1
|
Dasgupta A, Tripathi A, Mitra A, Ghosh P, Santra MK, Mitra D. Human microRNA miR-197-3p positively regulates HIV-1 virion infectivity through its target DDX52 by stabilizing Vif protein expression. J Biol Chem 2025; 301:108198. [PMID: 39826696 PMCID: PMC11867528 DOI: 10.1016/j.jbc.2025.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/04/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
MicroRNAs are a part of the integral regulatory mechanisms found in eukaryotic cells that help in maintaining cellular homeostasis by modulating the expression of target genes. However, during stress conditions like viral infection, the expression profile of the microRNAs change, thereby directly modulating the expression of viral genes and/or indirectly targeting the virus by regulating the host genes. The present study intends to identify previously uncharacterized cellular microRNAs, which are significantly modulated upon HIV-1 infection. With the available microarray data of five independent studies in the NCBI GEO database, 10 common yet functionally uncharacterized microRNAs that are deregulated during HIV-1 infection in humans were identified. Their expression profiles were validated in HIV-1 infected human peripheral blood mononuclear cells and a CD4+T cell line. Among them, miR-197-3p showed significant upregulation during HIV-1 infection in all the cell types tested and was selected for further characterization. We then found that miR-197-3p increases progeny virion infectivity through restricting the expression of DDX52. Interestingly, DDX52 showed a negative impact on virion infectivity by downregulating the HIV-1 viral infectivity factor (Vif) at the protein level. Mechanistically, our study also revealed that Vif, DDX52, and APOBEC3G form a complex, which might be responsible for Vif downregulation by proteasomal degradation. Taken together, our results demonstrate that miR-197-3p is a positive regulator of HIV-1 infectivity as it enhances the progeny virion infectivity by targeting DDX52, which is a negative regulator of Vif.
Collapse
Affiliation(s)
- Anindita Dasgupta
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India
| | - Anjali Tripathi
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India
| | - Alapani Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India
| | - Payel Ghosh
- Bioinformatics Centre, SP Pune University, Pune, Maharashtra, India
| | - Manas Kumar Santra
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India
| | - Debashis Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, Maharashtra, India.
| |
Collapse
|
2
|
Mitra A, Dasgupta A, Mitra D. Cellular HSF1 expression is induced during HIV-1 infection by activation of its promoter mediated through the cooperative interaction of HSF1 and viral Nef protein. Arch Biochem Biophys 2024; 754:109947. [PMID: 38417690 DOI: 10.1016/j.abb.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The Human Immunodeficiency Virus-1 (HIV-1) tends to activate cellular promoters driving expression of pro-viral genes by complex host-virus interactions for productive infection. We have previously demonstrated that expression of such a positive host factor HSF1 (heat shock factor 1) is elevated during HIV-1 infection; however, the mechanism remains to be elucidated. In the present study, we therefore examined whether HSF1 promoter is induced during HIV-1 infection leading to up-regulation of hsf1 gene expression. We mapped the putative transcription start site (TSS) predicted by Eukaryotic promoter database and deletion constructs of the predicted promoter region were tested through luciferase assay to identify the active promoter. The 347 bp upstream to 153 bp downstream region around the putative TSS displayed the highest activity and both Sp1 (stimulating protein 1) and HSF1 itself were identified to be important for its basal activation. Activity of HSF1 promoter was further stimulated during HIV-1 infection in CD4+ T cells, where interestingly the HSF1-site itself seems to play a major role. In addition, HIV-1 protein Nef (negative factor) was also observed to be responsible for the virus-mediated induction of hsf1 gene expression. Chromatin-immunoprecipitation assays further demonstrate that Nef and HSF1 are co-recruited to the HSF1-binding site and cooperatively act on this promoter. The interplay between host HSF1 and viral Nef on HSF1 promoter eventually leads to increase in HSF1 expression during HIV-1 infection. Understanding the mechanism of HSF1 up-regulation during HIV-1 infection might contribute to future antiviral strategies as HSF1 is a positive regulator of virus replication.
Collapse
Affiliation(s)
- Alapani Mitra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| | - Anindita Dasgupta
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| | - Debashis Mitra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| |
Collapse
|
3
|
Tripathi A, Iyer K, Mitra D. HIV-1 replication requires optimal activation of the unfolded protein response. FEBS Lett 2023; 597:2908-2930. [PMID: 37984889 DOI: 10.1002/1873-3468.14772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Several human diseases including viral infections activate the unfolded protein response (UPR) due to abnormal accumulation of unfolded/misfolded proteins. However, UPR modulation and its functional relevance in HIV-1 infection lack comprehensive elucidation. This study reveals that HIV-1 activates IRE1, PERK, and ATF6 signaling pathways of UPR. The knockdown of PERK and ATF6 reduces HIV-1 long terminal repeat (LTR)-driven gene expression, whereas the endoplasmic reticulum (ER) chaperone HSPA5 prevents proteasomal degradation of HIV-1 p24 through its chaperone activity. Interestingly, overstimulation of UPR by a chemical inducer leads to anti-HIV activity through an enhanced type-1 interferon response. Also, treatment with a chemical ER stress inhibitor reduces HIV-1 replication. These findings suggest that an optimal UPR activation is crucial for effective viral replication, as either overstimulating UPR or inhibiting ER stress leads to viral suppression.
Collapse
|
4
|
Yonezawa T, Takahashi H, Hao Y, Furukawa C, Tsuchiya A, Zhang W, Fukushima T, Fukuyama T, Sawasaki T, Kitamura T, Goyama S. The E3 ligase DTX2 inhibits RUNX1 function by binding its C terminus and prevents the growth of RUNX1-dependent leukemia cells. FEBS J 2023; 290:5141-5157. [PMID: 37500075 DOI: 10.1111/febs.16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/25/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.
Collapse
Affiliation(s)
- Taishi Yonezawa
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | | | - Yangying Hao
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Chie Furukawa
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| |
Collapse
|
5
|
Chand K, Barman MK, Ghosh P, Mitra D. DNAJB8 facilitates autophagic-lysosomal degradation of viral Vif protein and restricts HIV-1 virion infectivity by rescuing APOBEC3G expression in host cells. FASEB J 2023; 37:e22793. [PMID: 36723955 DOI: 10.1096/fj.202201738r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
HSP40/DNAJ family of proteins is the most diverse chaperone family, comprising about 49 isoforms in humans. Several reports have demonstrated the functional role of a few of these isoforms in the pathogenesis of various viruses, including HIV-1. Our earlier study has shown that several isoforms of HSP40 get significantly modulated at the mRNA level during HIV-1 infection in T cells. To explore the biological role of these significantly modulated isoforms, we analyzed their effect on HIV-1 gene expression and virus production using knockdown and overexpression studies. Among these isoforms, DNAJA3, DNAJB1, DNAJB7, DNAJC4, DNAJC5B, DNAJC5G, DNAJC6, DNAJC22, and DNAJC30 seem to positively regulate virus replication, whereas DNAJB3, DNAJB6, DNAJB8, and DNAJC5 negatively regulate virus replication. Further investigation on the infectivity of the progeny virion demonstrated that only DNAJB8 negatively regulates the progeny virion infectivity. It was further identified that DNAJB8 protein is involved in the downregulation of Vif protein, required for the infectivity of HIV-1 virions. DNAJB8 seems to direct Vif protein for autophagic-lysosomal degradation, leading to rescue of the cellular restriction factor APOBEC3G from Vif-mediated proteasomal degradation, resulting in enhanced packaging of APOBEC3G in budding virions and release of less infective progeny virion particles. Finally, our results also indicate that during the early stage of HIV-1 infection, enhanced expression of DNAJB8 promotes the production of less infective progeny virions, but at the later stage or at the peak of infection, reduced expression of DNJAB8 protein allows the HIV-1 to replicate and produce more infective progeny virion particles.
Collapse
Affiliation(s)
- Kailash Chand
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| | | | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Debashis Mitra
- National Centre for Cell Science, SP Pune University Campus, Pune, India
| |
Collapse
|
6
|
Zipper interacting protein kinase (ZIPK) is a negative regulator of HIV-1 replication that is restricted by viral nef protein through proteasomal degradation. Biochem Biophys Res Commun 2022; 625:122-127. [DOI: 10.1016/j.bbrc.2022.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/30/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
|
7
|
Mao S, Ying Y, Ma Z, Yang Y, Chen AK. A Background Assessable and Correctable Bimolecular Fluorescence Complementation System for Nanoscopic Single-Molecule Imaging of Intracellular Protein-Protein Interactions. ACS NANO 2021; 15:14338-14346. [PMID: 34427423 DOI: 10.1021/acsnano.1c03242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bimolecular Fluorescence Complementation (BiFC) is a versatile approach for intracellular analysis of protein-protein interactions (PPIs), but the tendency of the split fluorescent protein (FP) fragments to self-assemble when brought into close proximity of each other by random collision can lead to generation of false-positive signals that hamper high-definition imaging of PPIs occurring on the nanoscopic level. While it is thought that expressing the fusion proteins at a low level can remove false positives without impacting specific signals, there has been no effective strategy to test this possibility. Here, we present a system capable of assessing and removing BiFC false positives, termed Background Assessable and Correctable-BiFC (BAC-BiFC), in which one of the split FP fragments is fused with an optically distinct FP that serves as a reference marker, and the single-cell fluorescence ratio of the BiFC signal to the reference signal is used to gauge an optimal transfection condition. We showed that when BAC-BiFC is designed to image PPIs regulating Human Immunodeficiency Virus type 1 (HIV-1) assembly, the fluorescence ratio could decrease with decreasing probe quantity, and ratios approaching the limit of detection could allow physiologically relevant characterization of the assembly process on the nanoscale by single-molecule localization microscopy (SMLM). With much improved clarity, previously undescribed features of HIV-1 assembly were revealed.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Wang L, Xu ML, Wang C, Dong QQ, Miao Z, Chen XY, Wang N, He HP, Zhang TC, Luo XG. SET and MYND domain-containing protein 3 inhibits tumor cell sensitivity to cisplatin. Oncol Lett 2020; 19:3469-3476. [PMID: 32269620 PMCID: PMC7114722 DOI: 10.3892/ol.2020.11465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cisplatin resistance has been a major factor limiting its clinical use as a chemotherapy drug. The present study aimed to investigate whether SET and MYND domain-containing protein 3 (SMYD3), a histone methyltransferase closely associated with tumors can affect the sensitivity of tumors to cisplatin chemotherapy. Real time-qPCR, western blotting, the luciferase reporter, MTT and clonogenic assays were performed to detect the effects of SMYD3 on the chemotherapy capacity of cisplatin. In the present study, SMYD3 exhibited different expression patterns in MCF-7 and T47D breast cancer cells. In addition, this differential expression was associated with tumor cell resistance to cisplatin. Furthermore, SMYD3 knockdown following small interfering RNA transfection increased cisplatin sensitivity, whereas SMYD3 overexpression decreased cisplatin sensitivity. In addition, SMYD3 knockdown synergistically enhanced cisplatin-induced cell apoptosis. SMYD3 expression was downregulated during cisplatin treatment. In addition, transcriptional regulatory activities of SMYD3 3'-untranslated region were also downregulated. These results suggested that SMYD3 may affect cell sensitivity to cisplatin and participate in the development of cisplatin resistance, which is a process that may involve microRNA-124-mediated regulation.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Man-Li Xu
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Chang Wang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Qing-Qing Dong
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Zhi Miao
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xiao-Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Hong-Peng He
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science and Technology, Ministry of Education, Tianjin 300457, P.R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| |
Collapse
|
9
|
Santos LR, Durães C, Ziros PG, Pestana A, Esteves C, Neves C, Carvalho D, Bongiovanni M, Renaud CO, Chartoumpekis DV, Habeos IG, Simões MS, Soares P, Sykiotis GP. Interaction of Genetic Variations in NFE2L2 and SELENOS Modulates the Risk of Hashimoto's Thyroiditis. Thyroid 2019; 29:1302-1315. [PMID: 31426718 PMCID: PMC6760180 DOI: 10.1089/thy.2018.0480] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Several single-nucleotide polymorphisms (SNPs) are known to increase the risk of Hashimoto's thyroiditis (HT); such SNPs reside in thyroid-specific genes or in genes related to autoimmunity, inflammation, and/or cellular defense to stress. The transcription factor Nrf2, encoded by NFE2L2, is a master regulator of the cellular antioxidant response. This study aimed to evaluate the impact of genetic variation in NFE2L2 on the risk of developing HT. Methods: In a case-control candidate gene association study, functional SNPs in the NFE2L2 promoter (rs35652124, rs6706649, and rs6721961) were examined either as independent risk factors or in combination with a previously characterized HT risk allele (rs28665122) in the gene SELENOS, encoding selenoprotein S (SelS). A total of 997 individuals from the north of Portugal (Porto) were enrolled, comprising 481 HT patients and 516 unrelated healthy controls. SELENOS and NFE2L2 SNPs were genotyped using TaqMan® assays and Sanger sequencing, respectively. Odds ratios (ORs) were calculated using logistic regression, with adjustment for sex and age. Expression of SelS was analyzed by immunohistochemistry in thyroid tissue from HT patients and control subjects. Molecular interactions between the Nrf2 and SelS pathways were investigated in thyroid tissues from mice and in rat PCCL3 thyroid follicular cells. Results: When all three NFE2L2 SNPs were considered together, the presence of one or more minor alleles was associated with a near-significant increased risk (OR = 1.43, p = 0.072). Among subjects harboring only major NFE2L2 alleles, there was no increased HT risk associated with heterozygosity or homozygosity for the SELENOS minor allele. Conversely, in subjects heterozygous or homozygous for the SELENOS risk allele, the presence of an NFE2L2 minor allele significantly increased HT risk by 2.8-fold (p = 0.003). Immunohistochemistry showed reduced expression of SelS in thyroid follicular cells of HT patients. In Nrf2 knockout mice, there was reduced expression of SelS in thyroid follicular cells; conversely, in PCCL3 cells, reducing SelS expression caused reduced activity of Nrf2 signaling. Conclusions: The NFE2L2 promoter genotype interacts with the SELENOS promoter genotype to modulate the risk of HT in a Portuguese population. This interaction may be due to a bidirectional positive feedback between the Nrf2 and SelS pathways.
Collapse
Affiliation(s)
- Liliana R. Santos
- Department of Internal Medicine, Hospital de Santa Maria, Lisbon, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Cecília Durães
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Panos G. Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana Pestana
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - César Esteves
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Hospital of S. João, Porto, Portugal
| | - Celestino Neves
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Hospital of S. João, Porto, Portugal
| | - Davide Carvalho
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Endocrinology, Hospital of S. João, Porto, Portugal
| | - Massimo Bongiovanni
- Service of Clinical Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cédric O. Renaud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dionysios V. Chartoumpekis
- Department of Internal Medicine, Division of Endocrinology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis G. Habeos
- Department of Internal Medicine, Division of Endocrinology, School of Medicine, University of Patras, Patras, Greece
| | - Manuel Sobrinho Simões
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Paula Soares
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Address correspondence to: Gerasimos P. Sykiotis, MD, PhD, Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, SA08/02/250, Ave de la Sallaz 8, Lausanne CH-1011, Switzerland
| |
Collapse
|
10
|
Matana A, Ziros PG, Chartoumpekis DV, Renaud CO, Polašek O, Hayward C, Zemunik T, Sykiotis GP. Rare and common genetic variations in the Keap1/Nrf2 antioxidant response pathway impact thyroglobulin gene expression and circulating levels, respectively. Biochem Pharmacol 2019; 173:113605. [PMID: 31421134 DOI: 10.1016/j.bcp.2019.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
Nuclear factor, erythroid 2-like 2 (Nrf2) is a transcription factor that has been gaining attention in the field of pharmacology and especially in the chemoprevention of diseases such as cancer, metabolic and neurodegenerative diseases, etc. This is because natural compounds such as sulforaphane, which is found in broccoli sprout extracts, can activate Nrf2. The repertoire of the roles of Nrf2 is ever increasing; besides its traditional antioxidant and cytoprotective effects, Nrf2 can have other functions as a transcription factor. We have recently shown that Nrf2 directly regulates the expression of thyroglobulin (Tg), which is the most abundant thyroidal protein and the precursor of thyroid hormones. Two functional binding sites for Nrf2 (antioxidant response elements, AREs) were identified in the regulatory region of the TG gene. Interestingly, we then observed that one of these AREs harbors a rare single-nucleotide polymorphism (SNP). Also recently, we performed the first genome-wide association study (GWAS) for common SNPs that impact the circulating levels of Tg. Based on these investigations, we were triggered (i) to investigate whether common SNPs in the Nrf2 pathway correlate with circulating Tg levels; and (ii) to examine whether the rare SNP in one of the TG regulatory AREs may affect gene expression. To address the first question, we analyzed GWAS data from a general population and its two subpopulations, one with thyroid disease and/or abnormal thyroid function tests and the other without, in which circulating Tg levels had been measured. Statistically significant associations with Tg levels were observed in the genes encoding Nrf2 and Keap1, including, notably, a known functional SNP in the promoter of the gene encoding Nrf2. Regarding the rare SNP (rs778940395) in the proximal ARE of the TG enhancer, luciferase reporter gene expression studies in PCCL3 rat thyroid follicular cells showed that this SNP abrogated the basal and sulforaphane- or TSH-induced luciferase activity, behaving as a complete loss-of-function mutation. Thus, both rare and common genetic variation in the Keap1/Nrf2 pathway can impact TG expression and Tg circulating levels, respectively.
Collapse
Affiliation(s)
- Antonela Matana
- Department of Medical Biology, University of Split, School of Medicine, Split, Šoltanska 2, Split, Croatia
| | - Panos G Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dionysios V Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Department of Internal Medicine, Division of Endocrinology, School of Medicine, University of Patras, Patras, Greece
| | - Cedric O Renaud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ozren Polašek
- Department of Public Health, University of Split, School of Medicine, Split, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
| | - Tatijana Zemunik
- Department of Medical Biology, University of Split, School of Medicine, Split, Šoltanska 2, Split, Croatia.
| | - Gerasimos P Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Yonezawa T, Takahashi H, Shikata S, Liu X, Tamura M, Asada S, Fukushima T, Fukuyama T, Tanaka Y, Sawasaki T, Kitamura T, Goyama S. The ubiquitin ligase STUB1 regulates stability and activity of RUNX1 and RUNX1-RUNX1T1. J Biol Chem 2017; 292:12528-12541. [PMID: 28536267 DOI: 10.1074/jbc.m117.785675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/19/2017] [Indexed: 12/18/2022] Open
Abstract
RUNX1 is a member of RUNX transcription factors and plays important roles in hematopoiesis. Disruption of RUNX1 activity has been implicated in the development of hematopoietic neoplasms. Chromosomal translocations involving the RUNX1 gene are associated with several types of leukemia, including acute myeloid leukemia driven by a leukemogenic fusion protein RUNX1-RUNX1T1. Previous studies have shown that RUNX1 is an unstable protein and is subjected to proteolytic degradation mediated by the ubiquitin-proteasome pathway. However, the precise mechanisms of RUNX1 ubiquitination have not been fully understood. Furthermore, much less is known about the mechanisms to regulate the stability of RUNX1-RUNX1T1. In this study, we identified several RUNX1-interacting E3 ubiquitin ligases using a novel high-throughput binding assay. Among them, we found that STUB1 bound to RUNX1 and induced its ubiquitination and degradation mainly in the nucleus. Immunofluorescence analyses revealed that the STUB1-induced ubiquitination also promoted nuclear export of RUNX1, which probably contributes to the reduced transcriptional activity of RUNX1 in STUB1-overexpressing cells. STUB1 also induced ubiquitination of RUNX1-RUNX1T1 and down-regulated its expression. Importantly, STUB1 overexpression showed a substantial growth-inhibitory effect in myeloid leukemia cells that harbor RUNX1-RUNX1T1, whereas it showed only a marginal effect in other non-RUNX1-RUNX1T1 leukemia cells and normal human cord blood cells. Taken together, these data suggest that the E3 ubiquitin ligase STUB1 is a negative regulator of both RUNX1 and RUNX1-RUNX1T1. Activation of STUB1 could be a promising therapeutic strategy for RUNX1-RUNX1T1 leukemia.
Collapse
Affiliation(s)
- Taishi Yonezawa
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Hirotaka Takahashi
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Shiori Shikata
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Xiaoxiao Liu
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Moe Tamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639.
| |
Collapse
|
12
|
Chaudhary P, Khan SZ, Rawat P, Augustine T, Raynes DA, Guerriero V, Mitra D. HSP70 binding protein 1 (HspBP1) suppresses HIV-1 replication by inhibiting NF-κB mediated activation of viral gene expression. Nucleic Acids Res 2015; 44:1613-29. [PMID: 26538602 PMCID: PMC4770212 DOI: 10.1093/nar/gkv1151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
HIV-1 efficiently hijacks host cellular machinery and exploits a plethora of host–viral interactions for its successful survival. Identifying host factors that affect susceptibility or resistance to HIV-1 may offer a promising therapeutic strategy against HIV-1. Previously, we have reported that heat shock proteins, HSP40 and HSP70 reciprocally regulate HIV-1 gene-expression and replication. In the present study, we have identified HSP70 binding protein 1 (HspBP1) as a host-intrinsic inhibitor of HIV-1. HspBP1 level was found to be significantly down modulated during HIV-1 infection and virus production inversely co-related with HspBP1 expression. Our results further demonstrate that HspBP1 inhibits HIV-1 long terminal repeat (LTR) promoter activity. Gel shift and chromatin immunoprecipitation assays revealed that HspBP1 was recruited on HIV-1 LTR at NF-κB enhancer region (κB sites). The binding of HspBP1 to κB sites obliterates the binding of NF-κB hetero-dimer (p50/p65) to the same region, leading to repression in NF-κB mediated activation of LTR-driven gene-expression. HspBP1 also plays an inhibitory role in the reactivation of latently infected cells, corroborating its repressive effect on NF-κB pathway. Thus, our results clearly show that HspBP1 acts as an endogenous negative regulator of HIV-1 gene-expression and replication by suppressing NF-κB-mediated activation of viral transcription.
Collapse
Affiliation(s)
| | | | - Pratima Rawat
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Tracy Augustine
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Deborah A Raynes
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Vince Guerriero
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Debashis Mitra
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
13
|
Song G, Nesil T, Cao J, Yang Z, Chang SL, Li MD. Nicotine mediates expression of genes related to antioxidant capacity and oxidative stress response in HIV-1 transgenic rat brain. J Neurovirol 2015; 22:114-24. [PMID: 26306689 DOI: 10.1007/s13365-015-0375-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/18/2015] [Accepted: 08/10/2015] [Indexed: 12/25/2022]
Abstract
Oxidative stress plays an important role in the progression of HIV-1 infection. Nicotine can either protect neurons from neurodegeneration or induce oxidative stress, depending on its dose and degree of oxidative stress impairment. However, the relationship between nicotine and oxidative stress in the HIV-1-infected individuals remains largely unknown. The purpose of this study was to determine the effect of nicotine on expression of genes related to the glutathione (GSH)-centered antioxidant system and oxidative stress in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of HIV-1 transgenic (HIV-1Tg) and F344 control rats. Adult HIV-1Tg and F344 rats received nicotine (0.4 mg/kg, base, s.c.) or saline injections once per day for 27 days. At the end of treatment, various brain regions including the NAc and VTA were collected from each rat. Following total RNA extraction and complementary DNA (cDNA) synthesis of each sample, quantitative reverse transcription PCR (RT-PCR) analysis was performed for 43 oxidative-stress-related genes. Compared with F344 control rats, HIV-1Tg rats showed a significant downregulation of genes involved in ATPase and cyctochrome oxidase at the messenger RNA (mRNA) level in both regions. Further, we found a significant downregulation of Gstm5 in the NAc and upregulation of Cox1, Cox3, and Gsta6 in the VTA of HIV-1Tg rats. HIV-1Tg rats showed brain-region-specific responses to chronic nicotine treatment. This response resulted in a change in the expression of genes involved in antioxidant mechanisms including the downregulation of genes such as Atp5h, Calml1, Gpx7, Gstm5, Gsr, and Gsta6 and upregulation of Sod1 in the NAc, as well as downregulation of genes like Cox5a, Gpx4, Gpx6, Gpx7, Gstm5, and Sod1 in the VTA of HIV-1Tg rats. Together, we conclude that chronic nicotine treatment has a dual effect on the antioxidant defense system and oxidative-stress-induced apoptosis signaling in HIV-1Tg rats. These findings suggest that nicotine has a negative effect on response to oxidative stress and antioxidant processes in HIV-1 Tg rat brain, especially in the VTA.
Collapse
Affiliation(s)
- Guohua Song
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA.,Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, China
| | - Tanseli Nesil
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA
| | - Junran Cao
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA
| | - Zhongli Yang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ, USA.,Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 450 Ray C Hunt Drive, Suite G-170, Charlottesville, VA, 22903, USA.
| |
Collapse
|
14
|
Dhamija N, Choudhary D, Ladha JS, Pillai B, Mitra D. Tat predominantly associates with host promoter elements in HIV-1-infected T-cells - regulatory basis of transcriptional repression of c-Rel. FEBS J 2014; 282:595-610. [PMID: 25472883 DOI: 10.1111/febs.13168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 11/28/2022]
Abstract
HIV-1 Tat is a multifunctional regulatory protein that, in addition to its primary function of transactivating viral transcription, also tends to modulate cellular gene expression, for which the molecular mechanism remains to be clarified. We have reported earlier nuclear factor kappa B (NFκB) enhancer binding activity of Tat and proposed this DNA binding activity as a possible molecular basis for Tat-mediated regulation of cellular gene expression in infected cells. In the present study, we analyzed the genome-wide occupancy of Tat protein on host cell chromatin in HIV-1-infected T-cells to investigate a potential role of Tat on cellular gene expression. The results obtained identify a spectrum of binding sites of Tat protein on the chromatin and reveal that Tat is also recruited on a number of cellular gene promoters in HIV-1-infected T-cells, indicating its possible involvement in the regulation of gene expression of such cellular genes. Tat was identified as a repressor of one such validated gene, c-Rel, because it downregulates the expression of c-Rel in both Tat expressing and HIV-1-infected T-cells. The results also show that Tat downregulates c-Rel promoter activity by interacting with specific NFκB sites on the c-Rel promoter, thus providing a molecular basis of Tat-mediated regulation of cellular gene expression. Thus, in the present study, we have not only identified recruitment sites of Tat on the chromatin in HIV-1-infected T-cells, but also report for the first time that c-Rel is downregulated in HIV-1-infected cells specifically by interaction of Tat with NFκB binding sites on the promoter.
Collapse
|
15
|
Benjamin R, Banerjee A, Balakrishnan K, Sivangala R, Gaddam S, Banerjee S. Mycobacterial and HIV infections up-regulated human zinc finger protein 134, a novel positive regulator of HIV-1 LTR activity and viral propagation. PLoS One 2014; 9:e104908. [PMID: 25144775 PMCID: PMC4140746 DOI: 10.1371/journal.pone.0104908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Concurrent occurrence of HIV and Tuberculosis (TB) infections influence the cellular environment of the host for synergistic existence. An elementary approach to understand such coalition at the molecular level is to understand the interactions of the host and the viral factors that subsequently effect viral replication. Long terminal repeats (LTR) of HIV genome serve as a template for binding trans-acting viral and cellular factors that regulate its transcriptional activity, thereby, deciding the fate of HIV pathogenesis, making it an ideal system to explore the interplay between HIV and the host. METHODOLOGY/PRINCIPAL FINDINGS In this study, using biotinylated full length HIV-1 LTR sequence as bait followed by MALDI analyses, we identified and further characterized human-Zinc-finger-protein-134 (hZNF-134) as a novel positive regulator of HIV-1 that promoted LTR-driven transcription and viral production. Over-expression of hZNF-134 promoted LTR driven luciferase activity and viral transcripts, resulting in increased virus production while siRNA mediated knockdown reduced both the viral transcripts and the viral titers, establishing hZNF-134 as a positive effector of HIV-1. HIV, Mycobacteria and HIV-TB co-infections increased hZNF-134 expressions in PBMCs, the impact being highest by mycobacteria. Corroborating these observations, primary TB patients (n = 22) recorded extraordinarily high transcript levels of hZNF-134 as compared to healthy controls (n = 16). CONCLUSIONS/SIGNIFICANCE With these observations, it was concluded that hZNF-134, which promoted HIV-1 LTR activity acted as a positive regulator of HIV propagation in human host. High titers of hZNF-134 transcripts in TB patients suggest that up-regulation of such positive effectors of HIV-1 upon mycobacterial infection can be yet another mechanism by which mycobacteria assists HIV-1 propagation during HIV-TB co-infections. hZNF-134, an uncharacterized host protein, thus assumes a novel regulatory role during HIV-host interactions. Our study provides new insights into the emerging role of zinc finger proteins in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Ronald Benjamin
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Atoshi Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Kannan Balakrishnan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ramya Sivangala
- Immunology Department, Bhagwan Mahavir Medical Research Centre, A.C. Guards, Hyderabad, Telangana, India
| | - Sumanlatha Gaddam
- Immunology Department, Bhagwan Mahavir Medical Research Centre, A.C. Guards, Hyderabad, Telangana, India; Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
16
|
Fehse S, Nowag S, Quadir M, Kim KS, Haag R, Multhaup G. Copper Transport Mediated by Nanocarrier Systems in a Blood–Brain Barrier In Vitro Model. Biomacromolecules 2014; 15:1910-9. [DOI: 10.1021/bm500400k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Susanne Fehse
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, 14195 Berlin, Germany
- Department
of Pharmacology and Therapeutics, McGill University, 3655 Promenade
Sir-William-Osler, McIntyre Building, Room 1325, Montreal, QC Canada H3G 1Y6
| | - Sabrina Nowag
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany
| | - Mohiuddin Quadir
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany
| | - Kwang Sik Kim
- Johns Hopkins University, School of Medicine,
Division of Pediatric Infectious Diseases, 200 North Wolfe St, Baltimore, Maryland 21287, United States
| | - Rainer Haag
- Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, 14195 Berlin, Germany
| | - Gerd Multhaup
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, 14195 Berlin, Germany
- Department
of Pharmacology and Therapeutics, McGill University, 3655 Promenade
Sir-William-Osler, McIntyre Building, Room 1325, Montreal, QC Canada H3G 1Y6
| |
Collapse
|
17
|
Kumar M, Rawat P, Khan SZ, Dhamija N, Chaudhary P, Ravi DS, Mitra D. Reciprocal regulation of human immunodeficiency virus-1 gene expression and replication by heat shock proteins 40 and 70. J Mol Biol 2011; 410:944-58. [PMID: 21763498 DOI: 10.1016/j.jmb.2011.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/27/2022]
Abstract
Cellular heat shock proteins (Hsps) are induced upon heat shock, UV irradiation and microbial or viral infection. They are also known to be involved in apoptosis and immune response in addition to their chaperone function. Although some literature exists regarding the role of Hsps in human immunodeficiency virus (HIV)-1 infection, a clear understanding of their role remains elusive. Previously, we have shown that Hsp40, a co-chaperone of Hsp70, interacts with HIV-1 negative regulatory factor (Nef) and is required for Nef-mediated increase in viral gene expression and replication. We now show that Hsp70 is also present in the Nef-Hsp40 complex reported earlier. Furthermore, Hsp70 inhibits viral gene expression and replication; however, Hsp40 can rescue this down regulation of viral gene expression induced by Hsp70. We also show that HIV-1 viral protein R is required for this inhibitory effect of Hsp70 on viral replication. Our data further show that Hsp40 is consistently up regulated in HIV-1 infection, whereas Hsp70 is down regulated after initial up regulation favoring viral replication. Finally, Hsp70 expression inhibits the phosphorylation of cyclin-dependent kinase 9 required for high-affinity binding of HIV-1 transactivator of transcription-positive transcription elongation factor b complex to transactivation response RNA, whereas Hsp40 seems to induce it. Thus, Hsp40 and Hsp70, both closely associated in their chaperone function, seem to act contrary to each other in regulating viral gene expression. It seems that Hsp70 favors the host by inhibiting viral replication, whereas Hsp40 works in favor of the virus by inducing its replication. Thus, differential expression of Hsp40 and Hsp70 reciprocally regulates viral gene expression and replication in HIV-1 infection.
Collapse
Affiliation(s)
- Manish Kumar
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Khan SZ, Mitra D. Cyclin K inhibits HIV-1 gene expression and replication by interfering with cyclin-dependent kinase 9 (CDK9)-cyclin T1 interaction in Nef-dependent manner. J Biol Chem 2011; 286:22943-54. [PMID: 21555514 DOI: 10.1074/jbc.m110.201194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) exploits a number of host cellular factors for successful survival and propagation. The viral protein Nef plays an important role in HIV-1 pathogenesis by interacting with various cellular proteins. In the present work, we identified Cyclin K (CycK) as a novel Nef-interacting protein, and for the first time, we showed that CycK inhibits HIV-1 gene expression and replication in a Nef-dependent manner. The positive elongation factor b complex comprising cyclin-dependent kinase 9 (CDK9) and Cyclin T1 is a critical cellular complex required for viral gene expression and replication. Enhanced expression of CycK in the presence of Nef induced CycK-CDK9 binding, which prevented CDK9-Cyclin T1 complex formation and nuclear translocation of CDK9, resulting in inhibition of HIV-1 long terminal repeat-driven gene expression. Furthermore, this effect of CycK was not observed with Nef-deleted virus, indicating the importance of Nef in this phenomenon. Finally, silencing of CycK in HIV-1-infected cells resulted in increased translocation of CDK9 into the nucleus, leading to increased viral gene expression and replication. These data also suggest that endogenous CycK might act as an inhibitory factor for HIV-1 gene expression and replication in T-cells. Thus, our results clearly demonstrate that CycK utilizes HIV-1 Nef protein to displace CycT1 from the positive elongation factor b complex, resulting in inhibition of HIV-1 gene expression and replication.
Collapse
|
19
|
Rawat P, Mitra D. Cellular heat shock factor 1 positively regulates human immunodeficiency virus-1 gene expression and replication by two distinct pathways. Nucleic Acids Res 2011; 39:5879-92. [PMID: 21459854 PMCID: PMC3152347 DOI: 10.1093/nar/gkr198] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection leads to changes in cellular gene expression, which in turn tend to modulate viral gene expression and replication. Cellular heat shock proteins (HSPs) are induced upon heat shock, UV irradiation and microbial or viral infections. We have reported earlier Nef-dependent induction of HSP40 leading to increased HIV-1 gene expression; however, the mechanism of induction remained to be elucidated. As expression of HSPs is regulated by heat shock factors (HSFs), we have now studied the role of HSF1 not only in Nef-dependent HSP40 induction but also in HIV-1 gene expression. Our results show that HSF1 is also induced during HIV-1 infection and it positively regulates HIV-1 gene expression by two distinct pathways. First, along with Nef it activates HSP40 promoter which in turn leads to increased HIV-1 gene expression. Second, HSF1 directly interacts with newly identified HSF1 binding sequence on HIV-1 LTR promoter and induces viral gene expression and replication. Thus, the present work not only identifies a molecular basis for HSF1-mediated enhancement of viral replication but also provides another example of how HIV-1 uses host cell machinery for its successful replication in the host.
Collapse
Affiliation(s)
- Pratima Rawat
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | |
Collapse
|
20
|
Optimizing the generation of stable neuronal cell lines via pre-transfection restriction enzyme digestion of plasmid DNA. Cytotechnology 2010; 62:189-94. [PMID: 20424915 DOI: 10.1007/s10616-010-9273-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 04/12/2010] [Indexed: 10/19/2022] Open
Abstract
Transfection of mammalian cell lines is a widely used technique that requires significant optimization, including transfection method or product used, DNA vector, cell density, media composition and incubation time. Generation and isolation of stable transfectants from the large pool of untransfected or only transiently transfected cells can be laborious and time-consuming. Transfection of DNA is usually performed with a non-linearized plasmid, since it is assumed that cutting the plasmid beforehand leads to a lower efficiency of transfection or the degradation of linearized DNA by cytosolic nucleases. However, the transfected circular plasmid will be linearized by a random cut within the cell and it might be possible that sensitive parts of the plasmid such as the resistance gene or the gene of interest are destroyed upon linearization. On the other hand, linearizing a plasmid before transfection by a single, defined cut with a selected restriction enzyme in a non-coding area of the gene has the advantage of ensuring the integrity of all necessary gene elements of the plasmid. In this study, we have compared these different methods in order to increase both transient and stable transfection efficiency in mammalian cells. We report that linearization of plasmid DNA prior to transfection can increase both the efficiency of stable clone generation and target gene expression, but is dependant on the site of linearization within the vector.
Collapse
|
21
|
Shifera AS, Hardin JA. Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays. Anal Biochem 2009; 396:167-72. [PMID: 19788887 DOI: 10.1016/j.ab.2009.09.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/31/2009] [Accepted: 09/22/2009] [Indexed: 11/19/2022]
Affiliation(s)
- Amde Selassie Shifera
- Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
22
|
CHEN ANTONYK, CHENG ZHILIANG, BEHLKE MARKA, TSOURKAS ANDREW. Assessing the sensitivity of commercially available fluorophores to the intracellular environment. Anal Chem 2008; 80:7437-44. [PMID: 18700780 PMCID: PMC2626168 DOI: 10.1021/ac8011347] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of fluorescence has become commonplace in the biological sciences, with many studies utilizing probes based on commercially available fluorophores to provide insight into cell function and behavior. As these imaging applications become more advanced, it becomes increasingly important to acquire accurate quantitative measurements of the fluorescence signal. Absolute quantification of fluorescence, however, requires the fluorophores themselves to be insensitive to environmental factors such as nonspecific protein interactions and pH. Here, we present a method for characterizing the sensitivity of fluorophores to the cytosolic environment by comparing their fluorescent intensity to an environment-insensitive reference signal before and after intracellular delivery. Results indicated that although the fluorescent intensity of a few fluorophores, e.g., fluorescein, were highly susceptible to the intracellular environment, other fluorophores, e.g., Dylight 649, Alexa647, and Alexa750, were insensitive to the intracellular environment. It was also observed that the sensitivity of the fluorophore could be dependent on the biomolecule to which it was attached. In addition to assessing the environmental sensitivity of fluorophores, a method for quantifying the amount of fluorophores within living cells is also introduced. Overall, the present study provides a means to select fluorophores for studies that require an absolute quantification of fluorescence in the intracellular environment.
Collapse
Affiliation(s)
- ANTONY K. CHEN
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - ZHILIANG CHENG
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | | | - ANDREW TSOURKAS
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
23
|
Gupta S, Boppana R, Mishra GC, Saha B, Mitra D. HIV-1 Tat Suppresses gp120-Specific T Cell Response in IL-10-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2007; 180:79-88. [DOI: 10.4049/jimmunol.180.1.79] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Singh S, Upadhyay AK, Ajay AK, Bhat MK. Gadd45α does not modulate the carboplatin or 5-fluorouracil-induced apoptosis in human papillomavirus-positive cells. J Cell Biochem 2007; 100:1191-9. [PMID: 17063488 DOI: 10.1002/jcb.21111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gadd45alpha is shown to be induced by a wide spectrum of DNA-damaging agents and implicated in negative regulation of cell growth by causing G2-M arrest or induction of apoptosis. In the present study, we explored the involvement of p53 in the promoter activation of Gadd45alpha as well as the role of Gadd45alpha in carboplatin (Carb) or 5-fluorouracil (5-FU)-induced apoptosis in human papillomavirus virus (HPV)-positive HEp-2 and HeLa cells. We report that Carb or 5-FU upregulate Gadd45alpha and p53 in both these cells. Transient transfection of chloramphenicol acetyl transferase (CAT)-reporter construct driven by Gadd45alpha promoter clearly indicated that Gadd45alpha upregulation was mediated through activation of its promoter. Inhibition of p53 function by dominant-negative-p53 expression partially suppressed the activation of Gadd45alpha promoter. Further, the induction of apoptosis was assessed by detection of poly (ADP-ribose) polymerase (PARP) cleavage by Western blot analysis. Inhibition of upregulated Gadd45alpha expression by antisense expression vector did not modulate the Carb or 5-FU-induced apoptosis. Overall, we conclude that Gadd45alpha promoter activation partially depends on p53 function in HPV-positive cells. Moreover, Gadd45alpha protein does not modulate Carb or 5-FU-induced apoptosis in these cells.
Collapse
Affiliation(s)
- Sandeep Singh
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | | |
Collapse
|
25
|
Kumar M, Mitra D. Heat Shock Protein 40 Is Necessary for Human Immunodeficiency Virus-1 Nef-mediated Enhancement of Viral Gene Expression and Replication. J Biol Chem 2005; 280:40041-50. [PMID: 16179353 DOI: 10.1074/jbc.m508904200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) Nef protein, originally identified as a negative factor, has now emerged as one of the most important viral proteins necessary for viral pathogenesis and disease progression. Nef has been also implicated in viral infectivity and replication, however, the molecular mechanism of Nef-induced viral gene expression and replication is not clearly understood. Although involvement of heat shock proteins in viral pathogenesis has been reported earlier, a clear understanding of their role remains to be elucidated. Here we report for the first time that Nef not only interacts with heat shock protein 40 (Hsp40) but it also induces the expression of Hsp40 in HIV-1-infected cells. The interaction between Nef and Hsp40 is important for increased Hsp40 translocation into the nucleus of infected cells, which seems to facilitate viral gene expression by becoming part of the cyclin-dependent kinase 9-associated transcription complex regulating long terminal repeat-mediated gene expression. The finding is consistent with the failure of the nef-deleted virus to induce Hsp40, resulting in reduced virus production. Our data further shows that, whereas, Hsp40 overexpression induces viral gene expression, silencing of Hsp40 reduces the gene expression in a Nef-dependent manner. Thus our results clearly indicate that Hsp40 is crucial for Nef-mediated enhancement of viral gene expression and replication.
Collapse
Affiliation(s)
- Manish Kumar
- National Centre for Cell Science, Ganeshkhind, Pune-411007, India
| | | |
Collapse
|
26
|
Verma SK, Mani P, Sharma NR, Krishnan A, Kumar VV, Reddy BS, Chaudhuri A, Roy RP, Sarkar DP. Histidylated lipid-modified Sendai viral envelopes mediate enhanced membrane fusion and potentiate targeted gene delivery. J Biol Chem 2005; 280:35399-409. [PMID: 16085643 DOI: 10.1074/jbc.m506615200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that covalent grafting of a single histidine residue into a twin-chain aliphatic hydrocarbon compound enhances its endosome-disrupting properties and thereby generates an excellent DNA transfection system. Significant increase in gene delivery efficiencies has thus been obtained by using endosome-disrupting multiple histidine functionalities in the molecular architecture of various cationic polymers. To take advantage of this unique feature, we have incorporated L-histidine (N,N-di-n-hexadecylamine) ethylamide (L(H)) in the membrane of hepatocyte-specific Sendai virosomes containing only the fusion protein (F-virosomes (Process for Producing a Targeted Gene (Sarkar, D. P., Ramani, K., Bora, R. S., Kumar, M., and Tyagi, S. K. (November 4, 1997) U. S. Patent 5,683,866))). Such L(H)-modified virosomal envelopes were four times more (p < 0.001) active in terms of fusion with its target cell membrane. On the other hand, the presence of L(H) in reconstituted influenza and vesicular stomatitis virus envelopes failed to enhance spike glycoprotein-induced membrane fusion with host cell membrane. Circular dichroism and limited proteolysis experiments with F-virosomes indicated that the presence of L(H) leads to conformational changes in the F protein. The molecular mechanism associated with the increased membrane fusion induced by L(H) has been addressed in the light of fusion-competent conformational change in F protein. Such enhancement of fusion resulted in a highly efficient gene delivery system specific for liver cells in culture and in whole animals.
Collapse
Affiliation(s)
- Santosh K Verma
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|