1
|
Mantry S, Das PK, Sankaraiah J, Panda S, Silakabattini K, Reddy Devireddy AK, Barik CS, Khalid M. Advancement on heparin-based hydrogel/scaffolds in biomedical and tissue engineering applications: Delivery carrier and pre-clinical implications. Int J Pharm 2025:125733. [PMID: 40398669 DOI: 10.1016/j.ijpharm.2025.125733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The advancement of biomaterials utilization in biomedical and tissue regenerative applications has emerged progressively. Hydrogels are three-dimensional, hydrophilic polymeric networks that replicate the natural extracellular matrix (ECM), establishing a hydrated porous milieu that emulates biological functions such as proliferation and differentiation of cellular components. The application of biological macromolecules, particularly Heparin-based hydrogel, has garnered considerable interest owing to various intrinsic biological and mechanical properties. This comprehensive review paper is designed to elucidate the derivation of heparin and its purification method for biomedical uses. The article briefly outlines the diverse physiochemical and biological properties of heparin derivative-based hydrogels/scaffolds and emphasizes their significance as vehicles for growth factors, genes, and cells in complex biomedical and tissue engineering applications. This publication also summarizes the potential concerns associated with heparin-based derivatives, efforts to address these issues, and current clinical perspectives. This represents the inaugural instance of an extensive summarization of heparin-based hydrogels in biomedical applications, emphasizing pre-clinical and clinical investigations, which will further assist the scientific community in addressing the challenges associated with heparin-based hydrogels in biomedical contexts.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmacy, Sarala Birla University, Birla Knowledge City, P.O.- Mahilong, Purulia Road, Ranchi 835103 Jharkhand, India.
| | - Prabhat Kumar Das
- Department of Pharmacology, GRY Institute of Pharmacy, Borawan, Khargone, MP, India
| | - Jonna Sankaraiah
- Department of Process Development, Medytox Inc., 102, Osongsaengmyeong 4-ro, Osong-eup, Heugdeok-gu, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Satyajit Panda
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Cuttack, Odisha 754202, India.
| | - Kotaiah Silakabattini
- Department of Pharmacognosy, Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Chandramoulipuram, Chowdavaram, Guntur 522019 Andhra Pradesh, India
| | - Ashok Kumar Reddy Devireddy
- Department of Pharmacology, A M Reddy Memorial College of Pharmacy, Petlurivaripalem, Narasaraopet, Palnadu (Dt), A.P 522601, India
| | - Chandra Sekhar Barik
- Department of Pharmacology, School of Pharmacy, DRIEMS University, Kotasahi, Kairapari, Tangi, Cuttack, Odisha 754022, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| |
Collapse
|
2
|
Yu Y, Song Y, Zhao Y, Wang N, Wei B, Linhardt RJ, Dordick JS, Zhang F, Wang H. Quality control, safety assessment and preparation approaches of low molecular weight heparin. Carbohydr Polym 2024; 339:122216. [PMID: 38823901 DOI: 10.1016/j.carbpol.2024.122216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024]
Abstract
Low Molecular Weight Heparins (LMWHs) are well-established for use in the prevention and treatment of thrombotic diseases, and as a substitute for unfractionated heparin (UFH) due to their predictable pharmacokinetics and subcutaneous bioavailability. LMWHs are produced by various depolymerization methods from UFH, resulting in heterogeneous compounds with similar biochemical and pharmacological properties. However, the delicate supply chain of UFH and potential contamination from animal sources require new manufacturing approaches for LMWHs. Various LMWH preparation methods are emerging, such as chemical synthesis, enzymatic or chemical depolymerization and chemoenzymatic synthesis. To establish the sameness of active ingredients in both innovator and generic LMWH products, the Food and Drug Administration has implemented a stringent scientific method of equivalence based on physicochemical properties, heparin source material and depolymerization techniques, disaccharide composition and oligosaccharide mapping, biological and biochemical properties, and in vivo pharmacodynamic profiles. In this review, we discuss currently available LMWHs, potential manufacturing methods, and recent progress for manufacturing quality control of these LMWHs.
Collapse
Affiliation(s)
- Yanlei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yue Song
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yunjie Zhao
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Ningning Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center for Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014 Hangzhou, China; Binjiang Cyberspace Security Institute of ZJUT, Hangzhou 310056, China.
| |
Collapse
|
3
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Mourier P. Heparinase Digestion of 3-O-Sulfated Sequences: Selective Heparinase II Digestion for Separation and Identification of Binding Sequences Present in ATIII Affinity Fractions of Bovine Intestinal Heparins. Front Med (Lausanne) 2022; 9:841726. [PMID: 35433769 PMCID: PMC9009448 DOI: 10.3389/fmed.2022.841726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Binding to antithrombin-III (ATIII) determines the anticoagulant activity of heparin. The complexes formed between heparin and ATIII result from a specific pentasaccharide sequence containing a 3-O-sulfated glucosamine in medium position. Building block analysis of heparins, following heparinase digestion, is a critical method in quality control that provides a simple structural characterization of a complex product. Hence, in these applications, study of the digestion of 3-O-sulfated moieties merits special attention. With heparinase II, specific inhibition of cleavage of the non-reducing bond of 3-O-sulfated units is observed. This specificity was erroneously generalized to other heparinases when it was observed that in exhaustive digests of heparins with the heparinase mixture, resistant 3-O-sulfated tetrasaccharides were also obtained from the specific ATIII-binding pentasaccharides. In fact, the detection of unsaturated 3-O-sulfated disaccharides in digests of heparin by heparinases I+II+III, resulting from the cleavage of the 3-O sulfated unit by heparinase I in non-conventional sequences, shows that this inhibition has exceptions. Thus, in experiments where heparinase II is selectively applied, these sequences can only be digested into tetra- or hexasaccharides where the 3-O-sulfated glucosamine is shifted on the reducing end. Heparinase I+II+III and heparinase II digests with additional tagging by reductive amination with sulfanilic acid were used to study the structural neighborhood of 3-O-sulfated disaccharides in bovine mucosal heparin fractions with increasing affinity for ATIII. The 3-O-sulfated disaccharides detected in heparinase I+II+III digests turn into numerous specific 3-O-sulfated tetrasaccharides in heparinase II digests. Additionally, ATIII-binding pentasaccharides with an extra 3-O-sulfate at the reducing glucosamine are detected in fractions of highest affinity as heparinase II-resistant hexasaccharides with two consecutive 3-O-sulfated units.
Collapse
|
5
|
Gardini C, Bisio A, Mazzini G, Guerrini M, Naggi A, Alekseeva A. Saturated tetrasaccharide profile of enoxaparin. An additional piece to the heparin biosynthesis puzzle. Carbohydr Polym 2021; 273:118554. [PMID: 34560966 DOI: 10.1016/j.carbpol.2021.118554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Enoxaparin, widely used antithrombotic drug, is a polydisperse glycosaminoglycan with highly microheterogeneous structure dictated by both parent heparin heterogeneity and depolymerization conditions. While the process-related modifications of internal and terminal sequences of enoxaparin have been extensively studied, very little is known about the authentic non-reducing ends (NRE). In the present study a multi-step isolation and thorough structural elucidation by NMR and LC/MS allowed to identify 16 saturated tetramers along with 23 unsaturated ones in the complex enoxaparin tetrasaccharide fraction. Altogether the elucidated structures represent a unique enoxaparin signature, whereas the composition of saturated tetramers provides a structural readout strictly related to the biosynthesis of parent heparin NRE. In particular, both glucuronic and iduronic acids were detected at the NRE of macromolecular heparin. The tetrasaccharides bearing glucosamine at the NRE are most likely associated with the heparanase hydrolytic action. High sulfation degree and 3-O-sulfation are characteristic for both types of NRE.
Collapse
Affiliation(s)
- Cristina Gardini
- Centro Alta Tecnologia "Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni" Srl, via G. Colombo 81, 20133 Milan, Italy.
| | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milan, Italy.
| | - Giulia Mazzini
- Centro Alta Tecnologia "Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni" Srl, via G. Colombo 81, 20133 Milan, Italy.
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milan, Italy.
| | - Annamaria Naggi
- Centro Alta Tecnologia "Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni" Srl, via G. Colombo 81, 20133 Milan, Italy; Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milan, Italy.
| | - Anna Alekseeva
- Centro Alta Tecnologia "Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni" Srl, via G. Colombo 81, 20133 Milan, Italy.
| |
Collapse
|
6
|
Specific Non-Reducing Ends in Heparins from Different Animal Origins: Building Blocks Analysis Using Reductive Amination Tagging by Sulfanilic Acid. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25235553. [PMID: 33256116 PMCID: PMC7730200 DOI: 10.3390/molecules25235553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Heparins are linear sulfated polysaccharides widely used as anticoagulant drugs. Their nonreducing-end (NRE) has been little investigated due to challenges in their characterization, but is known to be partly generated by enzymatic cleavage with heparanases, resulting in N-sulfated glucosamines at the NRE. Uronic NRE (specifically glucuronic acids) have been isolated from porcine heparin, with GlcA-GlcNS,3S,6S identified as a porcine-specific NRE marker. To further characterize NRE in heparinoids, a building block analysis involving exhaustive heparinase digestion and subsequent reductive amination with sulfanilic acid was performed. This study describes a new method for identifying heparin classical building blocks and novel NRE building blocks using strong anion exchange chromatography on AS11 columns for the assay, and ion-pair liquid chromatography-mass spectrometry for building block identification. Porcine, ovine, and bovine intestine heparins were analyzed. Generally, NRE on these three heparins are highly sulfated moieties, particularly with 3-O sulfates, and the observed composition of the NRE is highly dependent on heparin origin. At the highest level of specificity, the isolated marker was only detected in porcine heparin. However, the proportion of glucosamines in the NRE and the proportion of glucuronic/iduronic configurations in the NRE uronic moieties greatly varied between heparin types.
Collapse
|
7
|
Heparanase as an Additional Tool for Detecting Structural Peculiarities of Heparin Oligosaccharides. Molecules 2019; 24:molecules24234403. [PMID: 31810297 PMCID: PMC6930493 DOI: 10.3390/molecules24234403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/03/2022] Open
Abstract
Due to the biological properties of heparin and low-molecular-weight heparin (LMWH), continuous advances in elucidation of their microheterogeneous structure and discovery of novel structural peculiarities are crucial. Effective strategies for monitoring manufacturing processes and assessment of more restrictive specifications, as imposed by the current regulatory agencies, need to be developed. Hereby, we apply an efficient heparanase-based strategy to assert the structure of two major isomeric octasaccharides of dalteparin and investigate the tetrasaccharides arising from antithrombin binding region (ATBR) of bovine mucosal heparin. Heparanase, especially when combined with other sample preparation methods (e.g., size exclusion, affinity chromatography, heparinase depolymerization), was shown to be a powerful tool providing relevant information about heparin structural peculiarities. The applied approach provided direct evidence that oligomers bearing glucuronic acid–glucosamine-3-O-sulfate at their nonreducing end represent an important structural signature of dalteparin. When extended to ATBR-related tetramers of bovine heparin, the heparanase-based approach allowed for elucidation of the structure of minor sequences that have not been reported yet. The obtained results are of high importance in the view of the growing interest of regulatory agencies and manufacturers in the development of low-molecular-weight heparin generics as well as bovine heparin as alternative source.
Collapse
|
8
|
Sadowski R, Gadzała-Kopciuch R, Buszewski B. Recent Developments in the Separation of Low Molecular Weight Heparin Anticoagulants. Curr Med Chem 2019; 26:166-176. [PMID: 28982317 DOI: 10.2174/0929867324666171005114150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/11/2016] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
The general function of anticoagulants is to prevent blood clotting and growing of the existing clots in blood vessels. In recent years, there has been a significant improvement in developing methods of prevention as well as pharmacologic and surgical treatment of thrombosis. For over the last two decades, low molecular weight heparins (LMWHs) have found their application in the antithrombotic diseases treatment. These types of drugs are widely used in clinical therapy. Despite the biological and medical importance of LMWHs, they have not been completely characterized in terms of their chemical structure. Due to both, the structural complexity of these anticoagulants and the presence of impurities, their structural characterization requires the employment of advanced analytical techniques. Since separation techniques play the key role in these endeavors, this review will focus on the presentation of recent developments in the separation of LMWH anticoagulants.
Collapse
Affiliation(s)
- Radosław Sadowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
9
|
Anger P, Martinez C, Mourier P, Viskov C. Oligosaccharide Chromatographic Techniques for Quantitation of Structural Process-Related Impurities in Heparin Resulting From 2-O Desulfation. Front Med (Lausanne) 2019; 5:346. [PMID: 30619858 PMCID: PMC6305297 DOI: 10.3389/fmed.2018.00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022] Open
Abstract
Heparin is a widely-used intravenous anticoagulant comprising a complex mixture of highly-sulfated linear polysaccharides of repeating sequences of uronic acids (either iduronic or glucuronic) 1->4 linked to D-glucosamine with specific sulfation patterns. Preparation of crude heparin from mammalian mucosa involves protease digestion with alcalase under basic conditions (pH ≥ 9) and high temperature (>50°C) and also oxidation. Under such conditions, side reactions including the ubiquitous 2-O desulfation occur on the heparin backbone yielding non-endogenous disaccharides within polysaccharide chains. Whatever the process used for its manufacture, some level of corresponding degradation impurities is therefore expected to be found in heparin and the derived Low Molecular Weight Heparins. These impurities should be monitored to control the quality of the final therapeutic product. Two anion exchange chromatography techniques were used to analyze heparin samples exhaustively or partially depolymerized with heparinases and determine the proportions of non-endogenous disaccharides generated by side reactions during the manufacturing process (epoxides and galacturonic moieties). We also present data from a case study of marketed heparin. Current heparin sodium monographs do not directly address process impurities related to modification of the structure of heparin. Although desulfation reduces the overall biological potency, we found that heparin with an average of one modified disaccharide per chain can still comply with the USP or Ph. Eur. heparin sodium monographs requirements. We have implemented disaccharide analysis to monitor the quality of this product on a risk basis.
Collapse
|
10
|
Wang Z, Zhang T, Xie S, Liu X, Li H, Linhardt RJ, Chi L. Sequencing the oligosaccharide pool in the low molecular weight heparin dalteparin with offline HPLC and ESI–MS/MS. Carbohydr Polym 2018; 183:81-90. [DOI: 10.1016/j.carbpol.2017.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/28/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|
11
|
|
12
|
Zhang M, Li G, Zhang Y, Kang J. Quantitative analysis of antithrombin III binding site in low molecular weight heparins by exhausetive heparinases digestion and capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:78-83. [PMID: 29031112 DOI: 10.1016/j.jchromb.2017.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
The antithrombin III (ATIII)-binding site, which contains a special 3-O-sulfated, N-sulfated glucosamine residue with or without 6-O-sulfation, is mainly responsible for the anticoagulant activity of heparin. Undergoing the chemical depolymerization process, the preservation of the ATIII-binding site in low molecular weight heparins (LMWHs) are varied leading to the fluctuation of the anticoagulant activity. Herein we report a capillary electrophoresis (CE) method in combination with heparinase digestion and affinity chromatography for the measurement of molar percentage of ATIII-binding site of LMWHs. After exhaustively digesting LMWHs with the mixture of heparinase I, II and III, almost all the resulting oligosaccharide building blocks, including the three 3-O-sulfated tetrasaccharides derived from the ATIII-binding site, were resolved by CE separation. The peak area of each building block permits quantification of the molar percentage of the ATIII-binding site. The peaks corresponding to the 3-O-sulfated tetrasaccharides were assigned based on the linear relationship between the electrophoretic mobilities of the oligosaccharides and their charge to mass ratios. The peak assignment was further confirmed by analysis of the high ATIII affinity fractions, which contains much high 3-O-sulfated tetrasaccharides. With the method, the molar percentage of the ATIII-binding site of enoxaparin from different batches and different manufactures were measured and compared. It was demonstrated that the CE method provides more precise data for assessing the anti-FXa activity than that of the biochemical assay method.
Collapse
Affiliation(s)
- Mingyu Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China
| | - Gong Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China
| | - Yi Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China; School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200031, China.
| |
Collapse
|
13
|
Mourier PAJ, Guichard OY, Herman F, Sizun P, Viskov C. New Insights in Thrombin Inhibition Structure-Activity Relationships by Characterization of Octadecasaccharides from Low Molecular Weight Heparin. Molecules 2017; 22:molecules22030428. [PMID: 28282887 PMCID: PMC6155232 DOI: 10.3390/molecules22030428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 02/13/2017] [Accepted: 03/03/2017] [Indexed: 11/16/2022] Open
Abstract
Low Molecular Weight Heparins (LMWH) are complex anticoagulant drugs that mainly inhibit the blood coagulation cascade through indirect interaction with antithrombin. While inhibition of the factor Xa is well described, little is known about the polysaccharide structure inhibiting thrombin. In fact, a minimal chain length of 18 saccharides units, including an antithrombin (AT) binding pentasaccharide, is mandatory to form the active ternary complex for LMWH obtained by alkaline β-elimination (e.g., enoxaparin). However, the relationship between structure of octadecasaccharides and their thrombin inhibition has not been yet assessed on natural compounds due to technical hurdles to isolate sufficiently pure material. We report the preparation of five octadecasaccharides by using orthogonal separation methods including size exclusion, AT affinity, ion pairing and strong anion exchange chromatography. Each of these octadecasaccharides possesses two AT binding pentasaccharide sequences located at various positions. After structural elucidation using enzymatic sequencing and NMR, in vitro aFXa and aFIIa were determined. The biological activities reveal the critical role of each pentasaccharide sequence position within the octadecasaccharides and structural requirements to inhibit thrombin. Significant differences in potency, such as the twenty-fold magnitude difference observed between two regioisomers, further highlights the importance of depolymerisation process conditions on LMWH biological activity.
Collapse
Affiliation(s)
| | | | - Fréderic Herman
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France.
| | - Philippe Sizun
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France.
| | - Christian Viskov
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France.
- In Memoriam: The authors would like to respectfully dedicate this article to Pr. B. Casu, a brilliant pioneer in glycosaminoglycan chemistry and analysis, who passed away on 11 November 2016..
| |
Collapse
|
14
|
Miller RL, Dykstra AB, Wei W, Holsclaw C, Turnbull JE, Leary JA. Enrichment of Two Isomeric Heparin Oligosaccharides Exhibiting Different Affinities toward Monocyte Chemoattractant Protein-1. Anal Chem 2016; 88:11551-11558. [PMID: 27801570 DOI: 10.1021/acs.analchem.6b02803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemokine-GAG interactions are crucial to facilitate chemokine immobilization, resulting in the formation of chemokine gradients that guide cell migration. Here we demonstrate chromatographic isolation and purification of two heparin hexasaccharide isomers that interact with the oligomeric chemokine Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 with different binding affinities. The sequences of these two hexasaccharides were deduced from unique MS/MS product ions and HPLC compositional analysis. Ion mobility mass spectrometry (IM-MS) showed that the two isolated oligosaccharides have different conformations and both displayed preferential binding for one of the two distinct conformations known for MCP-1 dimers. A significant shift in arrival time distribution of close to 70 Å2 was observed, indicating a more compact protein:hexasaccharide conformation. Clear differences in the MS spectra between bound and unbound protein allowed calculation of Kd values from the resulting data. The structural difference between the two hexasaccharides was defined as the differential location of a single sulfate at either C-6 of glucosamine or C-2 of uronic acid in the reducing disaccharide, resulting in a 200-fold difference in binding affinity for MCP-1. These data indicate sequence specificity for high affinity binding, supporting the view that sulfate position, and not simply the number of sulfates, is important for heparan sulfate protein binding.
Collapse
Affiliation(s)
- Rebecca L Miller
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Andrew B Dykstra
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Wei Wei
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Cynthia Holsclaw
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Jeremy E Turnbull
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, England
| | - Julie A Leary
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| |
Collapse
|
15
|
Miller RL, Guimond SE, Shivkumar M, Blocksidge J, Austin JA, Leary JA, Turnbull JE. Heparin Isomeric Oligosaccharide Separation Using Volatile Salt Strong Anion Exchange Chromatography. Anal Chem 2016; 88:11542-11550. [DOI: 10.1021/acs.analchem.6b02801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rebecca L. Miller
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
- Departments
of Molecular and Cellular Biology and Chemistry, University of California, 1 Shields Drive, Davis, California 95616, United States
| | - Scott E. Guimond
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Maitreyi Shivkumar
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jemma Blocksidge
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - James A. Austin
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Julie A. Leary
- Departments
of Molecular and Cellular Biology and Chemistry, University of California, 1 Shields Drive, Davis, California 95616, United States
| | - Jeremy E. Turnbull
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
16
|
Mourier PA, Herman F, Sizun P, Viskov C. Analytical comparison of a US generic enoxaparin with the originator product: The focus on comparative assessment of antithrombin-binding components. J Pharm Biomed Anal 2016; 129:542-550. [DOI: 10.1016/j.jpba.2016.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
|
17
|
Comparison of Low-Molecular-Weight Heparins Prepared From Bovine Lung Heparin and Porcine Intestine Heparin. J Pharm Sci 2016; 105:1843-1850. [DOI: 10.1016/j.xphs.2016.03.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/12/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022]
|
18
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
19
|
Mourier PAJ, Agut C, Souaifi-Amara H, Herman F, Viskov C. Analytical and statistical comparability of generic enoxaparins from the US market with the originator product. J Pharm Biomed Anal 2015; 115:431-42. [PMID: 26280926 DOI: 10.1016/j.jpba.2015.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 11/29/2022]
Abstract
Low-molecular-weight heparins (LMWHs) are complex anticoagulant drugs, made from heparin porcine mucosa starting material. Enoxaparin sodium manufactured by Sanofi is one of the most widely prescribed LMWHs and has been used since 1993 in the USA. In 2010, US Food and Drug Administration approval for supplying generic enoxaparin was granted to Sandoz and subsequently to Amphastar. Little is known, however, of the differences in composition of these preparations. In this study, samples from several batches of generic enoxaparins were purchased on the US market and analyzed with state of the art methodologies, including disaccharide building blocks quantification, nuclear magnetic resonance (NMR), and a combination of orthogonal separation techniques. Direct high-performance liquid chromatography analysis of the different enoxaparin batches revealed distinct process fingerprints associated with each manufacturer. Disaccharide building block analysis showed differences in the degree of sulfation, the presence of glycoserine derivatives, as well as in proportions of disaccharides. Results were compared by statistical approaches using multivariate analysis with a partial least squares discriminant analysis methodology. The variations were statistically significant and allowed a clear distinction to be made between the enoxaparin batches according to their manufacturer. These results were further confirmed by orthogonal analytical techniques, including NMR, which revealed compositional differences of oligosaccharides both in low- and high-affinity antithrombin fractions of enoxaparin.
Collapse
Affiliation(s)
| | - Christophe Agut
- Sanofi R&D, 371, rue du Professeur Joseph, 34184 Montpellier, France.
| | - Hajer Souaifi-Amara
- External consultant from Experis™ IT, Life Sciences, 92723 Nanterre, France for CMC Biostatistics & Programming, Sanofi, Centre de recherche Vitry-sur-Seine, 13, quai Jules Guesde, 94403 Vitry-sur-Seine, France.
| | - Fréderic Herman
- Sanofi, 13, Quai Jules Guesde, 94403 Vitry-sur-Seine, France.
| | | |
Collapse
|
20
|
Abstract
Heparin-antithrombin interaction is one of the most documented examples of heparin/protein complexes. The specific heparin sequence responsible for the binding corresponds to a pentasaccharide sequence with an internal 3-O-sulfated glucosamine residue. Moreover, the position of the pentasaccharide along the chain as well as the structure of the neighbor units affects the affinity to antithrombin. The development of separation and purification techniques, in conjunction with physico-chemical approaches (mostly NMR), allowed to characterize several structural variants of antithrombin-binding oligosaccharides, both in the free state and in complex with antithrombin. The article provides an overview of the studies that lead to the elucidation of the mechanism of interaction as well as acquiring new knowledge in heparin biosynthesis.
Collapse
|
21
|
Singh A, Kett WC, Severin IC, Agyekum I, Duan J, Amster IJ, Proudfoot AEI, Coombe DR, Woods RJ. The Interaction of Heparin Tetrasaccharides with Chemokine CCL5 Is Modulated by Sulfation Pattern and pH. J Biol Chem 2015; 290:15421-15436. [PMID: 25907556 DOI: 10.1074/jbc.m115.655845] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Indexed: 12/28/2022] Open
Abstract
Interactions between chemokines such as CCL5 and glycosaminoglycans (GAGs) are essential for creating haptotactic gradients to guide the migration of leukocytes into inflammatory sites, and the GAGs that interact with CCL5 with the highest affinity are heparan sulfates/heparin. The interaction between CCL5 and its receptor on monocytes, CCR1, is mediated through residues Arg-17 and -47 in CCL5, which overlap with the GAG-binding (44)RKNR(47) "BBXB" motifs. Here we report that heparin and tetrasaccharide fragments of heparin are able to inhibit CCL5-CCR1 binding, with IC50 values showing strong dependence on the pattern and extent of sulfation. Modeling of the CCL5-tetrasaccharide complexes suggested that interactions between specific sulfate and carboxylate groups of heparin and residues Arg-17 and -47 of the protein are essential for strong inhibition; tetrasaccharides lacking the specific sulfation pattern were found to preferentially bind CCL5 in positions less favorable for inhibition of the interaction with CCR1. Simulations of a 12-mer heparin fragment bound to CCL5 indicated that the oligosaccharide preferred to interact simultaneously with both (44)RKNR(47) motifs in the CCL5 homodimer and engaged residues Arg-47 and -17 from both chains. Direct engagement of these residues by the longer heparin oligosaccharide provides a rationalization for its effectiveness as an inhibitor of CCL5-CCR1 interaction. In this mode, histidine (His-23) may contribute to CCL5-GAG interactions when the pH drops just below neutral, as occurs during inflammation. Additionally, an examination of the contribution of pH to modulating CCL5-heparin interactions suggested a need for careful interpretation of experimental results when experiments are performed under non-physiological conditions.
Collapse
Affiliation(s)
- Arunima Singh
- Complex Carbohydrate Research Center and, University of Georgia, Athens, Georgia 30602
| | - Warren C Kett
- Molecular Immunology, School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth 6102, Australia
| | - India C Severin
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Isaac Agyekum
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Jiana Duan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602
| | - Amanda E I Proudfoot
- Merck Serono Geneva Research Centre, 9 chemin des Mines, 1202 Geneva, Switzerland
| | - Deirdre R Coombe
- Molecular Immunology, School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth 6102, Australia.
| | - Robert J Woods
- Complex Carbohydrate Research Center and, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
22
|
Fragment profiling of low molecular weight heparins using reversed phase ion pair liquid chromatography-electrospray mass spectrometry. Carbohydr Res 2015; 407:26-33. [DOI: 10.1016/j.carres.2015.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/12/2014] [Accepted: 01/23/2015] [Indexed: 11/22/2022]
|
23
|
Quantitative compositional analysis of heparin using exhaustive heparinase digestion and strong anion exchange chromatography. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ancr.2014.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Isolation of a pure octadecasaccharide with antithrombin activity from an ultra-low-molecular-weight heparin. Anal Biochem 2014; 453:7-15. [DOI: 10.1016/j.ab.2014.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/23/2022]
|
25
|
Li D, Chi L, Jin L, Xu X, Du X, Ji S, Chi L. Mapping of low molecular weight heparins using reversed phase ion pair liquid chromatography–mass spectrometry. Carbohydr Polym 2014; 99:339-44. [DOI: 10.1016/j.carbpol.2013.08.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/18/2013] [Accepted: 08/23/2013] [Indexed: 01/27/2023]
|
26
|
Viskov C, Elli S, Urso E, Gaudesi D, Mourier P, Herman F, Boudier C, Casu B, Torri G, Guerrini M. Heparin dodecasaccharide containing two antithrombin-binding pentasaccharides: structural features and biological properties. J Biol Chem 2013; 288:25895-25907. [PMID: 23843463 DOI: 10.1074/jbc.m113.485268] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The antithrombin (AT) binding properties of heparin and low molecular weight heparins are strongly associated to the presence of the pentasaccharide sequence AGA*IA (A(NAc,6S)-GlcUA-A(NS,3,6S)-I(2S)-A(NS,6S)). By using the highly chemoselective depolymerization to prepare new ultra low molecular weight heparin and coupling it with the original separation techniques, it was possible to isolate a polysaccharide with a biosynthetically unexpected structure and excellent antithrombotic properties. It consisted of a dodecasaccharide containing an unsaturated uronate unit at the nonreducing end and two contiguous AT-binding sequences separated by a nonsulfated iduronate residue. This novel oligosaccharide was characterized by NMR spectroscopy, and its binding with AT was determined by fluorescence titration, NMR, and LC-MS. The dodecasaccharide displayed a significantly increased anti-FXa activity compared with those of the pentasaccharide, fondaparinux, and low molecular weight heparin enoxaparin.
Collapse
Affiliation(s)
- Christian Viskov
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France, and
| | - Stefano Elli
- From the Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, 20133 Milan, Italy
| | - Elena Urso
- From the Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, 20133 Milan, Italy
| | - Davide Gaudesi
- From the Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, 20133 Milan, Italy
| | - Pierre Mourier
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France, and
| | - Frederic Herman
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France, and
| | - Christian Boudier
- the Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, F67401 Illkirch, France
| | - Benito Casu
- From the Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, 20133 Milan, Italy
| | - Giangiacomo Torri
- From the Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, 20133 Milan, Italy
| | - Marco Guerrini
- From the Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, 20133 Milan, Italy,.
| |
Collapse
|
27
|
Galeotti F, Volpi N. Novel reverse-phase ion pair-high performance liquid chromatography separation of heparin, heparan sulfate and low molecular weight-heparins disaccharides and oligosaccharides. J Chromatogr A 2013; 1284:141-7. [DOI: 10.1016/j.chroma.2013.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 02/01/2023]
|
28
|
An unusual antithrombin-binding heparin octasaccharide with an additional 3-O-sulfated glucosamine in the active pentasaccharide sequence. Biochem J 2013; 449:343-51. [PMID: 23083208 DOI: 10.1042/bj20121309] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 3-O-sulfation of N-sulfated glucosamine is the last event in the biosynthesis of heparin/heparan sulfate, giving rise to the antithrombin-binding pentasaccharide sequence AGA*IA, which is largely associated with the antithrombotic activity of these molecules. The aim of the present study was the structural and biochemical characterization of a previously unreported AGA*IA*-containing octasaccharide isolated from the very-low-molecular-mass heparin semuloparin, in which both glucosamine residues of the pentasaccharide moiety located at the non-reducing end bear 3-O-sulfate groups. Two-dimensional and STD (saturation transfer difference) NMR experiments clearly confirmed its structure and identified its ligand epitope binding to antithrombin. The molecular conformation of the octasaccharide-antithrombin complex has been determined by NMR experiments and docking/energy minimization. The presence of the second 3-O-sulfated glucosamine in the octasaccharide induced more than one order of magnitude increase in affinity to antithrombin compared to the pentasaccharide AGA*IA.
Collapse
|
29
|
Scientific considerations in the review and approval of generic enoxaparin in the United States. Nat Biotechnol 2013; 31:220-6. [DOI: 10.1038/nbt.2528] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 02/08/2013] [Indexed: 12/16/2022]
|
30
|
Zhang Q, Chen X, Zhu Z, Zhan X, Wu Y, Song L, Kang J. Structural Analysis of Low Molecular Weight Heparin by Ultraperformance Size Exclusion Chromatography/Time of Flight Mass Spectrometry and Capillary Zone Electrophoresis. Anal Chem 2013; 85:1819-27. [DOI: 10.1021/ac303185w] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qianqian Zhang
- Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences,
Lingling Road 345, Shanghai 200032, China
| | - Xi Chen
- Waters Corporation, Block
13, Jinhai Road 1000 , Pudong New District, Shanghai 201206,
China
| | - Zhijia Zhu
- College of Chemistry,
Chemical
Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xueqiang Zhan
- College of Chemistry,
Chemical
Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yanfang Wu
- College of Chemistry,
Chemical
Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Lankun Song
- Waters Corporation, Block
13, Jinhai Road 1000 , Pudong New District, Shanghai 201206,
China
| | - Jingwu Kang
- Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences,
Lingling Road 345, Shanghai 200032, China
| |
Collapse
|
31
|
Mourier PAJ, Guichard OY, Herman F, Viskov C. Heparin sodium compliance to USP monograph: structural elucidation of an atypical 2.18 ppm NMR signal. J Pharm Biomed Anal 2012; 67-68:169-74. [PMID: 22579602 DOI: 10.1016/j.jpba.2012.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 10/28/2022]
Abstract
The ¹H nuclear magnetic resonance (NMR) acceptance criteria in the new heparin US Pharmacopeia (USP) monograph do not take into account potential structural modifications responsible for any extra signals observed in ¹H NMR spectra, some purified heparins may be non-compliant under the proposed new USP guidelines and incorrectly classified as unsuitable for pharmaceutical use. Heparins from the "ES" source, containing an extra signal at 2.18 ppm, were depolymerized under controlled conditions using heparinases I, II, and III. The oligosaccharides responsible for the 2.18 ppm signal were enriched using orthogonal chromatographic techniques. After multiple purification steps, we obtained an oligosaccharide mixture containing a highly enriched octasaccharide bearing the structural modification responsible for the extra signal. Following heparinase I depolymerization, a pure tetrasaccharide containing the fingerprint structural modification was isolated for full structural determination. Using 1D and 2D ¹H NMR spectroscopy, the structural moiety responsible for the extra signal at 2.18 ppm was identified as an acetyl group on the heparin backbone, most likely resulting from a very minor manufacturing process side reaction that esterifies the uronic acid at position 3. Such analytical peculiarity has always been present in this heparin source and it was used safety over the years.
Collapse
|
32
|
Leroux D, Canépa S, Viskov C, Mourier P, Herman F, Rollin J, Gruel Y, Pouplard C. Binding of heparin-dependent antibodies to PF4 modified by enoxaparin oligosaccharides: evaluation by surface plasmon resonance and serotonin release assay. J Thromb Haemost 2012; 10:430-6. [PMID: 22235911 DOI: 10.1111/j.1538-7836.2012.04618.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND The minimal structural requirements of low-molecular-weight heparins that determine the risk of developing heparin-induced thrombocytopenia (HIT) are not fully defined. OBJECTIVES The ability of enoxaparin-derived oligosaccharides (OS) to induce platelet activation and exposure of platelet-factor 4 (PF4) epitopes recognized by antibodies developed in HIT was studied by surface plasmon resonance (SPR) and serotonin release assay. RESULTS Decasaccharides with ≥ 11 sulfate groups induced platelet activation in the presence of plasma from patients with confirmed HIT. Serotonin release of > 80% without full inhibition at 100 μg mL(-1) was achieved with decasaccharides containing 14 or 15 sulfate groups, 2 dodecasaccharides and 2 tetradecasaccharides. An SPR method was developed using purified PF4 immobilized on carboxymethylated dextran. Antibodies from all HIT samples bound to PF4/heparin in SPR assays with resonance units (RU) ratio of 109-173 with HIT plasma vs. 88-93 with control plasma. RU ratios > 100 were measured when PF4 was pre-incubated with OS with ≥ 10 saccharide units and one octasaccharide containing 10 sulfate groups. RU ratios > 140, similar to those measured when PF4 was pre-incubated with unfractionated heparin or enoxaparin, were obtained with purified dodeca- and tetradecasaccharides. RU values strongly correlated with the number of sulfate groups in the decasaccharides tested (r = 0.93, P = 0.02). CONCLUSIONS LMWHs with fragments > 10 saccharides and a large number of sulfate groups are more likely to be associated with a higher risk of HIT. These structure-activity relationships were independent of the ability of the OS to bind antithrombin.
Collapse
Affiliation(s)
- D Leroux
- Department of Hematology-Hemostasis, University Hospital of Tours GICC UMR 6239 CNRS, University Francois Rabelais, Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Heparin is a member of the heparan sulphate family of glycosaminoglycans, a linear polysaccharide with a complex sequence resulting from the action of post-polymerisation enzymes on a regular repeating disaccharide background. Its overall conformation is rod-like in solution as well as in the solid state, but the conformational fluctuations of iduronate residues give rise to considerable internal motion and variation in local three-dimensional structure. Structure/function relationships and their relation to sequence are still the subject of argument, but new methodologies to tackle the subject are emerging. Heparin as a therapeutic agent and as the object of research may be characterised by numerous physico-chemical techniques. These include chromatographic methods for measurement of molecular weight; a variety of spectroscopic techniques; separation methods for whole polysaccharides, as well as for oligo- and monosaccharides; and mass spectrometric methods for mapping and sequence analysis. The impetus provided by the discovery of heparin contamination with oversulphated chondroitin sulphate has been influential in bringing combinations of many old and new techniques into use to ensure that heparin is sufficiently consistent and pure to be used safely. Synthetic and semi-synthetic heparins are in development and may become reality in the relatively near future.
Collapse
Affiliation(s)
- Barbara Mulloy
- National Institute for Biological Standards and Control, South Mimms, Hertfordshire, UK.
| |
Collapse
|
34
|
Guerrini M, Bisio A. Low-molecular-weight heparins: differential characterization/physical characterization. Handb Exp Pharmacol 2012:127-57. [PMID: 22566224 DOI: 10.1007/978-3-642-23056-1_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low-molecular-weight heparins (LMWHs), derived from unfractionated heparin (UFH) through different depolymerization processes, have advantages with respect to the parent heparin in terms of pharmacokinetics, convenience of administration, and reduced side effects. Each LMWH can be considered as an independent drug with its own activity profile, placing significance on their biophysical characterization, which will also enable a better understanding of their structure-function relationship. Several chemical and physical methods, some involving sample modification, are now available and are reviewed.
Collapse
Affiliation(s)
- Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy.
| | | |
Collapse
|
35
|
Sommers CD, Ye H, Kolinski RE, Nasr M, Buhse LF, Al-Hakim A, Keire DA. Characterization of currently marketed heparin products: analysis of molecular weight and heparinase-I digest patterns. Anal Bioanal Chem 2011; 401:2445-54. [PMID: 21901459 DOI: 10.1007/s00216-011-5362-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
We evaluated polyacrylamide gel electrophoresis (PAGE) and size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) approaches to determine weight-average molecular weight (M(w)) and polydispersity (PD) of heparins. A set of unfractionated heparin sodium (UFH) and low-molecular-weight heparin (LMWH) samples obtained from nine manufacturers which supply the US market were assessed. For SEC-MALLS, we measured values for water content, refractive index increment (dn/dc), and the second virial coefficient (A(2)) for each sample prior to molecular weight assessment. For UFH, a mean ± standard deviation value for M(w) of 16,773 ± 797 was observed with a range of 15,620 to 18,363 (n = 20, run in triplicate). For LMWHs by SEC-MALLS, we measured mean M(w) values for dalteparin, tinzaparin, and enoxaparin of 6,717 ± 71 (n = 4), 6,670 ± 417 (n = 3), and 3,959 ± 145 (n = 3), respectively. PAGE analysis of the same UFH, dalteparin, tinzaparin, and enoxaparin samples showed values of 16,135 ± 643 (n = 20), 5,845 ± 45 (n = 4), 6,049 ± 95 (n = 3), and 4,772 ± 69 (n = 3), respectively. These orthogonal measurements are the first M(w) results obtained with a large heparin sample set on product being marketed after the heparin crisis of 2008 changed the level of scrutiny of this drug class. In this study, we compare our new data set to samples analyzed over 10 years earlier. In addition, we found that the PAGE analysis of heparinase digested UFH and neat LMWH samples yield characteristic patterns that provide a facile approach for identification and assessment of drug quality and uniformity.
Collapse
Affiliation(s)
- Cynthia D Sommers
- Division of Pharmaceutical Analysis, CDER, Food and Drug Administration, 1114 Market St. Rm 1002, St. Louis, MO 63101, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Heparin sodium compliance to the new proposed USP monograph: Elucidation of a minor structural modification responsible for a process dependent 2.10ppm NMR signal. J Pharm Biomed Anal 2011; 54:337-44. [DOI: 10.1016/j.jpba.2010.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 11/21/2022]
|
37
|
Jones CJ, Beni S, Limtiaco JFK, Langeslay DJ, Larive CK. Heparin characterization: challenges and solutions. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:439-465. [PMID: 21469955 DOI: 10.1146/annurev-anchem-061010-113911] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although heparin is an important and widely prescribed pharmaceutical anticoagulant, its high degree of sequence microheterogeneity and size polydispersity make molecular-level characterization challenging. Unlike nucleic acids and proteins that are biosynthesized through template-driven assembly processes, heparin and the related glycosaminoglycan heparan sulfate are actively remodeled during biosynthesis through a series of enzymatic reactions that lead to variable levels of O- and N-sulfonation and uronic acid epimers. As summarized in this review, heparin sequence information is determined through a bottom-up approach that relies on depolymerization reactions, size- and charge-based separations, and sensitive mass spectrometric and nuclear magnetic resonance experiments to determine the structural identity of component oligosaccharides. The structure-elucidation process, along with its challenges and opportunities for future analytical improvements, is reviewed and illustrated for a heparin-derived hexasaccharide.
Collapse
Affiliation(s)
- Christopher J Jones
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| | | | | | | | | |
Collapse
|
38
|
Guerrini M, Elli S, Gaudesi D, Torri G, Casu B, Mourier P, Herman F, Boudier C, Lorenz M, Viskov C. Effects on molecular conformation and anticoagulant activities of 1,6-anhydrosugars at the reducing terminal of antithrombin-binding octasaccharides isolated from low-molecular-weight heparin enoxaparin. J Med Chem 2010; 53:8030-40. [PMID: 21028827 DOI: 10.1021/jm100771s] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Terminal 1,6-anhydro-aminosugars (1,6-anAS) are typical structural moieties of enoxaparin, a low-molecular-weight heparin (LMWH) widely used for prevention and treatment of thrombotic disorders. In the enoxaparin manufacturing process, these modified amino sugars are formed during the β-eliminative cleavage of heparin. To investigate the effect of terminal anAS on antithrombin (AT) binding and on inhibition of factor Xa (FXa), two octasaccharides containing modified AT-binding pentasaccharide sequences were isolated from enoxaparin. The molecular conformation of the octasaccharides terminating with N-sulfo-1,6-anhydro-D-mannosamine and N-sulfo-1,6-anhydro-D-glucosamine, respectively, has been determined both in the absence and presence of AT by NMR experiments and docking simulations. Reduced overall contacts of the terminal anAS residues with the binding region of AT induce a decrease in affinity for AT as well as lower anti-FXa activity. The anti-FXa measured either in buffer or plasma milieu does not show any significant difference, suggesting that the inhibition of anti-FXa remains specific and biologically relevant.
Collapse
Affiliation(s)
- Marco Guerrini
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Powell AK, Ahmed YA, Yates EA, Turnbull JE. Generating heparan sulfate saccharide libraries for glycomics applications. Nat Protoc 2010; 5:821-33. [PMID: 20379137 DOI: 10.1038/nprot.2010.17] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Natural and semi-synthetic heparan sulfate (HS) saccharide libraries are a valuable resource for investigating HS structure-function relationships, enabling high-throughput glycomics studies. Owing to the difficulty of chemical or in vitro enzymatic synthesis of HS saccharides, the structural diversity displayed in saccharides from tissue or cell sources cannot be readily accessed. In contrast, saccharide libraries can be generated by partial digestion of tissue-derived HS polysaccharide chains and chromatographic fractionation of the resulting saccharide mixtures. Fractionation is initially on the basis of hydrodynamic volume, using size exclusion chromatography. Further fractionation, on the basis of charge using strong anion exchange, can subsequently be applied. Desalting and sample concentration follows each fractionation step. Chromatographic fractions are generated that contain purified, or partially purified, saccharides. Here we describe a comprehensive protocol for generation of structurally diverse natural saccharide libraries from HS variants that is fast (approximately 3 weeks) and reproducible.
Collapse
Affiliation(s)
- Andrew K Powell
- Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool, UK
| | | | | | | |
Collapse
|
40
|
Viskov C, Just M, Laux V, Mourier P, Lorenz M. Description of the chemical and pharmacological characteristics of a new hemisynthetic ultra-low-molecular-weight heparin, AVE5026. J Thromb Haemost 2009; 7:1143-51. [PMID: 19422447 DOI: 10.1111/j.1538-7836.2009.03447.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES AVE5026 is a novel, hemisynthetic, ultra-low-molecular-weight heparin (ULMWH), which is in clinical development for prevention of venous thromboembolism. Its unique structural features result from the highly selective depolymerization of heparin by the phosphazene base that protects the antithrombin (AT)-binding site from destruction. In the present paper, we describe the chemical and biological characteristics of AVE5026, as well as its effects on experimental thrombosis as compared to those of the low-molecular-weight heparin (LMWH) enoxaparin after a single subcutaneous (s.c.) administration in certain animal models. METHOD AND RESULTS AVE5026 has a higher anti-factor Xa (anti-FXa) activity (approximately 160 U mg(-1)) along with a catalytic anti-thrombin (anti-FIIa) activity (approximately 2 U mg(-1)) as a result of its structure being strongly enriched in specific AT-binding oligosaccharides. In human plasma, potent inhibition of thrombin generation by AVE5026 was closely related to its anti-FXa activity. In a rat venous thrombosis model, AVE5026 showed a dose-dependent antithrombotic activity comparable to that of enoxaparin (ED50-AVE5026 = 1.6 mg kg(-1), ED50-enoxaparin = 2.8 mg kg(-1)). Interestingly, non-occlusive venous thrombosis in rabbits was inhibited by an ED50 of 0.1 mg kg(-1) AVE5026, whereas 0.316 mg kg(-1) enoxaparin was not active. In a canine model, similarly to enoxaparin (ED50 = 1.3 mg kg(-1)), AVE5026 dose-dependently inhibited arterial thrombosis (ED50 = 2.0 mg kg(-1)). At equipotent doses, AVE5026 did not affect bleeding parameters, whereas enoxaparin showed increased hemorrhage in rats, rabbits and dogs. CONCLUSION These unique structural attributes distinguish AVE5026 from the LMWH class. Based on these data in well-established arterial and venous thrombosis models, AVE5026 could represent a valuable alternative in thrombosis prevention with an improved benefit-risk profile as compared to that of enoxaparin.
Collapse
Affiliation(s)
- C Viskov
- Chemical & Analytical Sciences, Research and Development, Sanofi-Aventis, Vitry-Sur-Seine, France.
| | | | | | | | | |
Collapse
|
41
|
Guerrini M, Guglieri S, Casu B, Torri G, Mourier P, Boudier C, Viskov C. Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction. Evidence for very high affinity induced by an unusual glucuronic acid residue. J Biol Chem 2008; 283:26662-75. [PMID: 18640975 PMCID: PMC3258914 DOI: 10.1074/jbc.m801102200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 06/04/2008] [Indexed: 11/06/2022] Open
Abstract
The antithrombotic activity of low molecular weight heparins (LMWHs) is largely associated with the antithrombin (AT)-binding pentasaccharide sequence AGA(*)IA (GlcN(NAc/NS,6S)-GlcA-GlcN(NS,3,6S)-IdoUA(2S)-GlcN(NS,6S)). The location of the AGA(*)IA sequences along the LMWH chains is also expected to influence binding to AT. This study was aimed at investigating the role of the structure and molecular conformation of different disaccharide extensions on both sides of the AGA(*)IA sequence in modulating the affinity for AT. Four high purity octasaccharides isolated by size exclusion chromatography, high pressure liquid chromatography, and AT-affinity chromatography from the LMWH enoxaparin were selected for the study. All the four octasaccharides terminate at their nonreducing end with 4,5-unsaturated uronic acid residues (DeltaU). In two octasaccharides, AGA(*)IA was elongated at the reducing end by units IdoUA(2S)-GlcN(NS,6S) (OCTA-1) or IdoUA-GlcN(NAc,6S) (OCTA-2). In the other two octasaccharides (OCTA-3 and OCTA-4), AGA(*)IA was elongated at the nonreducing side by units GlcN(NS,6S)-IdoUA and GlcN(NS,6S)-GlcA, respectively. Extensions increased the affinity for AT of octasaccharides with respect to pentasaccharide AGA(*)IA, as also confirmed by fluorescence titration. Two-dimensional NMR and docking studies clearly indicated that, although elongation of the AGA(*)IA sequence does not substantially modify the bound conformation of the AGA(*)IA segment, extensions promote additional contacts with the protein. It should be noted that, as not previously reported, the unusual GlcA residue that precedes the AGA(*)IA sequence in OCTA-4 induced an unexpected 1 order of magnitude increase in the affinity to AT with respect to its IdoUA-containing homolog OCTA-3. Such a residue was found to orientate its two hydroxyl groups at close distance to residues of the protein. Besides the well established ionic interactions, nonionic interactions may thus contribute to strengthen oligosaccharide-AT complexes.
Collapse
Affiliation(s)
- Marco Guerrini
- “G. Ronzoni”
Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133
Milan, Italy, Sanofi-Aventis, 13 Quai
Jules Guesde, 94403 Vitry sur Seine, France, and
CNRS UMR 7175, Département
Physicochimie et Pharmacochimie des Interactions Moléculaires et
Cellulaires, Faculté de Pharmacie, Université Louis Pasteur,
Strasbourg I, F 67401, France
| | - Sara Guglieri
- “G. Ronzoni”
Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133
Milan, Italy, Sanofi-Aventis, 13 Quai
Jules Guesde, 94403 Vitry sur Seine, France, and
CNRS UMR 7175, Département
Physicochimie et Pharmacochimie des Interactions Moléculaires et
Cellulaires, Faculté de Pharmacie, Université Louis Pasteur,
Strasbourg I, F 67401, France
| | - Benito Casu
- “G. Ronzoni”
Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133
Milan, Italy, Sanofi-Aventis, 13 Quai
Jules Guesde, 94403 Vitry sur Seine, France, and
CNRS UMR 7175, Département
Physicochimie et Pharmacochimie des Interactions Moléculaires et
Cellulaires, Faculté de Pharmacie, Université Louis Pasteur,
Strasbourg I, F 67401, France
| | - Giangiacomo Torri
- “G. Ronzoni”
Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133
Milan, Italy, Sanofi-Aventis, 13 Quai
Jules Guesde, 94403 Vitry sur Seine, France, and
CNRS UMR 7175, Département
Physicochimie et Pharmacochimie des Interactions Moléculaires et
Cellulaires, Faculté de Pharmacie, Université Louis Pasteur,
Strasbourg I, F 67401, France
| | - Pierre Mourier
- “G. Ronzoni”
Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133
Milan, Italy, Sanofi-Aventis, 13 Quai
Jules Guesde, 94403 Vitry sur Seine, France, and
CNRS UMR 7175, Département
Physicochimie et Pharmacochimie des Interactions Moléculaires et
Cellulaires, Faculté de Pharmacie, Université Louis Pasteur,
Strasbourg I, F 67401, France
| | - Christian Boudier
- “G. Ronzoni”
Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133
Milan, Italy, Sanofi-Aventis, 13 Quai
Jules Guesde, 94403 Vitry sur Seine, France, and
CNRS UMR 7175, Département
Physicochimie et Pharmacochimie des Interactions Moléculaires et
Cellulaires, Faculté de Pharmacie, Université Louis Pasteur,
Strasbourg I, F 67401, France
| | - Christian Viskov
- “G. Ronzoni”
Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133
Milan, Italy, Sanofi-Aventis, 13 Quai
Jules Guesde, 94403 Vitry sur Seine, France, and
CNRS UMR 7175, Département
Physicochimie et Pharmacochimie des Interactions Moléculaires et
Cellulaires, Faculté de Pharmacie, Université Louis Pasteur,
Strasbourg I, F 67401, France
| |
Collapse
|
42
|
Gemma E, Meyer O, Uhrín D, Hulme AN. Enabling methodology for the end functionalization of glycosaminoglycan oligosaccharides. MOLECULAR BIOSYSTEMS 2008; 4:481-95. [PMID: 18493641 DOI: 10.1039/b801666f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
The chemical functionalization of glycosaminoglycans is very challenging due to their structural heterogeneity and polyanionic character; but as an enabling technology it promises rich rewards in terms of the structural and biological data it will afford. This review surveys the known methods for the preparation of glycosaminoglycan oligosaccharides and conditions for the selective functionalization of both the reducing and non-reducing ends. The synthetic merits of each approach are discussed, together with the structural modification of the glycosaminoglycan oligosaccharide which they confer. Recent applications of this methodology are highlighted, including introduction of functional labels for gel mobility shift assays and NMR studies of glycosaminoglycan-protein complexes, and synthesis of immobilised glycosaminoglycan arrays.
Collapse
Affiliation(s)
- Emiliano Gemma
- School of Chemistry, The University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, UK
| | | | | | | |
Collapse
|
43
|
Houiste C, Auguste C, Macrez C, Dereux S, Derouet A, Anger P. Quantitative PCR and Disaccharide Profiling to Characterize the Animal Origin of Low-Molecular-Weight Heparins. Clin Appl Thromb Hemost 2007; 15:50-8. [DOI: 10.1177/1076029608320831] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Low-molecular-weight heparins (LMWHs) are widely used in the management of thrombosis and acute coronary syndromes. They are obtained by the enzymatic or chemical depolymerization of porcine intestinal heparin. Enoxaparin sodium, a widely used LMWH, has a unique and reproducible oligosaccharide profile which is determined by the origin of the starting material and a tightly controlled manufacturing process. Although other enoxaparin-like LMWHs do exist, specific release criteria including the origin of the crude heparin utilized for their production, have not been established. A quantitative polymerase chain reaction method has been developed to ensure the purity of the porcine origin of crude heparin, with a DNA detection limit as low as 1 ppm for bovine, or 10 ppm for ovine contaminants. This method is routinely used as the release acceptance criterion during enoxaparin sodium manufacturing. Furthermore, when the process removes DNA, other analytical techniques can be used to assess any contamination. Disaccharide profiling after exhaustive depolymerization can determine the presence of at least 10% bovine or 20% ovine material; multivariate analysis is useful to perform the data analysis. Consistent with the availability of newer technology, these methods should be required as acceptance criteria for crude heparins used in the manufacture of LMWHs to ensure their safety, quality, and immunologic profile.
Collapse
Affiliation(s)
- Céline Houiste
- Process Development Biotechnology Division, sanofi-aventis, Paris, France
| | - Cécile Auguste
- Process Development Biotechnology Division, sanofi-aventis, Paris, France
| | - Céline Macrez
- Process Development Biotechnology Division, sanofi-aventis, Paris, France
| | - Stéphanie Dereux
- Process Development Biotechnology Division, sanofi-aventis, Paris, France
| | - Angélique Derouet
- Process Development Biotechnology Division, sanofi-aventis, Paris, France
| | - Pascal Anger
- Process Development Biotechnology Division, sanofi-aventis, Paris, France,
| |
Collapse
|
44
|
Santos JC, Mesquita JMF, Belmiro CLR, da Silveira CBM, Viskov C, Mourier PA, Pavão MSG. Isolation and characterization of a heparin with low antithrombin activity from the body of Styela plicata (Chordata-Tunicata). Distinct effects on venous and arterial models of thrombosis. Thromb Res 2007; 121:213-23. [PMID: 17482241 PMCID: PMC2211419 DOI: 10.1016/j.thromres.2007.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 12/22/2006] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION A heparin preparation with low antithrombin activity and different disaccharide composition than mammalian heparin was isolated from the body of the ascidian Styela plicata (Chordata-Tunicata). The disaccharide composition and the effect of the invertebrate glycan on venous and arterial models of thrombosis was investigated. METHODS AND RESULTS High performance liquid chromatography of the products formed by a mixture of heparin lyases showed that the ascidian heparin is composed mainly by delta UA(2SO4)-1-->4-beta-d-GlcN(SO4) (47.5%), delta UA(2SO4)-1-->4-beta-d-GlcN(SO4)(6SO4) (38.3%) disaccharides and smaller amounts of the disaccharides delta UA(2SO4)-1-->4-beta-d-GlcN(SO4)(3SO4)(6SO4) (2.8%) and delta UA(2SO4)-1-->4-beta-d-GlcN(SO4)(3SO4) (8.0%). The invertebrate heparin has an aPTT activity of 18 IU/mg and an antithrombin-mediated antithrombin and anti-factor Xa activities 10-fold lower than that of mammalian heparin. In a venous model of thrombosis in the vena cava, S. plicata heparin inhibits only 80% of thrombosis at a dose 10-fold higher than that of the mammalian heparin that inhibits 100% of thrombosis. However, in an arterio-shunt model of arterial thrombosis, both S. plicata and mammalian heparin possess equivalent antithrombotic activities. It is also shown that at equivalent doses, ascidian heparin has a lower bleeding effect than mammalian heparin. CONCLUSION The antithrombin-mediated anticoagulant activity of heparin polymers is not directly related to antithrombotic potency in the arterio-venous shunt. The results of the present work suggest that heparin preparations obtained from the body of S. plicata may have a safer therapeutic action in the treatment of arterial thrombosis than mammalian heparin.
Collapse
Affiliation(s)
- Joana C Santos
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Mascellani G, Guerrini M, Torri G, Liverani L, Spelta F, Bianchini P. Characterization of di- and monosulfated, unsaturated heparin disaccharides with terminal N-sulfated 1,6-anhydro-β-d-glucosamine or N-sulfated 1,6-anhydro-β-d-mannosamine residues. Carbohydr Res 2007; 342:835-42. [PMID: 17280651 DOI: 10.1016/j.carres.2006.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 12/05/2006] [Accepted: 12/13/2006] [Indexed: 11/25/2022]
Abstract
Modified heparin disaccharides were obtained by the alkaline treatment of a solution containing the disulfated heparin disaccharide DeltaHexA-alpha-(1-->4)-D-GlcNSO(3),6SO(3). Their structures were characterized by one- and two-dimensional NMR spectroscopy: DeltaHexA-alpha-(1-->4)-1,6-anhydro-GlcNSO(3), DeltaHexA-alpha-(1-->4)-1,6-anhydro-ManNSO(3) and DeltaHexA-alpha-(1-->4)-ManNSO(3),6OSO(3). NMR spectroscopy, in combination with HPLC, provided the composition of the mixture. Characteristic NMR signals of the disaccharides were identified, even at low levels, in a high field of (1)H-(13)C correlation NMR spectra (HSQC) of a low molecular weight heparin (LMWH) obtained by beta-elimination (alkaline hydrolysis) of heparin benzyl ester, providing a more complete structural profile of this class of compounds.
Collapse
|
46
|
de Barros CM, Andrade LR, Allodi S, Viskov C, Mourier PA, Cavalcante MCM, Straus AH, Takahashi HK, Pomin VH, Carvalho VF, Martins MA, Pavão MSG. The Hemolymph of the Ascidian Styela plicata (Chordata-Tunicata) Contains Heparin inside Basophil-like Cells and a Unique Sulfated Galactoglucan in the Plasma. J Biol Chem 2007; 282:1615-26. [PMID: 17114184 DOI: 10.1074/jbc.m604056200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hemolymph of ascidians (Chordata-Tunicata) contains different types of hemocytes embedded in a liquid plasma. In the present study, heparin and a sulfated heteropolysaccharide were purified from the hemolymph of the ascidian Styela plicata. The heteropolysaccharide occurs free in the plasma, is composed of glucose ( approximately 60%) and galactose ( approximately 40%), and is highly sulfated. Heparin, on the other hand, occurs in the hemocytes, and high performance liquid chromatography of the products formed by degradation with specific lyases revealed that it is composed mainly by the disaccharides DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4)) (39.7%) and DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(6SO(4)) (38.2%). Small amounts of the 3-O-sulfated disaccharides DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(3SO(4)) (9.8%) and DeltaUA(2SO(4))-1-->4-beta-d-GlcN(SO(4))(3SO(4))(6SO(4)) (3.8%) were also detected. These 3-O-sulfated disaccharides were demonstrated to be essential for the binding of the hemocyte heparin to antithrombin III. Electron microscopy techniques were used to characterize the ultrastructure of the hemocytes and to localize heparin and histamine in these cells. At least five cell types were recognized and classified as univacuolated and multivacuolated cells, amebocytes, hemoblasts, and granulocytes. Immunocytochemistry showed that heparin and histamine co-localize in intracellular granules of only one type of hemocyte, the granulocyte. These results show for the first time that in ascidians, a sulfated galactoglucan circulates free in the plasma, and heparin occurs as an intracellular product of a circulating basophil-like cell.
Collapse
Affiliation(s)
- Cintia M de Barros
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho and Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ, Brasil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guerrini M, Guglieri S, Beccati D, Torri G, Viskov C, Mourier P. Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Biochem J 2006; 399:191-8. [PMID: 16796563 PMCID: PMC1609903 DOI: 10.1042/bj20060656] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study deals with the conformation in solution of two heparin octasaccharides containing the pentasaccharide sequence GlcN(NAc,6S)-GlcA-GlcN(NS,3,6S)-IdoA(2S)-GlcN(NS,6S) [AGA*IA; where GlcN(NAc,6S) is N-acetylated, 6-O-sulfated alpha-D-glucosamine, GlcN(NS,3,6S) is N,3,6-O-trisulfated alpha-D-glucosamine and IdoA(2S) is 2-O-sulfated IdoA (alpha-L-iduronic acid)] located at different positions in the heparin chain and focuses on establishing geometries of IdoA residues (IdoA(2S) and IdoA) both inside and outside the AGA*IA sequence. AGA*IA constitutes the active site for AT (antithrombin) and is essential for the expression of high anticoagulant and antithrombotic activities. Analysis of NMR parameters [NOEs (nuclear Overhauser effects), transferred NOEs and coupling constants] for the two octasaccharides indicated that between the 1C4 and 2S0 conformations present in dynamic equilibrium in the free state for the IdoA(2S) residue within AGA*IA, AT selects the 2S0 form, as previously shown [Hricovini, Guerrini, Bisio, Torri, Petitou and Casu (2001) Biochem. J. 359, 265-272]. Notably, the 2S0 conformation is also adopted by the non-sulfated IdoA residue preceding AGA*IA that, in the absence of AT, adopts predominantly the 1C4 form. These results further support the concept that heparin-binding proteins influence the conformational equilibrium of iduronic acid residues that are directly or indirectly involved in binding and select one of their equi-energetic conformations for best fitting in the complex. The complete reversal of an iduronic acid conformation preferred in the free state is also demonstrated for the first time. Preliminary docking studies provided information on the octasaccharide binding location agreeing most closely with the experimental data. These results suggest a possible biological role for the non-sulfated IdoA residue preceding AGA*IA, previously thought not to influence the AT-binding properties of the pentasaccharide. Thus, for each AT binding sequence longer than AGA*IA, the interactions with the protein could differ and give to each heparin fragment a specific biological response.
Collapse
Affiliation(s)
- Marco Guerrini
- G. Ronzoni Institute for Chemical and Biochemical Research, via G. Colombo 81, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Sasisekharan R, Raman R, Prabhakar V. GLYCOMICS APPROACH TO STRUCTURE-FUNCTION RELATIONSHIPS OF GLYCOSAMINOGLYCANS. Annu Rev Biomed Eng 2006; 8:181-231. [PMID: 16834555 DOI: 10.1146/annurev.bioeng.8.061505.095745] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracellular modulation of phenotype is an emerging paradigm in this current postgenomics age of molecular and cell biology. Glycosaminoglycans (GAGs) are primary components of the cell surface and the cell-extracellular matrix (ECM) interface. Advances in the technology to analyze GAGs and in whole-organism genetics have led to a dramatic increase in the known important biological role of these complex polysaccharides. Owing to their ubiquitous distribution at the cell-ECM interface, GAGs interact with numerous proteins and modulate their activity, thus impinging on fundamental biological processes such as cell growth and development. Many recent reviews have captured important aspects of GAG structure and biosynthesis, GAG-protein interactions, and GAG biology. GAG research is currently at a stage where there is a need for an integrated systems or glycomics approach, which involves an integration of all of the above concepts to define their structure-function relationships. Focusing on heparin/heparan (HSGAGs) and chondroitin/dermatan sulfate (CSGAGs), this review highlights the important aspects of GAGs and summarizes these aspects in the context of taking a glycomics approach that integrates the different technologies to define structure-function relationships of GAGs.
Collapse
Affiliation(s)
- Ram Sasisekharan
- Biological Engineering Division, Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|