1
|
Krage C, Adigüzel S, Thongrom B, Dimde M, Block S, Saeed M, Schulze M, Junge F, Klimek A, Achazi K, Netz RR, Schedler U, Haag R. Three-Dimensional Polyglycerol-PEG-Based Hydrogels as a Universal High-Sensitivity Platform for SPR Analysis. Anal Chem 2025; 97:6329-6337. [PMID: 40078068 PMCID: PMC11948182 DOI: 10.1021/acs.analchem.5c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
We developed a three-dimensional (3D) polyglycerol-poly(ethylene glycol)-based hydrogel as a new biosensing matrix for affinity analysis by surface plasmon resonance to enable a high loading of ligands for small molecule analysis while lacking a carbohydrate structure to reduce nonspecific binding. The hydrogel was synthesized by cross-linking a polyglycerol functionalized with carboxylate and maleimide groups with a dithiolated poly(ethylene glycol) by thiol-click chemistry. We demonstrated that the hydrogel coating enabled a high immobilization capacity of biomolecules and led to less nonspecific binding. Here, the degree of loading with carbonic anhydrase II and the resulting binding signal of acetazolamide were increased by a factor of 5 compared to standard CMD sensors (CM5), and the loading was comparable to CMD sensors specialized for maximum loading (CM7). This high loading capacity, combined with the reduced nonspecific binding due to the missing carbohydrate structure, presents an innovative matrix for a broad application range of surface plasmon resonance (SPR) experiments since no current commercial SPR biosensor combines these two key features.
Collapse
Affiliation(s)
- Clemens Krage
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Seyma Adigüzel
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Boonya Thongrom
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Mathias Dimde
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Stephan Block
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Mohamed Saeed
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Maiko Schulze
- PolyAn
GmbH, Schkopauer Ring
6, D-12681 Berlin, Germany
| | - Florian Junge
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Anton Klimek
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Katharina Achazi
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Roland R. Netz
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| | - Uwe Schedler
- PolyAn
GmbH, Schkopauer Ring
6, D-12681 Berlin, Germany
| | - Rainer Haag
- Fachbereich
Physik, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
| |
Collapse
|
2
|
Sutar P, Pethe A, Kumar P, Tripathi D, Maity D. Hydrogel Innovations in Biosensing: A New Frontier for Pancreatitis Diagnostics. Bioengineering (Basel) 2025; 12:254. [PMID: 40150718 PMCID: PMC11939681 DOI: 10.3390/bioengineering12030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Pancreatitis is a prominent and severe type of inflammatory disorder that has grabbed a lot of scientific and clinical interest to prevent its onset. It should be detected early to avoid the development of serious complications, which occur due to long-term damage to the pancreas. The accurate measurement of biomarkers that are released from the pancreas during inflammation is essential for the detection and early treatment of patients with severe acute and chronic pancreatitis, but this is sub-optimally performed in clinically relevant practices, mainly due to the complexity of the procedure and the cost of the treatment. Clinically available tests for the early detection of pancreatitis are often time-consuming. The early detection of pancreatitis also relates to disorders of the exocrine pancreas, such as cystic fibrosis in the hereditary form and cystic fibrosis-like syndrome in the acquired form of pancreatitis, which are genetic disorders with symptoms that can be correlated with the overexpression of specific markers such as creatinine in biological fluids like urine. In this review, we studied how to develop a minimally invasive system using hydrogel-based biosensors, which are highly absorbent and biocompatible polymers that can respond to specific stimuli such as enzymes, pH, temperature, or the presence of biomarkers. These biosensors are helpful for real-time health monitoring and medical diagnostics since they translate biological reactions into quantifiable data. This paper also sheds light on the possible use of Ayurvedic formulations along with hydrogels as a treatment strategy. These analytical devices can be used to enhance the early detection of severe pancreatitis in real time.
Collapse
Affiliation(s)
- Prerna Sutar
- School of Health Sciences and Technology, UPES, Bidholi Campus, Dehradun 248007, Uttarakhand, India
| | - Atharv Pethe
- School of Health Sciences and Technology, UPES, Bidholi Campus, Dehradun 248007, Uttarakhand, India
| | - Piyush Kumar
- School of Health Sciences and Technology, UPES, Bidholi Campus, Dehradun 248007, Uttarakhand, India
| | - Divya Tripathi
- School of Health Sciences and Technology, UPES, Bidholi Campus, Dehradun 248007, Uttarakhand, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University Indianapolis, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Rahman MM, Islam MR, Alam Tumpa MA, Shohag S, Shakil Khan Shuvo, Ferdous J, Kajol SA, Aljohani ASM, Al Abdulmonem W, Rauf A, Thiruvengadam M. Insights into the promising prospect of medicinal chemistry studies against neurodegenerative disorders. Chem Biol Interact 2023; 373:110375. [PMID: 36739931 DOI: 10.1016/j.cbi.2023.110375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Medicinal chemistry is an interdisciplinary field that incorporates organic chemistry, biochemistry, physical chemistry, pharmacology, informatics, molecular biology, structural biology, cell biology, and other disciplines. Additionally, it considers molecular factors such as the mode of action of the drugs, their chemical structure-activity relationship (SAR), and pharmacokinetic aspects like absorption, distribution, metabolism, elimination, and toxicity. Neurodegenerative disorders (NDs), which are defined by the breakdown of neurons over time, are affecting an increasing number of people. Oxidative stress, particularly the increased production of Reactive Oxygen Species (ROS), plays a crucial role in the growth of various disorders, as indicated by the identification of protein, lipid, and Deoxyribonucleic acid (DNA) oxidation products in vivo. Because of their inherent nature, most biological molecules are vulnerable to ROS, even if they play a role in metabolic parameters and cell signaling. Due to their high polyunsaturated fatty acid content, low antioxidant barrier, and high oxygen uptake, neurons are particularly vulnerable to oxidation by nature. As a result, excessive ROS generation in neurons looks especially harmful, and the mechanisms associated with biomolecule oxidative destruction are several and complex. This review focuses on the formation and management of ROS, as well as their chemical characteristics (both thermodynamic and kinetic), interactions, and implications in NDs.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mst Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sheikh Shohag
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Shakil Khan Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Jannatul Ferdous
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Saima Akter Kajol
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University Buraydah, 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine Qassim University, Buraydah, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
4
|
Li H, Xu F, Liu C, Cai A, Dain JA, Li D, Seeram NP, Cho BP, Ma H. Inhibitory Effects and Surface Plasmon Resonance-Based Binding Affinities of Dietary Hydrolyzable Tannins and Their Gut Microbial Metabolites on SARS-CoV-2 Main Protease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12197-12208. [PMID: 34586788 PMCID: PMC8491554 DOI: 10.1021/acs.jafc.1c03521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 05/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (Mpro) inhibitors are considered as potential treatments for coronavirus disease 2019, and dietary polyphenols show promise in SARS-CoV-2 Mpro inhibition based on in silico studies. In the present study, we utilize a combination of biochemical-, surface plasmon resonance-, and docking-based assays to evaluate the inhibition and binding affinities of a series of tannins and their gut microbial metabolites on SARS-CoV-2 Mpro. The tested compounds (2-50 μM) were hydrolyzable tannins, including ellagitannins (punicalagin and ellagic acid) and gallotannins (tannic acid, pentagalloyl glucose, ginnalin A, and gallic acid), and their gut microbial metabolites, urolithins and pyrogallol, respectively. They inhibited SARS-CoV-2 Mpro (by 6.6-100.0% at 50 μM) and bound directly to the Mpro protein (with dissociation constants from 1.1 × 10-6 to 5.3 × 10-5 M). This study sheds light on the inhibitory effects of tannins and their metabolites on SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Huifang Li
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Joel A. Dain
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Dongli Li
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Bongsup P. Cho
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
5
|
Russo MJ, Han M, Desroches PE, Manasa CS, Dennaoui J, Quigley AF, Kapsa RMI, Moulton SE, Guijt RM, Greene GW, Silva SM. Antifouling Strategies for Electrochemical Biosensing: Mechanisms and Performance toward Point of Care Based Diagnostic Applications. ACS Sens 2021; 6:1482-1507. [PMID: 33765383 DOI: 10.1021/acssensors.1c00390] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although there exist numerous established laboratory-based technologies for sample diagnostics and analyte detection, many medical and forensic science applications require point of care based platforms for rapid on-the-spot sample analysis. Electrochemical biosensors provide a promising avenue for such applications due to the portability and functional simplicity of the technology. However, the ability to develop such platforms with the high sensitivity and selectivity required for analysis of low analyte concentrations in complex biological samples remains a paramount issue in the field of biosensing. Nonspecific adsorption, or fouling, at the electrode interface via the innumerable biomolecules present in these sample types (i.e., serum, urine, blood/plasma, and saliva) can drastically obstruct electrochemical performance, increasing background "noise" and diminishing both the electrochemical signal magnitude and specificity of the biosensor. Consequently, this review aims to discuss strategies and concepts used throughout the literature to prevent electrode surface fouling in biosensors and to communicate the nature of the antifouling mechanisms by which they operate. Evaluation of each antifouling strategy is focused primarily on the fabrication method, experimental technique, sample composition, and electrochemical performance of each technology highlighting the overall feasibility of the platform for point of care based diagnostic/detection applications.
Collapse
Affiliation(s)
- Matthew J. Russo
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Mingyu Han
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia
| | - Pauline E. Desroches
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Clayton S. Manasa
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Jessair Dennaoui
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Anita F. Quigley
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Robert M. I. Kapsa
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Simon E. Moulton
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Victoria 3122, Australia
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3220, Australia
| | - Rosanne M. Guijt
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3220, Australia
| | - George W. Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University, Melbourne, Victoria 3216, Australia
| | - Saimon Moraes Silva
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, Victoria 3065, Australia
| |
Collapse
|
6
|
Tavakoli J, Tang Y. Hydrogel Based Sensors for Biomedical Applications: An Updated Review. Polymers (Basel) 2017; 9:E364. [PMID: 30971040 PMCID: PMC6418953 DOI: 10.3390/polym9080364] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
Biosensors that detect and convert biological reactions to a measurable signal have gained much attention in recent years. Between 1950 and 2017, more than 150,000 papers have been published addressing the applications of biosensors in different industries, but to the best of our knowledge and through careful screening, critical reviews that describe hydrogel based biosensors for biomedical applications are rare. This review discusses the biomedical application of hydrogel based biosensors, based on a search performed through Web of Science Core, PubMed (NLM), and Science Direct online databases for the years 2000⁻2017. In this review, we consider bioreceptors to be immobilized on hydrogel based biosensors, their advantages and disadvantages, and immobilization techniques. We identify the hydrogels that are most favored for this type of biosensor, as well as the predominant transduction strategies. We explain biomedical applications of hydrogel based biosensors including cell metabolite and pathogen detection, tissue engineering, wound healing, and cancer monitoring, and strategies for small biomolecules such as glucose, lactate, urea, and cholesterol detection are identified.
Collapse
Affiliation(s)
- Javad Tavakoli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide 5042, SA, Australia.
| | - Youhong Tang
- Institute for Nano Scale Science & Technology, College of Science and Engineering, Flinders University, Adelaide 5042, SA, Australia.
| |
Collapse
|
7
|
Reinhardt A, Wehle M, Geissner A, Crouch EC, Kang Y, Yang Y, Anish C, Santer M, Seeberger PH. Structure binding relationship of human surfactant protein D and various lipopolysaccharide inner core structures. J Struct Biol 2016; 195:387-395. [DOI: 10.1016/j.jsb.2016.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 11/30/2022]
|
8
|
Kepsutlu B, Kizilel R, Kizilel S. Quantification of interactions among circadian clock proteins via surface plasmon resonance. J Mol Recognit 2014; 27:458-69. [PMID: 24895278 DOI: 10.1002/jmr.2367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/01/2013] [Accepted: 01/29/2014] [Indexed: 11/11/2022]
Abstract
Circadian clock is an internal time keeping system recurring 24 h daily rhythm in physiology and behavior of organisms. Circadian clock contains transcription and translation feedback loop involving CLOCK/NPAS2, BMAL1, Cry1/2, and Per1/2. In common, heterodimer of CLOCK/NPAS2 and BMAL1 binds to EBOX element in the promoter of Per and Cry genes in order to activate their transcription. CRY and PER making heterodimeric complexes enter the nucleus in order to inhibit their own BMAL1-CLOCK-activated transcription. The aim of this study was to investigate and quantify real-time binding affinities of clock proteins among each other on and off DNA modes using surface plasmon resonance. The pairwise interaction coefficients among clock proteins, as well as interaction of PER2, CRY2, and PER2 : CRY2 proteins with BMAL1 : CLOCK complex in the presence and absence of EBOX motif have been investigated via analysis of surface plasmon resonance data with pseudo first-order reaction kinetics approximation and via nonlinear regression curve fitting. The results indicated that CRY2 and PER2, BMAL1, and CLOCK proteins form complexes in vitro and that PER2, CRY2 and PER2 : CRY2 complex have similar affinities toward BMAL1 : CLOCK complex. CRY2 protein had the highest affinity toward EBOX complex, whereas PER2 and CRY2 : PER2 complexes displayed low affinity toward EBOX complex. The quantification of the interaction between clock proteins is critical to understand the operation mechanism of the biological clock and to address the behavioral and physiological disorders, and it will be useful for the design of new drugs toward clock-related diseases.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Chemical and Biological Engineering, Koc University, Sariyer, Istanbul, 34450, Turkey
| | | | | |
Collapse
|
9
|
Horiguchi Y, Miyachi S, Nagasaki Y. High-performance surface acoustic wave immunosensing system on a PEG/aptamer hybridized surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7369-7376. [PMID: 23414210 DOI: 10.1021/la304548m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Label-free immunoassay systems have the advantages of procedural simplicity and a low construction cost of surfaces for immunosensing. When label-free immunoassay systems are considered, the nonspecific adsorption of unwanted materials should be eliminated unless it aids in the detection of error. PEG is well-known as a blocking agent for the prevention of the adsorption of nonspecific binding materials when coimmobilized with ligands for targets such as antibodies and oligonucleotides. The construction strategy for PEG/ligand coimmobilized surfaces is an important point in the preparation of a high-performance assays because the physiological condition of the ligand depends strongly on its interaction with the PEG chain. In this report, we investigate the interaction between thrombin and a thrombin-binding aptamer (TBA) on a PEG/TBA coimmobilized surface by using a shear horizontal surface acoustic wave (SAW) sensor. The thrombin-TBA binding property shows remarkable differences with changes in the PEG density and the distance from the gold surface to the aptamer.
Collapse
Affiliation(s)
- Yukichi Horiguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | | | | |
Collapse
|
10
|
Morvan F, Vidal S, Souteyrand E, Chevolot Y, Vasseur JJ. DNA glycoclusters and DNA-based carbohydrate microarrays: From design to applications. RSC Adv 2012. [DOI: 10.1039/c2ra21550k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
11
|
Bhaskar U, Sterner E, Hickey AM, Onishi A, Zhang F, Dordick JS, Linhardt RJ. Engineering of routes to heparin and related polysaccharides. Appl Microbiol Biotechnol 2011; 93:1-16. [PMID: 22048616 DOI: 10.1007/s00253-011-3641-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.
Collapse
Affiliation(s)
- Ujjwal Bhaskar
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Sauceda-Friebe JC, Karsunke XYZ, Vazac S, Biselli S, Niessner R, Knopp D. Regenerable immuno-biochip for screening ochratoxin A in green coffee extract using an automated microarray chip reader with chemiluminescence detection. Anal Chim Acta 2011; 689:234-42. [PMID: 21397079 DOI: 10.1016/j.aca.2011.01.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Ochratoxin A (OTA) can contaminate foodstuffs in the ppb to ppm range and once formed, it is difficult to remove. Because of its toxicity and potential risks to human health, the need exists for rapid, efficient detection methods that comply with legal maximum residual limits. In this work we have synthesized an OTA conjugate functionalized with a water-soluble peptide for covalent immobilization on a glass biochip by means of contact spotting. The chip was used for OTA determination with an indirect competitive immunoassay format with flow-through reagent addition and chemiluminescence detection, carried out with the stand-alone automated Munich Chip Reader 3 (MCR 3) platform. A buffer model and real green coffee extracts were used for this purpose. At the present, covalent conjugate immobilization allowed for at least 20 assay-regeneration cycles of the biochip surface. The total analysis time for a single sample, including measurement and surface regeneration, was 12 min and the LOQ of OTA in green coffee extract was 0.3 μg L(-1) which corresponds to 7 μg kg(-1).
Collapse
Affiliation(s)
- Jimena C Sauceda-Friebe
- Institute of Hydrochemistry and Chair for Analytical Chemistry, Technische Universität München, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Xia N, Liu L, Harrington MG, Wang J, Zhou F. Regenerable and simultaneous surface plasmon resonance detection of aβ(1-40) and aβ(1-42) peptides in cerebrospinal fluids with signal amplification by streptavidin conjugated to an N-terminus-specific antibody. Anal Chem 2010; 82:10151-7. [PMID: 21073166 DOI: 10.1021/ac102257m] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A major constituent in the deposit of the brain in a patient with Alzheimer's disease (AD) is the aggregates/fibrils of amyloid-β (Aβ) peptides containing 39-43 amino acids. The total Aβ levels and the concentration ratio between the most abundant Aβ(1-40) peptide and the more aggregation-prone Aβ(1-42) in body fluids (e.g., cerebrospinal fluid or CSF) have been suggested as possible criteria for early diagnosis of AD. By immobilizing capture antibodies specific to the two peptides in separate fluidic channels, surface plasmon resonance (SPR) has been used to quantify Aβ(1-40) and Aβ(1-42) present in CSF samples collected from AD patients and healthy donors. With signal amplification by streptavidin conjugated to an antibody that is selective to the common N-terminus of the Aβ peptides, concentrations as low as 20 pM can be readily measured. The range of Aβ peptide concentrations measurable by this method spans 4 orders of magnitude. The ability of regenerating the sensor surface for repeated measurements not only improves the reproducibility but also enhances the sample throughput. Our data reveal that the ratio of Aβ(1-40) concentration versus Aβ(1-42) concentration in CSF samples from AD patients is almost twice as high as that from healthy persons. In contrast to the commonly used enzyme-linked immunosorbent assay (ELISA), SPR obviates the need of a more expensive and less stable enzyme conjugate and the use of carcinogenic substrate for the signal detection and allows the binding events to be monitored in real time.
Collapse
Affiliation(s)
- Ning Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People's Republic of China 410083
| | | | | | | | | |
Collapse
|
14
|
Duo J, Stenken JA. Heparin-immobilized microspheres for the capture of cytokines. Anal Bioanal Chem 2010; 399:773-82. [PMID: 20827464 DOI: 10.1007/s00216-010-4170-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/23/2010] [Accepted: 08/26/2010] [Indexed: 11/27/2022]
Abstract
The preparation and characterization of heparin-immobilized microspheres which were used to bind acidic fibroblast growth factor (aFGF), vascular endothelial growth factor (VEGF), monocyte chemoattractant protein 1 (MCP-1/CCL2), and regulation upon activation normal T cell express sequence (RANTES/CCL5) is described. These beads were used as trapping agents in microdialysis sampling experiments in a separate study. Both free heparin and a synthesized heparin-albumin conjugate were immobilized onto microspheres and compared for their effectiveness. The heparin-albumin conjugate microspheres exhibited significant nonspecific adsorption which appeared to be due to the albumin content. The prepared heparin-immobilized microspheres were stable for 3 months at 4 °C. A bead-based flow cytometric assay was developed to study the binding capacity and specificity of the heparin-immobilized microspheres to cytokines. These heparin-immobilized microspheres exhibited broad dynamic ranges for binding to the four cytokines (aFGF, 1.0-1,000 ng/mL; VEGF, 0.5-1,000 ng/mL; CCL2, 1.95-1,000 ng/mL; CCL5, 1.95-500 ng/mL). Fast binding kinetics of the cytokines to the heparin-immobilized beads suggests that these beads may be useful as affinity agents in microfluidic flow systems.
Collapse
Affiliation(s)
- Jia Duo
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
15
|
|
16
|
Bellon S, Buchmann W, Gonnet F, Jarroux N, Anger-Leroy M, Guillonneau F, Daniel R. Hyphenation of Surface Plasmon Resonance Imaging to Matrix-Assisted Laser Desorption Ionization Mass Spectrometry by On-Chip Mass Spectrometry and Tandem Mass Spectrometry Analysis. Anal Chem 2009; 81:7695-702. [DOI: 10.1021/ac901140m] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Bellon
- CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France, Université d’Evry-Val-d’Essonne, Laboratoire Matériaux Polymères aux Interfaces, 91025 Evry, France, GENOPTICS Bio Interactions-HORIBA Scientific, 91401 Orsay, France, and Université Paris Descartes, Plate-Forme Protéomique Paris 5, 75014 Paris, France
| | - W. Buchmann
- CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France, Université d’Evry-Val-d’Essonne, Laboratoire Matériaux Polymères aux Interfaces, 91025 Evry, France, GENOPTICS Bio Interactions-HORIBA Scientific, 91401 Orsay, France, and Université Paris Descartes, Plate-Forme Protéomique Paris 5, 75014 Paris, France
| | - F. Gonnet
- CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France, Université d’Evry-Val-d’Essonne, Laboratoire Matériaux Polymères aux Interfaces, 91025 Evry, France, GENOPTICS Bio Interactions-HORIBA Scientific, 91401 Orsay, France, and Université Paris Descartes, Plate-Forme Protéomique Paris 5, 75014 Paris, France
| | - N. Jarroux
- CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France, Université d’Evry-Val-d’Essonne, Laboratoire Matériaux Polymères aux Interfaces, 91025 Evry, France, GENOPTICS Bio Interactions-HORIBA Scientific, 91401 Orsay, France, and Université Paris Descartes, Plate-Forme Protéomique Paris 5, 75014 Paris, France
| | - M. Anger-Leroy
- CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France, Université d’Evry-Val-d’Essonne, Laboratoire Matériaux Polymères aux Interfaces, 91025 Evry, France, GENOPTICS Bio Interactions-HORIBA Scientific, 91401 Orsay, France, and Université Paris Descartes, Plate-Forme Protéomique Paris 5, 75014 Paris, France
| | - F. Guillonneau
- CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France, Université d’Evry-Val-d’Essonne, Laboratoire Matériaux Polymères aux Interfaces, 91025 Evry, France, GENOPTICS Bio Interactions-HORIBA Scientific, 91401 Orsay, France, and Université Paris Descartes, Plate-Forme Protéomique Paris 5, 75014 Paris, France
| | - R. Daniel
- CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, 91025 Evry, France, Université d’Evry-Val-d’Essonne, Laboratoire Matériaux Polymères aux Interfaces, 91025 Evry, France, GENOPTICS Bio Interactions-HORIBA Scientific, 91401 Orsay, France, and Université Paris Descartes, Plate-Forme Protéomique Paris 5, 75014 Paris, France
| |
Collapse
|
17
|
Andersson O, Larsson A, Ekblad T, Liedberg B. Gradient Hydrogel Matrix for Microarray and Biosensor Applications: An Imaging SPR Study. Biomacromolecules 2008; 10:142-8. [DOI: 10.1021/bm801029b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Olof Andersson
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Andréas Larsson
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Tobias Ekblad
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Bo Liedberg
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
18
|
Serra Moreno J, Panero S, Materazzi S, Martinelli A, Sabbieti MG, Agas D, Materazzi G. Polypyrrole‐polysaccharide thin films characteristics: Electrosynthesis and biological properties. J Biomed Mater Res A 2008; 88:832-40. [DOI: 10.1002/jbm.a.32230] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Judith Serra Moreno
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Stefania Panero
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Stefano Materazzi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Giovanna Sabbieti
- Department of Morphological and Biochemical Sciences, University of Camerino, V. Gentile III da Varano, 62032 Camerino, Italy
| | - Dimitrios Agas
- Department of Morphological and Biochemical Sciences, University of Camerino, V. Gentile III da Varano, 62032 Camerino, Italy
| | - Giovanni Materazzi
- Department of Morphological and Biochemical Sciences, University of Camerino, V. Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
19
|
Zhi Z, Laurent N, Powell AK, Karamanska R, Fais M, Voglmeir J, Wright A, Blackburn JM, Crocker PR, Russell DA, Flitsch S, Field RA, Turnbull JE. A Versatile Gold Surface Approach for Fabrication and Interrogation of Glycoarrays. Chembiochem 2008; 9:1568-75. [DOI: 10.1002/cbic.200700788] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Larsson A, Liedberg B. Poly(ethylene glycol) gradient for biochip development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:11319-25. [PMID: 17900155 DOI: 10.1021/la700729q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A novel method of producing a poly(ethylene glycol) (PEG)-based gradient matrix that varies gradually in thickness from 0 to 500 A over a distance of 5-20 mm is presented. The gradient matrix is graft copolymerized from a mixture of PEG methacrylates onto organic thin films providing free radical polymerization sites initiated by UV irradiation at 254 nm. The films used as grafting platforms consist of either a spin-coated cycloolefin polymer or a self-assembled monolayer on planar gold. The thickness/irradiation gradient is realized by means of a moving shutter that slowly uncovers the modified gold substrate. The structural and functional characteristics of the gradient matrix are investigated with respect to thickness profile, degree of carboxylation, and subsequent immobilization of two model proteins of different sizes and shapes. These characteristics are studied with ellipsometry and infrared reflection-absorption microscopy using a grazing angle objective. It is revealed that the relatively small carboxylation agent used offers homogeneous activation throughout the gradient, even in the thick areas, whereas the diffusion/interpenetration and subsequent immobilization of large proteins is partially hindered. This is crucial information in biosensor design that can be easily obtained from a gradient experiment on a single sample. Moreover, the partially hindered protein interpenetration, the marginal swelling upon hydration, and the unspecific nature of the graft polymerization suggest a matrix growth mechanism that favors the formation of a bushlike polymer structure with a certain degree of cross linking.
Collapse
Affiliation(s)
- Andréas Larsson
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | |
Collapse
|
21
|
Larsson A, Du CX, Liedberg B. UV-Patterned Poly(ethylene glycol) Matrix for Microarray Applications. Biomacromolecules 2007; 8:3511-8. [PMID: 17910496 DOI: 10.1021/bm700707s] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A versatile method to fabricate polymeric matrixes for microarray applications is demonstrated. Several different design strategies are presented where a variety of organic films, such as plastic polymers and self-assembled monolayers (SAMs) on planar silica and gold substrates, act as supports for the graft polymerization procedure. An ensemble of poly(ethylene glycol) methacrylate monomers are combined to obtain a matrix with desired properties: low nonspecific binding and easily accessible groups for postimmobilization of ligands. The free radical graft polymerization process occurs under irradiation with UV light in the 254-266 nm range, which offers the possibility to introduce patterns by means of a photomask. The arrays are created on inert and homogeneous coatings prepared either by graft polymerization of a methoxy-terminated PEG-methacrylate or self-assembly of a methoxy-terminated oligo(ethylene glycol) thiol. Carboxylic acid groups, introduced in the array spots either during graft polymerization or upon wet chemical conversion of hydroxyls, grant the capability to immobilize proteins and other molecules via free amine groups. Immobilization of fluorescent species as well as biotin followed by exposure to a fluorescently labeled antibody directed toward biotin display both excellent integrity of the spots and low nonspecific binding to the surrounding framework. Beside patterns of uniform height and size, an array of spots with varying thickness (a sort of gradient) is demonstrated. Such gradient samples enable us to address critical issues regarding the mechanism(s) behind spatially resolved free radical polymerization of methacrylates. It also offers a convenient route to optimize the matrix properties with respect to thickness, loading capacity, protein diffusion/penetration, and nonspecific binding.
Collapse
Affiliation(s)
- Andréas Larsson
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
22
|
Ricklin D, Lambris JD. Exploring the complement interaction network using surface plasmon resonance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:260-78. [PMID: 17892218 DOI: 10.1007/978-0-387-71767-8_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104-6100, USA.
| | | |
Collapse
|
23
|
Hrtska SCL, Kemp MM, Muñoz EM, Azizad O, Banerjee M, Raposo C, Kumaran J, Ghosh P, Linhardt RJ. Investigation of the mechanism of binding between internalin B and heparin using surface plasmon resonance. Biochemistry 2007; 46:2697-706. [PMID: 17305366 PMCID: PMC2034450 DOI: 10.1021/bi062021x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Listeria monocytogenes, a food-borne pathogen that infects immunocompromised patients, enters and proliferates within mammalian cells by taking advantage of host cell machinery. While entry into macrophages and other phagocytic cells occurs constitutively, intracellular invasion of nonphagocytic cells, such as epithelial and endothelial cells, occurs through induced phagocytosis. Invasion of these nonphagocytic cell types is under the control of the secreted L. monocytogenes protein internalin B (InlB), which directly associates with and activates the receptor tyrosine kinase Met. Activation of Met by InlB has previously been shown to be potentiated by binding of glycosaminoglycans to the GW domains of this protein. We studied the interaction between heparin and full-length InlB as well as a truncated, functional form of InlB to understand the mode of interaction between these two molecules. InlB preferred long-chain (>or=dp14) heparin oligosaccharides, and the interaction with heparin fit a complicated binding model with a dissociation constant in the nanomolar range. While there are various explanations for this complicated binding model, one supported by our data involves binding and rebinding of InlB to multiple binding sites on heparin in a positive and weakly cooperative manner. This mode is consistent with enhancement of interaction of InlB with glycosaminoglycans for activation of Met.
Collapse
Affiliation(s)
- Sybil C Lang Hrtska
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Larsson A, Ekblad T, Andersson O, Liedberg B. Photografted Poly(ethylene glycol) Matrix for Affinity Interaction Studies. Biomacromolecules 2006; 8:287-95. [PMID: 17206819 DOI: 10.1021/bm060685g] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A poly(ethylene glycol) (PEG)-based matrix for studies of affinity interactions is developed and demonstrated. The PEG matrix, less than 0.1 microm thick, is graft copolymerized onto a cycloolefin polymer from a mixture of PEG methacrylates using a free radical reaction initiated by UV light at 254 nm. The grafting process is monitored in real time, and characteristics such as thickness, homogeneity, relative composition, photostability, and performance in terms of protein resistance in complex biofluids and sensor qualities are investigated with null ellipsometry, infrared spectroscopy, and surface plasmon resonance. The matrix is subsequently modified to contain carboxyl groups, thereby making it possible to immobilize ligands in a controlled and functional manner. Human serum albumin and fibrinogen are immobilized and successfully detected by antibody recognition using surface plasmon resonance. The results are encouraging and suggest that the PEG matrix is suitable for biochip and biosensor applications in demanding biofluids.
Collapse
Affiliation(s)
- Andréas Larsson
- Division of Sensor Science and Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | | | | |
Collapse
|
25
|
Zhi ZL, Powell AK, Turnbull JE. Fabrication of Carbohydrate Microarrays on Gold Surfaces: Direct Attachment of Nonderivatized Oligosaccharides to Hydrazide-Modified Self-Assembled Monolayers. Anal Chem 2006; 78:4786-93. [PMID: 16841896 DOI: 10.1021/ac060084f] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper describes a new and simple microarray platform for presenting multiple nonderivatized oligosaccharides to protein targets, with utility for mapping carbohydrate-protein recognition events. The approach is based on the creation of a hydrazide-derivatized, self-assembled monolayer on a gold surface in a single or two-step procedure, for efficient and selectively oriented anchoring of oligosaccharide probes via their reducing ends, with detection using fluorescence detection of bound proteins. The biggest hurdles in employing gold-based substrate for fluorescence-based microarray detection include fluorescence quenching and nonspecific surface adsorption of proteins. We found that the quenching effect could be minimized by introducing a omega-thiolated fatty acid (C16) self-assembled monolayer between the gold surface and hydrazide groups, followed by detection involving three successive binding protein layers covering the gold surface. In addition, an effective blocking scheme involving poly(ethylene glycol) aldehyde and bovine serum albumin was employed to reduce nonspecific protein adsorption to the chip surface. As proof of principle, we demonstrate here that sulfated oligosaccharide probes from heparin can be effectively and covalently attached without prior derivatization onto the hydrazide-modified, self-assembled monolayer on gold-coated slide surfaces in a microarray format. This platform is used to assess binding of specific heparin-binding protein targets at very high sensitivity, and we also demonstrate that the approach can be extended to nonsulfated sugars. Direct attachment of nonderivatized sugar probes on the chip is advantageous since it avoids the need for laborious prederivatization and cleanup steps. This versatile fluorescence microarray platform provides a facile approach for interrogating multiple carbohydrate-protein interactions in a high-throughput manner and has potential as a common gold surface platform for other diverse interrogations by MALDI-MS, surface plasmon resonance, and quartz crystal microbalances.
Collapse
Affiliation(s)
- Zheng-liang Zhi
- Molecular Glycobiology Laboratory, School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.
| | | | | |
Collapse
|
26
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
27
|
Yu H, Muñoz EM, Edens RE, Linhardt RJ. Kinetic studies on the interactions of heparin and complement proteins using surface plasmon resonance. Biochim Biophys Acta Gen Subj 2005; 1726:168-76. [PMID: 16125850 PMCID: PMC4138602 DOI: 10.1016/j.bbagen.2005.08.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2005] [Revised: 07/28/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Heparin is a naturally occurring polysaccharide known to interact with complement proteins and regulate multiple steps in the complement cascade. Quantitative information, in the form of affinity constants for heparin-complement interactions, is not generally available and there are no reports of a comprehensive analysis using the same interaction method. Such information should improve our understanding of how exogenously administered pharmaceutical heparin and the related endogenous polysaccharide, heparan sulfate, regulate complement activation. The current study provides the first comprehensively analysis of the binding of various complement proteins to heparin using surface plasmon resonance (SPR). Complement proteins C1, C2, C3, C4, C5, C6, C7, C8, C9, C1INH, factor I, factor H, factor B and factor P all bind heparin but exhibit different binding kinetics and dissociation constants (Kd) ranging from 2 to 320 nM. By taking into account these Kd values and the serum concentrations of these complement proteins, the percentage of each binding to exogenously administered heparin was calculated and found to range from 2% to 41%. This study provides essential information required for the rational design of new therapeutic agents capable of regulating the complement activation.
Collapse
Affiliation(s)
- Haining Yu
- Division of Medicinal and Natural Product, College of Pharmacy, University of Iowa, Iowa City, IA 52241, USA
| | - Eva M. Muñoz
- Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - R. Erik Edens
- Division of Medicinal and Natural Product, College of Pharmacy, University of Iowa, Iowa City, IA 52241, USA
- Department of Pediatrics, College of Medicine, University of Arkansas, Little Rock, AR 72202, USA
| | - Robert J. Linhardt
- Division of Medicinal and Natural Product, College of Pharmacy, University of Iowa, Iowa City, IA 52241, USA
- Departments of Chemistry and Chemical Biology, Biology, and Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Corresponding author. Biotechnology Center 4005, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA. Fax: +1 518 276 3405. (R.J. Linhardt)
| |
Collapse
|