1
|
Li M, Yuan W, Duan S, Li Y, Zhang S, Zhao Y, Xiao S, Zhong K. Rare earth element erbium induces immune toxicity through the ROS/NF-κB pathway in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110129. [PMID: 39828015 DOI: 10.1016/j.fsi.2025.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
The large-scale mining and utilization of rare earth elements have significantly increased their concentration in the environment, especially in regions surrounding mining areas. These environmentally-enriched rare earth elements accumulate in agricultural products and organisms through soil and water, potentially impacting in human health through the food chain. Erbium (Er), a rare earth element of the lanthanide series (Group IIIB), plays a crucial role in various modern technological applications. It is primarily utilized in ceramics, glass coloring, optical fibers, laser technology, and the nuclear industry, among others. However, a paucity of information on the health effects and ecotoxicity of erbium is currently available. In this study, we used the zebrafish as experimental animal to investigate the potential impact of the rare earth element erbium on the immune system. We exposed fertilized zebrafish embryos to different concentrations of erbium (0, 4, 8 and 16 mg/L) from 6 hours post-fertilization (hpf) until 72 hpf. We found that with increasing concentrations of erbium exposure, there was an increasing and dispersing trend in the number of zebrafish neutrophils; a decreasing trend in the number of macrophages. Exposure to erbium was demonstrated to impair the phagocytic capability of macrophages, reduce the recruitment of neutrophils to the wound site, and lower the resistance of zebrafish to Escherichia coli infection. Erbium exposure led to macrophage apoptosis and upregulation of oxidative stress in the zebrafish. The individual application of the reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine, the IKBKB inhibitor resveratrol and the NF-κB inhibitor andrographolide were demonstrated to alleviate erbium-induced immune toxicity, as confirmed by assays including acridine orange staining, neutrophils enumeration and recruitment, and real-time quantitative PCR. Therefore, the rare earth element erbium induced immune toxicity in zebrafish through the ROS/NF-κB pathway. The findings of this study provide information for assessing the impact of rare earth elements on human health and ecosystems.
Collapse
Affiliation(s)
- Mijia Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Wei Yuan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Shiyi Duan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yang Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China; College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sijie Zhang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Yan Zhao
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China
| | - Shimei Xiao
- National Center of Quality Testing and Inspection for Tungsten and Rare Earth Products, Ganzhou, 341000, China; Jiangxi Institute of Tungsten and Rare Earth, Ganzhou, 341000, China
| | - Keyuan Zhong
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Denmark D, Ruhoy I, Wittmann B, Ashki H, Koran LM. Altered Plasma Mitochondrial Metabolites in Persistently Symptomatic Individuals after a GBCA-Assisted MRI. TOXICS 2022; 10:56. [PMID: 35202243 PMCID: PMC8879776 DOI: 10.3390/toxics10020056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
Despite the impressive safety of gadolinium (Gd)-based contrast agents (GBCAs), a small number of patients report the onset of new, severe, ongoing symptoms after even a single exposure-a syndrome termed Gadolinium Deposition Disease (GDD). Mitochondrial dysfunction and oxidative stress have been repeatedly implicated by animal and in vitro studies as mechanisms of Gd/GBCA-related toxicity, and as pathogenic in other diseases with similarities in presentation. Here, we aimed to molecularly characterize and explore potential metabolic associations with GDD symptoms. Detailed clinical phenotypes were systematically obtained for a small cohort of individuals (n = 15) with persistent symptoms attributed to a GBCA-enhanced MRI and consistent with provisional diagnostic criteria for GDD. Global untargeted mass spectroscopy-based metabolomics analyses were performed on plasma samples and examined for relevance with both single marker and pathways approaches. In addition to GDD criteria, frequently reported symptoms resembled those of patients with known mitochondrial-related diseases. Plasma differences compared to a healthy, asymptomatic reference cohort were suggested for 45 of 813 biochemicals. A notable proportion of these are associated with mitochondrial function and related disorders, including nucleotide and energy superpathways, which were over-represented. Although early evidence, coincident clinical and biochemical indications of potential mitochondrial involvement in GDD are remarkable in light of preclinical models showing adverse Gd/GBCA effects on multiple aspects of mitochondrial function. Further research on the potential contributory role of these markers and pathways in persistent symptoms attributed to GBCA exposure is recommended.
Collapse
Affiliation(s)
- DeAunne Denmark
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3710 SW US Veterans Hospital Road, Mail Code R&D40, Portland, OR 97239, USA;
| | - Ilene Ruhoy
- Mount Sinai South Nassau Chiari-EDS Center, 1420 Broadway, Hewlett, NY 11557, USA;
| | - Bryan Wittmann
- Owlstone Medical, 600 Park Offices Drive, Suite 140, Research Triangle Park, NC 27709, USA;
| | - Haleh Ashki
- Prime Genomics, Inc., 319 Bernardo Avenue, Mountain View, CA 94041, USA;
| | - Lorrin M. Koran
- Department of Psychiatry and Behavioral Sciences, OCD Clinic, Stanford University Medical Center, 401 Quarry Road, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Wang S, Yang X, Liu F, Wang X, Zhang X, He K, Wang H. Comprehensive Metabolomic Analysis Reveals Dynamic Metabolic Reprogramming in Hep3B Cells with Aflatoxin B1 Exposure. Toxins (Basel) 2021; 13:toxins13060384. [PMID: 34072178 PMCID: PMC8229485 DOI: 10.3390/toxins13060384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and development of hepatocellular carcinoma (HCC), but their combined impacts and the potential metabolic mechanisms remain poorly characterized. Here, a comprehensive non-targeted metabolomic study was performed following AFB1 exposed to Hep3B cells at two different doses: 16 μM and 32 μM. The metabolites were identified and quantified by an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS)-based strategy. A total of 2679 metabolites were identified, and 392 differential metabolites were quantified among three groups. Pathway analysis indicated that dynamic metabolic reprogramming was induced by AFB1 and various pathways changed significantly, including purine and pyrimidine metabolism, hexosamine pathway and sialylation, fatty acid synthesis and oxidation, glycerophospholipid metabolism, tricarboxylic acid (TCA) cycle, glycolysis, and amino acid metabolism. To the best of our knowledge, the alteration of purine and pyrimidine metabolism and decrease of hexosamine pathways and sialylation with AFB1 exposure have not been reported. The results indicated that our metabolomic strategy is powerful to investigate the metabolome change of any stimulates due to its high sensitivity, high resolution, rapid separation, and good metabolome coverage. Besides, these findings provide an overview of the metabolic mechanisms of the AFB1 combined with HBV and new insight into the toxicological mechanism of AFB1. Thus, targeting these metabolic pathways may be an approach to prevent carcinogen-induced cancer, and these findings may provide potential drug targets for therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun He
- Correspondence: (K.H.); (H.W.); Tel.: +86-10-6693-0306 (K.H.); +86-10-6693-0342 (H.W.); Fax: +86-10-6818-6281 (K.H. & H.W.)
| | - Hongxia Wang
- Correspondence: (K.H.); (H.W.); Tel.: +86-10-6693-0306 (K.H.); +86-10-6693-0342 (H.W.); Fax: +86-10-6818-6281 (K.H. & H.W.)
| |
Collapse
|
4
|
Yan X, Zhao M, Zou W, Tian P, Sun L, Wang M, Zhao C. Investigation of the incompatibility of Knoxiae Radix and Glycyrrhizae Radix et Rhizoma in rats by 1 H NMR and MS-based untargeted metabolomic analysis. Biomed Chromatogr 2021; 35:e5120. [PMID: 33749888 DOI: 10.1002/bmc.5120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
Knoxiae Radix (HDJ, usually used after being processed into CHDJ) is a traditional Chinese herbal medicine that has been recorded in the Chinese Pharmacopoeia for many years. It is said that Glycyrrhizae Radix et Rhizoma (GC) is incompatible with HDJ, but this is unproven. In this work, nontargeted metabolomics experiments were performed on rats to evaluate the effect of the combination of the two herbals. For this, we conducted a 28-day administration in rats. The plasma, urine and kidney tissues were collected for a metabolomics study based on 1 H NMR and LC-MS. The OPLS-DA method was used to screen biomarkers. In addition, the KEGG Pathway database and MetaboAnalyst were used to find metabolic pathways. Twenty-two significant metabolites were identified. These metabolites were related to many metabolic pathways such as amino acid metabolism, synthesis and degradation of ketone bodies. Significant changes in urine creatinine levels revealed that CHDJ is nephrotoxic. When the GC-CHDJ mass ratio was 1, the toxicity was strengthened; when the GC-CHDJ' mass ratio was 3, the toxicity was alleviated. This is the first time that a metabolomics approach has been used to investigate the incompatibility of GC-CHDJ.
Collapse
Affiliation(s)
- Xu Yan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Wanru Zou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Pengyao Tian
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Xue BC, Zhang JX, Wang ZS, Wang LZ, Peng QH, Da LC, Bao SK, Kong XY, Xue B. Metabolism response of grazing yak to dietary concentrate supplementation in warm season. Animal 2021; 15:100175. [PMID: 33610519 DOI: 10.1016/j.animal.2021.100175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Supplementary feeding has a significant effect on the growth performance of grazing yaks. However, as far as is known, little information is available concerning how energy or protein feed supplementation affects the serum metabolome of grazing yaks during the warm season. We investigated the effects of supplementation with two different concentrates on the serum metabolome in grazing yaks using nuclear magnetic resonance spectroscopy in conjunction with multivariate data analysis. Twenty-four 2-year-old female yaks (133.04 ± 6.52 kg BW) were randomly divided into three groups and fed three different regimes (n = 8 per group): (1) grazing plus hull-less barley (HLB) supplementation, (2) grazing plus rapeseed meal (RSM) supplementation, and (3) grazing without supplementation. Both HLB and RSM supplementation significantly increased the average daily gain (ADG), and ADG under HLB supplementation was 11.9% higher (P < 0.05) than that of the RSM group. Supplementation markedly altered glucose, lipid, and protein metabolism, with the difference manifested as increased levels of some amino acids, acetyl-glycoproteins, low-density lipoproteins, and very low-density lipoproteins . Furthermore, the levels of 3-hydroxybutyrate, acetoacetate, and lactate metabolism were decreased. Serum metabolite changes in yaks in the HLB supplementation treatment differed from those in the RSM supplementation treatment; the difference was primarily manifested in lipid- and protein-related metabolites. We conclude that both the energy supplementation (HLB) and the protein supplementation (RSM) could remarkably promote the growth of yak heifers during the warm season, and the effect of energy supplementation was superior. Supplementary feeding changed the serum metabolite levels of yak heifers, indicating that such feeding could improve glucose's energy-supply efficiency and increase the metabolic intensity of lipids and proteins. Supplementation of yaks with HLB was more efficient in the promotion of yak glucose and protein anabolism compared to supplementation with RSM, while having a lesser effect on lipid metabolism.
Collapse
Affiliation(s)
- B C Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - J X Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Z S Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - L Z Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Q H Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - L C Da
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - S K Bao
- Animal Husbandry and Scientific Research Institute of Qinghai Province, Haibei 810200, China
| | - X Y Kong
- Animal Husbandry and Scientific Research Institute of Qinghai Province, Haibei 810200, China
| | - B Xue
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
6
|
Crook AA, Powers R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules 2020; 25:E5128. [PMID: 33158172 PMCID: PMC7662776 DOI: 10.3390/molecules25215128] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a quantitative analytical tool commonly utilized for metabolomics analysis. Quantitative NMR (qNMR) is a field of NMR spectroscopy dedicated to the measurement of analytes through signal intensity and its linear relationship with analyte concentration. Metabolomics-based NMR exploits this quantitative relationship to identify and measure biomarkers within complex biological samples such as serum, plasma, and urine. In this review of quantitative NMR-based metabolomics, the advancements and limitations of current techniques for metabolite quantification will be evaluated as well as the applications of qNMR in biomedical metabolomics. While qNMR is limited by sensitivity and dynamic range, the simple method development, minimal sample derivatization, and the simultaneous qualitative and quantitative information provide a unique landscape for biomedical metabolomics, which is not available to other techniques. Furthermore, the non-destructive nature of NMR-based metabolomics allows for multidimensional analysis of biomarkers that facilitates unambiguous assignment and quantification of metabolites in complex biofluids.
Collapse
Affiliation(s)
- Alexandra A. Crook
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
7
|
Liang YJ, Wang P, Wang HP, Long DX, Sun YJ, Wu YJ. Time-Course Changes in Urine Metabolic Profiles of Rats Following 90-Day Exposure to Propoxur. Sci Rep 2019; 9:16989. [PMID: 31740703 PMCID: PMC6861282 DOI: 10.1038/s41598-019-52787-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
As a major kind of carbamate insecticide, propoxur plays an important role in agriculture, veterinary medicine, and public health. The acute toxicity of propoxur is mainly neurotoxicity due to the inhibition of cholinesterase. However, little is known regarding the toxicity of propoxur upon long-term exposure at low dose. In this study, Wistar rats were orally administrated with low dose (4.25 mg/kg body weight/day) for consecutive 90 days. And the urine samples in rats treated with propoxur for 30, 60, and 90 days were collected and analyzed by employing 1H NMR-based metabolomics approach. We found that propoxur caused significant changes in the urine metabolites, including taurine, creatinine, citrate, succinate, dimethylamine, and trimethylamine-N-oxide. And the alteration of the metabolites was getting more difference compared with that of the control as the exposure time extending. The present study not only indicated that the changed metabolites could be used as biomarkers of propoxur-induced toxicity but also suggested that the time-course alteration of the urine metabolomic profiles could reflect the progressive development of the toxicity following propoxur exposure.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, 102206, P.R. China.,Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, P.R. China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, P.R. China
| | - Hui-Ping Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, P.R. China
| | - Ding-Xin Long
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, P.R. China
| | - Ying-Jian Sun
- Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, 102206, P.R. China.
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, P.R. China.
| |
Collapse
|
8
|
Chen Z, Yang Y, Mi S, Fan Q, Sun X, Deng B, Wu G, Li Y, Zhou Q, Ruan Z. Hepatoprotective effect of chlorogenic acid against chronic liver injury in inflammatory rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Gadolinium Chloride Rescues Niemann⁻Pick Type C Liver Damage. Int J Mol Sci 2018; 19:ijms19113599. [PMID: 30441844 PMCID: PMC6274821 DOI: 10.3390/ijms19113599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is a rare neurovisceral cholesterol storage disorder that arises from loss of function mutations in the NPC1 or NPC2 genes. Soon after birth, some patients present with an aggressive hepatosplenomegaly and cholestatic signs. Histopathologically, the liver presents with large numbers of foam cells; however, their role in disease pathogenesis has not been explored in depth. Here, we studied the consequences of gadolinium chloride (GdCl3) treatment, a well-known Kupffer/foam cell inhibitor, at late stages of NPC liver disease and compared it with NPC1 genetic rescue in hepatocytes in vivo. GdCl3 treatment successfully blocked the endocytic capacity of hepatic Kupffer/foam measured by India ink endocytosis, decreased the levels CD68—A marker of Kupffer cells in the liver—and normalized the transaminase levels in serum of NPC mice to a similar extent to those obtained by genetic Npc1 rescue of liver cells. Gadolinium salts are widely used as magnetic resonance imaging (MRI) contrasts. This study opens the possibility of targeting foam cells with gadolinium or by other means for improving NPC liver disease. Synopsis: Gadolinium chloride can effectively rescue some parameters of liver dysfunction in NPC mice and its potential use in patients should be carefully evaluated.
Collapse
|
10
|
Chen J, Zhang C, Wu X, Ji H, Ma W, Wei S, Zhang L, Chen J. 1 H NMR-based nontargeted metabonomics study of plasma and urinary biochemical changes in Kudouzi treated rats. REVISTA BRASILEIRA DE FARMACOGNOSIA 2018. [DOI: 10.1016/j.bjp.2018.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Dietary butyrate glycerides modulate intestinal microbiota composition and serum metabolites in broilers. Sci Rep 2018; 8:4940. [PMID: 29563518 PMCID: PMC5862971 DOI: 10.1038/s41598-018-22565-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
Abstract
Butyrate can modulate the immune response and energy expenditure of animals and enhance intestinal health. The present study investigated changes in the intestinal microbiota composition and serum metabolites of young broilers in response to 3,000 ppm butyrate in the form of butyrate glycerides (BG) via pyrosequencing of bacterial 16S rRNA genes and nuclear magnetic resonance (NMR). The dietary treatment did not affect the alpha diversity of intestinal microbiota, but altered its composition. Thirty-nine key operational taxonomic units (OTUs) in differentiating cecal microbiota community structures between BG treated and untreated chickens were also identified. Bifidobacterium was, in particular, affected by the dietary treatment significantly, showing an increase in not only the abundance (approximately 3 fold, P ≤ 0.05) but also the species diversity. The (NMR)-based analysis revealed an increase in serum concentrations of alanine, low-density and very low-density lipoproteins, and lipids (P ≤ 0.05) by BG. More interestingly, the dietary treatment also boosted (P ≤ 0.05) serum concentrations of bacterial metabolites, including choline, glycerophosphorylcholine, dimethylamine, trimethylamine, trimethylamine-N-oxide, lactate, and succinate. In conclusion, the data suggest the modulation of intestinal microbiota and serum metabolites by BG dietary treatment and potential contribution of intestinal bacteria to lipid metabolism/energy homeostasis in broilers.
Collapse
|
12
|
Song Q, Zhou H, Han Q, Diao X. Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:48-57. [PMID: 28917945 DOI: 10.1016/j.aquatox.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10μg/L), BaP (10μg/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens.
Collapse
Affiliation(s)
- Qinqin Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Xu C, Rezeng C, Li J, Zhang L, Yan Y, Gao J, Wang Y, Li Z, Chen J. 1H NMR-Based Metabolomics Study of the Toxicological Effects in Rats Induced by "Renqing Mangjue" Pill, a Traditional Tibetan Medicine. Front Pharmacol 2017; 8:602. [PMID: 28928660 PMCID: PMC5591455 DOI: 10.3389/fphar.2017.00602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/21/2017] [Indexed: 12/03/2022] Open
Abstract
“RenqingMangjue” pill (RMP), as an effective prescription of Traditional Tibetan Medicine (TTM), has been widely used in treating digestive diseases and ulcerative colitis for over a thousand years. In certain classical Tibetan Medicine, heavy metal may add as an active ingredient, but it may cause contamination unintentionally in some cases. Therefore, the toxicity and adverse effects of TTM became to draw public attention. In this study, 48 male Wistar rats were orally administrated with different dosages of RMP once a day for 15 consecutive days, then half of the rats were euthanized on the 15th day and the remaining were euthanized on the 30th day. Plasma, kidney and liver samples were acquired to 1H NMR metabolomics analysis. Histopathology and ICP-MS were applied to support the metabolomics findings. The metabolic signature of plasma from RMP-administrated rats exhibited increasing levels of glucose, betaine, and creatine, together with decreasing levels of lipids, 3-hydroxybutate, pyruvate, citrate, valine, leucine, isoleucine, glutamate, and glutamine. The metabolomics analysis results of liver showed that after RMP administration, the concentrations of valine, leucine, proline, tyrosine, and tryptophan elevated, while glucose, sarcosine and 3-hydroxybutyrate decreased. The levels of metabolites in kidney, such as, leucine, valine, isoleucine and tyrosine, were increased, while taurine, glutamate, and glutamine decreased. The study provides several potential biomarkers for the toxicity mechanism research of RMP and shows that RMP may cause injury in kidney and liver and disturbance of several pathways, such as energy metabolism, oxidative stress, glucose and amino acids metabolism.
Collapse
Affiliation(s)
- Can Xu
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Caidan Rezeng
- Research Center of Chinese and Tibetan Medicine, Medicine College of Qinghai UniversityXining, China
| | - Jian Li
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
| | - Lan Zhang
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Yujing Yan
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Jian Gao
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal UniversityBeijing, China
| | - Jianxin Chen
- School of Preclinical Medicine, Beijing University of Chinese MedicineBeijing, China
| |
Collapse
|
14
|
Yang Y, Zhang H, Yan B, Zhang T, Gao Y, Shi Y, Le G. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6957-6971. [PMID: 28742334 DOI: 10.1021/acs.jafc.7b02003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Hui Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Tianyu Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Ying Gao
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
15
|
Wan C, Zhan Y, Xue R, Wu Y, Li X, Pei F. Gd-DTPA-induced dynamic metabonomic changes in rat biofluids. Magn Reson Imaging 2017; 44:15-25. [PMID: 28095303 DOI: 10.1016/j.mri.2017.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The purposes of this study were (1) to detect the dynamic metabonomic changes induced by gadopentetate dimeglumine (Gd-DTPA) and (2) to investigate the potential metabolic disturbances associated with the pathogenesis of nephrogenic systemic fibrosis (NSF) at the early stage. METHODS A nuclear magnetic resonance (NMR)-based metabolomics approach was used to investigate the urinary and serum metabolic changes induced by a single tail vein injection of Gd-DTPA (dosed at 2 and 5mmol/kg body weight) in rats. Urine and serum samples were collected on days 1, 2 and 7 after dosing. RESULTS Metabolic responses of rats to Gd-DTPA administration were systematic involving changes in lipid metabolism, glucose metabolism, TCA cycle, amino acid metabolism and gut microbiota functions. Urinary and serum metabonomic recovery could be observed in both the 2 and 5mmol/kg body weight group, but the metabolic effects of high-dosed (5mmol/kg body weight) Gd-DTPA lasted longer. It is worth noting that hyperlipidemia was observed after Gd-DTPA injection, and nicotinate might play a role in the subsequent self-recovery of lipid metabolism. The disturbance of tyrosine, glutamate and gut microbiota metabolism might associate with the progression of NSF. CONCLUSION These findings offered essential information about the metabolic changes induced by Gd-DTPA, and could be potentially important for investigating the pathogenesis of NSF at the early stage. Moreover, the recovery of rats administrated with Gd-DTPA may have implications in the treatment of early stage NSF.
Collapse
Affiliation(s)
- Chuanling Wan
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road 19, Beijing 100049, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China; University of Chinese Academy of Sciences, No. 19, Yuquan Road 19, Beijing 100049, China
| | - Rong Xue
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| | - Yijie Wu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China.
| | - Fengkui Pei
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China
| |
Collapse
|
16
|
Yang Y, Yan B, Cheng X, Ding Y, Tian X, Shi Y, Le G. Metabolomic studies on the systemic responses of mice with oxidative stress induced by short-term oxidized tyrosine administration. RSC Adv 2017. [DOI: 10.1039/c7ra02665j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidized tyrosine (O-Tyr) has attracted more interest in recent years because many researchers have discovered that it and its product (dityrosine) are associated with pathological conditions, especially various age-related disorders in biological systems.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xiangrong Cheng
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yinyi Ding
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xu Tian
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
17
|
Chen R, Wang J, Liao C, Ma N, Zhang L, Wang X. 1H NMR studies on serum metabonomic changes over time in a kidney-Yang deficiency syndrome model. RSC Adv 2017. [DOI: 10.1039/c7ra04057a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The central aim of this study was to investigate metabolite changes in metabolic pathwaysviametabonomic approaches in rats suffering from Kidney-Yang Deficiency Syndrome (KYDS) induced by hydrocortisone.
Collapse
Affiliation(s)
- Ruiqun Chen
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Jia Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Chengbin Liao
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Na Ma
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Lei Zhang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| | - Xiufeng Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
18
|
Liu X, Shen X, Lai Y, Ji K, Sun H, Wang Y, Hou C, Zou N, Wan J, Yu J. Toxicological proteomic responses of halophyte Suaeda salsa to lead and zinc. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:163-171. [PMID: 27616546 DOI: 10.1016/j.ecoenv.2016.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
The long term (30 days) toxicological effects of environmentally relevant concentrations of Pb2+ (20μg/L) and Zn2+ (100μg/L) were characterized in Suaeda salsa using proteomics techniques. The responsive proteins were related to metabolism (Krebs cycle and Calvin cycle), protein biosynthesis, stress and defense, energy, signaling pathway and photosynthesis in Pb2+, Zn2+ and Pb2++ Zn2+ exposed groups in S. salsa after exposures for 30 days. The proteomic profiles also showed differential responses in S. salsa to metal exposures. In Pb2+-treated group, the proteins were categorized into cystein metabolism and pentose phosphate pathway. The responsive proteins were basically involved in glutathione metabolism, glycolysis, cystein and methane metabolism, and voltage-dependent anion channel in Zn2+-treated group. In Pb2++ Zn2+-treated group, the proecular mechanism at protein level remtein responses were devided into tyrosine metabolism and glycolysis. Our results showed that the two typical heavy metals, lead and zinc, could induce toxicological effects in halophyte S. salsa at protein level.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Life Sciences, Ludong University, Yantai 264025, PR China.
| | - Xuejiao Shen
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Yongkai Lai
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Kang Ji
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Hushan Sun
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Yiyan Wang
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Chengzong Hou
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Ning Zou
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Junli Wan
- School of Life Sciences, Ludong University, Yantai 264025, PR China
| | - Junbao Yu
- The Coastal Resources and Environment Team for Blue-Yellow Area, Ludong University, Yantai 264025, PR China
| |
Collapse
|
19
|
Jiang X, Qiu L, Zhao H, Song Q, Zhou H, Han Q, Diao X. Transcriptomic responses of Perna viridis embryo to Benzo(a)pyrene exposure elucidated by RNA sequencing. CHEMOSPHERE 2016; 163:125-132. [PMID: 27522184 DOI: 10.1016/j.chemosphere.2016.07.091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/12/2016] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
The green mussel Perna viridis is an ideal biomonitor to evaluate marine environmental pollution. Benzo(a)pyrene (BaP) is a typical polycyclic aromatic hydrocarbon (PAH), which is well known for the mutagenic and carcinogenic characteristics. However, the toxicological effects of BaP on Perna viridis embryo are still unclear. In this study, we investigated the embryo transcriptomic profile of Perna viridis treated with BaP via digital gene expression analysis. A total of 92,362,742 reads were produced from two groups (control and BaP exposure) by whole transcriptome sequencing (RNA-Seq). Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis were used on all genes to determine the biological functions and processes. Genes involved in various molecular pathways of toxicological effects were enriched further. The differential expression genes (DEGs) were related to stress response, infectious disease and innate immunity. Quantitative real-time PCR (qRT-PCR) measured expressional levels of six genes confirmed through the DGE analysis. This study reveals that RNA-seq for transcriptome profiling of P. viridis embryo can better understand the embryo toxic effects of BaP. Furthermore, it also suggests that RNA-seq is a superior tool for generating novel and valuable information for revealing the toxic effects caused by BaP at transcriptional level.
Collapse
Affiliation(s)
- Xiu Jiang
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Liguo Qiu
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hongwei Zhao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China
| | - Qinqin Song
- College of Agriculture, Hainan University, Haikou, 570228, China
| | - Hailong Zhou
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China.
| | - Qian Han
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China
| | - Xiaoping Diao
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, 570228, China; College of Agriculture, Hainan University, Haikou, 570228, China; College of Environment and Plant Protection, Hainan University, Haikou 570228, China.
| |
Collapse
|
20
|
Li Z, Li A, Gao J, Li H, Qin X. Kidney Tissue Targeted Metabolic Profiling of Unilateral Ureteral Obstruction Rats by NMR. Front Pharmacol 2016; 7:307. [PMID: 27695416 PMCID: PMC5023943 DOI: 10.3389/fphar.2016.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
Renal interstitial fibrosis is a common pathological process in the progression of kidney disease. A nuclear magnetic resonance (NMR) based metabolomic approach was used to analyze the kidney tissues of rats with renal interstitial fibrosis (RIF), induced by unilateral ureteral obstruction (UUO). The combination of a variety of statistical methods were used to screen out 14 significantly changed potential metabolites, which are related with multiple biochemical processes including amino acid metabolism, adenine metabolism, energy metabolism, osmolyte change and induced oxidative stress. The exploration of the contralateral kidneys enhanced the understanding of the disease, which was also supported by serum biochemistry and kidney histopathology results. In addition, the pathological parameters (clinical chemistry, histological and immunohistochemistry results) were correlated with the significantly changed differential metabolites related with RIF. This study showed that targeted tissue metabolomic analysis can be used as a useful tool to understand the mechanism of the disease and provide a novel insight in the pathogenesis of RIF.
Collapse
Affiliation(s)
- Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| | - Aiping Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| | - Jining Gao
- Shanxi Hospital of Integrated Traditional and Western Medicine Taiyuan, China
| | - Hong Li
- Shanxi Hospital of Integrated Traditional and Western Medicine Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University Taiyuan, China
| |
Collapse
|
21
|
Liu J, Peng CX, Gao B, Gong JS. Serum metabolomics analysis of rat after intragastric infusion of Pu-erh theabrownin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3708-3716. [PMID: 26676261 DOI: 10.1002/jsfa.7556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/03/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The aim was to study the effects of Pu-erh theabrownin (TB) (Mw > 50 kDa) on the metabolism of rat serum by nuclear magnetic resonance (NMR)-based metabolomics and identify candidate marker metabolites associated with Pu-erh TB, and thus provide fundamental information for a better understanding of the metabolism of Pu-erh tea in animals. RESULTS TB infusion induced different changes in endogenous serum metabolites depending on the type of diet. Compared with the control group, the TB infusion group showed significantly reduced serum glycine and choline levels, as well as significantly increased taurine, carnitine and high-density lipoprotein (all P < 0.05). Compared with the high-lipid group, the high-lipid TB infusion group exhibited significantly reduced low-density lipoprotein and acetate levels, as well as significantly increased inositol, carnitine and glycine levels (all P < 0.05). CONCLUSION Examination of the variations of these differential expressed metabolites and their individual functions revealed that the TB extract accelerated lipid catabolism in rats and might affect glucose metabolism. Of these, carnitine level significantly increased after intragastric infusion of TB regardless of the type of diet, and activities of carnitine palmitoyltransferases I and II changed significantly, suggesting carnitine may be a candidate serum marker for tracking the metabolism of TB in rats. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jian Liu
- Faculty of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Chun-Xiu Peng
- Horticultural Department, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Bin Gao
- Faculty of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jia-Shun Gong
- Faculty of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
22
|
Liu X, Gao J, Chen J, Wang Z, Shi Q, Man H, Guo S, Wang Y, Li Z, Wang W. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach. Sci Rep 2016; 6:30785. [PMID: 27470195 PMCID: PMC4965763 DOI: 10.1038/srep30785] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetic coronary heart disease (T2DM-CHD) is a kind of serious and complex disease. Great attention has been paid to exploring its mechanism; however, the detailed understanding of T2DM-CHD is still limited. Plasma samples from 15 healthy controls, 13 coronary heart disease (CHD) patients, 15 type 2 diabetes mellitus (T2DM) patients and 28 T2DM-CHD patients were analyzed in this research. The potential biomarkers of CHD and T2DM were detected and screened out by (1)H NMR-based plasma metabolic profiling and multivariate data analysis. About 11 and 12 representative metabolites of CHD and T2DM were identified respectively, mainly including alanine, arginine, proline, glutamine, creatinine and acetate. Then the diagnostic model was further constructed based on the previous metabolites of CHD and T2DM to detect T2DM-CHD with satisfying sensitivity of 92.9%, specificity of 93.3% and accuracy of 93.2%, validating the robustness of (1)H NMR-based plasma metabolic profiling to diagnostic strategy. The results demonstrated that the NMR-based metabolomics approach processed good performance to identify diagnostic plasma biomarkers and most identified metabolites related to T2DM and CHD could be considered as predictors of T2DM-CHD as well as the therapeutic targets for prevention, which provided new insight into diagnosing and forecasting of complex diseases.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jian Gao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhiyong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Shi
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongxue Man
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Shuzhen Guo
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingfeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China.,Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
23
|
Qishen Yiqi Drop Pill improves cardiac function after myocardial ischemia. Sci Rep 2016; 6:24383. [PMID: 27075394 PMCID: PMC4830957 DOI: 10.1038/srep24383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Myocardial ischemia (MI) is one of the leading causes of death, while Qishen Yiqi Drop Pill (QYDP) is a representative traditional Chinese medicine to treat this disease. Unveiling the pharmacological mechanism of QYDP will provide a great opportunity to promote the development of novel drugs to treat MI. 64 male Sprague-Dawley (SD) rats were divided into four groups: MI model group, sham operation group, QYDP treatment group and Fosinopril treatment group. Echocardiography results showed that QYDP exhibited significantly larger LV end-diastolic dimension (LVEDd) and LV end-systolic dimension (LVEDs), compared with the MI model group, indicating the improved cardiac function by QYDP. (1)H-NMR based metabonomics further identify 9 significantly changed metabolites in the QYDP treatment group, and the QYDP-related proteins based on the protein-metabolite interaction networks and the corresponding pathways were explored, involving the pyruvate metabolism pathway, the retinol metabolism pathway, the tyrosine metabolism pathway and the purine metabolism pathway, suggesting that QYDP was closely associated with blood circulation. ELISA tests were further employed to identify NO synthase (iNOS) and cathepsin K (CTSK) in the networks. For the first time, our work combined experimental and computational methods to study the mechanism of the formula of traditional Chinese medicine.
Collapse
|
24
|
Metabolomic analysis of amino acid and fat metabolism in rats with l-tryptophan supplementation. Amino Acids 2014; 46:2681-91. [DOI: 10.1007/s00726-014-1823-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
|
25
|
Dudka I, Kossowska B, Senhadri H, Latajka R, Hajek J, Andrzejak R, Antonowicz-Juchniewicz J, Gancarz R. Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: a preliminary study. ENVIRONMENT INTERNATIONAL 2014; 68:71-81. [PMID: 24713610 DOI: 10.1016/j.envint.2014.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 05/20/2023]
Abstract
Environmental metabonomics is the application of metabonomics to characterize the interactions of organisms with their environment. Metabolic profiling is an exciting addition to the armory of the epidemiologist for the discovery of new disease risk biomarkers and diagnostics. This work is a continuation of research searching for preclinical serum markers in a group of 389 healthy smelter workers exposed to lead, cadmium and arsenic. Changes in the metabolic profiles were studied using Proton Nuclear Magnetic Resonance Spectroscopy on pooled serum samples from both the metal exposed and control groups. These multivariate metabonomic datasets were analyzed with Principal Component Analysis and Partial Least Squares Discriminant Analysis. Analysis of metabolic profiles of people exposed to heavy metals suggests energy metabolism disturbance induced by heavy metals. Changes in lipid fraction (very-low-density lipoprotein - VLDL, low-density lipoprotein - LDL), unsaturated lipids and in the level of amino acids suggest perturbation of the metabolism of lipids and amino acids. This study illustrated the high reliability of NMR-based metabonomic profiling on the study of the biochemical effects induced by the mixture of heavy metals. This approach is capable of identifying intermediate biomarkers of response to toxicants at environmental/occupational concentrations, paving the way to its use in a monitoring of smelter workers exposed to low doses of lead, cadmium and arsenic.
Collapse
Affiliation(s)
- Ilona Dudka
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Barbara Kossowska
- Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland.
| | - Hanna Senhadri
- Institute of Biomedical Engineering and Instrumentation, Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Plac Grunwaldzki 13, 50-377 Wrocław, Poland.
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Julianna Hajek
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Ryszard Andrzejak
- Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 4, 50-367 Wrocław, Poland.
| | - Jolanta Antonowicz-Juchniewicz
- Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 4, 50-367 Wrocław, Poland.
| | - Roman Gancarz
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
26
|
Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid. Amino Acids 2014; 46:2219-29. [PMID: 24927697 DOI: 10.1007/s00726-014-1762-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/07/2014] [Indexed: 12/29/2022]
Abstract
This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution (1)H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo.
Collapse
|
27
|
Xu W, Wang H, Chen G, Li W, Xiang R, Zhang X, Pei Y. A metabolic profiling analysis of the acute toxicological effects of the realgar (As₂S₂) combined with other herbs in Niuhuang Jiedu Tablet using ¹H NMR spectroscopy. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:771-781. [PMID: 24685585 DOI: 10.1016/j.jep.2014.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Niuhuang Jiedu Tablet (NJT), composed of Realgar (As₂S₂), Bovis Calculus Artificialis, Borneolum Synthcticum, Gypsum Fibrosum, Rhei Radix et Rhizoma (RR), Scutellariae Radix (SR), Platycodonis Radix (PR) and Glycyrrhizae Radix et Rhizoma (GR), is an effective formula of traditional Chinese medicine (TCM) used in treating acute tonsillitis, pharyngitis, periodontitis and mouth ulcer. In the formula, significant level of realgar (As₂S₂) as a potentially toxic element is contained. In our pervious experiments, NJT was significantly less toxic than realgar (As₂S₂), and the material bases of toxicity alleviation effect to realgar (As₂S₂) were RR, SR, PR and GR. However, the toxicity alleviation effect of each above mentioned four herbs to realgar (As₂S₂) and their synergistic detoxification effects to realgar (As₂S₂) were still obscure. MATERIALS AND METHODS Male Wistar rats were divided into 11 groups: control, group R (treated with Realgar), group RRSPG (treated with Realgar, RR, SR, PR and GR), group RRSP (treated with Realgar, RR, SR and PR), group RRSG (treated with Realgar, RR, SR and GR), group RRPG (treated with Realgar, RR, PR and GR), group RSPG (treated with Realgar, SR, PR and GR), group RR (treated with Realgar and RR), group RS (treated with Realgar and SR), group RP (treated with Realgar and PR) and group RG (treated with Realgar and GR). Based on (1)H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. RESULTS The metabolic profiles of groups RR, RS, RP and RG were similar to those of group R, while the metabolic profiles of groups RRSPG, RRSP, RRSG, RRPG and RSPG were almost in line with those of control group. Statistics results were confirmed by the histopathological examination and biochemical assay. CONCLUSION The present work suggested that the toxicity alleviation effects of RR, SR, PR and GR to realgar (As₂S₂) were not obvious when combined with realgar (As₂S₂) respectively, but they had synergistic detoxification effects on realgar (As₂S₂) mutually.
Collapse
Affiliation(s)
- Wenfeng Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Wen Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rongwu Xiang
- Mathematics Teaching & Research Section, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaoli Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Yuehu Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China.
| |
Collapse
|
28
|
Ruan Z, Lv Y, Fu X, He Q, Deng Z, Liu W, Yingli Y, Wu X, Wu G, Wu X, Yin Y. Metabolomic analysis of amino acid metabolism in colitic rats supplemented with lactosucrose. Amino Acids 2013; 45:877-87. [DOI: 10.1007/s00726-013-1535-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/10/2013] [Indexed: 12/22/2022]
|
29
|
Liu L, He Y, Lu H, Wang M, Sun C, Na L, Li Y. Metabonomic analysis of urine from rats after low-dose exposure to 3-chloro-1,2-propanediol using UPLC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:97-104. [PMID: 23522902 DOI: 10.1016/j.jchromb.2013.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 01/31/2023]
Abstract
To study the toxic effect of chronic exposure to 3-chloro-1,2-propanediol (3-MCPD) at low doses, a metabonomics approach based on ultrahigh-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was performed. Two different doses of 3-MCPD (1.1 and 5.5mg/kg bw/d) were administered to Wistar rats for 120 days (1.1mg/kg bw/d: lowest observed adverse effect level [LOAEL]). The metabolite profiles and biochemical parameters were obtained at five time points after treatment. For the 3-MCPD-treated groups, a significant change in urinary N-acetyl-β-d-glucosaminidase and β-d-galactosidase was detected on day 90, while some biomarkers based on the metabonomics, such as N-acetylneuraminic acid, N-acetyl-l-tyrosine, and gulonic acid, were detected on day 30. These results suggest that these biomarkers changed more sensitively and earlier than conventional biochemical parameters and were thus considered early and sensitive biomarkers of exposure to 3-MCPD; these biomarkers provide more information on toxicity than conventional biochemical parameters. These results might be helpful to investigate the toxic mechanisms of 3-MCPD and provide a scientific basis for assessing the effect of chronic exposure to low-dose 3-MCPD on human health.
Collapse
Affiliation(s)
- Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, PR China
| | | | | | | | | | | | | |
Collapse
|
30
|
Zhang X, Shen J, Cao B, Xu L, Zhao T, Liu X, Zhang H. Metabolomic investigation of Arthus reaction in a rat model using proton nuclear magnetic resonance (1H NMR) spectroscopy and rapid resolution liquid chromatography (RRLC). MOLECULAR BIOSYSTEMS 2013; 9:1423-35. [DOI: 10.1039/c3mb25412g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Yang J, Wang H, Xu W, Hao D, Du L, Zhao X, Sun C. Metabolomic analysis of rat plasma following chronic low-dose exposure to dichlorvos. Hum Exp Toxicol 2012; 32:196-205. [DOI: 10.1177/0960327112459533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J Yang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People’s Republic of China
| | - H Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People’s Republic of China
| | - W Xu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People’s Republic of China
| | - D Hao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People’s Republic of China
| | - L Du
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People’s Republic of China
| | - X Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People’s Republic of China
| | - C Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
32
|
Liang YJ, Wang HP, Long DX, Wu YJ. (1)H NMR-based metabonomic profiling of rat serum and urine to characterize the subacute effects of carbamate insecticide propoxur. Biomarkers 2012; 17:566-74. [PMID: 22780197 DOI: 10.3109/1354750x.2012.704527] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Carbamate insecticide propoxur is widely used in agriculture and public health programs. To prevent adverse health effects arising from exposure to this insecticide, sensitive methods for detection of early stage organismal changes are necessary. We present here an integrative metabonomic approach to investigate toxic effects of pesticide in experimental animals. Results showed that propoxur even at low dose levels can induce oxidative stress, impair liver function, enhance ketogenesis and fatty acid β-oxidation, and increase glycolysis, which contribute to the hepatotoxocity. These findings highlight the applicability of (1)H NMR spectroscopy and multivariate statistics in elucidating the toxic effects of propoxur.
Collapse
Affiliation(s)
- Yu-Jie Liang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
33
|
Sun YJ, Wang HP, Liang YJ, Yang L, Li W, Wu YJ. An NMR-based metabonomic investigation of the subacute effects of melamine in rats. J Proteome Res 2012; 11:2544-50. [PMID: 22401608 DOI: 10.1021/pr2012329] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The subacute toxic effects of 28 days of exposure to three dosages (250, 500, 1000 mg/kg/day) of melamine on Wistar rats were investigated using nuclear magnetic resonance spectra, histopathological examination, and biochemical analysis. Rats treated with melamine developed adverse health effects compared to the controls, including decrease in body weight and kidney damage. Blood biochemical analysis showed that the blood urea nitrogen and creatinine increased distinctly compared to the control group. Urinary metabonomic analysis indicated that melamine caused an increase in succinate and citrate. Serum metabonomic analysis showed that the lowest dose led to an increase in dimethylglycine, N-acetylglycoprotein (NAC), accompanied by a decrease in taurine and glucose. Rats treated with the highest dose developed high levels of serum choline and 3-hydroxybutyrate (3-HB) together with low lactate levels. Metabonomic analysis of liver tissue indicated that melamine caused an increase in NAC, choline, and creatine, accompanied by a decrease in lactate, trimethylamine-N-oxide, glutamate, and glucose. All three dosages resulted in an increase in glutamate, lactate, choline, glucose, and animo acids and a decrease in 3-HB and pyruvate in aqueous kidney extract. These results indicate that melamine not only caused renal disfunction but also disturbed the liver's glucose, protein, and nitrogen metabolism.
Collapse
Affiliation(s)
- Ying-Jian Sun
- Department of Veterinary Medicine and Animal Science, Beijing Agriculture College, Beijing 102206, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Yang J, Sun X, Feng Z, Hao D, Wang M, Zhao X, Sun C. Metabolomic analysis of the toxic effects of chronic exposure to low-level dichlorvos on rats using ultra-performance liquid chromatography-mass spectrometry. Toxicol Lett 2011; 206:306-13. [PMID: 21889581 DOI: 10.1016/j.toxlet.2011.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 01/28/2023]
Abstract
The purpose of the current study was to assess the effects of long-term exposure to low levels of DDVP on the biochemical parameters and metabolic profiles of rats. Three different doses (2.4, 7.2, and 21.6 mg/kg body weight/day) of DDVP were administered to rats through their drinking water over 24 weeks. Significant changes in blood cholinesterase, creatinine, urea nitrogen, aspartate aminotransferase, alanine aminotransferase, and albumin concentrations were observed in the middle and high dose groups. Changes in the concentration of some urine metabolites were detected via ultra performance liquid chromatography-mass spectrometry (UPLC-MS). Dimethyl phosphate (DMP), which was exclusively detected in the treated groups, can be an early, sensitive biomarker for DDVP exposure. Moreover, DDVP treatment resulted in an increase in the lactobionic acid, estrone sulfate, and indoxyl sulfic concentrations, and a decrease in citric acid, suberic acid, gulonic acid, urea, creatinine, and uric acid. These results suggest that chronic exposure to low-level DDVP can cause a disturbance in carbohydrate and fatty acid metabolism, the antioxidant system, etc. Therefore, an analysis of the metabolic profiles can contribute to the understanding of the adverse effects of long-term exposure to low doses of DDVP.
Collapse
Affiliation(s)
- Jindan Yang
- Public Health College, Harbin Medical University, Harbin 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
He Q, Ren P, Kong X, Wu Y, Wu G, Li P, Hao F, Tang H, Blachier F, Yin Y. Comparison of serum metabolite compositions between obese and lean growing pigs using an NMR-based metabonomic approach. J Nutr Biochem 2011; 23:133-9. [PMID: 21429726 DOI: 10.1016/j.jnutbio.2010.11.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 02/02/2023]
Abstract
Childhood obesity has become a prevalent risk to health of children and teenagers. To develop biomarkers in serum for altered lipid metabolism, genetically obese (Ningxiang strain) and lean (Duroc×Landrace×Large Yorkshire strain) growing pigs were used as models to identify potential differences in the serum metabonome between the two strains of pigs after consuming the same diet for 46 days. At the end of the study, pigs were euthanized for analysis of the serum metabonome and determination of body composition. Obese pigs had higher fat mass (42.3±8.8% vs. 21.9±4.5%) and lower muscle mass (35.4±4.5% vs. 58.9±2.5%) than lean pigs (P<.01). Serum concentrations of insulin and glucagon were higher (P<.02) in obese than in lean pigs. With the use of an NMR-based metabonomic technology, orthogonal projection to latent structure with discriminant analysis showed that serum HDL, VLDL, lipids, unsaturated lipids, glycoprotein, myo-inositol, pyruvate, threonine, tyrosine and creatine were higher in obese than in lean pigs (P<.05), while serum glucose and urea were lower in obese pigs (P<.05). In addition, changes in gut microbiota-related metabolites, including trimethylamine-N-oxide and choline, were observed in sera of obese pigs relatively to lean pigs (P<.05). These novel findings indicate that obese pigs have distinct metabolism, including lipogenesis, lipid oxidation, energy utilization and partition, protein and amino acid metabolism, and fermentation of gastrointestinal microbes, compared with lean pigs. The obese Ningxiang pig may be a useful model for childhood obesity research.
Collapse
Affiliation(s)
- Qinghua He
- Key Laboratory for Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, 410125 Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tyagi R, Rana P, Khan AR, Bhatnagar D, Devi MM, Chaturvedi S, Tripathi RP, Khushu S. Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy. J Appl Toxicol 2011; 31:663-70. [DOI: 10.1002/jat.1617] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/14/2010] [Accepted: 10/08/2010] [Indexed: 01/05/2023]
|
37
|
Yan Zhang, Bing Wu, Xuxiang Zhang, Aimin Li, Shupei Cheng. Metabolic profiles in serum of mouse after chronic exposure to drinking water. Hum Exp Toxicol 2010; 30:1088-95. [DOI: 10.1177/0960327110386817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by 1H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjng, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjng, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjng, PR China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjng, PR China
| | - Shupei Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjng, PR China,
| |
Collapse
|
38
|
Li N, Duan Y, Zhou M, Liu C, Hong F. The effects of lanthanoid on the structure–function of lactate dehydrogenase from mice heart. Biol Trace Elem Res 2009; 132:164-75. [PMID: 19396407 DOI: 10.1007/s12011-009-8374-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 03/31/2009] [Indexed: 11/30/2022]
Abstract
The activity of lactate dehydrogenase (LDH, EC1.1.1.27) is often changed upon inflammatory responses in animals. Lanthanoid (Ln) was shown to provoke various inflammatory responses both in rats and mice; however, the molecular mechanism by which Ln3+ exert its toxicity has not been completely understood, especially that we know little about the mechanism of the interaction between Ln with 4f electron shell and alternation valence and LDH. In this report, we investigated the mechanisms of LaCl3, CeCl3, and NdCl3 on LDH activity in vivo and in vitro. Our results showed that La3+, Ce3+, and Nd3+ could significantly activate LDH in vivo and in vitro; the order of activation was Ce3+>Nd3+> La3+>control. The affinity of LDH for Ce3+ was higher than Nd3+ and La3+; the saturated binding sites for Ce3+ on the LDH protein were 1.2 and for La3+ and Nd3+ 1.55. Ln3+ caused the reduction of exposure degree of cysteine or tryptophan/tyrosine of LDH, the increase of space resistance, and the enhancement of α-helix in secondary structure of LDH, which was greatest in Ce3+ treatment, medium in Nd3+ treatment, and least in La3+ treatment. It implied that the changes of structure-function on LDH caused by Ln3+ were closely related to the characteristics of 4f electron shell and alternation valence in Ln.
Collapse
Affiliation(s)
- Na Li
- Medical College of Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | |
Collapse
|
39
|
Lin ZY, Xu PB, Yan SK, Meng HB, Yang GJ, Dai WX, Liu XR, Li JB, Deng XM, Zhang WD. A metabonomic approach to early prognostic evaluation of experimental sepsis by (1)H NMR and pattern recognition. NMR IN BIOMEDICINE 2009; 22:601-608. [PMID: 19322815 DOI: 10.1002/nbm.1373] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study proposes an NMR-based metabonomic approach to early prognostic evaluation of sepsis. Forty septic rats receiving cecal ligation and puncture (CLP) were divided into the surviving group and nonsurviving group on day 6, while 20 sham-operated rats served as the control group. Serum samples were collected from septic and sham-operated rats at 12 h after surgery and analyzed using (1)H NMR spectroscopy. Orthogonal partial least squares (OPLS) were applied and showed clustering according to predefined groups, indicating that NMR-based metabolic profiling could reveal pathologic characteristics in the serum of sham-operated, surviving, and nonsurviving septic rats. In addition, six characteristic metabolites including lactate, alanine, acetate, acetoacetate, hydroxybutyrate, and formate, which are mainly involved in energy metabolism, changed markedly in septic rats, especially in the nonsurvivors. Using these metabolites, a predictive model for prognostic evaluation of sepsis was constructed using a radial basis function neural network (RBFNN) with a prediction accuracy of about 87% by test samples. The results indicated that the NMR-based metabonomic approach is a potential technique for the early prognostic evaluation of sepsis.
Collapse
Affiliation(s)
- Zhong-ying Lin
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang HP, Liang YJ, Long DX, Chen JX, Hou WY, Wu YJ. Metabolic Profiles of Serum from Rats after Subchronic Exposure to Chlorpyrifos and Carbaryl. Chem Res Toxicol 2009; 22:1026-33. [DOI: 10.1021/tx8004746] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hui-Ping Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Datunlu Road, Beijing 100101, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Yu-Jie Liang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Datunlu Road, Beijing 100101, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Ding-Xin Long
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Datunlu Road, Beijing 100101, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Jia-Xiang Chen
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Datunlu Road, Beijing 100101, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Wei-Yuan Hou
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Datunlu Road, Beijing 100101, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Datunlu Road, Beijing 100101, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| |
Collapse
|
41
|
Biochemical effects of gadolinium chloride in rats liver and kidney studied by 1H NMR metabolomics. J RARE EARTH 2009. [DOI: 10.1016/s1002-0721(08)60234-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
He Q, Kong X, Wu G, Ren P, Tang H, Hao F, Huang R, Li T, Tan B, Li P, Tang Z, Yin Y, Wu Y. Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids 2008; 37:199-208. [PMID: 18989615 DOI: 10.1007/s00726-008-0192-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/05/2008] [Indexed: 12/14/2022]
Abstract
Arginine plays an important role regulating nutrient metabolism, but the underlying mechanisms are largely unknown. This study was conducted to determine the effect of dietary arginine supplementation on the metabolome in serum of growing pigs using (1)H nuclear magnetic resonance spectroscopy. Sixteen 120-day-old pigs (48 +/- 1 kg) were randomly assigned to one of two groups, representing supplementation with 0 or 1.0% L: -arginine to corn- and soybean meal-based diets. Serum was collected after a 46-day period of treatment. Dietary arginine supplementation decreased fat deposition and increased protein accretion in the body. Principal component analysis showed that serum concentrations of low density lipoprotein, very low density lipoprotein, and urea were lower, but concentrations of creatinine, tricarboxylic acid cycle metabolites, ornithine, lysine and tyrosine were greater in arginine-supplemented than in control pigs. Additionally, the arginine treatment affected serum concentrations of nitrogenous and lipid signaling molecules (glycerophosphorylcholine and myo-inositol) and intestinal bacterial metabolites (formate, ethanol, methylamine, dimethylamine, acetate, and propionate). These novel findings suggest that dietary arginine supplementation alters the catabolism of fat and amino acids in the whole body, enhances protein synthesis in skeletal muscle, and modulates intestinal microbial metabolism in growing pigs.
Collapse
Affiliation(s)
- Qinghua He
- State Key Laboratory of Food Science and Technology, Nanchang University, 330047, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, Wang Q, Yuan Y, Liao M. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 2008; 232:292-301. [PMID: 18706438 DOI: 10.1016/j.taap.2008.06.026] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 06/27/2008] [Accepted: 06/28/2008] [Indexed: 12/21/2022]
Abstract
Despite an increasing application of copper nanoparticles, there is a serious lack of information concerning their impact on human health and the environment. In this study, the biochemical compositions of urine, serum, and extracts of liver and kidney tissues of rats treated with nano-copper at the different doses (50, 100, and 200 mg/kg/d for 5 d) were investigated using (1)H NMR techniques with the pattern recognition methods. Serum biochemical analysis and histopathological examinations of the liver and kidney of all the rats were simultaneously performed. All the results indicated that the effects produced by nano-copper at a dose of 100 or 50 mg/kg/d were less than those induced at a higher dose of 200 mg/kg/d. Nano-copper induced overt hepatotoxicity and nephrotoxicity at 200 mg/kg/d for 5 d, which mainly involved scattered dot hepatocytic necrosis and widespread renal proximal tubule necrosis. Increased citrate, succinate, trimethylamine-N-oxide, glucose, and amino acids, accompanied by decreased creatinine levels were observed in the urine; furthermore, elevated levels of lactate, 3-hydroxybutyrate, acetate, creatine, triglycerides, and phosphatide and reduced glucose levels were observed in the serum. The predominant changes identified in the liver tissue aqueous extracts included increased lactate and creatine levels together with reduced glutamine and taurine levels, and the metabolic profile of the kidney tissue aqueous extracts showed an increase in lactate and a drop in glucose. In the chloroform/methanol extracts of the liver and kidney tissues, elevated triglyceride species were identified. These changes suggested that mitochondrial failure, enhanced ketogenesis, fatty acid beta-oxidation, and glycolysis contributed to the hepatotoxicity and nephrotoxicity induced by nano-copper at 200 mg/kg/d for 5 d. An increase in triglycerides in the serum, liver and kidney tissues could serve as a potential sensitive biomarker reflecting the lipidosis induced by nano-copper. The data generated from the current study completely supports the fact that an integrated metabolomic approach is promising for the development of a rapid in vivo screening method for nanotoxicity.
Collapse
Affiliation(s)
- Ronghui Lei
- National Beijing Center for Drug Safety Evaluation and Research, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|