1
|
Zhao H, Liu T, Yang F. Photoelectrochemical polarity-switching-mode and split-type biosensor based on SQ-COFs/BiOBr heterostructure for the detection of uracil-DNA glycosylase. Talanta 2023; 262:124694. [PMID: 37244241 DOI: 10.1016/j.talanta.2023.124694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Here, we constructed a split-type and photocurrent polarity switching photoelectrochemical (PEC) biosensor for ultrasensitive detection of Uracil-DNA glycosylase (UDG, abnormal UDG activity is correlated with human immunodeficiency, cancers, bloom syndrome, neurodegenerative diseases and so on) based on SQ-COFs/BiOBr heterostructure, as the photoactive materials, methylene blue (MB) as the signal sensitizer, and catalytic hairpin assembly (CHA) for signal amplification. Specifically, the photocurrent intensity generated by SQ-COFs/BiOBr was about 2 and 6.4 times of that of BiOBr and SQ-COFs alone, which could be responsible for the detection sensitivity for the proposed biosensor. In addition, it is not common to construct heterojunctions between covalent organic skeletons and inorganic nanomaterials. In UDG recognition tube, the plenty of COP probes loaded methylene blue (MB) were obtained by magnetic separation with the help of the simple chain displacement reaction of CHA. MB, as a responsive substance, can efficiently switched the photocurrent polarity of the SQ-COFs/BiOBr electrode from cathode to anode, which reduce the background signal, further improve the sensitivity of the biosensor. Based on the above, the linear detection range of our designed biosensor is 0.001-3 U mL-1, and the detection limit (LODs) is as low as 4.07 × 10-6 U mL-1. Furthermore, the biosensor can still maintain good analytical performance for UDG in real sample, which means that it has broad application prospects in the field of biomedicine.
Collapse
Affiliation(s)
- Huijuan Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Tingting Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
A New Class of Uracil-DNA Glycosylase Inhibitors Active against Human and Vaccinia Virus Enzyme. Molecules 2021; 26:molecules26216668. [PMID: 34771075 PMCID: PMC8587785 DOI: 10.3390/molecules26216668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
Uracil-DNA glycosylases are enzymes that excise uracil bases appearing in DNA as a result of cytosine deamination or accidental dUMP incorporation from the dUTP pool. The activity of Family 1 uracil-DNA glycosylase (UNG) activity limits the efficiency of antimetabolite drugs and is essential for virulence in some bacterial and viral infections. Thus, UNG is regarded as a promising target for antitumor, antiviral, antibacterial, and antiprotozoal drugs. Most UNG inhibitors presently developed are based on the uracil base linked to various substituents, yet new pharmacophores are wanted to target a wide range of UNGs. We have conducted virtual screening of a 1,027,767-ligand library and biochemically screened the best hits for the inhibitory activity against human and vaccinia virus UNG enzymes. Although even the best inhibitors had IC50 ≥ 100 μM, they were highly enriched in a common fragment, tetrahydro-2,4,6-trioxopyrimidinylidene (PyO3). In silico, PyO3 preferably docked into the enzyme's active site, and in kinetic experiments, the inhibition was better consistent with the competitive mechanism. The toxicity of two best inhibitors for human cells was independent of the presence of methotrexate, which is consistent with the hypothesis that dUMP in genomic DNA is less toxic for the cell than strand breaks arising from the massive removal of uracil. We conclude that PyO3 may be a novel pharmacophore with the potential for development into UNG-targeting agents.
Collapse
|
3
|
Tu B, Feng Z, Wang H, Zhang W, Ye W, Wang H, Xiao X, Zhao W, Wu T. Development of a background signal suppression probe for 8-oxoguanine DNA glycosylase detection. Anal Chim Acta 2021; 1175:338741. [PMID: 34330449 DOI: 10.1016/j.aca.2021.338741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
8-oxoguanine DNA glycosylase (OGG), which plays a crucial role in base excision repair (BER), is an important biomarker. The existing highly sensitive fluorescent methods always need complicated amplification design. The method with high sensitivity and simple design at the same time is urgently needed. Here, we developed a highly sensitive detection method for OGG detection with lambda exonuclease and the background signal suppression probe. Through probe structure design, the steric hindrance and competitive binding effects successfully suppressed the background signal. We achieved sensitive detection of OGG with a simple design, and the limit of detection was 5.0 × 10-4 U mL-1. Moreover, the method was highly selective and successfully applied to OGG detection in biological samples, which shows the potential clinical application value.
Collapse
Affiliation(s)
- Bocheng Tu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zishan Feng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haitao Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Wei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weicong Ye
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo Wang
- Department of Obstetrics and Gynaecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbo Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Chang HL, Su KY, Goodman SD, Yen RS, Cheng WC, Yang YC, Lin LI, Chang SY, Fang WH. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair (Amst) 2020; 97:103028. [PMID: 33254084 DOI: 10.1016/j.dnarep.2020.103028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/26/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a highly conserved DNA repair enzyme that acts as a key component in the base excision repair pathway to correct hydrolytic deamination of cytosine making it critical to genome integrity in living organisms. We report here a non-labeled, non-radio-isotopic and very specific method to measure UDG activity. Oligodeoxyribonucleotide duplex containing a site-specific G:U mismatch that is hydrolyzed by UDG then subjected to Matrix Assisted Laser Desorption/Ionization time-of-flight mass spectrometry analysis. A protocol was developed to maintain the AP product in DNA without strand break then the cleavage of uracil was identified by the mass change from uracil substrate to AP product. From UDG kinetic analysis, for G:U substrate the Km is 50 nM, Vmax is 0.98 nM/s and Kcat = 9.31 s-1. The method was applied to uracil glycosylase inhibitor measurement with an IC50 value of 7.6 pM. Single-stranded and double-stranded DNAs with uracil at various positions of the substrates were also tested for UDG activity albeit with different efficiencies. The simple, rapid, quantifiable, scalable and versatile method has potential to be the reference method for monofunctional glycosylase measurement, and can also be used as a tool for glycosylase inhibitors screening.
Collapse
Affiliation(s)
- Hui-Lan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital and the Department of Pediatrics, the Ohio State University, Columbus, OH, USA
| | - Rong-Syuan Yen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wern-Cherng Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
Li CC, Chen HY, Hu J, Zhang CY. Rolling circle amplification-driven encoding of different fluorescent molecules for simultaneous detection of multiple DNA repair enzymes at the single-molecule level. Chem Sci 2020; 11:5724-5734. [PMID: 32864084 PMCID: PMC7433776 DOI: 10.1039/d0sc01652g] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/16/2020] [Indexed: 12/18/2022] Open
Abstract
DNA repair enzymes (e.g., DNA glycosylases) play a critical role in the repair of DNA lesions, and their aberrant levels are associated with various diseases. Herein, we develop a sensitive method for simultaneous detection of multiple DNA repair enzymes based on the integration of single-molecule detection with rolling circle amplification (RCA)-driven encoding of different fluorescent molecules. We use human alkyladenine DNA glycosylase (hAAG) and uracil DNA glycosylase (UDG) as the target analytes. We design a bifunctional double-stranded DNA (dsDNA) substrate with a hypoxanthine base (I) in one strand for hAAG recognition and an uracil (U) base in the other strand for UDG recognition, whose cleavage by APE1 generates two corresponding primers. The resultant two primers can hybridize with their respective circular templates to initiate RCA, resulting in the incorporation of multiple Cy3-dCTP and Cy5-dGTP nucleotides into the amplified products. After magnetic separation and exonuclease cleavage, the Cy3 and Cy5 fluorescent molecules in the amplified products are released into the solution and subsequently quantified by total internal reflection fluorescence (TIRF)-based single-molecule detection, with Cy3 indicating the presence of hAAG and Cy5 indicating the presence of UDG. This strategy greatly increases the number of fluorescent molecules per concatemer through the introduction of RCA-driven encoding of different fluorescent molecules, without the requirement of any specially labeled detection probes for simultaneous detection. Due to the high amplification efficiency of RCA and the high signal-to-ratio of single-molecule detection, this method can achieve a detection limit of 6.10 × 10-9 U mL-1 for hAAG and 1.54 × 10-9 U mL-1 for UDG. It can be further applied for simultaneous detection of multiple DNA glycosylases in cancer cells at the single-cell level and the screening of DNA glycosylase inhibitors, holding great potential in early clinical diagnosis and drug discovery.
Collapse
Affiliation(s)
- Chen-Chen Li
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531-86186033
| | - Hui-Yan Chen
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531-86186033
| | - Juan Hu
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531-86186033
| | - Chun-Yang Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan 250014 , China . ; ; ; Tel: +86 0531-86186033
| |
Collapse
|
6
|
Gao W, Xu J, Lian G, Wang X, Gong X, Zhou D, Chang J. A novel analytical principle using AP site-mediated T7 RNA polymerase transcription regulation for sensing uracil-DNA glycosylase activity. Analyst 2020; 145:4321-4327. [DOI: 10.1039/d0an00509f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
udgactivity could regulateT7 RNApolymerase transcription ability by the heteroduplex substrates with chemical modifications.
Collapse
Affiliation(s)
- Weichen Gao
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Jin Xu
- Tianjin Hospital
- Tianjin 300211
- China
| | - Guowei Lian
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Xiaojun Wang
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Xiaoqun Gong
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| | - Dianming Zhou
- Department of Toxicology
- Tianjin Centers for Disease Control and Prevention
- Tianjin 300011
- China
| | - Jin Chang
- School of Life Sciences
- Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin)
- Tianjin 300072
- China
| |
Collapse
|
7
|
Wilson DL, Kool ET. Ultrafast Oxime Formation Enables Efficient Fluorescence Light-up Measurement of DNA Base Excision. J Am Chem Soc 2019; 141:19379-19388. [PMID: 31774658 DOI: 10.1021/jacs.9b09812] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
DNA glycosylases constitute a biologically and biomedically important group of DNA repair enzymes responsible for initiating base excision repair (BER). Measuring their activities can be useful for studying the mechanisms DNA damage and repair and for practical applications in cancer diagnosis and drug screening. Previous fluorescence methods for assaying DNA glycosylases are often complex and/or limited in scope to a single enzyme type. Here we report a universal base excision reporter (UBER) fluorescence probe design that implements an unprecedentedly rapid oxime reaction (>150 M-1 s-1) with high specificity for the abasic (AP) site of DNA. The molecular rotor design achieves a robust >250-500-fold increase in fluorescence upon reaction with AP sites in DNA. By using the fluorescence reporter in concert with specific DNA lesion-containing substrates, the UBER probe can be used in a coupled assay in principle with any DNA glycosylase. We demonstrate the utility of the UBER probe by assaying five different glycosylases in real time as well as profiling glycosylase activity in cell lysates. We anticipate that the UBER probe will be of considerable utility to researchers studying DNA repair biology owing to its high level of generalizability, ease of use, and compatibility with biologically derived samples.
Collapse
Affiliation(s)
- David L Wilson
- Department of Chemistry, Stanford Cancer Institute and ChEM-H Institute , Stanford University , Stanford , California 94305 , United States
| | - Eric T Kool
- Department of Chemistry, Stanford Cancer Institute and ChEM-H Institute , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
8
|
Healing E, Charlier CF, Meira LB, Elliott RM. A panel of colorimetric assays to measure enzymatic activity in the base excision DNA repair pathway. Nucleic Acids Res 2019; 47:e61. [PMID: 30869144 PMCID: PMC6582407 DOI: 10.1093/nar/gkz171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
DNA repair is essential for the maintenance of genomic integrity, and evidence suggest that inter-individual variation in DNA repair efficiency may contribute to disease risk. However, robust assays suitable for quantitative determination of DNA repair capacity in large cohort and clinical trials are needed to evaluate these apparent associations fully. We describe here a set of microplate-based oligonucleotide assays for high-throughput, non-radioactive and quantitative determination of repair enzyme activity at individual steps and over multiple steps of the DNA base excision repair pathway. The assays are highly sensitive: using HepG2 nuclear extract, enzyme activities were quantifiable at concentrations of 0.0002 to 0.181 μg per reaction, depending on the enzyme being measured. Assay coefficients of variation are comparable with other microplate-based assays. The assay format requires no specialist equipment and has the potential to be extended for analysis of a wide range of DNA repair enzyme activities. As such, these assays hold considerable promise for gaining new mechanistic insights into how DNA repair is related to individual genetics, disease status or progression and other environmental factors and investigating whether DNA repair activities can be used a biomarker of disease risk.
Collapse
Affiliation(s)
- Eleanor Healing
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Clara F Charlier
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Lisiane B Meira
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Ruan M Elliott
- Department of Nutritional Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| |
Collapse
|
9
|
Kim Y, Park Y, Lee CY, Park HG. Colorimetric Assay for Uracil DNA Glycosylase Activity Based on Toehold-Mediated Strand Displacement Circuit. Biotechnol J 2019; 15:e1900420. [PMID: 31657505 DOI: 10.1002/biot.201900420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/22/2019] [Indexed: 11/08/2022]
Abstract
Herein, a novel enzyme-free and label-free strategy for colorimetric assay of uracil DNA glycosylase (UDG) activity, which relies on a target-activated toehold-mediated strand displacement (TMSD) circuit is described. The strategy employs a detection duplex probe composed of a uracil-containing strand (US) and a catalyst strand (CS). UDG present in a sample will cleave uracil bases within US and destabilize the detection duplex probe, which then leads to the dissociation of the detection duplex, releasing CS. The free CS promotes the TMSD reaction, consequently liberating a G-quadruplex DNAzyme strand (GS) which is initially caged by a blocker strand (BS). Notably, a fuel strand (FS) is supplemented to recycle the CS to promote another cycle of TMSD reaction. As a consequence, a large number of GSs are activated by UDG activity and a distinct colorimetric signal is produced through the oxidation of ABTS promoted by the peroxidase mimicking activity of the liberated GSs. Based on this design principle, UDG activity down to 0.006 U mL-1 with excellent selectivity is successfully determined. The practical applicability of this assay is also demonstrated by reliably determining UDG activities in human serum.
Collapse
Affiliation(s)
- Youna Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Yeonkyung Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
10
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
11
|
Zhang K, Huang W, Huang Y, Wang K, Zhu X, Xie M. Determination of the activity of uracil-DNA glycosylase by using two-tailed reverse transcription PCR and gold nanoparticle-mediated silver nanocluster fluorescence: a new method for gene therapy-related enzyme detection. Mikrochim Acta 2019; 186:181. [PMID: 30771014 DOI: 10.1007/s00604-019-3307-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Abstract
The authors present a fluorometric method for ultrasensitive determination of the activity of uracil-DNA glycosylase (UDG). It is based on the use of two-tailed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and an entropy-driven reaction. The assay involves the following steps: (1) UDG-driven uracil excision repair, (2) two-tailed RT-qPCR-mediated amplification, (3) RNA polymerase-aided amplification, and (4) DNA-modified silver nanoclusters (AgNCs) as a transducer to produce a fluorescent signal. UDG enables uracil to be removed from U·A pairs in DNA1 and produces a depurinated/depyrimidinated site that is readily cleaved by endonuclease IV (Endo IV). The cleaved DNA contains the T7 RNA polymerase primer for the T7 RNA polymerase amplification which produces a large number of microRNA sequences. Subsequent two-tailed RT-qPCR leads to the formation of a prolonged DNA termed DNA3. The prolonged part of DNA3 is then hybridized with an added DNA4/DNA5 duplex, where DNA5 is labeled with gold nanoparticles (AuNPs), and DNA 4 is labeled with AgNCs. The AuNPs quench the fluorescence of the AgNCs. The duplex has a toehold to hybridize the prolong part of DNA3. This results in the formation of a DNA5/DNA3 duplex due to strand displacement (by replacing the DNA4 in the DNA4/DNA5 duplex). DNA4 is released and moves away from the AuNPs. This results in restored AgNC fluorescence, best measured at excitation/emission wavelengths of 575/635 nm. The method has a detection limit as low as 0.1 mU mL-1 of UDG activity (3σ criterion) with a range of 0.001-0.01 U mL-1. It was used to measure UDG activity in cell lysates. Conceivably, it may be used to screen for UDG inhibitors such as Ugi. Graphical abstract Schematic presentation of the two-tailed RT-qPCR assay platform for ultrasensitive detection of uracil-DNA glycosylase (UDG). Two-tailed RT-qPCR-mediated amplification and RNA polymerase-aided amplification are utilized for signal amplification. DNA-modified silver nanoclusters (AgNCs) are used as a transducer to produce a fluorescent signal.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| | - Wanting Huang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Yue Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Minhao Xie
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| |
Collapse
|
12
|
Xu X, Zhang P, Zhang R, Zhang N, Jiang W. A DNA walker powered by endogenous enzymes for imaging uracil-DNA glycosylase activity in living cells. Chem Commun (Camb) 2019; 55:6026-6029. [DOI: 10.1039/c9cc01912j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A DNA walker powered by endogenous enzymes detects uracil-DNA glycosylase activity in living cells.
Collapse
Affiliation(s)
- Xiaowen Xu
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Pingping Zhang
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Ruiyuan Zhang
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| | - Nan Zhang
- Department of Oncology
- Jinan Central Hospital Affiliated to Shandong University
- 250012 Jinan
- P. R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering
- Shandong University
- 250100 Jinan
- P. R. China
| |
Collapse
|
13
|
Abstract
DNA repair is now understood to play a key role in a variety of disease states, most notably cancer. Tools for studying DNA have typically relied on traditional biochemical methods which are often laborious and indirect. Efforts to study the biology and therapeutic relevance of DNA repair pathways can be limited by such methods. Recently, specific fluorescent probes have been developed to aid in the study of DNA repair. Fluorescent probes offer the advantage of being able to directly assay for DNA repair activity in a simple, mix-and-measure format. This review will summarize the distinct classes of probe designs and their potential utility in varied research and preclinical settings.
Collapse
Affiliation(s)
- David L. Wilson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Ahn JK, Lee CY, Park KS, Park HG. Abasic Site-Assisted Inhibition of Nicking Endonuclease Activity for the Sensitive Determination of Uracil DNA Glycosylase. Biotechnol J 2017; 13:e1700603. [DOI: 10.1002/biot.201700603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/01/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jun Ki Ahn
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering; College of Engineering; Konkuk University; Seoul 05029 Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 + Program); KAIST; 291 Daehak-ro, Yuseong-gu Daejeon 305-701 Republic of Korea
| |
Collapse
|
15
|
Zhu J, Hao Q, Liu Y, Guo Z, Rustam B, Jiang W. Integrating DNA structure switch with branched hairpins for the detection of uracil-DNA glycosylase activity and inhibitor screening. Talanta 2017; 179:51-56. [PMID: 29310268 DOI: 10.1016/j.talanta.2017.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
Abstract
The detection of uracil-DNA glycosylase (UDG) activity is pivotal for its biochemical studies and the development of drugs for UDG-related diseases. Here, we explored an integrated DNA structure switch for high sensitive detection of UDG activity. The DNA structure switch containing two branched hairpins was employed to recognize UDG enzyme and generate fluorescent signal. Under the action of UDG, one branched hairpin was impelled folding into a close conformation after the excision of the single uracil. This reconfigured hairpin could immediately initiate the polymerization/nicking amplification reaction of another branched hairpin accompanying with the release of numerous G-quadruplexes (G4s). In the absence of UDG, the DNA structure switch kept its original configuration, and thus the subsequent polymerization/nicking reaction was inhibited, resulting in the release of few G4 strands. In this work, Thioflavin T was used as signal reporter to target G4s. By integrating the DNA structure switch, the quick response and high sensitivity for UDG determination was achieved and a low detection limit of 0.0001U/mL was obtained, which was superior to the most fluorescent methods for UDG assay. The repeatability of the as-proposed strategy was demonstrated under the concentration of 0.02U/mL and 0.002U/mL, the relative standard deviation obtained from 5 successive samples were 1.7% and 2.8%, respectively. The integrated DNA structure switch strategy proposed here has the potential application for the study of mechanism and function of UDG enzyme and the screening the inhibitors as potential drugs and biochemical tools.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China; Henan Key Laboratory of Biomolecular Recognition and Sensing, School of Chemistry and Chemical Engineering, Shangqiu Normal University, 476000 Shangqiu, PR China
| | - Qijie Hao
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Yi Liu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Zhaohui Guo
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Buayxigul Rustam
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, PR China.
| |
Collapse
|
16
|
Zhang Y, Li CC, Tang B, Zhang CY. Homogeneously Sensitive Detection of Multiple DNA Glycosylases with Intrinsically Fluorescent Nucleotides. Anal Chem 2017. [PMID: 28621520 DOI: 10.1021/acs.analchem.7b01655] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA glycosylases are responsible for recognition and excision of the damaged bases in the base excision repair pathway, and all mammals express multiple DNA glycosylases to maintain genome stability. However, simultaneous detection of multiple DNA glycosylase still remains a great challenge. Here, we develop a rapid and sensitive fluorescent method for simultaneous detection of human 8-oxoG DNA glycosylase 1 (hOGG1) and uracil DNA glycolase (UDG) using exonuclease-assisted recycling signal amplification in combination with fluorescent bases 2-aminopurine (2-AP) and pyrrolo-dC (P-dC) as the fluorophores. We design a bifunctional DNA probe modified with one 8-oxoG and five uracil bases, which can hybridize with the trigger probes to form a sandwiched DNA substrate for hOGG1 and UDG. In addition, we design 2-AP and P-dC signal probes as the hairpin structures with 2-AP and P-dC in the stems. The presence of hOGG1 and UDG may initiate the signal amplification process by the recycling lambda exonuclease digestion and generates distinct fluorescence signals, with 2-AP indicating the presence of hOGG1 and P-dC indicating the presence of UDG. This method can simultaneously detect multiple DNA glycosylases with the detection limits of 0.0035 U/mL for hOGG1 and 0.0025 U/mL for UDG, and it can even measure DNA glycosylases at the single-cell level. Moreover, this method can be applied for the measurement of enzyme kinetic parameters and the screening of DNA glycosylase inhibitors, holding great potential for further applications in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
17
|
Wang LJ, Ren M, Zhang Q, Tang B, Zhang CY. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase. Anal Chem 2017; 89:4488-4494. [PMID: 28306242 DOI: 10.1021/acs.analchem.6b04673] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uracil-DNA glycosylase (UDG) is an important base excision repair (BER) enzyme responsible for the repair of uracil-induced DNA lesion and the maintenance of genomic integrity, while the aberrant expression of UDG is associated with a variety of cancers. Thus, the accurate detection of UDG activity is essential to biomedical research and clinical diagnosis. Here, we develop a fluorescent method for ultrasensitive detection of UDG activity using excision repair-initiated enzyme-assisted bicyclic cascade signal amplification. This assay involves (1) UDG-actuated uracil-excision repair, (2) excision repair-initiated nicking enzyme-mediated isothermal exponential amplification, (3) ribonuclease H (RNase H)-induced hydrolysis of signal probes for generating fluorescence signal. The presence of UDG enables the removal of uracil from U·A pairs and generates an apurinic/apyrimidinic (AP) site. Endonuclease IV (Endo IV) subsequently cleaves the AP site, resulting in the break of DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate isothermal exponential amplification, producing a large number of triggers. The resultant trigger may selectively hybridize with the signal probe which is modified with FAM and BHQ1, forming a RNA-DNA heterogeneous duplex. The subsequent hydrolysis of RNA-DNA duplex by RNase H leads to the generation of fluorescence signal. This assay exhibits ultrahigh sensitivity with a detection limit of 0.0001 U/mL, and it can even measure UDG activity at the single-cell level. Moreover, this method can be applied for the measurement of kinetic parameters and the screening of inhibitors, thereby providing a powerful tool for DNA repair enzyme-related biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Ming Ren
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Qianyi Zhang
- Nantou High School Shenzhen , Shenzhen, 518052, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University , Jinan 250014, China
| |
Collapse
|
18
|
Wu Y, Yan P, Xu X, Jiang W. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities. Analyst 2017; 141:1789-95. [PMID: 26899234 DOI: 10.1039/c5an02483h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.
Collapse
Affiliation(s)
- Yushu Wu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| | - Ping Yan
- Jinan Maternity and Child Care Hospital, 250001 Jinan, P.R. China.
| | - Xiaowen Xu
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| | - Wei Jiang
- Key Laboratory for Colloid and Interface Chemistry of Education Ministry, school of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China.
| |
Collapse
|
19
|
Kim E, Hong IS. A Novel Approach for the Detection of BER Enzymes by Real-Time PCR. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Euntaek Kim
- Department of Chemistry; Kongju National University; Chungnam 314-701 Republic of Korea
| | - In Seok Hong
- Department of Chemistry; Kongju National University; Chungnam 314-701 Republic of Korea
| |
Collapse
|
20
|
Ma C, Wu K, Liu H, Xia K, Wang K, Wang J. Label-free fluorescence turn-on detection of uracil DNA glycosylase activity based on G-quadruplex formation. Talanta 2016; 160:449-453. [DOI: 10.1016/j.talanta.2016.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 10/21/2022]
|
21
|
Peng L, Fan J, Tong C, Xie Z, Zhao C, Liu X, Zhu Y, Liu B. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo. Biosens Bioelectron 2016; 83:169-76. [DOI: 10.1016/j.bios.2016.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 02/02/2023]
|
22
|
Park KS, Lee CY, Kang KS, Park HG. Aptamer-mediated universal enzyme assay based on target-triggered DNA polymerase activity. Biosens Bioelectron 2016; 88:48-54. [PMID: 27499380 DOI: 10.1016/j.bios.2016.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/18/2022]
Abstract
We herein describe an innovative method for a universal fluorescence turn-on enzyme assay, which relies on the target enzyme-triggered DNA polymerase activity. In the first target recognition step, the target enzyme is designed to destabilize detection probe derived from an aptamer specific to DNA polymerase containing the overhang sequence and the complementary blocker DNA, which consequently leads to the recovery of DNA polymerase activity inhibited by the detection probe. This target-triggered polymerase activity is monitored in the second signal transduction step based on primer extension reaction coupled with TaqMan probe. Utilizing this design principle, we have successfully detected the activities of two model enzymes, exonuclease I and uracil DNA glycosylase with high sensitivity and selectivity. Since this strategy is composed of separated target recognition and signal transduction modules, it could be universally employed for the sensitive determination of numerous different target enzymes by simply redesigning the overhang sequence of detection probe, while keeping TaqMan probe-based signal transduction module as a universal signaling tool.
Collapse
Affiliation(s)
- Ki Soo Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea; Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Kyoung Suk Kang
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| |
Collapse
|
23
|
Xi Q, Li JJ, Du WF, Yu RQ, Jiang JH. A highly sensitive strategy for base excision repair enzyme activity detection based on graphene oxide mediated fluorescence quenching and hybridization chain reaction. Analyst 2016; 141:96-9. [DOI: 10.1039/c5an02255j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a highly sensitive strategy for UDG activity detection by combining HCR amplification and a GO-based fluorescence quenching platform.
Collapse
Affiliation(s)
- Qiang Xi
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jun-Jie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Wen-Fang Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
24
|
Flaender M, Costa G, Nonglaton G, Saint-Pierre C, Gasparutto D. A DNA array based on clickable lesion-containing hairpin probes for multiplexed detection of base excision repair activities. Analyst 2016; 141:6208-6216. [DOI: 10.1039/c6an01165a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An electrophoresis-free fluorescent functional assay has been developed to measure DNA repair activities in a miniaturized and parallelized manner.
Collapse
Affiliation(s)
- Mélanie Flaender
- Université Grenoble Alpes
- INAC – SyMMES/CEA
- F-38000 Grenoble
- France
| | - Guillaume Costa
- Université Grenoble Alpes
- LETI/DTBS-SBSC/CEA
- F-38000 Grenoble
- France
| | | | | | | |
Collapse
|
25
|
Zhao J, Ma Y, Kong R, Zhang L, Yang W, Zhao S. Tungsten disulfide nanosheet and exonuclease III co-assisted amplification strategy for highly sensitive fluorescence polarization detection of DNA glycosylase activity. Anal Chim Acta 2015; 887:216-223. [DOI: 10.1016/j.aca.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
|
26
|
Ma Y, Zhao J, Li X, Zhang L, Zhao S. A label free fluorescent assay for uracil-DNA glycosylase activity based on the signal amplification of exonuclease I. RSC Adv 2015. [DOI: 10.1039/c5ra12958c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A label free fluorescent assay for uracil-DNA glycosylase activity was developed based on the signal amplification of exonuclease I.
Collapse
Affiliation(s)
- Yefei Ma
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Jingjin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Xuejun Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Liangliang Zhang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources of Education Ministry
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
27
|
Lee CY, Park KS, Park HG. A fluorescent G-quadruplex probe for the assay of base excision repair enzyme activity. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc05010c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A G-quadruplex probe incorporating 2-AP is utilized to develop a novel strategy to accurately determine UDG activity. The excision reaction promoted by UDG is designed to trigger the formation of G-quadruplex structure with significant fluorescence enhancement of 2-AP within the probe. By employing this strategy, UDG activity can be reliably determined with high sensitivity and specificity.
Collapse
Affiliation(s)
- Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK21 + Program)
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Ki Soo Park
- Department of Chemical and Biomolecular Engineering (BK21 + Program)
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 + Program)
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
28
|
Tao J, Song P, Sato Y, Nishizawa S, Teramae N, Tong A, Xiang Y. A label-free and sensitive fluorescent method for the detection of uracil-DNA glycosylase activity. Chem Commun (Camb) 2015; 51:929-32. [DOI: 10.1039/c4cc06170e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A label-free fluorescent method has been developed for sensitive detection of uracil-DNA glycosylase activity as well as UDG inhibitors.
Collapse
Affiliation(s)
- Jing Tao
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| | - Panshu Song
- National Institute of Metrology
- Beijing 100029
- China
| | - Yusuke Sato
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Seiichi Nishizawa
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Norio Teramae
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai 980-8578
- Japan
| | - Aijun Tong
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| | - Yu Xiang
- Department of Chemistry
- Beijing Key Laboratory for Microanalytical Methods and Instrumentation
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 100084
| |
Collapse
|
29
|
Nie H, Wang W, Li W, Nie Z, Yao S. A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst 2015; 140:2771-7. [DOI: 10.1039/c4an02339k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A simple, colorimetric and smartphone readable method based on the target-triggered formation of G-quadruplex has been developed for uracil-DNA glycosylase detection.
Collapse
Affiliation(s)
- Huaijun Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Wei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- P. R. China
| |
Collapse
|
30
|
Lu YJ, Hu DP, Deng Q, Wang ZY, Huang BH, Fang YX, Zhang K, Wong WL. Sensitive and selective detection of uracil-DNA glycosylase activity with a new pyridinium luminescent switch-on molecular probe. Analyst 2015; 140:5998-6004. [DOI: 10.1039/c5an01158b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new pyridinium-based switch-on molecular probe shows excellent sensitive and selective for luminescent detection of uracil-DNA glycosylase activity.
Collapse
Affiliation(s)
- Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Dong-Ping Hu
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Qiang Deng
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Zheng-Ya Wang
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Bao-Hua Huang
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Yan-Xiong Fang
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Kun Zhang
- Institute of Natural Medicine and Green Chemistry
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P.R. China
| | - Wing-Leung Wong
- Department of Science and Environmental Studies
- Centre for Education in Environmental Sustainability
- The Hong Kong Institute of Education
- P.R. China
| |
Collapse
|
31
|
Liu X, Chen M, Hou T, Wang X, Liu S, Li F. Label-free colorimetric assay for base excision repair enzyme activity based on nicking enzyme assisted signal amplification. Biosens Bioelectron 2014; 54:598-602. [DOI: 10.1016/j.bios.2013.11.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
|
32
|
Real time monitoring uracil excision using uracil-containing molecular beacons. Anal Chim Acta 2014; 819:71-7. [DOI: 10.1016/j.aca.2014.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
|
33
|
Gines G, Saint-Pierre C, Gasparutto D. A multiplex assay based on encoded microbeads conjugated to DNA NanoBeacons to monitor base excision repair activities by flow cytometry. Biosens Bioelectron 2014; 58:81-4. [PMID: 24632132 DOI: 10.1016/j.bios.2014.02.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 02/07/2023]
Abstract
We reported here a new assay to detect base excision repair activities from purified enzymes, as well as in cell-free extracts. The multiplex format rests upon the encoding of magnetic beads with the fluorophore Alexa 488, thanks to a fast and original procedure. Fluorescently encoded microbeads are subsequently functionalized by lesion-containing DNA NanoBeacons labeled with the fluorophore/quencher pair Cyanine 5/BHQ2. Probes cleavage, induced by targeted enzymes leads to Cyanine 5 signal enhancement, which is finally quantified by flow cytometry. The multiplex assay was applied to the detection of restriction enzymes activities as well as base excision repair processes. Each test requires only 500fmol of DNA substrate, which constitutes great sensitivity compared to other BER functional assays. The present biosensor is able to detect both uracil DNA N-glycosylase (UNG) and AP-endonuclease 1 (APE1) within few nanograms of nuclear extract. Additionally, we demonstrated that the corresponding assay has potential application in DNA repair inhibitor search. Finally, the current multiplexed tool shows several advantages in comparison to other functional BER assays with no need of electrophoretic separation, straightforward, easy and reproducible functionalization of encoded microbeads and a high stability of DNA probes in cell-free extracts.
Collapse
Affiliation(s)
- Guillaume Gines
- Laboratoire des Lésions des Acides Nucléiques, INAC/SCIB UMR_E3 CEA/UJF-Grenoble 1/CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
| | - Christine Saint-Pierre
- Laboratoire des Lésions des Acides Nucléiques, INAC/SCIB UMR_E3 CEA/UJF-Grenoble 1/CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
| | - Didier Gasparutto
- Laboratoire des Lésions des Acides Nucléiques, INAC/SCIB UMR_E3 CEA/UJF-Grenoble 1/CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France.
| |
Collapse
|
34
|
Liu X, Chen M, Hou T, Wang X, Liu S, Li F. A novel electrochemical biosensor for label-free detection of uracil DNA glycosylase activity based on enzyme-catalyzed removal of uracil bases inducing strand release. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.09.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Toga T, Kuraoka I, Yasui A, Iwai S. A transfection reporter for the prevention of false-negative results in molecular beacon experiments. Anal Biochem 2013; 440:9-11. [PMID: 23685051 DOI: 10.1016/j.ab.2013.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Abstract
We previously developed a molecular beacon-type probe to detect the strand scission in cellular base excision repair and found that the phosphodiester linkages in the fluorophore/quencher linkers were cleaved. This reaction was applied to a transfection reporter, which contained the unmodified phosphodiester in the linker to another type of fluorophore. After cotransfection of cells with the probe and the reporter, the signals were used to detect the incision and to confirm the proper transfection, respectively. This method will contribute to the prevention of false-negative results in experiments using molecular beacon-type probes.
Collapse
Affiliation(s)
- Tatsuya Toga
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | | | |
Collapse
|
36
|
Ono T, Edwards SK, Wang S, Jiang W, Kool ET. Monitoring eukaryotic and bacterial UDG repair activity with DNA-multifluorophore sensors. Nucleic Acids Res 2013; 41:e127. [PMID: 23644286 PMCID: PMC3695528 DOI: 10.1093/nar/gkt309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the development of simple fluorogenic probes that report on the activity of both bacterial and mammalian uracil–DNA glycosylase (UDG) enzymes. The probes are built from short, modified single-stranded oligonucleotides containing natural and unnatural bases. The combination of multiple fluorescent pyrene and/or quinacridone nucleobases yields fluorescence at 480 and 540 nm (excitation 340 nm), with large Stokes shifts of 140–200 nm, considerably greater than previous probes. They are strongly quenched by uracil bases incorporated into the sequence, and they yield light-up signals of up to 40-fold, or ratiometric signals with ratio changes of 82-fold, on enzymatic removal of these quenching uracils. We find that the probes are efficient reporters of bacterial UDG, human UNG2, and human SMUG1 enzymes in vitro, yielding complete signals in minutes. Further experiments establish that a probe can be used to image UDG activity by laser confocal microscopy in bacterial cells and in a human cell line, and that signals from a probe signalling UDG activity in human cells can be quantified by flow cytometry. Such probes may prove generally useful both in basic studies of these enzymes and in biomedical applications as well.
Collapse
Affiliation(s)
- Toshikazu Ono
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
37
|
Zhou DM, Xi Q, Liang MF, Chen CH, Tang LJ, Jiang JH. Graphene oxide-hairpin probe nanocomposite as a homogeneous assay platform for DNA base excision repair screening. Biosens Bioelectron 2013; 41:359-65. [DOI: 10.1016/j.bios.2012.08.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
38
|
Leung CH, Zhong HJ, He HZ, Lu L, Chan DSH, Ma DL. Luminescent oligonucleotide-based detection of enzymes involved with DNA repair. Chem Sci 2013. [DOI: 10.1039/c3sc51228b] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
39
|
Kothandapani A, Patrick SM. Evidence for base excision repair processing of DNA interstrand crosslinks. Mutat Res 2012; 743-744:44-52. [PMID: 23219605 DOI: 10.1016/j.mrfmmm.2012.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
40
|
Xiang Y, Lu Y. Expanding targets of DNAzyme-based sensors through deactivation and activation of DNAzymes by single uracil removal: sensitive fluorescent assay of uracil-DNA glycosylase. Anal Chem 2012; 84:9981-7. [PMID: 23072386 PMCID: PMC3511864 DOI: 10.1021/ac302424f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although deoxyribozymes (DNAzymes) have been widely used as biosensors for the detection of their cofactors and the targets of related aptazymes, it is desirable to expand their range of analytes to take advantage of the DNAzyme-based signal amplification for more sensitive detections. In this study, the activity of uracil-DNA glycosylase (UNG) was successfully detected and quantified by deoxyuridine-modified DNAzymes that underwent UNG-dependent deactivation or activation. In one design, the indispensable thymidine T2.1 in the 8-17 DNAzyme was replaced with a deoxyuridine, resulting in minimal change of the DNAzyme's activity. Since UNG is capable of removing uracils from single- or double-stranded DNAs, the modified DNAzyme was deactivated when the uracil at the indispensable thymidine site was eliminated by UNG. In another design, introducing a deoxyuridine to the 3' position of the deoxycytidine C13 in the catalytic core of the same DNAzyme caused significant decrease of the activity. The removal of the interfering deoxyuridine by UNG, however, activated the DNAzyme. By monitoring the activity change of the DNAzymes through the fluorescence enhancement from the DNAzyme-catalyzed cleavage of DNA substrates labeled by a fluorophore and quencher pair, the UNG activity was measured based on UNG-dependent deactivation and activation of the DNAzymes. This method was found to be able to detect UNG activity as low as 0.0034 U/mL. Such a method can be applied to the detection of other nucleotide-modifying enzymes and expand the analyte range of DNAzyme-based biosensors.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
41
|
Nguyen VT, Le DV, Nie C, Zhou DM, Wang YZ, Tang LJ, Jiang JH, Yu RQ. Enzyme-catalyzed assembly of gold nanoparticles for visualized screening of DNA base excision repair. Talanta 2012; 100:303-7. [DOI: 10.1016/j.talanta.2012.07.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 12/01/2022]
|
42
|
Zhang L, Zhao J, Jiang J, Yu R. A target-activated autocatalytic DNAzyme amplification strategy for the assay of base excision repair enzyme activity. Chem Commun (Camb) 2012; 48:8820-2. [PMID: 22836748 DOI: 10.1039/c2cc34531e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Based on a target-activated autocatalytic DNAzyme amplification strategy, novel fluorescence sensing platforms were constructed for highly sensitive and selective assay of base excision repair enzyme activity. By using a rolling circle amplification (RCA)-coupled amplification cascade, an extremely low detection limit (0.002 U mL(-1)) was achieved.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | |
Collapse
|
43
|
Lee SH, Wang S, Kool ET. Templated chemistry for monitoring damage and repair directly in duplex DNA. Chem Commun (Camb) 2012; 48:8069-71. [PMID: 22782065 DOI: 10.1039/c2cc34060g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the fluorogenic detection of the product of base excision repair (an abasic site) in a specific sequence of duplex DNA. This is achieved by DNA-templated chemistry, employing triple helix-forming probes that contain unnatural nucleobases designed to selectively recognize the site of a missing base. Light-up signals of up to 36-fold were documented, and probes could be used to monitor enzymatic removal of a damaged base.
Collapse
Affiliation(s)
- Seoung Ho Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
44
|
Nikiforov TT. Fluorogenic substrates with single fluorophores for nucleic acid-modifying enzymes: design principles and new applications. Anal Biochem 2012; 424:142-8. [PMID: 22387388 DOI: 10.1016/j.ab.2012.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/17/2012] [Accepted: 02/22/2012] [Indexed: 12/13/2022]
Abstract
Nucleic acid-modifying enzymes are widely used in numerous applications. Many of these proteins are also important drug targets. Thus, better assays for the evaluation of their activities are always needed and are continuously being developed. Recently, I reported on a set of assays for several DNA-modifying enzymes (polymerases, endonucleases, and ligase) based on simple, hairpin-type oligonucleotide substrates labeled with a single fluorophore (Anal. Biochem. 412 (2011) 229-236). The present paper reports further studies on the mechanism of action of these substrates. It was assumed that the single fluorophore of these substrates is substantially quenched by stacking onto the terminal base(s) of the duplex, and that any perturbation of that stacking causes an increase in fluorescence. Based on this assumption, substrates of the same type for a variety of additional enzymes were developed and tested. The new assays described herein are for T4 polynucleotide kinase, the DNA repair enzymes uracil-DNA glycosylase (UDG) and formamido-pyrimidine-DNA glycosylase (FPG), 3'-5' exonucleases, and enzymes with template-independent terminal transferase activity such as Taq polymerase. All of these molecules are easy to synthesize, and similar substrates for other enzymes can rapidly be designed based on the principles outlined in this work.
Collapse
|
45
|
Ono T, Wang S, Koo CK, Engstrom L, David SS, Kool ET. Direct fluorescence monitoring of DNA base excision repair. Angew Chem Int Ed Engl 2012; 51:1689-92. [PMID: 22241823 PMCID: PMC3528074 DOI: 10.1002/anie.201108135] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Toshikazu Ono
- Department of Chemistry Stanford University Stanford, CA 94305, USA
| | - Shenliang Wang
- Department of Chemistry Stanford University Stanford, CA 94305, USA
| | - Chi-Kin Koo
- Department of Chemistry Stanford University Stanford, CA 94305, USA
| | - Lisa Engstrom
- Department of Chemistry University of California Davis, CA 95616, USA
| | - Sheila S. David
- Department of Chemistry University of California Davis, CA 95616, USA
| | - Eric T. Kool
- Department of Chemistry Stanford University Stanford, CA 94305, USA
| |
Collapse
|
46
|
Ono T, Wang S, Koo CK, Engstrom L, David SS, Kool ET. Direct Fluorescence Monitoring of DNA Base Excision Repair. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Wright JR, Keffer-Wilkes LC, Dobing SR, Kothe U. Pre-steady-state kinetic analysis of the three Escherichia coli pseudouridine synthases TruB, TruA, and RluA reveals uniformly slow catalysis. RNA (NEW YORK, N.Y.) 2011; 17:2074-84. [PMID: 21998096 PMCID: PMC3222121 DOI: 10.1261/rna.2905811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/29/2011] [Indexed: 05/20/2023]
Abstract
Pseudouridine synthases catalyze formation of the most abundant modification of functional RNAs by site-specifically isomerizing uridines to pseudouridines. While the structure and substrate specificity of these enzymes have been studied in detail, the kinetic and the catalytic mechanism of pseudouridine synthases remain unknown. Here, the first pre-steady-state kinetic analysis of three Escherichia coli pseudouridine synthases is presented. A novel stopped-flow absorbance assay revealed that substrate tRNA binding by TruB takes place in two steps with an overall rate of 6 sec(-1). In order to observe catalysis of pseudouridine formation directly, the traditional tritium release assay was adapted for the quench-flow technique, allowing, for the first time, observation of a single round of pseudouridine formation. Thereby, the single-round rate constant of pseudouridylation (k(Ψ)) by TruB was determined to be 0.5 sec(-1). This rate constant is similar to the k(cat) obtained under multiple-turnover conditions in steady-state experiments, indicating that catalysis is the rate-limiting step for TruB. In order to investigate if pseudouridine synthases are characterized by slow catalysis in general, the rapid kinetic quench-flow analysis was also performed with two other E. coli enzymes, RluA and TruA, which displayed rate constants of pseudouridine formation of 0.7 and 0.35 sec(-1), respectively. Hence, uniformly slow catalysis might be a general feature of pseudouridine synthases that share a conserved catalytic domain and supposedly use the same catalytic mechanism.
Collapse
Affiliation(s)
- Jaden R. Wright
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Laura C. Keffer-Wilkes
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Selina R. Dobing
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ute Kothe
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
- Corresponding author.E-mail .
| |
Collapse
|
48
|
Yang X, Tong C, Long Y, Liu B. A rapid fluorescence assay for hSMUG1 activity based on modified molecular beacon. Mol Cell Probes 2011; 25:219-21. [PMID: 21933706 DOI: 10.1016/j.mcp.2011.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/25/2022]
Abstract
A new method for assay of hSMUG1 in real-time using molecular beacon is reported. hSMUG1 could be detected linearly in the range from 0.67 nM to 10.05 nM and the detection limit is 0.168 nM. In addition, this method was applied to detect the activity of hSMUG1 in tumor cells and study kinetics. The probe with low background signal has been shown to be suitable for the real-time monitoring of hSMUG1 activity, making this a promising method of high-throughput clinical sample analysis.
Collapse
Affiliation(s)
- Xue Yang
- College of Biology, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Hu D, Huang Z, Pu F, Ren J, Qu X. A label-free, quadruplex-based functional molecular beacon (LFG4-MB) for fluorescence turn-on detection of DNA and nuclease. Chemistry 2011; 17:1635-41. [PMID: 21268166 DOI: 10.1002/chem.201001331] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/18/2010] [Indexed: 01/15/2023]
Abstract
We demonstrate a novel concept for the construction of a label-free, quadruplex-based functional molecular beacon (LFG4-MB) by using G-quadruplex motif as a substitute for Watson-Crick base pairing in the MB stem and a specific G-quadruplex binder, N-methyl mesoporphyrin IX (NMM) as a reporter. It shows high sensitivity in assays for UDG activity/inhibition and detection of DNA sequence based on the unique fluorescence increase that occurs as a result of the strong interaction between NMM and the folded quadruplex upon removal of uracil by UDG or displacement of block sequence by target DNA. The LFG4-MB is simple in design, fast in operation and could be easily transposed to other biological relevant target analysis by simply changing the recognition portion. The LFG4-MB does not require any chemical modification for DNA, which offers the advantages of simplicity and cost efficiency and obviates the possible interference with the affinity and specificity of the MB as well as the kinetic behavior of the catalysts caused by the bulky fluorescent groups. More importantly, the LFG4-MB offers great extent of freedom to tune the experimental conditions for the general applicability in bioanalysis.
Collapse
Affiliation(s)
- Dan Hu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | | | |
Collapse
|
50
|
Shi H, He X, Yang X, Wang K, Wang Q, Guo Q, Huo X. Protein analysis based on molecular beacon probes and biofunctionalized nanoparticles. Sci China Chem 2010; 53:704-719. [PMID: 32214997 PMCID: PMC7088759 DOI: 10.1007/s11426-010-0110-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 02/07/2010] [Indexed: 01/10/2023]
Abstract
With the completion of the human genome-sequencing project, there has been a resulting change in the focus of studies from genomics to proteomics. By utilizing the inherent advantages of molecular beacon probes and biofunctionalized nanoparticles, a series of novel principles, methods and techniques have been exploited for bioanalytical and biomedical studies. This review mainly discusses the applications of molecular beacon probes and biofunctionalized nanoparticles-based technologies for real-time, in-situ, highly sensitive and highly selective protein analysis, including the nonspecific or specific protein detection and separation, protein/DNA interaction studies, cell surface protein recognition, and antigen-antibody binding process-based bacteria assays. The introduction of molecular beacon probes and biofunctionalized nanoparticles into the protein analysis area would necessarily advance the proteomics research.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 China
- College of Chemistry and Chemical Engineering, Biomedical Engineering Center, Hunan University, Changsha, 410082 China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082 China
| | - XiaoXiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 China
- College of Chemistry and Chemical Engineering, Biomedical Engineering Center, Hunan University, Changsha, 410082 China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082 China
| | - XiaoHai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 China
- College of Chemistry and Chemical Engineering, Biomedical Engineering Center, Hunan University, Changsha, 410082 China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082 China
| | - KeMin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 China
- College of Chemistry and Chemical Engineering, Biomedical Engineering Center, Hunan University, Changsha, 410082 China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082 China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 China
- College of Chemistry and Chemical Engineering, Biomedical Engineering Center, Hunan University, Changsha, 410082 China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082 China
| | - QiuPing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 China
- College of Chemistry and Chemical Engineering, Biomedical Engineering Center, Hunan University, Changsha, 410082 China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082 China
| | - XiQin Huo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 China
- College of Chemistry and Chemical Engineering, Biomedical Engineering Center, Hunan University, Changsha, 410082 China
- Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082 China
| |
Collapse
|