechanism of Piezo1 and Piezo2 in hypertension. We found that Piezo2 was dominantly expressed in baroreceptor nodose ganglia (NG) neurons and aortic nerve endings in Wistar-Kyoto (WKY) rats. The expression of Piezo2 not Piezo1 was significantly downregulated in these regions in SHR and hypertensive model rats. Electrophysiological results showed that the rapidly adapting mechanically-activated (RA-MA) currents and the responsive neuron numbers were significantly reduced in baroreceptor NG neurons in SHR. In WKY rats, the arterial BP was elevated by knocking down the expression of Piezo2 or inhibiting MA channel activity by GsMTx4 in NG. Knockdown of Piezo2 in NG also attenuated the baroreflex and increased serum norepinephrine (NE) concentration in WKY rats. Co-immunoprecipitation experiment suggested that Piezo2 interacted with Neural precursor cell-expressed developmentally downregulated gene 4 type 2 (Nedd4-2, also known as Nedd4L); Electrophysiological results showed that Nedd4-2 inhibited Piezo2 MA currents in co-expressed HEK293T cells. Additionally, Nedd4-2 was upregulated in NG baroreceptor neurons in SHR. Collectively, our results demonstrate that Piezo2 not Piezo1 may act as baroreceptor to regulate arterial BP in rats. Nedd4-2 induced downregulation of Piezo2 in baroreceptor NG neurons leads to hypertension in rats. Our findings provide a novel insight into the molecular mechanism for the regulation of baroreceptor Piezo2 and its critical role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Lifang Huo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yiting Gao
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dongfang Zhang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Shengnan Wang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yu Han
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacy, Children's Hospital of Hebei Province, China
| | - Hongchao Men
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Ri Wang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Hui Bai
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, China
| | - Hailin Zhang
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| | - Zhanfeng Jia
- Department of Pharmacology, Center of Innovative Drug Research and Evaluation, Institute of Medical Science and Health, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| |
Collapse
|
16
|
Dong C, Wang Y, Ma A, Wang T. Life Cycle of the Cardiac Voltage-Gated Sodium Channel Na V1.5. Front Physiol 2020; 11:609733. [PMID: 33391024 PMCID: PMC7773603 DOI: 10.3389/fphys.2020.609733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiac voltage-gated sodium channel NaV1.5, encoded by SCN5A, is crucial for the upstroke of action potential and excitation of cardiomyocytes. NaV1.5 undergoes complex processes before it reaches the target membrane microdomains and performs normal functions. A variety of protein partners are needed to achieve the balance between SCN5A transcription and mRNA decay, endoplasmic reticulum retention and export, Golgi apparatus retention and export, selective anchoring and degradation, activation, and inactivation of sodium currents. Subtle alterations can impair NaV1.5 in terms of expression or function, eventually leading to NaV1.5-associated diseases such as lethal arrhythmias and cardiomyopathy.
Collapse
Affiliation(s)
- Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
17
|
Bensimon A, Pizzagalli MD, Kartnig F, Dvorak V, Essletzbichler P, Winter GE, Superti-Furga G. Targeted Degradation of SLC Transporters Reveals Amenability of Multi-Pass Transmembrane Proteins to Ligand-Induced Proteolysis. Cell Chem Biol 2020; 27:728-739.e9. [PMID: 32386596 PMCID: PMC7303955 DOI: 10.1016/j.chembiol.2020.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/21/2020] [Accepted: 04/03/2020] [Indexed: 01/05/2023]
Abstract
With more than 450 members, the solute carrier (SLC) group of proteins represents the largest class of transporters encoded in the human genome. Their several-pass transmembrane domain structure and hydrophobicity contribute to the orphan status of many SLCs, devoid of known cargos or chemical inhibitors. We report that SLC proteins belonging to different families and subcellular compartments are amenable to induced degradation by heterobifunctional ligands. Engineering endogenous alleles via the degradation tag (dTAG) technology enabled chemical control of abundance of the transporter protein, SLC38A2. Moreover, we report the design of d9A-2, a chimeric compound engaging several members of the SLC9 family and leading to their degradation. d9A-2 impairs cellular pH homeostasis and promotes cell death in a range of cancer cell lines. These findings open the era of SLC-targeting chimeric degraders and demonstrate potential access of multi-pass transmembrane proteins of different subcellular localizations to the chemically exploitable degradation machinery.
Collapse
Affiliation(s)
- Ariel Bensimon
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Mattia D Pizzagalli
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vojtech Dvorak
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Ferdaus MZ, Mukherjee A, Nelson JW, Blatt PJ, Miller LN, Terker AS, Staub O, Lin DH, McCormick JA. Mg 2+ restriction downregulates NCC through NEDD4-2 and prevents its activation by hypokalemia. Am J Physiol Renal Physiol 2019; 317:F825-F838. [PMID: 31364380 PMCID: PMC6843039 DOI: 10.1152/ajprenal.00216.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypomagnesemia is associated with reduced kidney function and life-threatening complications and sustains hypokalemia. The distal convoluted tubule (DCT) determines final urinary Mg2+ excretion and, via activity of the Na+-Cl- cotransporter (NCC), also plays a key role in K+ homeostasis by metering Na+ delivery to distal segments. Little is known about the mechanisms by which plasma Mg2+ concentration regulates NCC activity and how low-plasma Mg2+ concentration and K+ concentration interact to modulate NCC activity. To address this, we performed dietary manipulation studies in mice. Compared with normal diet, abundances of total NCC and phosphorylated NCC (pNCC) were lower after short-term (3 days) or long-term (14 days) dietary Mg2+ restriction. Altered NCC activation is unlikely to play a role, since we also observed lower total NCC abundance in mice lacking the two NCC-activating kinases, STE20/SPS-1-related proline/alanine-rich kinase and oxidative stress response kinase-1, after Mg2+ restriction. The E3 ubiquitin-protein ligase NEDD4-2 regulates NCC abundance during dietary NaCl loading or K+ restriction. Mg2+ restriction did not lower total NCC abundance in inducible nephron-specific neuronal precursor cell developmentally downregulated 4-2 (NEDD4-2) knockout mice. Total NCC and pNCC abundances were similar after short-term Mg2+ or combined Mg2+-K+ restriction but were dramatically lower compared with a low-K+ diet. Therefore, sustained NCC downregulation may serve a mechanism that enhances distal Na+ delivery during states of hypomagnesemia, maintaining hypokalemia. Similar results were obtained with long-term Mg2+-K+ restriction, but, surprisingly, NCC was not activated after long-term K+ restriction despite lower plasma K+ concentration, suggesting significant differences in distal tubule adaptation to acute or chronic K+ restriction.
Collapse
Affiliation(s)
- Mohammed Z. Ferdaus
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Anindit Mukherjee
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Jonathan W. Nelson
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Philip J. Blatt
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Lauren N. Miller
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Andrew S. Terker
- 2Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Olivier Staub
- 3Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Dao-Hong Lin
- 4Department of Pharmacology, New York Medical College, Valhalla, New York
| | - James A. McCormick
- 1Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
19
|
Yuan YP, Zhao H, Peng LQ, Li ZF, Liu S, Yuan CY, Mwamunyi MJ, Pearce D, Yao LJ. The SGK3-triggered ubiquitin-proteasome degradation of podocalyxin (PC) and ezrin in podocytes was associated with the stability of the PC/ezrin complex. Cell Death Dis 2018; 9:1114. [PMID: 30385740 PMCID: PMC6212497 DOI: 10.1038/s41419-018-1161-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 12/28/2022]
Abstract
Podocyte damage is commonly accompanied by destabilization of the podocalyxin (PC)/ezrin complex. Serum- and glucocorticoid-inducible kinase 3 (SGK3) plays a role in the maintenance of podocyte function, but the details of this role are poorly understood. Herein we demonstrated that SGK3 and its downstream target protein neural precursor cell expressed developmentally downregulated protein 4 subtype 2 (Nedd4-2) triggered PC and ezrin interaction. In adriamycin (ADR)-induced nephritic mice, and after puromycin aminonucleoside (PAN)-induced podocyte damage in vitro, PC and ezrin protein expression levels decreased significantly, while Nedd4-2 activity increased. Moreover, PAN treatment increased PC and ezrin ubiquitination and decreased PC/ezrin interaction in cultured mouse podocytes. The downregulation of SGK3 activity in mouse podocytes resulted in decreased PC and ezrin protein expression and increased the ubiquitin-proteasome degradation of PC and ezrin. Furthermore, upregulation of SGK3 activity mostly reversed the PAN-induced decrease in PC and ezrin protein expression. Overexpression of Nedd4-2 led to decreased ezrin protein expression via the upregulation of ezrin ubiquitination. In contrast, Nedd4-2 knockdown resulted in increased ezrin protein expression but decreased ezrin ubiquitination. In PC-transfected human embryonic kidney (HEK293T) cells, SGK3 activity downregulation and Nedd4-2 overexpression resulted in decreased PC/ezrin interaction. These results suggested that SGK3 triggers the ubiquitin-proteasome degradation of PC and ezrin, while the SGK3/Nedd4-2 signaling pathway regulates ezrin, but not PC, ubiquitination. Thus SGK3 helps to regulate podocyte function by maintaining the stability of the PC/ezrin complex.
Collapse
Affiliation(s)
- Ya-Pei Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Hong Zhao
- Department of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Li-Qin Peng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, China
| | - Zi-Fang Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Song Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Cheng-Yan Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Mercy-Julian Mwamunyi
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - David Pearce
- Department of Medicine, University of California, San Francisco, CA, 94107-2140, USA
- Department of Molecular and Cellular Pharmacology, University of California, San Francisco, CA, 94107-2140, USA
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
20
|
Wang D, Liu C, Li Z, Wang Y, Wang W, Wu X, Wang K, Miao W, Li L, Peng L. Regulation of Histone Acetylation on Expression Profiles of Potassium Channels During Cardiomyocyte Differentiation From Mouse Embryonic Stem Cells. J Cell Biochem 2017; 118:4460-4467. [PMID: 28464250 DOI: 10.1002/jcb.26102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/28/2017] [Indexed: 11/06/2022]
Abstract
The cardiomyocyte differentiation from mouse embryonic stem cells (mESCs) is a dynamic and complex process that involved in the precision regulation of histone acetylation. The formation of action potential (AP) in mature cardiomyocytes is based on the expression pattern of Na+ , Ca2+ , and K+ ion channels, in which the slow delayed rectifier potassium current (IKs ), the rapid delayed rectifier potassium current (IKr ) and the inwardly rectifying Kir current (IK1 ) mainly contribute to repolarization for AP in different species. However, the expression status of potassium channels conducted IKs , IKr , and IK1 in cardiomyocyte differentiation are not fully defined. Here, we investigated the expression pattern of the slow delayed rectifier potassium channel and the rapid delayed rectifier potassium channel using a model of mouse cardiomyocyte differentiation under different conditions of histone acetylation. We found that expression levels of both the delayed rectifier potassium channel and the inwardly rectifying potassium channel were more sensitive to histone hyperacetylation during differentiation from mESCs into cardiomyocytes. Especially, histone H4 hyperacetylation induced by Class I HDACs inhibitors promoted the expression profiles of potassium channels (Kcnj2, Kcnj3, Kcnj5, Kcnj11, and Kcnh2) in the process. Our results provide a clue for expression status of potassium channels which may be essential to forming functional cardiomyocyte in the cardiac lineage commitment of mESC. J. Cell. Biochem. 118: 4460-4467, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chang Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhigang Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yumei Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wenjing Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiujuan Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Kang Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Miao
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Luying Peng
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|