1
|
Miyata R, Suzuki M, Okazaki Y, Abe D, Nakajima Y. Peroxisome Proliferator-Activated Receptor-Gamma Activation by an Active Compound in Lythrum anceps (Koehne) Makino. J Cell Biochem 2025; 126:e70009. [PMID: 39980354 DOI: 10.1002/jcb.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Lythrum anceps (Koehne) Makino (Japanese common name: "Misohagi") is an edible plant belonging to the Lythraceae family. It is mainly distributed in Asia, Northern Africa, and Europe. Plants of the genus Lythrum exhibit a broad range of biological activities including anti-inflammatory and antimicrobial activities. Because of this, the plants are used in traditional medicine to treat hemorrhage, infected wounds, and dysentery. The activation of peroxisome proliferator-activated receptor-gamma (PPARγ) is an effective target for improving insulin resistance and anti-inflammatory activity. However, PPARγ activation by the genus Lythrum remains unclear. Aiming to evaluate PPARγ activation by L. anceps, we generated a reporter cell line using an artificial chromosome vector that stably expresses dual-color beetle luciferases. Dual-color real-time bioluminescence monitoring revealed marked PPARγ activation in L. anceps extracts. Moreover, ellagic acid was identified as a PPARγ activator present in L. anceps by a bioassay-guided fractionation approach.
Collapse
Affiliation(s)
- Ryo Miyata
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Masanobu Suzuki
- Resources and Environment Division, Kochi Prefectural Industrial Technology Center, Kochi, Kochi, Japan
| | - Yuka Okazaki
- Resources and Environment Division, Kochi Prefectural Industrial Technology Center, Kochi, Kochi, Japan
| | - Daigo Abe
- Western Region Agricultural Research Center, National Agricultural and Food Research Organization (NARO), Zentsuji, Kagawa, Japan
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| |
Collapse
|
2
|
Ozcagli E, Kubickova B, Jacobs MN. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods. Front Endocrinol (Lausanne) 2024; 15:1401120. [PMID: 39040675 PMCID: PMC11260640 DOI: 10.3389/fendo.2024.1401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.
Collapse
|
3
|
Bozdag D, van Voorthuizen J, Korpel N, Lentz S, Gurer-Orhan H, Kamstra JH. Dysregulation of adipogenesis and disrupted lipid metabolism by the antidepressants citalopram and sertraline. Toxicol Appl Pharmacol 2024; 486:116937. [PMID: 38643950 DOI: 10.1016/j.taap.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are widely used medications for the treatment of major depressive disorder. However, long-term SSRI use has been associated with weight gain and altered lipid profiles. These findings suggest that SSRIs may have negative effects on metabolism. Exposure to certain chemicals called 'obesogens' is known to promote lipid accumulation and obesity by modulating adipogenesis. Here, we investigated whether citalopram (CIT) and sertraline (SER) interfere with the process of adipogenesis, using human mesenchymal stem cells (MSCs) in a 2D and a 3D model. Assessment of intracellular lipid accumulation by fluorescence staining was used as a measure for enhanced adipogenesis. To explore possible mechanisms behind SSRIs' effects, receptor mediated activity was studied using responsive cell lines for various nuclear receptors. Furthermore, RNA sequencing was performed in the 3D model, followed by differential gene expression and pathway analysis. A dose dependent increase in lipid accumulation was observed in both models with CIT and SER. For the 3D model, the effect was seen in a range close to reported steady-state plasma concentrations (0.065-0.65 μM for SER and 0.12-0.92 μM for CIT). Pathway analysis revealed unexpected results of downregulation in adipogenesis-related pathways and upregulation in phospholipids and lysosomal pathways. This was confirmed by an observed increase in lysosomes in the 2D model. Our findings suggest lysosomal dysfunction and disrupted lipid metabolism in mature adipocytes, leading to excessive phospholipid synthesis. Moreover, important adipogenic processes are inhibited, potentially leading to dysfunctional adipocytes, which might have implications in the maintenance of a healthy metabolic balance.
Collapse
Affiliation(s)
- Deniz Bozdag
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands; Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, 35040 Izmir, Turkey.
| | - Jeroen van Voorthuizen
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Nikita Korpel
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Sander Lentz
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Hande Gurer-Orhan
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ege University, 35040 Izmir, Turkey
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, the Netherlands.
| |
Collapse
|
4
|
Chen M, Wang H, Cui Q, Shi J, Hou Y. Dual function of activated PPARγ by ligands on tumor growth and immunotherapy. Med Oncol 2024; 41:114. [PMID: 38619661 DOI: 10.1007/s12032-024-02363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
As one of the peroxisome-proliferator-activated receptors (PPARs) members, PPARγ is a ligand binding and activated nuclear hormone receptor, which is an important regulator in metabolism, proliferation, tumor progression, and immune response. Increased evidence suggests that activation of PPARγ in response to ligands inhibits multiple types of cancer proliferation, metastasis, and tumor growth and induces cell apoptosis including breast cancer, colon cancer, lung cancer, and bladder cancer. Conversely, some reports suggest that activation of PPARγ is associated with tumor growth. In addition to regulating tumor progression, PPARγ could promote or inhibit tumor immunotherapy by affecting macrophage differentiation or T cell activity. These controversial findings may be derived from cancer cell types, conditions, and ligands, since some ligands are independent of PPARγ activity. Therefore, this review discussed the dual role of PPARγ on tumor progression and immunotherapy.
Collapse
Affiliation(s)
- Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Huijie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Qian Cui
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Kim M, So J, Shin D. PPARα activation promotes liver progenitor cell-mediated liver regeneration by suppressing YAP signaling in zebrafish. Sci Rep 2023; 13:18312. [PMID: 37880271 PMCID: PMC10600117 DOI: 10.1038/s41598-023-44935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Despite the robust regenerative capacity of the liver, prolonged and severe liver damage impairs liver regeneration, leading to liver failure. Since the liver co-opts the differentiation of liver progenitor cells (LPCs) into hepatocytes to restore functional hepatocytes, augmenting LPC-mediated liver regeneration may be beneficial to patients with chronic liver diseases. However, the molecular mechanisms underlying LPC-to-hepatocyte differentiation have remained largely unknown. Using the zebrafish model of LPC-mediated liver regeneration, Tg(fabp10a:pt-β-catenin), we present that peroxisome proliferator-activated receptor-alpha (PPARα) activation augments LPC-to-hepatocyte differentiation. We found that treating Tg(fabp10a:pt-β-catenin) larvae with GW7647, a potent PPARα agonist, enhanced the expression of hepatocyte markers and simultaneously reduced the expression of biliary epithelial cell (BEC)/LPC markers in the regenerating livers, indicating enhanced LPC-to-hepatocyte differentiation. Mechanistically, PPARα activation augments the differentiation by suppressing YAP signaling. The differentiation phenotypes resulting from GW7647 treatment were rescued by expressing a constitutively active form of Yap1. Moreover, we found that suppression of YAP signaling was sufficient to promote LPC-to-hepatocyte differentiation. Treating Tg(fabp10a:pt-β-catenin) larvae with the TEAD inhibitor K-975, which suppresses YAP signaling, phenocopied the effect of GW7647 on LPC differentiation. Altogether, our findings provide insights into augmenting LPC-mediated liver regeneration as a regenerative therapy for chronic liver diseases.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, 3501 5th Ave. #5063, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
6
|
Roy A, Tewari B, Giri S, Goenka M. Saroglitazar in Non-alcoholic Fatty Liver Disease From Bench to Bedside: A Comprehensive Review and Sub-group Meta-Analysis. Cureus 2023; 15:e47493. [PMID: 38022283 PMCID: PMC10663873 DOI: 10.7759/cureus.47493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common causes of liver diseases globally, with a projected exponential rise. In contrast to the exponential rise in disease burden, there are limited options in the pharmacotherapeutic armamentarium against NAFLD. Saroglitazar belongs to the class of drugs known as peroxisome proliferator-activated receptor (PPAR) agonists, initially introduced for managing diabetic dyslipidemia. However, based on translational and clinical studies, it has been shown to be efficacious in NAFLD. It has been shown to modify key parameters in NAFLD, including reduction of transaminase levels, improvement in overall metabolic health, reduction of liver fat content, and improvement of liver stiffness and histology. Given the promising results, it has been made a part of society's guidelines in the therapeutic management of NAFLD. However, there remains a dearth of detailed reviews encompassing both pre-clinical and clinical data on the effectiveness of saroglitazar in NAFLD. In this review, we comprehensively review the pharmacology, pre-clinical data, and clinical studies on saroglitazar usage in NAFLD and conduct a subgroup meta-analysis of studies focussing on the impact of saroglitazar on liver stiffness changes.
Collapse
Affiliation(s)
- Akash Roy
- Gastroenterology, Apollo Multispeciality Hospitals, Kolkata, IND
| | - Bikram Tewari
- Pharmacology, Sikkim Manipal Institute of Medical Sciences, Gangtok, IND
| | - Suprabhat Giri
- Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneshwar, IND
| | - Mahesh Goenka
- Gastroenterology, Apollo Multispeciality Hospitals, Kolkata, IND
| |
Collapse
|
7
|
Gou Q, Che S, Chen M, Chen H, Shi J, Hou Y. PPARγ inhibited tumor immune escape by inducing PD-L1 autophagic degradation. Cancer Sci 2023. [PMID: 37096255 DOI: 10.1111/cas.15818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
Blockade of the programmed death 1 (PD-1)/ programmed death ligand 1 (PD-L1) immune checkpoint could increase antitumor immunotherapy for multiple types of cancer, but the response rate of patients is about 10%-40%. Peroxisome proliferator activated receptor γ (PPARγ) plays an important role in regulating cell metabolism, inflammation, immunity, and cancer progression, while the mechanism of PPARγ on cancer cell immune escape is still unclear. Here we found that PPARγ expression exhibits a positive correlation with activation of T cells in non-small-cell lung cancer (NSCLC) by clinical analysis. Deficiency of PPARγ promoted immune escape of NSCLC by inhibiting T-cell activity, which was associated with increased PD-L1 protein level. Further analysis showed that PPARγ reduced PD-L1 expression independent of its transcriptional activity. PPARγ contains the microtubule-associated protein 1A/1B-light chain 3 (LC3) interacting region motif, which acts as an autophagy receptor for PPARγ binding to LC3, leading to degradation of PD-L1 in lysosomes, which in turn suppresses NSCLC tumor growth by increasing T-cell activity. These findings suggest that PPARγ inhibits the tumor immune escape of NSCLC by inducing PD-L1 autophagic degradation.
Collapse
Affiliation(s)
- Qian Gou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Suning Che
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
8
|
Dauwe Y, Mary L, Oliviero F, Grimaldi M, Balaguer P, Gayrard V, Mselli-Lakhal L. Steatosis and Metabolic Disorders Associated with Synergistic Activation of the CAR/RXR Heterodimer by Pesticides. Cells 2023; 12:cells12081201. [PMID: 37190111 DOI: 10.3390/cells12081201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The nuclear receptor, constitutive androstane receptor (CAR), which forms a heterodimer with the retinoid X receptor (RXR), was initially reported as a transcription factor that regulates hepatic genes involved in detoxication and energy metabolism. Different studies have shown that CAR activation results in metabolic disorders, including non-alcoholic fatty liver disease, by activating lipogenesis in the liver. Our objective was to determine whether synergistic activations of the CAR/RXR heterodimer could occur in vivo as described in vitro by other authors, and to assess the metabolic consequences. For this purpose, six pesticides, ligands of CAR, were selected, and Tri-butyl-tin (TBT) was used as an RXR agonist. In mice, CAR's synergic activation was induced by dieldrin associated with TBT, and combined effects were induced by propiconazole, bifenox, boscalid, and bupirimate. Moreover, a steatosis, characterized by increased triglycerides, was observed when TBT was combined with dieldrin, propiconazole, bifenox, boscalid, and bupirimate. Metabolic disruption appeared in the form of increased cholesterol and lowered free fatty acid plasma levels. An in-depth analysis revealed increased expression of genes involved in lipid synthesis and lipid import. These results contribute to the growing understanding of how environmental contaminants can influence nuclear receptor activity and associated health risks.
Collapse
Affiliation(s)
- Yannick Dauwe
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Lucile Mary
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-Université Montpellier-Institut régional du Cancer Montpellier, CEDEX 5, F-34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194-Université Montpellier-Institut régional du Cancer Montpellier, CEDEX 5, F-34298 Montpellier, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Laïla Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| |
Collapse
|
9
|
Keizer HG, Brands R, Seinen W. An AMP Kinase-pathway dependent integrated stress response regulates ageing and longevity. Biogerontology 2023:10.1007/s10522-023-10024-3. [PMID: 36877293 DOI: 10.1007/s10522-023-10024-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/18/2023] [Indexed: 03/07/2023]
Abstract
The purpose of this article is to investigate the role of the AMP-kinase pathway (AMPK pathway) in the induction of a concomitant set of health benefits by exercise, numerous drugs, and health ingredients, all of which are adversely affected by ageing. Despite the AMPK pathway being frequently mentioned in relation to both these health effects and ageing, it appears challenging to understand how the activation of a single biochemical pathway by various treatments can produce such a diverse range of concurrent health benefits, involving so many organs. We discovered that the AMPK pathway functions as an integrated stress response system because of the presence of a feedback loop in it. This evolutionary conserved stress response system detects changes in AMP/ATP and NAD/NADH ratios, as well as the presence of potential toxins, and responds by activating a common protective transcriptional response that protects against aging and promotes longevity. The inactivation of the AMPK pathway with age most likely explains why ageing has a negative impact on the above-mentioned set of health benefits. We conclude that the presence of a feedback loop in the AMP-kinase pathway positions this pathway as an AMPK-ISR (AMP Kinase-dependent integrated stress response) system that responds to almost any type of (moderate) environmental stress by inducing various age-related health benefits and longevity.
Collapse
Affiliation(s)
- H G Keizer
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.
| | - R Brands
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - W Seinen
- AMRIF Biotechnology, Agrobusiness Park 10, 6708 PW, Wageningen, The Netherlands.,Institute for Risk Assessment Sciences (IRAS), Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| |
Collapse
|
10
|
Páscoa I, Biltes R, Sousa J, Preto MAC, Vasconcelos V, Castro LF, Ruivo R, Cunha I. A Multiplex Molecular Cell-Based Sensor to Detect Ligands of PPARs: An Optimized Tool for Drug Discovery in Cyanobacteria. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031338. [PMID: 36772378 PMCID: PMC9919141 DOI: 10.3390/s23031338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/12/2023]
Abstract
Cyanobacteria produce a wealth of secondary metabolites. Since these organisms attach fatty acids into molecules in unprecedented ways, cyanobacteria can serve as a novel source for bioactive compounds acting as ligands for Peroxisome Proliferator-Activated Receptors (PPAR). PPARs (PPARα, PPARβ/δ and PPARγ) are ligand-activated nuclear receptors, involved in the regulation of various metabolic and cellular processes, thus serving as potential drug targets for a variety of pathologies. Yet, given that PPARs' agonists can have pan-, dual- or isoform-specific action, some controversy has been raised over currently approved drugs and their side effects, highlighting the need for novel molecules. Here, we expand and validate a cell-based PPAR transactivation activity biosensor, and test it in a screening campaign to guide drug discovery. Biosensor upgrades included the use of different reporter genes to increase signal intensity and stability, a different promoter to modulate reporter gene expression, and multiplexing to improve efficiency. Sensor's limit of detection (LOD) ranged from 0.36-0.89 nM in uniplex and 0.89-1.35 nM in multiplex mode. In triplex mode, the sensor's feature screening, a total of 848 fractions of 96 cyanobacteria extracts were screened. Hits were confirmed in multiplex mode and in uniplex mode, yielding one strain detected to have action on PPARα and three strains to have dual action on PPARα and -β.
Collapse
Affiliation(s)
- Inês Páscoa
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Rita Biltes
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - João Sousa
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Marco Aurélio Correia Preto
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Luís Filipe Castro
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, Department of Biology, University of Porto, 4169-007 Porto, Portugal
| | - Raquel Ruivo
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Isabel Cunha
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
11
|
The Role of PPARs in Breast Cancer. Cells 2022; 12:cells12010130. [PMID: 36611922 PMCID: PMC9818187 DOI: 10.3390/cells12010130] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors (PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They can regulate the transcription of a large number of target genes, which are involved in life activities such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further, the changes in its expression are associated with various diseases, including breast cancer. The experimental reports related to "PPAR" and "breast cancer" were retrieved from PubMed since the discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting PPARs or the search for new drug combination treatments.
Collapse
|
12
|
Sánchez Viafara JA, de Vasconcelos GL, Maculan R, Alves NG, Ferreira MBD, Sudano MJ, Mingoti GZ, Nunes GB, de Lima RR, Drumond RM, Dos Santos RN, Eberlin MN, Negrão F, Donato MAM, Peixoto CA, Camisão de Souza J. Peroxisome proliferator-activated receptor delta-PPARδ agonist (L-165041) enhances bovine embryo survival and post vitrification viability. Reprod Fertil Dev 2022; 34:658-668. [PMID: 35468312 DOI: 10.1071/rd21245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
The effect of L-165041 (PPARδ-agonist) on decreasing apoptosis and intracellular lipid content was assessed in fresh and vitrified-warmed in vitro -produced bovine embryos. It was hypothesised that the addition of L-165041 to the culture medium enhances development and cryopreservation. Oocytes were allocated to one of two treatments: control-standard culture medium, or L-165041 added to the medium on day1 with no media change. Ultrastructure, cleavage, and blastocyst rates were evaluated in fresh, and in post-vitrification cultured embryos by optical and electronic microscopy. A subset of fresh embryos were fixed for TUNEL assay and for Sudan-Black-B histochemical staining. Vitrified-warmed embryos were assessed using MALDI-MS technique. Cleavage and blastocyst rates (control 49.4±5.2, L-165041 51.8±4.3) were not influenced by L-165041. The proportion of inner cell mass cells (ICM) was higher in fresh embryos, and the rate of total and ICM apoptosis was lower in L-165041. In warmed-embryos, total and ICM apoptosis was lower in L-165041. The overall hatching rate was higher in L-165041 (66.62±2.83% vs 53.19±2.90%). There was less lipid accumulation in fresh L-165041-embryos. In conclusion, the use of L-165041 is recommended to improve the viability of in vitro -derived bovine embryos.
Collapse
Affiliation(s)
- Jesús Alfonso Sánchez Viafara
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil; and Universidad de Santander, Facultad de Ciencias Agrícolas y Veterinarias, Valledupar, Colombia
| | | | - Renata Maculan
- Instituto Federal do Sul de Minas, Machado, Minas Gerais, Brasil
| | - Nadja Gomes Alves
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil
| | | | | | - Gisele Zoccal Mingoti
- Escola de Medicina Veterinária, Laboratório de Fisiologia da Reprodução, Universidade Estadual Paulista, Campus Araçatuba, São Paulo, Brasil
| | - Giovana Barros Nunes
- Escola de Medicina Veterinária, Laboratório de Fisiologia da Reprodução, Universidade Estadual Paulista, Campus Araçatuba, São Paulo, Brasil
| | - Renato Ribeiro de Lima
- Departamento de Estatística, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil
| | | | | | - Marcos Nogueira Eberlin
- Universidade Estadual de Campinas, Laboratório ThoMSon de Espectrometria de Massas, Campinas, São Paulo, Brasil
| | - Fernanda Negrão
- Universidade Estadual de Campinas, Laboratório ThoMSon de Espectrometria de Massas, Campinas, São Paulo, Brasil
| | -
- NUMPEX-Bio, Universidade Federal do Rio de Janeiro, Campus Duque de Caxias, Rio de Janeiro, Brasil
| | | | | | - José Camisão de Souza
- Departamento de Zootecnia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil
| |
Collapse
|
13
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
14
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Gummer JP, Olasz B, Nambiar S, Hope DE, Casey TH, Lee YCG, Leslie C, Nealon G, Shackleford DM, Powell AK, Grimaldi M, Balaguer P, Zemek RM, Bosco A, Piggott MJ, Vrielink A, Lake RA, Lesterhuis WJ. PPARα and PPARγ activation is associated with pleural mesothelioma invasion but therapeutic inhibition is ineffective. iScience 2022; 25:103571. [PMID: 34984327 PMCID: PMC8692993 DOI: 10.1016/j.isci.2021.103571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.
Collapse
Affiliation(s)
- M. Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Catherine A. Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, WA 6009, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | | | - Joel P.A. Gummer
- School of Science, Department of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bence Olasz
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Shabarinath Nambiar
- School of Veterinary and Life Science, Murdoch University, Murdoch, WA 6150, Australia
| | - Danika E. Hope
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Y. C. Gary Lee
- Institute for Respiratory Health, Nedlands, WA 6009, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Matthew J. Piggott
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - W. Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| |
Collapse
|
15
|
Garoche C, Boulahtouf A, Grimaldi M, Chiavarina B, Toporova L, den Broeder MJ, Legler J, Bourguet W, Balaguer P. Interspecies Differences in Activation of Peroxisome Proliferator-Activated Receptor γ by Pharmaceutical and Environmental Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16489-16501. [PMID: 34843233 DOI: 10.1021/acs.est.1c04318] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are able to deregulate the hormone system, notably through interactions with nuclear receptors (NRs). The mechanisms of action and biological effects of many EDCs have mainly been tested on human and mouse but other species such as zebrafish and xenopus are increasingly used as a model to study the effects of EDCs. Among NRs, peroxisome proliferator-activated receptor γ (PPARγ) is a main target of EDCs, for which most experimental data have been obtained from human and mouse models. To assess interspecies differences, we tested known human PPARγ ligands on reporter cell lines expressing either human, mouse, zebrafish, or xenopus PPARγ. Using these cell lines, we were able to highlight major interspecies differences. Known hPPARγ pharmaceutical ligands modulated hPPARγ and mPPARγ activities in a similar manner, while xPPARγ was less responsive and zfPPARγ was not modulated at all by these compounds. On the contrary, human liver X receptor (hLXR) ligands GW 3965 and WAY-252623 were only active on zfPPARγ. Among environmental compounds, several molecules activated the PPARγ of the four species similarly, e.g., phthalates (MEHP), perfluorinated compounds (PFOA, PFOS), and halogenated derivatives of BPA (TBBPA, TCBPA), but some of them like diclofenac and the organophosphorus compounds tri-o-tolyl phosphate and triphenyl phosphate were most active on zfPPARγ. This study confirms or shows for the first time the h, m, x, and zfPPARγ activities of several chemicals and demonstrates the importance of the use of species-specific models to study endocrine and metabolism disruption by environmental chemicals.
Collapse
Affiliation(s)
- Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Barbara Chiavarina
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Marjo J den Broeder
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - William Bourguet
- Centre de Biologie Structurale (CBS), Inserm U1053, CNRS, Université Montpellier, 34290 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| |
Collapse
|
16
|
Pompura SL, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M, Hafler DA. Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. J Clin Invest 2021; 131:138519. [PMID: 33170805 DOI: 10.1172/jci138519] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
FOXP3+ Tregs rely on fatty acid β-oxidation-driven (FAO-driven) oxidative phosphorylation (OXPHOS) for differentiation and function. Recent data demonstrate a role for Tregs in the maintenance of tissue homeostasis, with tissue-resident Tregs possessing tissue-specific transcriptomes. However, specific signals that establish tissue-resident Treg programs remain largely unknown. Tregs metabolically rely on FAO, and considering the lipid-rich environments of tissues, we hypothesized that environmental lipids drive Treg homeostasis. First, using human adipose tissue to model tissue residency, we identified oleic acid as the most prevalent free fatty acid. Mechanistically, oleic acid amplified Treg FAO-driven OXPHOS metabolism, creating a positive feedback mechanism that increased the expression of FOXP3 and phosphorylation of STAT5, which enhanced Treg-suppressive function. Comparing the transcriptomic program induced by oleic acid with proinflammatory arachidonic acid, we found that Tregs sorted from peripheral blood and adipose tissue of healthy donors transcriptomically resembled the Tregs treated in vitro with oleic acid, whereas Tregs from patients with multiple sclerosis (MS) more closely resembled an arachidonic acid transcriptomic profile. Finally, we found that oleic acid concentrations were reduced in patients with MS and that exposure of MS Tregs to oleic acid restored defects in their suppressive function. These data demonstrate the importance of fatty acids in regulating tissue inflammatory signals.
Collapse
Affiliation(s)
- Saige L Pompura
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, and the Center for Computational Biology, University of California Berkeley, Berkeley, California, USA
| | - Alexandra Kitz
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacob LaPerche
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, and the Center for Computational Biology, University of California Berkeley, Berkeley, California, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology (MIT) and Harvard University, Boston, Massachusetts, USA.,Chan-Zuckerberg Biohub, San Francisco, California, USA
| | - Margarita Dominguez-Villar
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA.,Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Reproducibility of adipogenic responses to metabolism disrupting chemicals in the 3T3-L1 pre-adipocyte model system: An interlaboratory study. Toxicology 2021; 461:152900. [PMID: 34411659 DOI: 10.1016/j.tox.2021.152900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022]
Abstract
The 3T3-L1 murine pre-adipocyte line is an established cell culture model for screening Metabolism Disrupting Chemicals (MDCs). Despite a need to accurately identify MDCs for further evaluation, relatively little research has been performed to comprehensively evaluate reproducibility across laboratories, assess factors that might contribute to varying degrees of differentiation between laboratories (media additives, plastics, cell source, etc.), or to standardize protocols. As such, the goals of this study were to assess interlaboratory variability of efficacy and potency outcomes for triglyceride accumulation and pre-adipocyte proliferation using the mouse 3T3-L1 pre-adipocyte cell assay to test chemicals. Ten laboratories from five different countries participated. Each laboratory evaluated one reference chemical (rosiglitazone) and three blinded test chemicals (tributyltin chloride, pyraclostrobin, and bisphenol A) using: 1) their Laboratory-specific 3T3-L1 Cells (LC) and their Laboratory-specific differentiation Protocol (LP), 2) Shared 3T3-L1 Cells (SC) with LP, 3) LC with a Shared differentiation Protocol (SP), and 4) SC with SP. Blinded test chemical responses were analyzed by the coordinating laboratory. The magnitude and range of bioactivities reported varied considerably across laboratories and test conditions, though the presence or absence of activity for each tested chemical was more consistent. Triglyceride accumulation activity determinations for rosiglitazone ranged from 90 to 100% across test conditions, but 30-70 % for pre-adipocyte proliferation; this was 40-80 % for triglyceride accumulation induced by pyraclostrobin, 80-100 % for tributyltin, and 80-100 % for bisphenol A. Consistency was much lower for pre-adipocyte proliferation, with 30-70 % active determinations for pyraclostrobin, 30-50 % for tributyltin, and 20-40 % for bisphenol A. Greater consistency was observed for the SC/SP assessment. As such, working to develop a standardized adipogenic differentiation protocol represents the best strategy for improving consistency of adipogenic responses using the 3T3-L1 model to reproducibly identify MDCs and increase confidence in reported outcomes.
Collapse
|
18
|
Kassotis CD, Hoffman K, Phillips AL, Zhang S, Cooper EM, Webster TF, Stapleton HM. Characterization of adipogenic, PPARγ, and TRβ activities in house dust extracts and their associations with organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143707. [PMID: 33223163 PMCID: PMC7796983 DOI: 10.1016/j.scitotenv.2020.143707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 05/14/2023]
Abstract
In this study, we sought to expand our previous research on associations between bioactivities in dust and associated organic contaminants. Dust samples were collected from central NC homes (n = 188), solvent extracted, and split into two fractions, one for analysis using three different bioassays (nuclear receptor activation/inhibition and adipocyte development) and one for mass spectrometry (targeted measurement of 124 organic contaminants, including flame retardants, polychlorinated biphenyls, perfluoroalkyl substances, pesticides, phthalates, and polycyclic aromatic hydrocarbons). Approximately 80% of dust extracts exhibited significant adipogenic activity at concentrations that are comparable to estimated exposure for children and adults (e.g. ~20 μg/well dust) via either triglyceride accumulation (65%) and/or pre-adipocyte proliferation (50%). Approximately 76% of samples antagonized thyroid receptor beta (TRβ), and 21% activated peroxisome proliferator activated receptor gamma (PPARγ). Triglyceride accumulation was significantly correlated with TRβ antagonism. Sixty-five contaminants were detected in at least 75% of samples; of these, 26 were correlated with adipogenic activity and ten with TRβ antagonism. Regression models were used to evaluate associations of individual contaminants with adipogenic and TRβ bioactivities, and many individual contaminants were significantly associated. An exploratory g-computation model was used to evaluate the effect of mixtures. Contaminant mixtures were positively associated with triglyceride accumulation, and the magnitude of effect was larger than for any individually measured chemical. For each quartile increase in mixture exposure, triglyceride accumulation increased by 212% (RR = 3.12 and 95% confidence interval: 1.58, 6.17). These results suggest that complex mixtures of chemicals present in house dust may induce adipogenic activity in vitro at environmental concentrations and warrants further research.
Collapse
Affiliation(s)
- Christopher D Kassotis
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | - Allison L Phillips
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America; Risk Assessment and Natural Resource Sciences, Arcadis U.S., Inc., Raleigh, NC 27607, United States of America
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | - Ellen M Cooper
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, United States of America
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States of America.
| |
Collapse
|
19
|
Tobón-Cornejo S, Vargas-Castillo A, Leyva-Martínez A, Ortíz V, Noriega LG, Velázquez-Villegas LA, Aleman G, Furosawa-Carballeda J, Torres N, Tovar AR. PPARα/RXRα downregulates amino acid catabolism in the liver via interaction with HNF4α promoting its proteasomal degradation. Metabolism 2021; 116:154705. [PMID: 33422545 DOI: 10.1016/j.metabol.2021.154705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 11/17/2022]
Abstract
The preservation of body proteins is essential to guarantee their functions in organisms. Therefore, the utilization of amino acids as energy substrates is regulated by a precise fine-tuned mechanism. Recent evidence suggests that the transcription factors peroxisome proliferator-activated receptor alpha (PPARα) and hepatocyte nuclear factor 4 alpha (HNF4α) are involved in this regulatory mechanism. Thus, the aim of this study was to determine how these transcription factors interact to regulate the expression of amino acid catabolism genes. In vivo studies using PPARα-knockout mice (Pparα-null) fed different amounts of dietary protein showed that in the absence of PPARα, there was a significant increase in HNF4α abundance in the liver, which corresponded with an increase in amino acid catabolizing enzyme (AACE) expression and the generation of increased amounts of postprandial urea. Moreover, this effect was proportional to the increase in dietary protein consumed. Chromatin immunoprecipitation assays showed that HNF4α can bind to the promoter of AACE serine dehydratase (SDS), an effect that was potentiated by dietary protein in the Pparα-null mice. The mechanistic studies revealed that the presence of retinoid X receptor alpha (RXRα) is essential to repress HNF4α activity in the presence of PPARα, and this interaction accelerates HNF4α degradation via the proteasome pathway. These results showed that PPARα can downregulate liver amino acid catabolism in the presence of RXRα by inhibiting HNF4α activity.
Collapse
Affiliation(s)
- Sandra Tobón-Cornejo
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Ariana Vargas-Castillo
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Alekxa Leyva-Martínez
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Victor Ortíz
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Lilia G Noriega
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Laura A Velázquez-Villegas
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Gabriela Aleman
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Janette Furosawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Nimbe Torres
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico
| | - Armando R Tovar
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México CDMX, Mexico.
| |
Collapse
|
20
|
Pham Ngoc L, Helmus R, Ehlers AW, Swart K, Besselink H, de Rijke E, Dang Thi Cam H, Brouwer A, van der Burg B. Effect-directed analysis and chemical identification of agonists of peroxisome proliferator-activated receptors in white button mushroom. Food Funct 2021; 12:133-143. [PMID: 33283804 DOI: 10.1039/d0fo02071k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Obesity has a serious effect on human health. It relates to metabolic syndrome, including the associated disorders such as type 2 diabetes, heart disease, stroke and hyperemia. The peroxisome proliferator-activated receptors (PPARs) are important receptors to control fat metabolism in the human body. Because of the safety concerns of synthetic drugs targeting PPARs, ligands from natural sources have drawn interest. Earlier, we have found high PPAR activities in extracts from Agaricus bisporus (white button mushroom, WBM). WBM contains a wide range of candidate compounds which could be agonists of PPARs. To identify which compounds are responsible for PPAR activation by WBM extracts, we used fractionation coupled to effect-directed analysis with reporter gene assays specific for all three PPARs for purification and LC/MS-TOF and NMR for compound identification in purified active fractions. Surprisingly, we identified the relatively common dietary fatty acid, linoleic acid, as the main ligand of PPARs in WBM. Possibly, the relatively low levels of linoleic acid in WBM are sufficient and instrumental in inducing its anti-obesogenic effects, avoiding high energy intake and negative health effects associated with high levels of linoleic acid consumption. However, it could not be excluded that a minor relatively potent compound contributes towards PPAR activation, while the anti-obesity effects of WBM may be further enhanced by receptor expression modulating compounds or compounds with completely PPAR unrelated modes of action.
Collapse
Affiliation(s)
- Long Pham Ngoc
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands. and Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Department of Ecological Science, Vrije Universitei, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Rick Helmus
- Institute of Biodiversity & Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| | - Andreas W Ehlers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands and Department of Chemistry, Science Faculty, University of Johannesburg, PO Box 254, Auckland Park, Johannesburg, South Africa
| | - Kees Swart
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands.
| | - Harry Besselink
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands.
| | - Eva de Rijke
- Institute of Biodiversity & Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1090 GE, Amsterdam, The Netherlands
| | - Ha Dang Thi Cam
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands. and Department of Ecological Science, Vrije Universitei, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Bart van der Burg
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Peiretti F, Montanari R, Capelli D, Bonardo B, Colson C, Amri EZ, Grimaldi M, Balaguer P, Ito K, Roeder RG, Pochetti G, Brunel JM. A Novel N-Substituted Valine Derivative with Unique Peroxisome Proliferator-Activated Receptor γ Binding Properties and Biological Activities. J Med Chem 2020; 63:13124-13139. [PMID: 33142057 DOI: 10.1021/acs.jmedchem.0c01555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A proprietary library of novel N-aryl-substituted amino acid derivatives bearing a hydroxamate head group allowed the identification of compound 3a that possesses weak proadipogenic and peroxisome proliferator-activated receptor γ (PPARγ) activating properties. The systematic optimization of 3a, in order to improve its PPARγ agonist activity, led to the synthesis of compound 7j (N-aryl-substituted valine derivative) that possesses dual PPARγ/PPARα agonistic activity. Structural and kinetic analyses reveal that 7j occupies the typical ligand binding domain of the PPARγ agonists with, however, a unique high-affinity binding mode. Furthermore, 7j is highly effective in preventing cyclin-dependent kinase 5-mediated phosphorylation of PPARγ serine 273. Although less proadipogenic than rosiglitazone, 7j significantly increases adipocyte insulin-stimulated glucose uptake and efficiently promotes white-to-brown adipocyte conversion. In addition, 7j prevents oleic acid-induced lipid accumulation in hepatoma cells. The unique biochemical properties and biological activities of compound 7j suggest that it would be a promising candidate for the development of compounds to reduce insulin resistance, obesity, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Franck Peiretti
- Aix Marseille University, INSERM, INRAE, C2VN, 13385 Marseille, France
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, Monterotondo Stazione, 00015 Rome, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, Monterotondo Stazione, 00015 Rome, Italy
| | | | - Cécilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, ICM, 34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, ICM, 34298 Montpellier, France
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, United States
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, United States
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, Monterotondo Stazione, 00015 Rome, Italy
| | | |
Collapse
|
22
|
Neale PA, Grimaldi M, Boulahtouf A, Leusch FDL, Balaguer P. Assessing species-specific differences for nuclear receptor activation for environmental water extracts. WATER RESEARCH 2020; 185:116247. [PMID: 32758789 DOI: 10.1016/j.watres.2020.116247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
In vitro bioassays are increasingly applied to detect endocrine disrupting chemicals (EDCs) in environmental waters. Most studies use human nuclear receptor assays, but this raises questions about their relevance for evaluating ecosystem health. The current study aimed to assess species-specific differences in the activation or inhibition of a range of human and zebrafish nuclear receptors by different water extracts. Wastewater and surface water extracts were run in transactivation assays indicative of the estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR), pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPARγ). The transactivation assays were complemented with competitive binding assays for human AR, GR, PR and MR. In most cases, both human and zebrafish nuclear receptor activity were detected in the water extracts. Only some species-specific differences in potency and activity were observed. Water extracts were more active in zebrafish PXR compared to human PXR whereas the opposite was observed for PPARγ. Further, all water extracts inhibited zebrafish PR, while only one extract showed weak anti-progestagenic activity for human PR. Due to these observed differences, zebrafish nuclear receptor assays may be preferable over human nuclear receptor assays to assess the potential risks of EDCs to aquatic organisms. However, recognizing issues with availability of zebrafish nuclear receptor assays and the relatively small differences in responsiveness for many of the human and zebrafish nuclear receptors, including the widely studied ER, the current study supports the continued use of human nuclear receptor assays for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia.
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, Qld, 4222, Australia
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier 1, Institut régional du Cancer de Montpellier (ICM), 34290 Montpellier, France
| |
Collapse
|
23
|
Toporova L, Grimaldi M, Boulahtouf A, Balaguer P. Assessing the Selectivity of FXR, LXRs, CAR, and RORγ Pharmaceutical Ligands With Reporter Cell Lines. Front Pharmacol 2020; 11:1122. [PMID: 32792956 PMCID: PMC7394005 DOI: 10.3389/fphar.2020.01122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
To characterize human nuclear receptor (NR) specificity of synthetic pharmaceutical chemicals we established stable cell lines expressing the ligand binding domains (LBDs) of human FXR, LXRα, LXRβ, CAR, and RORγ fused to the yeast GAL4 DNA binding domain (DBD). As we have already done for human PXR, a two-step transfection procedure was used. HeLa cells stably expressing a Gal4 responsive gene (HG5LN cell line) were transfected by Gal4-NRs expressing plasmids. At first, using these cell lines as well as the HG5LN PXR cells, we demonstrated that the basal activities varied from weak (FXR and LXRs), intermediate (PXR), to strong (CAR and RORγ), reflecting the recruitment of HeLa co-regulators in absence of ligand. Secondly, we finely characterized the activities of commercially available FXR, LXRα, LXRβ, CAR, RORγ, and PXR agonists/antagonists GW4064, feraxamine, DY268, T0901317, GW3965, WAY252623, SR9238, SR9243, GSK2033, CITCO, CINPA1, PK11195, S07662, SR1078, SR0987, SR1001, SR2211, XY018, clotrimazole, dabrafenib, SR12813, and SPA70, respectively. Among these compounds we revealed both, receptor specific agonists/antagonists, as well as less selective ligands, activating or inhibiting several nuclear receptors. FXR ligands manifested high receptor selectivity. Vice versa, LXR ligands behaved in non-selective manner, all activating at least PXR. CAR was selectively influenced by their ligands, while it also responded to several LXR ligands. Finally, although PXR was quite selectively activated or antagonized by its own ligands, it responded to several NRs ligands as well. Thus, using these reporter cell lines enabled us to precisely characterize the selectivity of pharmaceutical ligands for different nuclear receptors.
Collapse
Affiliation(s)
- Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, Montpellier, France
| |
Collapse
|
24
|
Schubert M, Becher S, Wallert M, Maeß MB, Abhari M, Rennert K, Mosig AS, Große S, Heller R, Grün M, Lorkowski S. The Peroxisome Proliferator-Activated Receptor (PPAR)- γ Antagonist 2-Chloro-5-Nitro-N-Phenylbenzamide (GW9662) Triggers Perilipin 2 Expression via PPAR δ and Induces Lipogenesis and Triglyceride Accumulation in Human THP-1 Macrophages. Mol Pharmacol 2020; 97:212-225. [PMID: 31871304 DOI: 10.1124/mol.119.117887] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor family, playing pivotal roles in regulating glucose and lipid metabolism as well as inflammation. While characterizing potential PPARγ ligand activity of natural compounds in macrophages, we investigated their influence on the expression of adipophilin [perilipin 2 (PLIN2)], a well-known PPARγ target. To confirm that a compound regulates PLIN2 expression via PPARγ, we performed experiments using the widely used PPARγ antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662). Surprisingly, instead of blocking upregulation of PLIN2 expression in THP-1 macrophages, expression was concentration-dependently induced by GW9662 at concentrations and under conditions commonly used. We found that this unexpected upregulation occurs in many human and murine macrophage cell models and also primary cells. Profiling expression of PPAR target genes showed upregulation of several genes involved in lipid uptake, transport, and storage as well as fatty acid synthesis by GW9662. In line with this and with upregulation of PLIN2 protein, GW9662 elevated lipogenesis and increased triglyceride levels. Finally, we identified PPARδ as a mediator of the substantial unexpected effects of GW9662. Our findings show that: 1) the PPARγ antagonist GW9662 unexpectedly activates PPARδ-mediated signaling in macrophages, 2) GW9662 significantly affects lipid metabolism in macrophages, 3) careful validation of experimental conditions and results is required for experiments involving GW9662, and 4) published studies in a context comparable to this work may have reported erroneous results if PPARγ independence was demonstrated using GW9662 only. In light of our findings, certain existing studies might require reinterpretation regarding the role of PPARγ SIGNIFICANCE STATEMENT: Peroxisome proliferator-activated receptors (PPARs) are targets for the treatment of various diseases, as they are key regulators of inflammation as well as lipid and glucose metabolism. Hence, reliable tools to characterize the molecular effects of PPARs are indispensable. We describe profound and unexpected off-target effects of the PPARγ antagonist 2-chloro-5-nitro-N-phenylbenzamide (GW9662) involving PPARδ and in turn affecting macrophage lipid metabolism. Our results question certain existing studies using GW9662 and make better experimental design of future studies necessary.
Collapse
Affiliation(s)
- Martin Schubert
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Stefanie Becher
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Maria Wallert
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Marten B Maeß
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Masoumeh Abhari
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Knut Rennert
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Alexander S Mosig
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Silke Große
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Regine Heller
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Michael Grün
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany (M.S., S.B., M.W., M.B.M., M.A., M.G., S.L.); Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany (M.S., M.W., M.G., S.L.); Institute of Biochemistry II, Jena University Hospital, Jena, Germany (K.R., A.S.M.); and Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital and Friedrich Schiller University Jena, Jena, Germany (S.G., R.H.)
| |
Collapse
|
25
|
Tratwal J, Labella R, Bravenboer N, Kerckhofs G, Douni E, Scheller EL, Badr S, Karampinos DC, Beck-Cormier S, Palmisano B, Poloni A, Moreno-Aliaga MJ, Fretz J, Rodeheffer MS, Boroumand P, Rosen CJ, Horowitz MC, van der Eerden BCJ, Veldhuis-Vlug AG, Naveiras O. Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne) 2020; 11:65. [PMID: 32180758 PMCID: PMC7059536 DOI: 10.3389/fendo.2020.00065] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
The interest in bone marrow adiposity (BMA) has increased over the last decade due to its association with, and potential role, in a range of diseases (osteoporosis, diabetes, anorexia, cancer) as well as treatments (corticosteroid, radiation, chemotherapy, thiazolidinediones). However, to advance the field of BMA research, standardization of methods is desirable to increase comparability of study outcomes and foster collaboration. Therefore, at the 2017 annual BMA meeting, the International Bone Marrow Adiposity Society (BMAS) founded a working group to evaluate methodologies in BMA research. All BMAS members could volunteer to participate. The working group members, who are all active preclinical or clinical BMA researchers, searched the literature for articles investigating BMA and discussed the results during personal and telephone conferences. According to the consensus opinion, both based on the review of the literature and on expert opinion, we describe existing methodologies and discuss the challenges and future directions for (1) histomorphometry of bone marrow adipocytes, (2) ex vivo BMA imaging, (3) in vivo BMA imaging, (4) cell isolation, culture, differentiation and in vitro modulation of primary bone marrow adipocytes and bone marrow stromal cell precursors, (5) lineage tracing and in vivo BMA modulation, and (6) BMA biobanking. We identify as accepted standards in BMA research: manual histomorphometry and osmium tetroxide 3D contrast-enhanced μCT for ex vivo quantification, specific MRI sequences (WFI and H-MRS) for in vivo studies, and RT-qPCR with a minimal four gene panel or lipid-based assays for in vitro quantification of bone marrow adipogenesis. Emerging techniques are described which may soon come to complement or substitute these gold standards. Known confounding factors and minimal reporting standards are presented, and their use is encouraged to facilitate comparison across studies. In conclusion, specific BMA methodologies have been developed. However, important challenges remain. In particular, we advocate for the harmonization of methodologies, the precise reporting of known confounding factors, and the identification of methods to modulate BMA independently from other tissues. Wider use of existing animal models with impaired BMA production (e.g., Pfrt-/-, KitW/W-v) and development of specific BMA deletion models would be highly desirable for this purpose.
Collapse
Affiliation(s)
- Josefine Tratwal
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rossella Labella
- Tissue and Tumour Microenvironments Lab, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
| | - Eleni Douni
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Athens, Greece
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, United States
| | - Sammy Badr
- Univ. Lille, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, Lille, France
- CHU Lille, Service de Radiologie et Imagerie Musculosquelettique, Lille, France
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Sarah Beck-Cormier
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- Université de Nantes, UFR Odontologie, Nantes, France
| | - Biagio Palmisano
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Antonella Poloni
- Hematology, Department of Clinic and Molecular Science, Università Politecnica Marche-AOU Ospedali Riuniti, Ancona, Italy
| | - Maria J. Moreno-Aliaga
- Centre for Nutrition Research and Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra's Health Research Institute, Pamplona, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| | - Jackie Fretz
- Department of Orthopaedics and Rehabilitation, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew S. Rodeheffer
- Department of Comparative Medicine and Molecular, Cellular and Developmental Biology, Yale University School of Medicine, New Haven, CT, United States
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clifford J. Rosen
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
| | - Mark C. Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, United States
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Annegreet G. Veldhuis-Vlug
- Section of Endocrinology, Department of Internal Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, Netherlands
- Maine Medical Center Research Institute, Center for Clinical and Translational Research, Scarborough, ME, United States
- Jan van Goyen Medical Center/OLVG Hospital, Department of Internal Medicine, Amsterdam, Netherlands
- *Correspondence: Annegreet G. Veldhuis-Vlug
| | - Olaia Naveiras
- Laboratory of Regenerative Hematopoiesis, Institute of Bioengineering and Swiss Institute for Experimental Cancer Research, Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Hematology Service, Departments of Oncology and Laboratory Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Olaia Naveiras ;
| |
Collapse
|
26
|
Wang ZF, Li J, Ma C, Huang C, Li ZQ. Telmisartan ameliorates Aβ oligomer-induced inflammation via PPARγ/PTEN pathway in BV2 microglial cells. Biochem Pharmacol 2020; 171:113674. [PMID: 31634455 DOI: 10.1016/j.bcp.2019.113674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
|
27
|
Qi W, Clark JM, Timme-Laragy AR, Park Y. Perfluorobutanesulfonic Acid (PFBS) Induces Fat Accumulation in HepG2 Human Hepatoma. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2020; 102:585-606. [PMID: 33762794 PMCID: PMC7986581 DOI: 10.1080/02772248.2020.1808894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Per- and poly-fluoroalkyl substances, especially perfluorooctanesulfonic acid, have been extensively used for over 50 years. A growing body of evidence has emerged demonstrating the potential adverse effects of these substances, including its effect on the development of non-alcoholic fatty liver disease, as one of the most prevalent chronic liver diseases. Nonetheless, there is no report of effects of perfluorobutanesulfonic acid, the major replacement for perfluorooctanesulfonic acid, on non-alcoholic fatty liver disease. Therefore, the effects of perfluorobutanesulfonic acid exposure on fat accumulation in a human hepatoma cell line were examined. Cells were exposed to perfluorobutanesulfonic acid with or without 300 μmol/L fatty acid mixture (oleic acid:palmitic acid = 2:1) conjugated by bovine serum albumin as an inducer of steatosis for 48 hours. Perfluorobutanesulfonic acid at 200 μmol/L significantly increased the triglyceride level in the presence of fatty acid compared to the control, but not without fatty acid, which was abolished by a specific peroxisome proliferator-activated receptor gamma antagonist. Perfluorobutanesulfonic acid upregulated key genes controlling lipogenesis and fatty acid uptake. Perfluorobutanesulfonic acid treatment also promoted the production of reactive oxygen species, an endoplasmic reticulum stress marker and cytosolic calcium. In conclusion, perfluorobutanesulfonic acid increased fat accumulation, in part, via peroxisome proliferator-activated receptor gamma-mediated pathway in hepatoma cells.
Collapse
Affiliation(s)
- Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
| | - John M. Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, 01003, United States
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, United States
- Corresponding author: Phone (413) 545-1018,
| |
Collapse
|
28
|
Thouennon E, Delfosse V, Bailly R, Blanc P, Boulahtouf A, Grimaldi M, Barducci A, Bourguet W, Balaguer P. Insights into the activation mechanism of human estrogen-related receptor γ by environmental endocrine disruptors. Cell Mol Life Sci 2019; 76:4769-4781. [PMID: 31127318 PMCID: PMC11105698 DOI: 10.1007/s00018-019-03129-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022]
Abstract
The estrogen-related receptor γ (ERRγ, NR3B3) is a constitutively active nuclear receptor which has been proposed to act as a mediator of the low-dose effects of a number of environmental endocrine-disrupting chemicals (EDCs) such as the xenoestrogen bisphenol-A (BPA). To better characterize the ability of exogenous compounds to bind and activate ERRγ, we used a combination of cell-based, biochemical, structural and computational approaches. A purposely created stable cell line allowed for the determination of the EC50s for over 30 environmental ERRγ ligands, including previously unknown ones. Interestingly, affinity constants (Kds) of the most potent compounds measured by isothermal titration calorimetry were in the 50-500 nM range, in agreement with their receptor activation potencies. Crystallographic analysis of the interaction between the ERRγ ligand-binding domain (LBD) and compounds of the bisphenol, alkylphenol and naphthol families revealed a partially shared binding mode and minimal alterations of the receptor conformation upon ligand binding. Further biophysical characterizations coupled to molecular dynamics simulations suggested a mechanism through which ERRγ ligands would exhibit their agonistic properties by preserving the transcriptionally active form of the receptor while rigidifying some loop regions with associated functions. This unique mechanism contrasts with the classical one involving a ligand-induced repositioning and stabilization of the C-terminal activation helix H12.
Collapse
Affiliation(s)
- Erwan Thouennon
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Vanessa Delfosse
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Rémy Bailly
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Pauline Blanc
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale (CBS), Inserm, CNRS, Univ Montpellier, Montpellier, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm, Univ Montpellier, ICM, Montpellier, France.
| |
Collapse
|
29
|
Comparative Evaluation of Gemcabene and Peroxisome Proliferator-Activated Receptor Ligands in Transcriptional Assays of Peroxisome Proliferator-Activated Receptors: Implication for the Treatment of Hyperlipidemia and Cardiovascular Disease. J Cardiovasc Pharmacol 2019; 72:3-10. [PMID: 29621036 PMCID: PMC6039382 DOI: 10.1097/fjc.0000000000000580] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gemcabene, a late-stage clinical candidate, has shown efficacy for LDL-C, non-HDL cholesterol, apoB, triglycerides, and hsCRP reduction, all risk factors for cardiovascular disease. In rodents, gemcabene showed changes in targets, including apoC-III, apoA-I, peroxisomal enzymes, considered regulated through peroxisome proliferator-activated receptor (PPAR) gene activation, suggesting a PPAR-mediated mechanism of action for the observed hypolipidemic effects observed in rodents and humans. In the current study, the gemcabene agonist activity against PPAR subtypes of human, rat, and mouse were compared with known lipid lowering PPAR activators. Surprisingly, gemcabene showed no or little PPAR-α transactivation compared with reference agonists, which showed concentration-dependent transactivation against human PPAR-α of 2.4- to 30-fold (fenofibric acid), 17-fold (GW590735), and 2.3- to 25-fold (WY-14643). These agents also showed robust transactivation of mouse and rat PPAR-α in a concentration-dependent manner. The known PPAR-δ agonists, GW1516, L165041, and GW0742, showed potent agonist activity against human, mouse, and rat receptors (ranging from 165- to 396-fold). By contrast, gemcabene at the highest concentration tested (300 μM) showed no response in mouse and rat and a marginal response against human PPAR-δ receptors (3.2-fold). For PPAR-γ, gemcabene showed no agonist activity against all 3 species at 100 μM and marginal activity (3.6- to 5-fold) at 300 μM. By contrast, the known agonists, rosiglitazone, indomethacin, and muraglitazar showed strong activation against the mouse, rat, and human PPAR-γ receptors. No clear antagonist activity was observed with gemcabene against any PPAR subtypes for all 3 species over a wide range of concentrations. In summary, the transactivation studies rule out gemcabene as a direct agonist or antagonist of PPAR-α, PPAR-γ, and PPAR-δ receptors of these 3 species. These data suggest that the peroxisomal effects observed in rodents and the lipid regulating effects observed in rodents and humans are not related to a direct activation of PPAR receptors by gemcabene.
Collapse
|
30
|
Kassotis CD, Kollitz EM, Hoffman K, Sosa JA, Stapleton HM. Thyroid receptor antagonism as a contributory mechanism for adipogenesis induced by environmental mixtures in 3T3-L1 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:431-444. [PMID: 30802659 PMCID: PMC6456385 DOI: 10.1016/j.scitotenv.2019.02.273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 02/17/2019] [Indexed: 05/06/2023]
Abstract
We previously demonstrated that indoor house dust extracts could induce adipogenesis in pre-adipocytes, suggesting a potential role for indoor contaminant mixtures in metabolic health. Herein, we investigated the potential role of thyroid receptor beta (TRβ) antagonism in adipogenic effects (dust-induced triglyceride accumulation and pre-adipocyte proliferation) following exposure to environmental mixtures (indoor house dust extracts). Concentrations of specific flame retardants were measured in extracts, and metabolic health information was collected from residents (n = 137). 90% of dust extracts exhibited significant adipogenic activity, >60% via triglyceride accumulation, and >70% via pre-adipocyte proliferation. Triglyceride accumulation was positively correlated with concentrations of each of twelve flame retardants, despite most being independently inactive; this suggests a putative role for co-exposures or mixtures. We further reported a positive correlation between dust-induced triglyceride accumulation and serum thyroid stimulating hormone concentrations, negative correlations with serum free triiodothyronine and thyroxine concentrations, and a positive and significant association between dust-induced triglyceride accumulation and residents' body mass index (BMI). We hypothesized that inhibition of TR antagonism might counteract these effects, and both addition of a TR agonist and siRNA knock-down of TR resulted in decreased dust-induced triglyceride accumulation in a subset of samples, bolstering this as a contributory mechanism. These results highlight a contributory role of environmental TR antagonism as a putative factor in metabolic health, suggesting that further research should evaluate this mechanism and determine whether in vitro adipogenic activity could have utility as a biomarker for metabolic health in residents.
Collapse
Affiliation(s)
| | - Erin M. Kollitz
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC 27708
| | - Julie Ann Sosa
- Department of Surgery, University of California at San Francisco, San Francisco, CA, United States
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708
- Corresponding Author Post-Publication and person to whom reprints requests should be addressed: Heather M. Stapleton, PhD, Nicholas School of the Environment, Duke University, A207B Levine Science Research Center, 450 Research Drive, Durham, NC 27708, Phone: 919-613-8717,
| |
Collapse
|
31
|
Wu L, Wang Y, Chi G, Shen B, Tian Y, Li Z, Han L, Zhang Q, Feng H. Morin reduces inflammatory responses and alleviates lipid accumulation in hepatocytes. J Cell Physiol 2019; 234:19785-19798. [PMID: 30937936 DOI: 10.1002/jcp.28578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 01/10/2023]
Abstract
Morin (MO), a natural bioflavinoid, exists in many herbs. Previous studies have acclaimed MO's anti-inflammatory, antidiabetic, antioxidant, antifibrotic, anticancer, and antihyperglycemic biological effects. This study aimed to assess the molecular mechanism of MO involved in the oleic acid (OA)-induced inflammatory damage and lipid accumulation in HepG2 cell and tyloxapol (Ty)-induced hyperlipidemia in mice. We found that MO can efficaciously mitigate reactive tumor necrosis factor-α (TNF-α) level and triglyceride (TG) accumulation in OA-induced HepG2 cell and in tyloxapol-induced mice. Next, the study testified that MO apparently suppressed OA-excited nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways in HepG2 cell. In addition, MO distinctly upregulated the expression of peroxisome proliferator-activated receptor α (PPARα) and decreased the expression of sterol regulatory element-binding protein 1c (SREBP-1c) in OA-induced HepG2 cell and in tyloxapol-induced mice, both of which are dependent upon the phosphorylation of acetyl-CoA carboxylase (ACC), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and protein kinase B (AKT). In conclusion, these results suggest that MO has protective potential against hyperlipidemia and steatosis, and the potential mechanism may have a close relation with activation of PPARα and inhibition of SREBP-1c.
Collapse
Affiliation(s)
- Lin Wu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yue Wang
- Department of Paediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Gefu Chi
- Medical Examination Center, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Bingyu Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ye Tian
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zheng Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lu Han
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qiaoling Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
32
|
Da'adoosh B, Marcus D, Rayan A, King F, Che J, Goldblum A. Discovering highly selective and diverse PPAR-delta agonists by ligand based machine learning and structural modeling. Sci Rep 2019; 9:1106. [PMID: 30705343 PMCID: PMC6355875 DOI: 10.1038/s41598-019-38508-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
PPAR-δ agonists are known to enhance fatty acid metabolism, preserving glucose and physical endurance and are suggested as candidates for treating metabolic diseases. None have reached the clinic yet. Our Machine Learning algorithm called "Iterative Stochastic Elimination" (ISE) was applied to construct a ligand-based multi-filter ranking model to distinguish between confirmed PPAR-δ agonists and random molecules. Virtual screening of 1.56 million molecules by this model picked ~2500 top ranking molecules. Subsequent docking to PPAR-δ structures was mainly evaluated by geometric analysis of the docking poses rather than by energy criteria, leading to a set of 306 molecules that were sent for testing in vitro. Out of those, 13 molecules were found as potential PPAR-δ agonist leads with EC50 between 4-19 nM and 14 others with EC50 below 10 µM. Most of the nanomolar agonists were found to be highly selective for PPAR-δ and are structurally different than agonists used for model building.
Collapse
Affiliation(s)
- Benny Da'adoosh
- Molecular Modeling Laboratory, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - David Marcus
- Molecular Modeling Laboratory, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Anwar Rayan
- Molecular Modeling Laboratory, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
- Institute of Applied Research, Galilee Society, Shefa-Amr, 20200, Israel
- Drug Discovery Informatics Lab, Qasemi-Research Center, Al-Qasemi Academic College, Baka El-Garbiah, 30100, Israel
| | - Fred King
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr., San Diego, CA, 92121, USA
| | - Jianwei Che
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Dr., San Diego, CA, 92121, USA.
- Department of Chem. & Biochem., University of California at San Diego, La Jolla, CA, 92037, USA.
| | - Amiram Goldblum
- Molecular Modeling Laboratory, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
33
|
Beekman KM, Veldhuis-Vlug AG, van der Veen A, den Heijer M, Maas M, Kerckhofs G, Parac-Vogt TN, Bisschop PH, Bravenboer N. The effect of PPARγ inhibition on bone marrow adipose tissue and bone in C3H/HeJ mice. Am J Physiol Endocrinol Metab 2019; 316:E96-E105. [PMID: 30457914 DOI: 10.1152/ajpendo.00265.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow adipose tissue (BMAT) increases after menopause, and increased BMAT is associated with osteoporosis and prevalent vertebral fractures. Peroxisome proliferator-activated receptor-γ (PPARγ) activation promotes adipogenesis and inhibits osteoblastogenesis; therefore, PPARγ is a potential contributor to the postmenopausal increase in BMAT and decrease in bone mass. The aim of this study is to determine if PPARγ inhibition can prevent ovariectomy-induced BMAT increase and bone loss in C3H/HeJ mice. Fourteen-week-old female C3H/HeJ mice ( n = 40) were allocated to four intervention groups: sham surgery (Sham) or ovariectomy (OVX; isoflurane anesthesia) with either vehicle (Veh) or PPARγ antagonist administration (GW9662; 1 mg·kg-1·day-1, daily intraperitoneal injections) for 3 wk. We measured BMAT volume, adipocyte size, adipocyte number. and bone structural parameters in the proximal metaphysis of the tibia using polyoxometalate-based contrast enhanced-nanocomputed topogaphy. Bone turnover was measured in the contralateral tibia using histomorphometry. The effects of surgery and treatment were analyzed by two-way ANOVA. OVX increased the BMAT volume fraction (Sham + Veh: 2.9 ± 2.7% vs. OVX + Veh: 8.1 ± 5.0%: P < 0.001), average adipocyte diameter (Sham + Veh: 19.3 ± 2.6 μm vs. OVX + Veh: 23.1 ± 3.4 μm: P = 0.001), and adipocyte number (Sham + Veh: 584 ± 337cells/μm3 vs. OVX + Veh: 824 ± 113cells/μm3: P = 0.03), while OVX decreased bone volume fraction (Sham + Veh: 15.5 ± 2.8% vs. OVX + Veh: 7.7 ± 1.9%; P < 0.001). GW9662 had no effect on BMAT, bone structural parameters, or bone turnover. In conclusion, ovariectomy increased BMAT and decreased bone volume in C3H/HeJ mice. The PPARγ antagonist GW9662 had no effect on BMAT or bone volume in C3H/HeJ mice, suggesting that BMAT accumulation is regulated independently of PPARγ in C3H/HeJ mice.
Collapse
Affiliation(s)
- Kerensa M Beekman
- Amsterdam Movement Sciences, Section of Endocrinology, Department of Internal Medicine, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Amsterdam Movement Sciences, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Annegreet G Veldhuis-Vlug
- Amsterdam Movement Sciences, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Albert van der Veen
- Department of Physics and Medical Technology, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Department Cardiology, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Martin den Heijer
- Amsterdam Movement Sciences, Section of Endocrinology, Department of Internal Medicine, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Mario Maas
- Amsterdam Movement Sciences, Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Greet Kerckhofs
- Biomechanics Laboratory, Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
- Department Materials Engineering, KU Leuven , Leuven , Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven , Leuven , Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Chemistry Department, KU Leuven , Leuven , Belgium
| | - Peter H Bisschop
- Amsterdam Movement Sciences, Department of Endocrinology and Metabolism, University of Amsterdam, Amsterdam University Medical Center , Amsterdam , The Netherlands
| | - Nathalie Bravenboer
- Amsterdam Movement Sciences, Research Laboratory Bone and Calcium Metabolism, Department of Clinical Chemistry, Vrije Universiteit, Amsterdam University Medical Center , Amsterdam , The Netherlands
- Department of Internal Medicine, Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
34
|
Illés P, Grycová A, Krasulová K, Dvořák Z. Effects of Flavored Nonalcoholic Beverages on Transcriptional Activities of Nuclear and Steroid Hormone Receptors: Proof of Concept for Novel Reporter Cell Line PAZ-PPARg. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12066-12078. [PMID: 30394742 DOI: 10.1021/acs.jafc.8b05158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed and characterized a novel human luciferase reporter cell line for the assessment of peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activity, PAZ-PPARg. The luciferase activity induced by PPARγ endogenous agonist 15d-PGJ2 and prostaglandin PGD2 reached mean values of (87.9 ± 14.0)-fold and (89.6 ± 19.7)-fold after 24 h of exposure to 40 μM 15d-PGJ2 and 70 μM PGD2, respectively. A concentration-dependent inhibition of 15d-PGJ2- and PGD2-induced luciferase activity was observed after the application of T0070907, a selective antagonist of PPARγ, which confirms the specificity of response to both agonists. The PAZ-PPARg cell line, along with the reporter cell lines for the assessment of transcriptional activities of thyroid receptor (TR), vitamin D3 receptor (VDR), androgen receptor (AR), and glucocorticoid receptor (GR), were used for the screening of 27 commonly marketed flavored nonalcoholic beverages for their possible disrupting effects. Our findings indicate that some of the examined beverages have the potential to modulate the transcriptional activities of PPARγ, VDR, and AR.
Collapse
Affiliation(s)
- Peter Illés
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Aneta Grycová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Kristýna Krasulová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| | - Zdeněk Dvořák
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacky University , Slechtitelu 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|
35
|
Dusserre C, Mollergues J, Lo Piparo E, Smieško M, Marin-Kuan M, Schilter B, Fussell K. Using bisphenol A and its analogs to address the feasibility and usefulness of the CALUX-PPARγ assay to identify chemicals with obesogenic potential. Toxicol In Vitro 2018; 53:208-221. [PMID: 30138673 DOI: 10.1016/j.tiv.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 12/25/2022]
Abstract
Environmental chemical exposures have been implicated in the obesity epidemic as potential mis-regulators of a variety of metabolic pathways. As agonism of the peroxisome proliferator-activated nuclear hormone receptor γ (PPARγ) is one of the suspected mechanisms involved, a PPARγ screening assay may have relevance for the biodetection of such effects of environmental chemicals. To test this hypothesis, we established the PPARγ2-CALUX® assay in-house and tested it against a number of known and suspected PPARγ modulators. Furthermore, we added a rat liver S9 metabolizing system to the protocol to introduce metabolic competence to the assay. Our results confirmed the responsiveness of the cell line to the known PPARγ agonists and antagonists: rosiglitazone, tributyltin, 15-deoxy-Δ12,14-prostaglandin J2, GW9662 and diclofenac. These data are in agreement with previous studies in various models. Seven bisphenol analogs tested induced little to no agonist activity, but all demonstrated antagonistic properties. These findings were contrary to both our assumptions and literature reports. Addition of the S9-metabolizing system to each of these tests did not alter any of the measured activities. Taken together, it seems probable that there are additional obesogenic effects of these chemicals which would not be detected by this assay.
Collapse
Affiliation(s)
- Camille Dusserre
- Université Paris Descartes, Faculté de Pharmacie de Paris, Paris 75006, France
| | - Julie Mollergues
- Nestlé Research, Route du Jorat 57, Lausanne 26 CH-1000, Switzerland
| | - Elena Lo Piparo
- Nestlé Research, Route du Jorat 57, Lausanne 26 CH-1000, Switzerland
| | - Martin Smieško
- Molecular Modeling Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | - Benoit Schilter
- Nestlé Research, Route du Jorat 57, Lausanne 26 CH-1000, Switzerland
| | - Karma Fussell
- Nestlé Research, Route du Jorat 57, Lausanne 26 CH-1000, Switzerland.
| |
Collapse
|
36
|
Stable cellular models of nuclear receptor PXR for high-throughput evaluation of small molecules. Toxicol In Vitro 2018; 52:222-234. [PMID: 29933105 DOI: 10.1016/j.tiv.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/28/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
Abstract
Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the ligand-modulated transcription factors belonging to nuclear receptor superfamily. Though PXR is now well-established as a 'xenosensor', regulating the central detoxification and drug metabolizing machinery, it has also emerged as a key player in several metabolic disorders. This makes PXR attractive to both, researchers and pharmaceutical industry since clinical success of small drug molecules can be pre-evaluated on PXR platform. At the early stages of drug discovery, cell-based assays are used for high-throughput screening of small molecules. The future success or failure of a drug can be predicted by this approach saving expensive resources and time. In view of this, we have developed human liver cell line-based, dual-level screening and validation protocol on PXR platform having application to assess small molecules. We have generated two different stably transfected cell lines, (i) a stable promoter-reporter cell line (HepXREM) expressing PXR and a commonly used CYP3A4 promoter-reporter i.e. XREM-luciferase; and (ii) two stable cell lines integrated with proximal PXR-promoter-reporter (Hepx-1096/+43 and Hepx-497/+43). Employing HepXREM, Hepx-1096/+43 and Hepx-497/+43 stable cell lines > 25 anti-cancer herbal drug ingredients were screened for examining their modulatory effects on a) PXR transcriptional activity and, b) PXR-promoter activity. In conclusion, the present report provides a convenient and economical, dual-level screening system to facilitate the identification of superior therapeutic small molecules.
Collapse
|
37
|
Cellular and Biophysical Pipeline for the Screening of Peroxisome Proliferator-Activated Receptor Beta/Delta Agonists: Avoiding False Positives. PPAR Res 2018; 2018:3681590. [PMID: 29849537 PMCID: PMC5924986 DOI: 10.1155/2018/3681590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor beta/delta (PPARß/δ) is considered a therapeutic target for metabolic disorders, cancer, and cardiovascular diseases. Here, we developed one pipeline for the screening of PPARß/δ agonists, which reduces the cost, time, and false-positive hits. The first step is an optimized 3-day long cellular transactivation assay based on reporter-gene technology, which is supported by automated liquid-handlers. This primary screening is followed by a confirmatory transactivation assay and by two biophysical validation methods (thermal shift assay (TSA) and (ANS) fluorescence quenching), which allow the calculation of the affinity constant, giving more information about the selected hits. All of the assays were validated using well-known commercial agonists providing trustworthy data. Furthermore, to validate and test this pipeline, we screened a natural extract library (560 extracts), and we found one plant extract that might be interesting for PPARß/δ modulation. In conclusion, our results suggested that we developed a cheaper and more robust pipeline that goes beyond the single activation screening, as it also evaluates PPARß/δ tertiary structure stabilization and the ligand affinity constant, selecting only molecules that directly bind to the receptor. Moreover, this approach might improve the effectiveness of the screening for agonists that target PPARß/δ for drug development.
Collapse
|
38
|
Kondo D, Saegusa H, Tanabe T. Involvement of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin/peroxisome proliferator-activated receptor γ pathway for induction and maintenance of neuropathic pain. Biochem Biophys Res Commun 2018; 499:253-259. [PMID: 29567475 DOI: 10.1016/j.bbrc.2018.03.139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/19/2018] [Indexed: 01/02/2023]
Abstract
Peripheral nerve injury induces neuropathic pain, which is characterized by the tactile allodynia and thermal hyperalgesia. N-type voltage-dependent Ca2+ channel (VDCC) plays pivotal roles in the development of neuropathic pain, since mice lacking Cav2.2, the pore-forming subunit of N-type VDCC, show greatly reduced symptoms of both tactile allodynia and thermal hyperalgesia. Our study on gene expression profiles of the wild-type and N-type VDCC knockout (KO) spinal cord and several pain-related brain regions after spinal nerve ligation (SNL) injury revealed altered expression of genes encoding catalytic subunits of phosphatidylinositol-3 kinase (PI3K). PI3K/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling is considered to be very important for cancer development and drugs targeting the molecules in this pathway have been tested in oncology trials. In the present study, we have tested whether the changes in expression of molecules in this pathway in mice having spinal nerve injury are causally related to neuropathic pain. Our results suggest that spinal nerve injury induces activation of N-type VDCC and the following Ca2+ entry through this channel may change the expression of genes encoding PI3K catalytic subunits (p110α and p110γ), Akt, retinoid X receptor α (RXRα) and RXRγ. Furthermore, the blockers of the molecules in this pathway are found to be effective in reducing neuropathic pain both at the spinal and at the supraspinal levels. Thus, the activation of PI3K/Akt/mTOR/peroxisome proliferator activated receptor gamma (PPARγ) pathway would be a hallmark of the induction and maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Daisuke Kondo
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Hironao Saegusa
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
39
|
Hussein HAM, Akula SM. miRNA-36 inhibits KSHV, EBV, HSV-2 infection of cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). Sci Rep 2017; 7:17972. [PMID: 29269892 PMCID: PMC5740118 DOI: 10.1038/s41598-017-18225-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with all forms of Kaposi's sarcoma worldwide. Little is currently known about the role of microRNAs (miRNAs) in KSHV entry. We recently demonstrated that KSHV induces a plethora of host cell miRNAs during the early stages of infection. In this study, we show the ability of host cell novel miR-36 to specifically inhibit KSHV-induced expression of interferon induced transmembrane protein 1 (IFITM1) to limit virus infection of cells. Transfecting cells with miR-36 mimic specifically lowered IFITM1 expression and thereby significantly dampening KSHV infection. In contrast, inhibition of miR-36 using miR-36 inhibitor had the direct opposite effect on KSHV infection of cells, allowing enhanced viral infection of cells. The effect of miR-36 on KSHV infection of cells was at a post-binding stage of virus entry. The highlight of this work was in deciphering a common theme in the ability of miR-36 to regulate infection of closely related DNA viruses: KSHV, Epstein-Barr virus (EBV), and herpes simplexvirus-2 (HSV-2). Taken together, we report for the first time the ability of host cell miRNA to regulate internalization of KSHV, EBV, and HSV-2 in hematopoietic and endothelial cells.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
40
|
Clough BH, McNeill EP, Palmer D, Krause U, Bartosh TJ, Chaput CD, Gregory CA. An allograft generated from adult stem cells and their secreted products efficiently fuses vertebrae in immunocompromised athymic rats and inhibits local immune responses. Spine J 2017; 17:418-430. [PMID: 27765715 PMCID: PMC5309156 DOI: 10.1016/j.spinee.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 09/21/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND CONTEXT Spine pain and the disability associated with it are epidemic in the United States. According to the National Center for Health Statistics, more than 650,000 spinal fusion surgeries are performed annually in the United States, and yet there is a failure rate of 15%-40% when standard methods employing current commercial bone substitutes are used. Autologous bone graft is the gold standard in terms of fusion success, but the morbidity associated with the procedure and the limitations in the availability of sufficient material have limited its use in the majority of cases. A freely available and immunologically compatible bone mimetic with the properties of live tissue is likely to substantially improve the outcome of spine fusion procedures without the disadvantages of autologous bone graft. PURPOSE This study aimed to compare a live human bone tissue analog with autologous bone grafting in an immunocompromised rat model of posterolateral fusion. DESIGN/SETTING This is an in vitro and in vivo preclinical study of a novel human stem cell-derived construct for efficacy in posterolateral lumbar spine fusion. METHODS Osteogenically enhanced human mesenchymal stem cells (OEhMSCs) were generated by exposure to conditions that activate the early stages of osteogenesis. Immunologic characteristics of OEhMSCs were evaluated in vitro. The secreted extracellular matrix from OEhMSCs was deposited on a clinical-grade gelatin sponge, resulting in bioconditioned gelatin sponge (BGS). Bioconditioned gelatin sponge was used alone, with live OEhMSCs (BGS+OEhMSCs), or with whole human bone marrow (BGS+hBM). Efficacy for spine fusion was determined by an institutionally approved animal model using 53 nude rats. RESULTS Bioconditioned gelatin sponge with live OEhMSCs did not cause cytotoxicity when incubated with immunologically mismatched lymphocytes, and OEhMSCs inhibited lymphocyte expansion in mixed lymphocyte assays. Bioconditioned gelatin sponge with live OEhMSC and BGS+hBM constructs induced profound bone growth at fusion sites in vivo, with a comparable rate of fusion with syngeneic bone graft (negative [0 of 10], BGS alone [0 of 10], bone graft [7 of 10], BGS+OEhMSC [10 of 15], and BGS+hBM [8 of 8]). CONCLUSIONS Collectively, these studies demonstrate that BGS+OEhMSC constructs possess low immunogenicity and drive vertebral fusion with efficiency matching syngeneic bone graft in rodents. We also demonstrate that BGS serves as a promising scaffold for spine fusion when combined with hBM.
Collapse
Affiliation(s)
- Bret H. Clough
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Eoin P. McNeill
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Daniel Palmer
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Ulf Krause
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st St, Temple, TX 76508, USA,Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, 11 Domagkstr, Muenster 48149, Germany
| | - Thomas J. Bartosh
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA
| | - Christopher D. Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st St, Temple, TX 76508, USA
| | - Carl A. Gregory
- Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA,Corresponding author. Institute for Regenerative Medicine, Texas A&M Health Science Center, 206 Olsen Blvd, Room 228 MS1114, College Station, TX 77845, USA. Tel.: (979) 436-9643; fax: (979) 436-9679. (C.A. Gregory)
| |
Collapse
|
41
|
Barquissau V, Beuzelin D, Pisani DF, Beranger GE, Mairal A, Montagner A, Roussel B, Tavernier G, Marques MA, Moro C, Guillou H, Amri EZ, Langin D. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways. Mol Metab 2016; 5:352-365. [PMID: 27110487 PMCID: PMC4837301 DOI: 10.1016/j.molmet.2016.03.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/13/2016] [Indexed: 12/29/2022] Open
Abstract
Objective Fat depots with thermogenic activity have been identified in humans. In mice, the appearance of thermogenic adipocytes within white adipose depots (so-called brown-in-white i.e., brite or beige adipocytes) protects from obesity and insulin resistance. Brite adipocytes may originate from direct conversion of white adipocytes. The purpose of this work was to characterize the metabolism of human brite adipocytes. Methods Human multipotent adipose-derived stem cells were differentiated into white adipocytes and then treated with peroxisome proliferator-activated receptor (PPAR)γ or PPARα agonists between day 14 and day 18. Gene expression profiling was determined using DNA microarrays and RT-qPCR. Variations of mRNA levels were confirmed in differentiated human preadipocytes from primary cultures. Fatty acid and glucose metabolism was investigated using radiolabelled tracers, Western blot analyses and assessment of oxygen consumption. Pyruvate dehydrogenase kinase 4 (PDK4) knockdown was achieved using siRNA. In vivo, wild type and PPARα-null mice were treated with a β3-adrenergic receptor agonist (CL316,243) to induce appearance of brite adipocytes in white fat depot. Determination of mRNA and protein levels was performed on inguinal white adipose tissue. Results PPAR agonists promote a conversion of white adipocytes into cells displaying a brite molecular pattern. This conversion is associated with transcriptional changes leading to major metabolic adaptations. Fatty acid anabolism i.e., fatty acid esterification into triglycerides, and catabolism i.e., lipolysis and fatty acid oxidation, are increased. Glucose utilization is redirected from oxidation towards glycerol-3-phophate production for triglyceride synthesis. This metabolic shift is dependent on the activation of PDK4 through inactivation of the pyruvate dehydrogenase complex. In vivo, PDK4 expression is markedly induced in wild-type mice in response to CL316,243, while this increase is blunted in PPARα-null mice displaying an impaired britening response. Conclusions Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria. PPARγ and α agonists induce conversion of human white into brite adipocytes. Fatty acid anabolism and catabolism are activated in human brite adipocytes. Glucose use in brite adipocytes is redirected from oxidation to glyceroneogenesis. PDK4 induction is responsible for the shift from glucose to fatty acid oxidation.
Collapse
Affiliation(s)
- V Barquissau
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - D Beuzelin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - D F Pisani
- University of Nice Sophia Antipolis, Nice, France; CNRS, iBV, UMR 7277, Nice, France; INSERM, iBV, U 1091, Nice, France
| | - G E Beranger
- University of Nice Sophia Antipolis, Nice, France; CNRS, iBV, UMR 7277, Nice, France; INSERM, iBV, U 1091, Nice, France
| | - A Mairal
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - A Montagner
- University of Toulouse, Paul Sabatier University, France; INRA, UMR 1331, TOXALIM, Toulouse, France
| | - B Roussel
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - G Tavernier
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - M-A Marques
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - C Moro
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - H Guillou
- University of Toulouse, Paul Sabatier University, France; INRA, UMR 1331, TOXALIM, Toulouse, France
| | - E-Z Amri
- University of Nice Sophia Antipolis, Nice, France; CNRS, iBV, UMR 7277, Nice, France; INSERM, iBV, U 1091, Nice, France
| | - D Langin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
42
|
Pinto CL, Kalasekar SM, McCollum CW, Riu A, Jonsson P, Lopez J, Swindell EC, Bouhlatouf A, Balaguer P, Bondesson M, Gustafsson JÅ. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development. Mol Cell Endocrinol 2016; 419:29-43. [PMID: 26427652 PMCID: PMC4684448 DOI: 10.1016/j.mce.2015.09.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/05/2015] [Accepted: 09/25/2015] [Indexed: 10/23/2022]
Abstract
The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development.
Collapse
Affiliation(s)
- Caroline Lucia Pinto
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Sharanya Maanasi Kalasekar
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Catherine W McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Anne Riu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Philip Jonsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Justin Lopez
- Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA
| | - Eric C Swindell
- Department of Pediatrics, University of Texas Medical School, Houston, TX 77030, USA
| | - Abdel Bouhlatouf
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier 1, 34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier 1, 34298 Montpellier, France
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Huddinge, Sweden
| |
Collapse
|
43
|
Mattsson A, Kärrman A, Pinto R, Brunström B. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA) and Agonists to Peroxisome Proliferator-Activated Receptors. PLoS One 2015; 10:e0143780. [PMID: 26624992 PMCID: PMC4666608 DOI: 10.1371/journal.pone.0143780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023] Open
Abstract
Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA), and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα) and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic profile resulting from chemical exposure during embryonic development.
Collapse
Affiliation(s)
- Anna Mattsson
- Department of Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Anna Kärrman
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Rui Pinto
- Computational Life Science Cluster (CLiC), Chemistry department (KBC) - Umeå University, Umeå, Sweden
- Bioinformatics Infrastructure for Life Sciences, Sweden
| | - Björn Brunström
- Department of Environmental Toxicology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Grimaldi M, Boulahtouf A, Delfosse V, Thouennon E, Bourguet W, Balaguer P. Reporter cell lines to evaluate the selectivity of chemicals for human and zebrafish estrogen and peroxysome proliferator activated γ receptors. Front Neurosci 2015; 9:212. [PMID: 26106289 PMCID: PMC4460427 DOI: 10.3389/fnins.2015.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/26/2015] [Indexed: 11/13/2022] Open
Abstract
Zebrafish is increasingly used as an animal model to study the effects of environmental nuclear receptors (NRs) ligands. As most of these compounds have only been tested on human NRs, it is necessary to measure their effects on zebrafish NRs. Estrogen receptors (ER) α and β and peroxysome proliferator activated receptor (PPAR) γ are main targets of environmental disrupting compounds (EDCs). In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα, zfERβ1, and zfERβ2. Only one isoform of PPARγ is expressed in both humans and zebrafish. In this review, we described reporter cell lines that we established to study the interaction of EDCs with human and zebrafish ERs and PPARγ. Using these cell lines, we observed that zfERs are thermo-sensitive while zfPPARγ is not. We also showed significant differences in the ability of environmental and synthetic ligands to modulate activation of zfERs and zfPPARγ in comparison to hERs and hPPARγ. Some environmental estrogens (bisphenol A, mycoestrogens) which are hER panagonists displayed greater potency for zfERα as compared to zfERβs. hERβ selective agonists (8βVE2, DPN, phytoestrogens) also displayed zfERα selectivity. Among hERα selective synthetic agonists, 16α-LE2 was the most zfERα selective compound. Almost all zfPPARγ environmental ligands (halogenated bisphenol A derivatives, phthalates, perfluorinated compounds) displayed similar affinity for human and zebrafish PPARγ while pharmaceutical hPPARγ agonists like thiazolidones are not recognized by zfPPARγ. Altogether, our studies show that all hERs and hPPARγ ligands do not control in a similar manner the transcriptional activity of zfERs and zfPPARγ and point out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.
Collapse
Affiliation(s)
- Marina Grimaldi
- Institut de Recherche en Cancérologie de MontpellierMontpellier, France
- Institut National de la Santé et de la Recherche Médicale U1194Montpellier, France
- Université MontpellierMontpellier, France
- Institut Reìgional du Cancer de MontpellierMontpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de MontpellierMontpellier, France
- Institut National de la Santé et de la Recherche Médicale U1194Montpellier, France
- Université MontpellierMontpellier, France
- Institut Reìgional du Cancer de MontpellierMontpellier, France
| | - Vanessa Delfosse
- Institut National de la Santé et de la Recherche Médicale U1054Montpellier, France
- Centre National de la Recherche Scientifique UMR5048, Centre de Biochimie Structurale, Université MontpellierMontpellier, France
| | - Erwan Thouennon
- Institut de Recherche en Cancérologie de MontpellierMontpellier, France
- Institut National de la Santé et de la Recherche Médicale U1194Montpellier, France
- Université MontpellierMontpellier, France
- Institut Reìgional du Cancer de MontpellierMontpellier, France
| | - William Bourguet
- Institut National de la Santé et de la Recherche Médicale U1054Montpellier, France
- Centre National de la Recherche Scientifique UMR5048, Centre de Biochimie Structurale, Université MontpellierMontpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de MontpellierMontpellier, France
- Institut National de la Santé et de la Recherche Médicale U1194Montpellier, France
- Université MontpellierMontpellier, France
- Institut Reìgional du Cancer de MontpellierMontpellier, France
| |
Collapse
|
45
|
Giordano Attianese GMP, Desvergne B. Integrative and systemic approaches for evaluating PPARβ/δ (PPARD) function. NUCLEAR RECEPTOR SIGNALING 2015; 13:e001. [PMID: 25945080 PMCID: PMC4419664 DOI: 10.1621/nrs.13001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of genes involved in cellular differentiation, development, metabolism and also tumorigenesis. Three PPAR isotypes (α, β/δ and γ) have been identified, among which PPARβ/δ is the most difficult to functionally examine due to its tissue-specific diversity in cell fate determination, energy metabolism and housekeeping activities. PPARβ/δ acts both in a ligand-dependent and -independent manner. The specific type of regulation, activation or repression, is determined by many factors, among which the type of ligand, the presence/absence of PPARβ/δ-interacting corepressor or coactivator complexes and PPARβ/δ protein post-translational modifications play major roles. Recently, new global approaches to the study of nuclear receptors have made it possible to evaluate their molecular activity in a more systemic fashion, rather than deeply digging into a single pathway/function. This systemic approach is ideally suited for studying PPARβ/δ, due to its ubiquitous expression in various organs and its overlapping and tissue-specific transcriptomic signatures. The aim of the present review is to present in detail the diversity of PPARβ/δ function, focusing on the different information gained at the systemic level, and describing the global and unbiased approaches that combine a systems view with molecular understanding.
Collapse
|
46
|
Clough BH, McCarley MR, Krause U, Zeitouni S, Froese JJ, McNeill EP, Chaput CD, Sampson HW, Gregory CA. Bone regeneration with osteogenically enhanced mesenchymal stem cells and their extracellular matrix proteins. J Bone Miner Res 2015; 30:83-94. [PMID: 25130615 PMCID: PMC4280327 DOI: 10.1002/jbmr.2320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/02/2014] [Accepted: 07/16/2014] [Indexed: 11/09/2022]
Abstract
Although bone has remarkable regenerative capacity, about 10% of long bone fractures and 25% to 40% of vertebral fusion procedures fail to heal. In such instances, a scaffold is employed to bridge the lesion and accommodate osteoprogenitors. Although synthetic bone scaffolds mimic some of the characteristics of bone matrix, their effectiveness can vary because of biological incompatibility. Herein, we demonstrate that a composite prepared with osteogenically enhanced mesenchymal stem cells (OEhMSCs) and their extracellular matrix (ECM) has an unprecedented capacity for the repair of critical-sized defects of murine femora. Furthermore, OEhMSCs do not cause lymphocyte activation, and ECM/OEhMSC composites retain their in vivo efficacy after cryopreservation. Finally, we show that attachment to the ECM by OEhMSCs stimulates the production of osteogenic and angiogenic factors. These data demonstrate that composites of OEhMSCs and their ECM could be utilized in the place of autologous bone graft for complex orthopedic reconstructions.
Collapse
Affiliation(s)
- Bret H. Clough
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Matthew R. McCarley
- Department of Orthopedic Surgery, Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st Street, Temple, TX 76508
- University of Texas Medical Branch, Department of Orthopedic Surgery, 301 University Blvd. Galveston, TX 77555
| | - Ulf Krause
- Department of Orthopedic Surgery, Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st Street, Temple, TX 76508
| | - Suzanne Zeitouni
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
- University of Texas Medical Branch, Department of Orthopedic Surgery, 301 University Blvd. Galveston, TX 77555
| | - Jeremiah J. Froese
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Eoin P. McNeill
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| | - Christopher D. Chaput
- Department of Orthopedic Surgery, Scott and White Hospital, Texas A&M Health Science Center, 2401 S. 31st Street, Temple, TX 76508
| | - H. Wayne Sampson
- Department of Medical Physiology, Texas A&M Health Science Center, 702 Southwest H.K. Dodgen Loop, Temple, TX 76504
| | - Carl A. Gregory
- Institute for Regenerative Medicine at Scott and White Hospital, Texas A&M Health Science Center, Module C, 5701 Airport Road, Temple, TX 76502
| |
Collapse
|
47
|
Grimaldi M, Boulahtouf A, Delfosse V, Thouennon E, Bourguet W, Balaguer P. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors. Front Endocrinol (Lausanne) 2015; 6:62. [PMID: 26029163 PMCID: PMC4426785 DOI: 10.3389/fendo.2015.00062] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics.
Collapse
Affiliation(s)
- Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- U1194, INSERM, Montpellier, France
- Université Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- U1194, INSERM, Montpellier, France
- Université Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Vanessa Delfosse
- Université Montpellier, Montpellier, France
- U1054, INSERM, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
| | - Erwan Thouennon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- U1194, INSERM, Montpellier, France
- Université Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - William Bourguet
- Université Montpellier, Montpellier, France
- U1054, INSERM, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- U1194, INSERM, Montpellier, France
- Université Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
- *Correspondence: Patrick Balaguer, U1194, IRCM, INSERM, ICM, Parc Euromédecine, 208 rue des Apothicaires, Montpellier 34090, France,
| |
Collapse
|
48
|
Bosier B, Muccioli GG, Lambert DM. The FAAH inhibitor URB597 efficiently reduces tyrosine hydroxylase expression through CB₁- and FAAH-independent mechanisms. Br J Pharmacol 2014; 169:794-807. [PMID: 22970888 DOI: 10.1111/j.1476-5381.2012.02208.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 08/23/2012] [Accepted: 09/03/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Anandamide and 2-arachidonoylglycerol are neuromodulatory lipids interacting with cannabinoid receptors, whose availability is regulated by the balance between 'on demand' generation and enzymatic degradation [by fatty acid amide hydrolase (FAAH)/monoacylglycerol lipase]. Given the reported effects of anandamide on dopamine transmission, we investigated the influence of endocannabinoids and URB597, a well-known FAAH inhibitor, on the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis. EXPERIMENTAL APPROACH We investigated TH expression in N1E115 neuroblastoma using a reporter gene assay, as well as mRNA and protein quantifications. FAAH inhibition was confirmed by measuring radiolabelled substrate hydrolysis and endogenous endocannabinoids. KEY RESULTS Anandamide decreased TH promoter activity in N1E115 cells through CB₁ receptor activation. Unexpectedly, URB597 reduced TH expression (pEC₅₀ = 8.7 ± 0.2) through FAAH-independent mechanisms. Indeed, four structurally unrelated inhibitors of FAAH had no influence on TH expression, although all the inhibitors increased endocannabinoid levels. At variance with the endocannabinoid responses, the use of selective antagonists indicated that the URB597-mediated decrease in TH expression was not directed by the CB₁ receptor, but rather by abnormal-cannabidiol-sensitive receptors and PPARs. Further supporting the physiological relevance of these in vitro data, URB597 administration resulted in reduced TH mRNA levels in mice brain. CONCLUSIONS While confirming the implication of endocannabinoids on the modulation of TH, we provide strong evidence for additional physiologically relevant off-target effects of URB597. In light of the numerous preclinical studies involving URB597, particularly in anxiety and depression, the existence of non-CB₁ and non-FAAH mediated influences of URB597 on key enzymes of the catecholaminergic transmission system should be taken into account when interpreting the data.
Collapse
Affiliation(s)
- Barbara Bosier
- Medicinal Chemistry Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Bruxelles, Belgium
| | | | | |
Collapse
|
49
|
Mantel A, Carpenter-Mendini A, VanBuskirk J, Pentland AP. Aldo-keto reductase 1C3 is overexpressed in skin squamous cell carcinoma (SCC) and affects SCC growth via prostaglandin metabolism. Exp Dermatol 2014; 23:573-8. [PMID: 24917395 DOI: 10.1111/exd.12468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2014] [Indexed: 11/30/2022]
Abstract
Aldo-keto reductase 1C3 (AKR1C3) is an enzyme involved in metabolizing prostaglandins (PGs) and sex hormones. It metabolizes PGD2 to 9α11β-PGF2 , diverting the spontaneous conversion of PGD2 to the PPARγ agonist, 15-Deoxy-Delta-12, 14-prostaglandin J2 (15d-PGJ2 ). AKR1C3 is overexpressed in various malignancies, suggesting a tumor promoting function. This work investigates AKR1C3 expression in human non-melanoma skin cancers, revealing overexpression in squamous cell carcinoma (SCC). Effects of AKR1C3 overexpression were then evaluated using three SCC cell lines. AKR1C3 was detected in all SCC cell lines and its expression was upregulated in response to its substrate, PGD2 . Although attenuating AKR1C3 expression in SCC cells by siRNA did not affect growth, treatment with PGD2 and its dehydration metabolite, 15d-PGJ2 , decreased SCC proliferation in a PPARγ-dependent manner. In addition, treatment with the PPARγ agonist pioglitazone profoundly inhibited SCC proliferation. Finally, we generated an SCC cell line that stably overexpressed AKR1C3 (SCC-AKR1C3). SCC-AKR1C3 metabolized PGD2 to 9α11β-PGF2 12-fold faster than the parent cell line and was protected from the antiproliferative effect mediated by PGD2 . This work suggests that PGD2 and its metabolite 15d-PGJ2 attenuate SCC proliferation in a PPARγ-dependent manner, therefore activation of PPARγ by agonists such as pioglitazone may benefit those at high risk of SCC.
Collapse
Affiliation(s)
- Alon Mantel
- Department of Dermatology, University of Rochester, Rochester, NY, USA
| | | | | | | |
Collapse
|
50
|
Riu A, McCollum CW, Pinto CL, Grimaldi M, Hillenweck A, Perdu E, Zalko D, Bernard L, Laudet V, Balaguer P, Bondesson M, Gustafsson JA. Halogenated bisphenol-A analogs act as obesogens in zebrafish larvae (Danio rerio). Toxicol Sci 2014; 139:48-58. [PMID: 24591153 PMCID: PMC4038790 DOI: 10.1093/toxsci/kfu036] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/20/2014] [Indexed: 12/22/2022] Open
Abstract
Obesity has increased dramatically over the past decades, reaching epidemic proportions. The reasons are likely multifactorial. One of the suggested causes is the accelerated exposure to obesity-inducing chemicals (obesogens). However, out of the tens of thousands of industrial chemicals humans are exposed to, very few have been tested for their obesogenic potential, mostly due to the limited availability of appropriate in vivo screening models. In this study, we investigated whether two commonly used flame retardants, the halogenated bisphenol-A (BPA) analogs tetrabromobisphenol-A (TBBPA) and tetrachlorobisphenol-A (TCBPA), could act as obesogens using zebrafish larvae as an in vivo animal model. The effect of embryonic exposure to these chemicals on lipid accumulation was analyzed by Oil Red-O staining, and correlated to their capacity to activate human and zebrafish peroxisome proliferator-activated receptor gamma (PPARγ) in zebrafish and in reporter cell lines. Then, the metabolic fate of TBBPA and TCBPA in zebrafish larvae was analyzed by high-performance liquid chromatography (HPLC) . TBBPA and TCBPA were readily taken up by the fish embryo and both compounds were biotransformed to sulfate-conjugated metabolites. Both halogenated-BPAs, as well as TBBPA-sulfate induced lipid accumulation in zebrafish larvae. TBBPA and TCBPA also induced late-onset weight gain in juvenile zebrafish. These effects correlated to their capacity to act as zebrafish PPARγ agonists. Screening of chemicals for inherent obesogenic capacities through the zebrafish lipid accumulation model could facilitate prioritizing chemicals for further investigations in rodents, and ultimately, help protect humans from exposure to environmental obesogens.
Collapse
Affiliation(s)
- Anne Riu
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Catherine W. McCollum
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Caroline L. Pinto
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier 1, Montpellier, France
| | - Anne Hillenweck
- INRA, UMR 1331, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR 1331, Toulouse, France
| | - Elisabeth Perdu
- INRA, UMR 1331, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR 1331, Toulouse, France
| | - Daniel Zalko
- INRA, UMR 1331, Toxalim, Research Center in Food Toxicology, Toulouse, France
- Université de Toulouse, INPT, UPS, UMR 1331, Toulouse, France
| | - Laure Bernard
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, UMR 5242 CNRS, Université de Lyon, Lyon, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, UMR 5242 CNRS, Université de Lyon, Lyon, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé et de la Recherche Médicale U896, Université Montpellier 1, Montpellier, France
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|