1
|
Li W, Wang S, Zong H, Li J, Zhou Y, Wang Z. Enzyme-Powered, Label-Free DNA Walker for Uracil-DNA Glycosylase Detection at Single-Cell Level. Chem Asian J 2024; 19:e202400608. [PMID: 38949517 DOI: 10.1002/asia.202400608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Uracil-DNA glycosylase (UDG) plays a crucial role in the removal of damaged uracil bases, thereby upholding genetic stability and integrity. An enzyme-powered, label-free DNA walker was devised for UDG activity detection. Initially, a label-free DNA track, incorporating a gold nanoparticle (AuNP), multiple hairpin structures, and various swing arms, was engineered for walking mechanism. The hairpin structure was meticulously crafted to include a G-quadruplex sequence, enabling the generation of a label-free fluorescence signal. The swing arm remained inert in the absence of UDG, but became activated upon the introduction of UDG, thereby initiating the enzyme-powered walking process and generating significant dissociative G-quadruplex sequences. By integrating a selective fluorescent dye into the design, an enhanced label-free fluorescence response was achieved. The proposed DNA walker presented a direct and label-free approach for UDG detection, demonstrating exceptional sensitivity with a detection limit of 0.00004 U/mL. Using the uracil glycosylase inhibitor (UGI) as an inhibitory model, inhibitor assay was conducted with satisfactory precision. Furthermore, successful analysis of cellular UDG at the single-cell level was accomplished. Consequently, the developed DNA walker serves as a label-free, selective, and sensitive tool for UDG activity assessment, showing great potential for applications in disease diagnosis, inhibitor screening, and biomedical investigations.
Collapse
Affiliation(s)
- Wei Li
- Institute of Rural Revitalization, Institute of Medicine and Health Care, Dezhou University, 253023, Dezhou, China
| | - Shuaijing Wang
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Haotian Zong
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Jiayue Li
- College of Pharmaceutical Science, Hebei University, 071002, Baoding, China
| | - Yi Zhou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Zhenguang Wang
- College of Chemistry and Environmental Science, Hebei University, 071002, Baoding, China
| |
Collapse
|
2
|
Islam T, Shim G, Melton D, Lewis CD, Lei Z, Gates KS. Ultrafast Reaction of the Drug Hydralazine with Apurinic/Apyrimidinic Sites in DNA Gives Rise to a Stable Triazolo[3,4- a]phthalazine Adduct. Chem Res Toxicol 2024; 37:1023-1034. [PMID: 38743824 DOI: 10.1021/acs.chemrestox.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The clinically used antihypertensive agent hydralazine rapidly generates hydrazone-derived adducts by reaction with apurinic/apyrimidinic (also known as abasic or AP) sites in many different sequences of duplex DNA. The reaction rates are comparable to those of some AP-trapping reagents previously described as "ultrafast." Initially, reversible formation of a hydrazone adduct is followed by an oxidative cyclization reaction that generates a chemically stable triazolo[3,4-a]phthalazine adduct. The net result is that the reaction of hydralazine with AP sites in duplex DNA yields a rapid and irreversible adduct formation. Although the hydrazone and triazolo[3,4-a]phthalazine adducts differ by only two mass units, it was possible to use MALDI-TOF-MS and ESI-QTOF-nanospray-MS to quantitatively characterize mixtures of these adducts by deconvolution of overlapping isotope envelopes. Reactions of hydralazine with the endogenous ketone pyruvate do not prevent the formation of the hydralazine-AP adducts, providing further evidence that these adducts have the potential to form in cellular DNA. AP sites are ubiquitous in cellular DNA, and rapid, irreversible adduct formation by hydralazine could be relevant to the pathogenesis of systemic drug-induced lupus erythematosus experienced by some patients. Finally, hydralazine might be developed as a probe for the detection of AP sites, the study of cellular BER, and marking the location of AP sites in DNA-sequencing analyses.
Collapse
Affiliation(s)
- Tanhaul Islam
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Garam Shim
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Douglas Melton
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Calvin D Lewis
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Zhentian Lei
- University of Missouri, MU Metabolomics Center, 240f Christopher S. Bond Life Science Center, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Zhao Z, Xie Z, Chen S, Chen M, Wang X, Yi G. A novel biosensor based on tetrahedral DNA nanostructure and terminal deoxynucleotidyl transferase-assisted amplification strategy for fluorescence analysis of uracil-DNA glycosylase activity. Anal Chim Acta 2023; 1271:341432. [PMID: 37328254 DOI: 10.1016/j.aca.2023.341432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Tetrahedral DNA nanostructure (TDN), as a classical bionanomaterial, which not only has excellent structural stability and rigidity, but also possesses high programmability due to strict base-pairs complementation, is widely used in various biosensing and bioanalysis fields. In this study, we first constructed a novel biosensor based on Uracil DNA glycosylase (UDG) -triggered collapse of TDN and terminal deoxynucleotidyl transferase (TDT)-induced insertion of copper nanoparticles (CuNPs) for fluorescence and visual analysis of UDG activity. In the presence of the target enzyme UDG, the uracil base modified on the TDN were specifically identified and removed to produce an abasic site (AP site). Endonuclease IV (Endo.IV) could cleave the AP site, making the TDN collapse and generating 3'-hydroxy (3'-OH), which were then elongated under the assistance of TDT to produce poly (T) sequences. Finally, Copper (II) sulfate (Cu2+) and l-Ascorbic acid (AA) were added to form CuNPs using poly (T) sequences as templates (T-CuNPs), resulting in a strong fluorescence signal. This method exhibited good selectivity and high sensitivity with a detection limit of 8.6 × 10-5 U/mL. Moreover, the strategy has been successfully applied to the screening of UDG inhibitors and the detection of UDG activity in complex cell lysates, which means that it has promising applications in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Zixin Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zuowei Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Siyi Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Min Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xingyu Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Yi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Zhong W, Sczepanski JT. Chimeric d/l-DNA Probes of Base Excision Repair Enable Real-Time Monitoring of Thymine DNA Glycosylase Activity in Live Cells. J Am Chem Soc 2023; 145:17066-17074. [PMID: 37493592 PMCID: PMC10416308 DOI: 10.1021/jacs.3c03010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 07/27/2023]
Abstract
The base excision repair (BER) pathway is a frontline defender of genomic integrity and plays a central role in epigenetic regulation through its involvement in the erasure of 5-methylcytosine. This biological and clinical significance has led to a demand for analytical methods capable of monitoring BER activities, especially in living cells. Unfortunately, prevailing methods, which are primarily derived from nucleic acids, are mostly incompatible with intracellular use due to their susceptibility to nuclease degradation and other off-target interactions. These limitations preclude important biological studies of BER enzymes and many clinical applications. Herein, we report a straightforward approach for constructing biostable BER probes using a unique chimeric d/l-DNA architecture that exploits the bioorthogonal properties of mirror-image l-DNA. We show that chimeric BER probes have excellent stability within living cells, where they were successfully employed to monitor relative BER activity, evaluate the efficiency of small molecule BER inhibitors, and study enzyme mutants. Notably, we report the first example of a fluorescent probe for real-time monitoring of thymine DNA glycosylase (TDG)-mediated BER of 5-formylcytosine and 5-carboxylcytosine in living cells, providing a much-needed tool for studying DNA (de)methylation biology. Chimeric probes offer a robust and highly generalizable approach for real-time monitoring of BER activity in living cells, which should enable a broad spectrum of basic research and clinical applications.
Collapse
Affiliation(s)
- Wenrui Zhong
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Jonathan T. Sczepanski
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
5
|
Cheng X, Song H, Ren D, Gao M, Xia X, Yu P, Bian X. Rolling circle transcription and CRISPR/Cas12a-assisted versatile bicyclic cascade amplification assay for sensitive uracil-DNA glycosylase detection. Talanta 2023; 262:124684. [PMID: 37220689 DOI: 10.1016/j.talanta.2023.124684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
Uracil-DNA glycosylase (UDG) is pivotal in maintaining genome integrity and aberrant expressed UDG is highly relevant to numerous diseases. Sensitive and accurate detecting UDG is critically significant for early clinical diagnosis. In this research, we demonstrated a sensitive UDG fluorescent assay based on rolling circle transcription (RCT)/CRISPR/Cas12a-assisted bicyclic cascade amplification strategy. Target UDG catalyzed to remove uracil base of DNA dumbbell-shape substrate probe (SubUDG) to produce an apurinic/apyrimidinic (AP) site, at which SubUDG was cleaved by apurinic/apyrimidinic endonuclease (APE1) subsequently. The exposed 5'-PO4 was ligated with the free 3'-OH terminus to form an enclosed DNA dumbbell-shape substrate probe (E-SubUDG). E-SubUDG functioned as a template can actuate T7 RNA polymerase-mediated RCT signal amplification, generating multitudes of crRNA repeats. The resultant Cas12a/crRNA/activator ternary complex activated the activity of Cas12a, causing a significantly enhanced fluorescence output. In this bicyclic cascade strategy, target UDG was amplified via RCT and CRISPR/Cas12a, and the whole reaction was completed without complex procedures. This method enabled sensitive and specific monitor UDG down to 0.0005 U/mL, screen corresponding inhibitors, and analyze endogenous UDG in A549 cells at single-cell level. Importantly, this assay can be extended to analyze other DNA glycosylase (hAAG and Fpg) by altering the recognition site in DNA substrates probe rationally, thereby offering a potent tool for DNA glycosylase-associated clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Xia Cheng
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huahua Song
- Experimental Nuclear Medicine Laboratory, Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Ren
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Mingcong Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Baljinnyam T, Conrad JW, Sowers ML, Chang-Gu B, Herring JL, Hackfeld LC, Zhang K, Sowers LC. Characterization of a Novel Thermostable DNA Lyase Used To Prepare DNA for Next-Generation Sequencing. Chem Res Toxicol 2023; 36:162-176. [PMID: 36647573 PMCID: PMC9945173 DOI: 10.1021/acs.chemrestox.2c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recently, we constructed a hybrid thymine DNA glycosylase (hyTDG) by linking a 29-amino acid sequence from the human thymine DNA glycosylase with the catalytic domain of DNA mismatch glycosylase (MIG) from M. thermoautotrophicum, increasing the overall activity of the glycosylase. Previously, it was shown that a tyrosine to lysine (Y126K) mutation in the catalytic site of MIG could convert the glycosylase activity to a lyase activity. We made the corresponding mutation to our hyTDG to create a hyTDG-lyase (Y163K). Here, we report that the hybrid mutant has robust lyase activity, has activity over a broad temperature range, and is active under multiple buffer conditions. The hyTDG-lyase cleaves an abasic site similar to endonuclease III (Endo III). In the presence of β-mercaptoethanol (β-ME), the abasic site unsaturated aldehyde forms a β-ME adduct. The hyTDG-lyase maintains its preference for cleaving opposite G, as with the hyTDG glycosylase, and the hyTDG-lyase and hyTDG glycosylase can function in tandem to cleave T:G mismatches. The hyTDG-lyase described here should be a valuable tool in studies examining DNA damage and repair. Future studies will utilize these enzymes to quantify T:G mispairs in cells, tissues, and genomic DNA using next-generation sequencing.
Collapse
Affiliation(s)
- Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - James W Conrad
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Mark L Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States.,MD-PhD Combined Degree Program University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Bruce Chang-Gu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States.,MD-PhD Combined Degree Program University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Jason L Herring
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Linda C Hackfeld
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States.,Department of Internal Medicine, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas77555, United States
| |
Collapse
|
7
|
Cheng X, Xia X, Ren D, Chen Q, Xu G, Wei F, Yang J, Wang L, Hu Q, Zou J, Cen Y. Programmable CRISPR-Cas12a and self-recruiting crRNA assisted dual biosensing platform for simultaneous detection of lung cancer biomarkers hOGG1 and FEN1. Anal Chim Acta 2023; 1240:340748. [PMID: 36641157 DOI: 10.1016/j.aca.2022.340748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) and flap endonuclease 1 (FEN1) are recognized as potential biomarkers in lung cancer investigations. Developing analytical platforms of simultaneously targeting hOGG1 and FEN1 with high selectivity, sensitivity, especially programmability and universality is highly valuable for clinical research. Herein, we established a signal-amplified platform for simultaneously detecting hOGG1 and FEN1 on the basis of cleavage-induced ligation of DNA dumbbell probes, rolling circle transcription (RCT) and CRISPR-Cas12a. A hOGG1 cleavable site and FEN1 cleavable flap were dexterously designed at the 5' end of DNA flapped dumbbell probes (FDP) for hOGG1 and FEN1. After cleavage, the resulting nick sites with juxtaposition of 5' phosphate and 3' hydroxyl terminus could be linked to closed DNA dumbbell probes (CDP) by DNA ligase. The CDP served as a template for RCT, producing plentiful crRNA repeats to activate the trans-cleavage activity of CRISPR-Cas12a which could cleave fluorophores (TAMRA and FAM) and quenchers (BHQ2 and BHQ1) double-labeled ssDNA reporters. Then, hOGG1 and FEN1 could be detected by the recovered fluorescence signal, allowing for the highly sensitive calculated detection limits of 0.0013 and 0.0052 U/mL, respectively. Additionally, this method made it possible to evaluate the inhibitory effects, even to measure hOGG1 and FEN1 activities at the single-cell level. This novel target enzyme-initiated, circles-transcription without promoters, real-time generation, and self-assembly features of FDP-RCT-Cas12a system suppressed nonspecific background remarkably and relieved rigorous requirement of protospacer adjacent motif site. Hence, the universality of FDP-RCT-Cas12a system toward various disease-related non-nucleic acid targets which are tested without using aptamers was extremely improved.
Collapse
Affiliation(s)
- Xia Cheng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Dandan Ren
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qiutong Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Lin Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China.
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China.
| |
Collapse
|
8
|
Xu W, Tang J, Zhao L. DNA-protein cross-links between abasic DNA damage and mitochondrial transcription factor A (TFAM). Nucleic Acids Res 2023; 51:41-53. [PMID: 36583367 PMCID: PMC9841407 DOI: 10.1093/nar/gkac1214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
In higher eukaryotic cells, mitochondria are essential organelles for energy production, metabolism, and signaling. Mitochondrial DNA (mtDNA) encodes 13 protein subunits for oxidative phosphorylation and a set of tRNAs and rRNAs. mtDNA damage, sourced from endogenous chemicals and environmental factors, contributes to mitochondrial genomic instability, which has been associated with various mitochondrial diseases. DNA-protein cross-links (DPCs) are deleterious DNA lesions that threaten genomic integrity. Although much has been learned about the formation and repair of DPCs in the nucleus, little is known about DPCs in mitochondria. Here, we present in vitro and in cellulo data to demonstrate the formation of DPCs between a prevalent abasic (AP) DNA lesion and a DNA-packaging protein, mitochondrial transcription factor A (TFAM). TFAM cleaves AP-DNA and forms DPCs and single-strand breaks (SSB). Lys residues of TFAM are critical for the formation of TFAM-DPC and a reactive 3'-phospho-α,β-unsaturated aldehyde (3'pUA) residue on SSB. The 3'pUA residue reacts with two Cys of TFAM and contributes to the stable TFAM-DPC formation. Glutathione reacts with 3'pUA and competes with TFAM-DPC formation, corroborating our cellular experiments showing the accumulation of TFAM-DPCs under limiting glutathione. Our data point to the involvement of TFAM in AP-DNA turnover and fill a knowledge gap regarding the protein factors in processing damaged mtDNA.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Jin Tang
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Linlin Zhao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Zhang Q, Zhao R, Li CC, Zhang Y, Tang C, Luo X, Ma F, Zhang CY. Construction of an Entropy-Driven Dumbbell-Type DNAzyme Assembly Circuit for Lighting Up Uracil-DNA Glycosylase in Living Cells. Anal Chem 2022; 94:13978-13986. [PMID: 36179339 DOI: 10.1021/acs.analchem.2c03223] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitive monitoring of intracellular uracil-DNA glycosylase (UDG) in living cells is essential to understanding the DNA repair pathways and discovery of anticancer drugs. Herein, we demonstrate the construction of an entropy-driven dumbbell-type DNAzyme assembly circuit for lighting up UDG in living cells via the integration of entropy-driven DNA catalysis (EDC) with the DNAzyme biocatalyst. Target UDG excises the damaged uracil base, causing the breakage of detection probe and the release of trigger. The released trigger can initiate the downstream EDC reaction to form two catalytically active DNAzyme units. The resultant dual Mg2+-DNAzyme units serve as the signal transducers to cyclically cleave the fluorophore/quenched-modified reporters, generating an enhanced fluorescence signal. In contrast to the single-layered EDC method with a linear amplification, the proposed doublet EDC-DNAzyme strategy exhibits high signal gain and achieves a detection limit of 8.71 × 10-6 U/mL. Notably, this assay can be performed in one-step manner at room temperature without the requirement of strict temperature control and complicated reaction procedures, and it can further screen the UDG inhibitors, measure kinetic parameters, and discriminate cancer cells from normal cells. Moreover, this strategy can monitor intracellular UDG activity with improved signal gain, and it may be exploited for sensing and imaging of other types of DNA modifying enzymes with the integration of the corresponding detection substrate, providing a facile and robust approach for biological research studies and clinical diagnosis.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Ran Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chen-Chen Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chunying Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
10
|
Wang L, Zhang H, Chen W, Chen H, Xiao J, Chen X. Recent advances in DNA glycosylase assays. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Zhang Q, Li CC, Ma F, Luo X, Zhang CY. Catalytic single-molecule Förster resonance energy transfer biosensor for uracil-DNA glycosylase detection and cellular imaging. Biosens Bioelectron 2022; 213:114447. [PMID: 35679648 DOI: 10.1016/j.bios.2022.114447] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
Uracil-DNA glycosylase (UDG) is essential to the maintenance of genomic integrity due to its critical role in base excision repair pathway. However, existing UDG assays suffer from laborious procedures, poor specificity, and limited sensitivity. In this research, we construct a catalytic single-molecule Föster resonance energy transfer (FRET) biosensor for in vitro and in vivo biosensing of UDG activity. Target UDG can remove uracil base from the detection probe and cause the cleavage of detection probe by apurinic/apyrimidinic endonuclease (APE1), which exposes its toehold domain and initiates catalytic assembly of two fluorescently labeled hairpin probes via toehold-meditated strand displacement reaction (SDA) to generate abundant DNA duplexes with amplified FRET signal. In this assay, target UDG signal is amplified via enzyme-free catalytic reaction and the whole reaction may be completed in one step, which greatly simplifies the assay procedure, reduces the assay time, and facilitates the cellular imaging. This biosensor enables specific and sensitive measurement of UDG down to 0.00029 U/mL, and it is suitable for analyzing kinetic parameters, screening inhibitors, and even imaging endogenous UDG in live cells. Importantly, this biosensor can visually quantify various DNA repair enzymes by rationally altering DNA substrates.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Chen-Chen Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Xiliang Luo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
12
|
Sun J, Li C, Hu Y, Ding Y, Wu T. A structure change-induced fluorescent biosensor for uracil-DNA glycosylase activity detection based on the substrate preference of Lambda exonuclease. Talanta 2022; 243:123350. [DOI: 10.1016/j.talanta.2022.123350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/03/2023]
|
13
|
Jha JS, Yin J, Haldar T, Wang Y, Gates KS. Reconsidering the Chemical Nature of Strand Breaks Derived from Abasic Sites in Cellular DNA: Evidence for 3'-Glutathionylation. J Am Chem Soc 2022; 144:10471-10482. [PMID: 35612610 DOI: 10.1021/jacs.2c02703] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The hydrolytic loss of coding bases from cellular DNA is a common and unavoidable reaction. The resulting abasic sites can undergo β-elimination of the 3'-phosphoryl group to generate a strand break with an electrophilic α,β-unsaturated aldehyde residue on the 3'-terminus. The work reported here provides evidence that the thiol residue of the cellular tripeptide glutathione rapidly adds to the alkenal group on the 3'-terminus of an AP-derived strand break. The resulting glutathionylated adduct is the only major cleavage product observed when β-elimination occurs at an AP site in the presence of glutathione. Formation of the glutathionylated cleavage product is reversible, but in the presence of physiological concentrations of glutathione, the adduct persists for days. Biochemical experiments provided evidence that the 3'-phosphodiesterase activity of the enzyme apurinic/apyrimidinic endonuclease (APE1) can remove the glutathionylated sugar remnant from an AP-derived strand break to generate the 3'OH residue required for repair via base excision or single-strand break repair pathways. The results suggest that a previously unrecognized 3'glutathionylated sugar remnant─and not the canonical α,β-unsaturated aldehyde end group─may be the true strand cleavage product arising from β-elimination at an abasic site in cellular DNA. This work introduces the 3'glutathionylated cleavage product as the major blocking group that must be trimmed to enable repair of abasic site-derived strand breaks by the base excision repair or single-strand break repair pathways.
Collapse
|
14
|
Sun Y, Zang L, Lu J. Base excision-initiated terminal deoxynucleotide transferase-assisted amplification for simultaneous detection of multiple DNA glycosylases. Anal Bioanal Chem 2022; 414:3319-3327. [DOI: 10.1007/s00216-022-03978-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
15
|
Jha JS, Nel C, Haldar T, Peters D, Housh K, Gates KS. Products Generated by Amine-Catalyzed Strand Cleavage at Apurinic/Apyrimidinic Sites in DNA: New Insights from a Biomimetic Nucleoside Model System. Chem Res Toxicol 2022; 35:203-217. [PMID: 35124963 PMCID: PMC9477562 DOI: 10.1021/acs.chemrestox.1c00408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abasic sites are common in cellular and synthetic DNA. As a result, it is important to characterize the chemical fate of these lesions. Amine-catalyzed strand cleavage at abasic sites in DNA is an important process in which conversion of small amounts of the ring-opened abasic aldehyde residue to an iminium ion facilitates β-elimination of the 3'-phosphoryl group. This reaction generates a trans-α,β-unsaturated iminium ion on the 3'-terminus of the strand break as an obligate intermediate. The canonical product expected from amine-catalyzed cleavage at an AP site is the corresponding trans-α,β-unsaturated aldehyde sugar remnant resulting from hydrolysis of this iminium ion. Interestingly, a handful of studies have reported noncanonical 3'-sugar remnants generated by amine-catalyzed strand cleavage, but the formation and properties of these products are not well-understood. To address this knowledge gap, a nucleoside system was developed that enabled chemical characterization of the sugar remnants generated by amine-catalyzed β-elimination in the 2-deoxyribose system. The results predict that amine-catalyzed strand cleavage at an AP site under physiological conditions has the potential to reversibly generate noncanonical cleavage products including cis-alkenal, 3-thio-2,3-dideoxyribose, and 2-deoxyribose groups alongside the canonical trans-alkenal residue on the 3'-terminus of the strand break. Thus, the model reactions provide evidence that the products generated by amine-catalyzed strand cleavage at abasic sites in cellular DNA may be more complex that commonly thought, with trans-α,β-unsaturated iminium ion intermediates residing at the hub of interconverting product mixtures. The results expand the list of possible 3'-sugar remnants arising from amine-catalyzed cleavage of abasic sites in DNA that must be chemically or enzymatically removed for the completion of base excision repair and single-strand break repair in cells.
Collapse
Affiliation(s)
- Jay S. Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Daniel Peters
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211,University of Missouri, Department of Biochemistry, Columbia, MO 65211,Corresponding Author: Kent S. Gates – Departments of Chemistry and Biochemistry, 125 Chemistry Bldg. University of Missouri, Columbia, MO 65211, United States; Phone: (573) 882-6763;
| |
Collapse
|
16
|
Haldar T, Jha JS, Yang Z, Nel C, Housh K, Cassidy OJ, Gates KS. Unexpected Complexity in the Products Arising from NaOH-, Heat-, Amine-, and Glycosylase-Induced Strand Cleavage at an Abasic Site in DNA. Chem Res Toxicol 2022; 35:218-232. [PMID: 35129338 PMCID: PMC9482271 DOI: 10.1021/acs.chemrestox.1c00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrolytic loss of nucleobases from the deoxyribose backbone of DNA is one of the most common unavoidable types of damage in synthetic and cellular DNA. The reaction generates abasic sites in DNA, and it is important to understand the properties of these lesions. The acidic nature of the α-protons of the ring-opened abasic aldehyde residue facilitates the β-elimination of the 3'-phosphoryl group. This reaction is expected to generate a DNA strand break with a phosphoryl group on the 5'-terminus and a trans-α,β-unsaturated aldehyde residue on the 3'-terminus; however, a handful of studies have identified noncanonical sugar remnants on the 3'-terminus, suggesting that the products arising from strand cleavage at apurinic/apyrimidinic sites in DNA may be more complex than commonly thought. We characterized the strand cleavage induced by the treatment of an abasic site-containing DNA oligonucleotide with heat, NaOH, piperidine, spermine, and the base excision repair glycosylases Fpg and Endo III. The results showed that under multiple conditions, cleavage at an abasic site in a DNA oligomer generated noncanonical sugar remnants including cis-α,β-unsaturated aldehyde, 2-deoxyribose, and 3-thio-2,3-dideoxyribose products on the 3'-terminus of the strand break.
Collapse
Affiliation(s)
- Tuhin Haldar
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Jay S. Jha
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Zhiyu Yang
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Christopher Nel
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kurt Housh
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Orla J. Cassidy
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211,University of Missouri, Department of Biochemistry, Columbia, MO 65211,Address correspondence to Kent S. Gates – Departments of Chemistry and Biochemistry, 125 Chemistry Bldg. University of Missouri, Columbia, MO 65211, United States; ORCHID ID: 0000-0002-4218-7411; Phone: (573) 882-6763;
| |
Collapse
|
17
|
Zhang Q, Zhao S, Tian X, Qiu JG, Zhang CY. Development of a CRISPR-Cas-Based Biosensor for Rapid and Sensitive Detection of 8-Oxoguanine DNA Glycosylase. Anal Chem 2022; 94:2119-2125. [PMID: 35050578 DOI: 10.1021/acs.analchem.1c04453] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
8-Oxoguanine DNA glycosylase is essential for maintaining genomic integrity and stability, while its abnormal activity may lead to the disturbance in the normal DNA damage repair and the occurrence of carcinogenicity and teratogenicity. Herein, we construct a CRISPR-Cas-based biosensor for rapid and sensitive measurement of 8-oxoguanine DNA glycosylases. This biosensor involves a hairpin probe and integrates quadratic strand displacement amplification (SDA) with a CRISPR/Cas12a effector with the characteristics of rapidity (within 40 min) and isothermal assay. The presence of 8-oxoguanine DNA glycosylase can initiate the quadratic SDA to produce large amounts of activators with the assistance of polynucleotide kinase (PNK). Subsequently, the activators can bind with crRNA to activate Cas12a, cleaving signal probes and recovering Cy5 fluorescence, which can be accurately quantified by single-molecule imaging. Notably, the designed hairpin probes can effectively block the hybridization of the generated activators with free hairpin probes, endowing this biosensor with high sensitivity. In addition, the utilization of PNK instead of apurinic/apyrimidinic endonuclease (APE1) greatly simplifies the experimental procedure to only a one-step reaction. The introduction of a single-molecule detection further reduces the sample consumption and improves the sensitivity. This biosensor displays a detection limit of 4.24 × 10-9 U μL-1, and it can accurately quantify cellular human 8-oxoguanine DNA glycosylase at a single-cell level. Furthermore, this biosensor can be applied for the screening of inhibitors, the analysis of kinetic parameters, and the discrimination of cancer cells from normal cells, with potential applications in molecular diagnostic and point-of-care testing.
Collapse
Affiliation(s)
- Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Shuangnan Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiaorui Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
18
|
Wei X, Wang Z, Hinson C, Yang K. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3638-3657. [PMID: 35349719 PMCID: PMC9023300 DOI: 10.1093/nar/gkac185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Caroline Hinson
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kun Yang
- To whom correspondence should be addressed. Tel: +1 512 471 4843;
| |
Collapse
|
19
|
Alexeeva M, Moen MN, Xu XM, Rasmussen A, Leiros I, Kirpekar F, Klungland A, Alsøe L, Nilsen H, Bjelland S. Intrinsic Strand-Incision Activity of Human UNG: Implications for Nick Generation in Immunoglobulin Gene Diversification. Front Immunol 2021; 12:762032. [PMID: 35003074 PMCID: PMC8730318 DOI: 10.3389/fimmu.2021.762032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022] Open
Abstract
Uracil arises in cellular DNA by cytosine (C) deamination and erroneous replicative incorporation of deoxyuridine monophosphate opposite adenine. The former generates C → thymine transition mutations if uracil is not removed by uracil-DNA glycosylase (UDG) and replaced by C by the base excision repair (BER) pathway. The primary human UDG is hUNG. During immunoglobulin gene diversification in activated B cells, targeted cytosine deamination by activation-induced cytidine deaminase followed by uracil excision by hUNG is important for class switch recombination (CSR) and somatic hypermutation by providing the substrate for DNA double-strand breaks and mutagenesis, respectively. However, considerable uncertainty remains regarding the mechanisms leading to DNA incision following uracil excision: based on the general BER scheme, apurinic/apyrimidinic (AP) endonuclease (APE1 and/or APE2) is believed to generate the strand break by incising the AP site generated by hUNG. We report here that hUNG may incise the DNA backbone subsequent to uracil excision resulting in a 3´-α,β-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5´-phosphate. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2´ occurs via the formation of a C1´ enolate intermediate. UIP is removed from the 3´-end by hAPE1. This shows that the first two steps in uracil BER can be performed by hUNG, which might explain the significant residual CSR activity in cells deficient in APE1 and APE2.
Collapse
Affiliation(s)
- Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Marivi Nabong Moen
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Xiang Ming Xu
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Anette Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ingar Leiros
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
- *Correspondence: Svein Bjelland, ; Hilde Nilsen,
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
- *Correspondence: Svein Bjelland, ; Hilde Nilsen,
| |
Collapse
|
20
|
Ouyang Y, Liu Y, Deng Y, He H, Huang J, Ma C, Wang K. Recent advances in biosensor for DNA glycosylase activity detection. Talanta 2021; 239:123144. [PMID: 34923254 DOI: 10.1016/j.talanta.2021.123144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Base excision repair (BER) is vital for maintaining the integrity of the genome under oxidative damage. DNA glycosylase initiates the BER pathway recognizes and excises the mismatched substrate base leading to the apurinic/apyrimidinic site generation, and simultaneously breaks the single-strand DNA. As the aberrant activity of DNA glycosylase is associated with numerous diseases, including cancer, immunodeficiency, and atherosclerosis, the detection of DNA glycosylase is significant from bench to bedside. In this review, we summarized novel DNA strategies in the past five years for DNA glycosylase activity detection, which are classified into fluorescence, colorimetric, electrochemical strategies, etc. We also highlight the current limitations and look into the future of DNA glycosylase activity monitoring.
Collapse
Affiliation(s)
- Yuzhen Ouyang
- School of Life Sciences, Central South University, Changsha, 410013, China; Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yifan Liu
- School of Life Sciences, Central South University, Changsha, 410013, China; Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yuan Deng
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Hailun He
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| |
Collapse
|
21
|
Housh K, Jha JS, Yang Z, Haldar T, Johnson KM, Yin J, Wang Y, Gates KS. Formation and Repair of an Interstrand DNA Cross-Link Arising from a Common Endogenous Lesion. J Am Chem Soc 2021; 143:15344-15357. [PMID: 34516735 DOI: 10.1021/jacs.1c06926] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interstrand DNA cross-links (ICLs) are cytotoxic because they block the strand separation required for read-out and replication of the genetic information in duplex DNA. The unavoidable formation of ICLs in cellular DNA may contribute to aging, neurodegeneration, and cancer. Here, we describe the formation and properties of a structurally complex ICL derived from an apurinic/apyrimidinic (AP) site, which is one of the most common endogenous lesions in cellular DNA. The results characterize a cross-link arising from aza-Michael addition of the N2-amino group of a guanine residue to the electrophilic sugar remnant generated by spermine-mediated strand cleavage at an AP site in duplex DNA. An α,β-unsaturated iminium ion is the critical intermediate involved in ICL formation. Studies employing the bacteriophage φ29 polymerase provided evidence that this ICL can block critical DNA transactions that require strand separation. The results of biochemical studies suggest that this complex strand break/ICL might be repaired by a simple mechanism in which the 3'-exonuclease action of the enzyme apurinic/apyrimidinic endonuclease (APE1) unhooks the cross-link to initiate repair via the single-strand break repair pathway.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Jay S Jha
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Tuhin Haldar
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Kevin M Johnson
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Jiekai Yin
- Department of Chemistry University of California-Riverside Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry University of California-Riverside Riverside, California 92521-0403, United States
| | - Kent S Gates
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States.,University of Missouri Department of Biochemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| |
Collapse
|
22
|
Tan L, Lu J, Wang X, Liu G, Mu X, Hu K, Zhao S, Tian J. A DNAzyme-driven random biped DNA walking nanomachine for sensitive detection of uracil-DNA glycosylase activity. Analyst 2021; 146:5643-5649. [PMID: 34378556 DOI: 10.1039/d1an00440a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly specific and ultrasensitive detection of uracil-DNA glycosylase (UDG) activity is of great significance for maintaining genomic integrity and medical research of related diseases. Here, we constructed a random DNA walking nanomachine based on a DNAzyme for UDG activity detection on the AuNP (Au nanoparticle) surface. When UDG is present, the U bases in the Y structure are removed, resulting in AP sites, which will be cleaved by Endo-IV to generate a 3' concave end for Exo-III, causing the locking strand of the DNAzyme to be completely hydrolyzed by the Exo-III and release the walking strand to randomly pair with the substrate strand on the AuNP surface; then, the walking strand exerts its cleavage activity with the assistance of Mg2+ to cleave the substrate strand and keep the fluorophore 6-carboxyfluorescein (FAM) away from the surface of the AuNP, which restores the fluorescence signal of this system. In this way, sensitive detection of UDG can be realized, and the detection limit is as low as 3.69 × 10-6 U mL-1. In addition, we found that this method is highly specific to UDG and can be used to detect UDG specifically in complex samples, which has certain application prospects in biomedical research and clinical diagnosis related to UDG.
Collapse
Affiliation(s)
- Li Tan
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, China.
| | - Jiangnan Lu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, China.
| | - Xin Wang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, China.
| | - Guang Liu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, China.
| | - Xiaomei Mu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, China.
| | - Kun Hu
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, China.
| | - Shulin Zhao
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, China.
| | - Jianniao Tian
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Science of Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
23
|
Fan L, Liu W, Yang B, Zhang Y, Liu X, Wu X, Ning B, Peng Y, Bai J, Guo L. A highly sensitive method for simultaneous detection of hAAG and UDG activity based on multifunctional dsDNA probes mediated exponential rolling circle amplification. Talanta 2021; 232:122429. [PMID: 34074415 DOI: 10.1016/j.talanta.2021.122429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022]
Abstract
DNA glycosylase is an indispensable DNA damage repair enzyme which can recognize and excise the damaged bases in the DNA base excision-repair pathway. The dysregulation of DNA glycosylase activity will give rise to the dysfunction of base excision-repair and lead to abnormalities and diseases. The simultaneous detection of multiple DNA glycosylases can help to fully understand the normal physiological functions of cells, and determine whether the cells are abnormal in pre-disease. Regrettably, the synchronous detection of functionally similar DNA glycosylases is a great challenge. Herein, we developed a multifunctional dsDNA probe mediated exponential rolling circle amplification (E-RCA) method for the simultaneously sensitive detection of human alkyladenine DNA glycosylase (hAAG) and uracil-DNA glycosylase (UDG). The multifunctional dsDNA probe contains the hypoxanthine sites and the uracil sites which can be recognized by hAAG and UDG respectively to generate apyrimidinic (AP) sites in the dsDNA probe. Then the AP sites will be recognized and cut by endonuclease Ⅳ (Endo IV) to release corresponding single-stranded primer probes. Subsequently, two padlock DNA templates are added to initiate E-RCA to generate multitudinous G-quadruplexes and/or double-stranded dumbbell lock structures, which can combine N-methyl mesoporphyrin IX (NMM) and SYBR Green Ⅰ (SGI) for the generation of respective fluorescent signals. The detection limits are obtained as low as 0.0002 U mL-1 and 0.00001 U mL-1 for hAAG and UDG, respectively. Notably, this method can realize the simultaneous detection of two DNA glycosylases without the use of specially labeled probes. Finally, this method is successfully applied to detect hAAG and UDG activities in the lysates of HeLa cells and Endo1617 cells at single-cell level, and to detect the inhibitors of DNA glycosylases.
Collapse
Affiliation(s)
- Longxing Fan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Wentao Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Boning Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yingchun Zhang
- Nankai University School of Medicine, Nan Kai University, 94 Weijin Road, Tianjin, 300071, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Xiaotao Liu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China
| | - Xinglin Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
24
|
Chang HL, Su KY, Goodman SD, Yen RS, Cheng WC, Yang YC, Lin LI, Chang SY, Fang WH. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair (Amst) 2020; 97:103028. [PMID: 33254084 DOI: 10.1016/j.dnarep.2020.103028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/26/2022]
Abstract
Uracil-DNA glycosylase (UDG) is a highly conserved DNA repair enzyme that acts as a key component in the base excision repair pathway to correct hydrolytic deamination of cytosine making it critical to genome integrity in living organisms. We report here a non-labeled, non-radio-isotopic and very specific method to measure UDG activity. Oligodeoxyribonucleotide duplex containing a site-specific G:U mismatch that is hydrolyzed by UDG then subjected to Matrix Assisted Laser Desorption/Ionization time-of-flight mass spectrometry analysis. A protocol was developed to maintain the AP product in DNA without strand break then the cleavage of uracil was identified by the mass change from uracil substrate to AP product. From UDG kinetic analysis, for G:U substrate the Km is 50 nM, Vmax is 0.98 nM/s and Kcat = 9.31 s-1. The method was applied to uracil glycosylase inhibitor measurement with an IC50 value of 7.6 pM. Single-stranded and double-stranded DNAs with uracil at various positions of the substrates were also tested for UDG activity albeit with different efficiencies. The simple, rapid, quantifiable, scalable and versatile method has potential to be the reference method for monofunctional glycosylase measurement, and can also be used as a tool for glycosylase inhibitors screening.
Collapse
Affiliation(s)
- Hui-Lan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital and the Department of Pediatrics, the Ohio State University, Columbus, OH, USA
| | - Rong-Syuan Yen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wern-Cherng Cheng
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ya-Chien Yang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
25
|
Tian JX, Fang YZ, Yang YX, Wu S, Xiao Q, Kong XJ. A novel fluorescent assay for uracil DNA glycosylase activity built on the 3′–5′ exonuclease activity-based endonuclease IV cyclic signal amplification strategy. NEW J CHEM 2020. [DOI: 10.1039/d0nj04729e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique 3′-5′ exonuclease activity of endonuclease IV to DNA strands has been demonstrated, which enables the development of a novel highly sensitive assay for UDG activity.
Collapse
Affiliation(s)
- Jing-Xuan Tian
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Yan-Zhao Fang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Yi-Xuan Yang
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Shuang Wu
- A Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- P. R. China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Xiang-Juan Kong
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| |
Collapse
|
26
|
Yang F, Li X, Li J, Xiang Y, Yuan R. Target-triggered activation of rolling circle amplification for label-free and sensitive fluorescent uracil-DNA glycosylase activity detection and inhibition. Talanta 2019; 204:812-816. [DOI: 10.1016/j.talanta.2019.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 01/17/2023]
|
27
|
Alexeeva M, Moen MN, Grøsvik K, Tesfahun AN, Xu XM, Muruzábal-Lecumberri I, Olsen KM, Rasmussen A, Ruoff P, Kirpekar F, Klungland A, Bjelland S. Excision of uracil from DNA by hSMUG1 includes strand incision and processing. Nucleic Acids Res 2019; 47:779-793. [PMID: 30496516 PMCID: PMC6344882 DOI: 10.1093/nar/gky1184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Abstract
Uracil arises in DNA by hydrolytic deamination of cytosine (C) and by erroneous incorporation of deoxyuridine monophosphate opposite adenine, where the former event is devastating by generation of C → thymine transitions. The base excision repair (BER) pathway replaces uracil by the correct base. In human cells two uracil-DNA glycosylases (UDGs) initiate BER by excising uracil from DNA; one is hSMUG1 (human single-strand-selective mono-functional UDG). We report that repair initiation by hSMUG1 involves strand incision at the uracil site resulting in a 3′-α,β-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5′-phosphate. UIP is removed from the 3′-end by human apurinic/apyrimidinic (AP) endonuclease 1 preparing for single-nucleotide insertion. hSMUG1 also incises DNA or processes UIP to a 3′-phosphate designated uracil-DNA processing product (UPP). UIP and UPP were indirectly identified and quantified by polyacrylamide gel electrophoresis and chemically characterised by matrix-assisted laser desorption/ionisation time-of-flight mass-spectrometric analysis of DNA from enzyme reactions using 18O- or 16O-water. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2′ occurs via the formation of a C1′ enolate intermediate. A three-phase kinetic model explains rapid uracil excision in phase 1, slow unspecific enzyme adsorption/desorption to DNA in phase 2 and enzyme-dependent AP site incision in phase 3.
Collapse
Affiliation(s)
- Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Marivi N Moen
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway.,Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0372 Oslo, Norway
| | - Kristin Grøsvik
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Almaz N Tesfahun
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Xiang Ming Xu
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Izaskun Muruzábal-Lecumberri
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Kristine M Olsen
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Anette Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, NO-0372 Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0317 Oslo, Norway
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, N-4021 Stavanger, Norway
| |
Collapse
|
28
|
Alsøe L, Sarno A, Carracedo S, Domanska D, Dingler F, Lirussi L, SenGupta T, Tekin NB, Jobert L, Alexandrov LB, Galashevskaya A, Rada C, Sandve GK, Rognes T, Krokan HE, Nilsen H. Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in Mice Lacking UNG and SMUG1. Sci Rep 2017; 7:7199. [PMID: 28775312 PMCID: PMC5543110 DOI: 10.1038/s41598-017-07314-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Both a DNA lesion and an intermediate for antibody maturation, uracil is primarily processed by base excision repair (BER), either initiated by uracil-DNA glycosylase (UNG) or by single-strand selective monofunctional uracil DNA glycosylase (SMUG1). The relative in vivo contributions of each glycosylase remain elusive. To assess the impact of SMUG1 deficiency, we measured uracil and 5-hydroxymethyluracil, another SMUG1 substrate, in Smug1−/− mice. We found that 5-hydroxymethyluracil accumulated in Smug1−/− tissues and correlated with 5-hydroxymethylcytosine levels. The highest increase was found in brain, which contained about 26-fold higher genomic 5-hydroxymethyluracil levels than the wild type. Smug1−/− mice did not accumulate uracil in their genome and Ung−/− mice showed slightly elevated uracil levels. Contrastingly, Ung−/−Smug1−/− mice showed a synergistic increase in uracil levels with up to 25-fold higher uracil levels than wild type. Whole genome sequencing of UNG/SMUG1-deficient tumours revealed that combined UNG and SMUG1 deficiency leads to the accumulation of mutations, primarily C to T transitions within CpG sequences. This unexpected sequence bias suggests that CpG dinucleotides are intrinsically more mutation prone. In conclusion, we showed that SMUG1 efficiently prevent genomic uracil accumulation, even in the presence of UNG, and identified mutational signatures associated with combined UNG and SMUG1 deficiency.
Collapse
Affiliation(s)
- Lene Alsøe
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Liaison Committee for Education, Research and Innovation in Central Norway, Trondheim, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Diana Domanska
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway
| | | | - Lisa Lirussi
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Nuriye Basdag Tekin
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Laure Jobert
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway.,LifeTechnologies AS, Ullernschauseen 52, 0379, Oslo, Norway
| | - Ludmil B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87102, USA
| | - Anastasia Galashevskaya
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, NO-0424, Oslo, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway. .,Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
29
|
Wang J, Pan M, Wei J, Liu X, Wang F. A C-HCR assembly of branched DNA nanostructures for amplified uracil-DNA glycosylase assays. Chem Commun (Camb) 2017; 53:12878-12881. [DOI: 10.1039/c7cc07057h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The amplified and selective detection of uracil-DNA glycosylase was enabled by a two-layered cascaded hybridization chain reaction machinery.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Min Pan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Jie Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- P. R. China
| |
Collapse
|
30
|
Barbier E, Lagorce A, Hachemi A, Dutertre M, Gorlas A, Morand L, Saint-Pierre C, Ravanat JL, Douki T, Armengaud J, Gasparutto D, Confalonieri F, Breton J. Oxidative DNA Damage and Repair in the Radioresistant Archaeon Thermococcus gammatolerans. Chem Res Toxicol 2016; 29:1796-1809. [PMID: 27676238 DOI: 10.1021/acs.chemrestox.6b00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hyperthermophilic archaeon Thermococcus gammatolerans can resist huge doses of γ-irradiation, up to 5.0 kGy, without loss of viability. The potential to withstand such harsh conditions is probably due to complementary passive and active mechanisms, including repair of damaged chromosomes. In this work, we documented the formation and repair of oxidative DNA lesions in T. gammatolerans. The basal level of the oxidized nucleoside, 8-oxo-2'-deoxyguanosine (8-oxo-dGuo), was established at 9.2 (± 0.9) 8-oxo-dGuo per 106 nucleosides, a higher level than those usually measured in eukaryotic cells or bacteria. A significant increase in oxidative damage, i.e., up to 24.2 (± 8.0) 8-oxo-dGuo/106 nucleosides, was measured for T. gammatolerans exposed to a 5.0 kGy dose of γ-rays. Surprisingly, the yield of radiation-induced modifications was lower than those previously observed for human cells exposed to doses corresponding to a few grays. One hour after irradiation, 8-oxo-dGuo levels were significantly reduced, indicating an efficient repair. Two putative base excision repair (BER) enzymes, TGAM_1277 and TGAM_1653, were demonstrated both by proteomics and transcriptomics to be present in the cells without exposure to ionizing radiation. Their transcripts were moderately upregulated after gamma irradiation. After heterologous production and purification of these enzymes, biochemical assays based on electrophoresis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) mass spectrometry indicated that both have a β-elimination cleavage activity. TGAM_1653 repairs 8-oxo-dGuo, whereas TGAM_1277 is also able to remove lesions affecting pyrimidines (1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd)). This work showed that in normal growth conditions or in the presence of a strong oxidative stress, T. gammatolerans has the potential to rapidly reduce the extent of DNA oxidation, with at least these two BER enzymes as bodyguards with distinct substrate ranges.
Collapse
Affiliation(s)
- Ewa Barbier
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Arnaud Lagorce
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France.,University of Perpignan, IHPE - UMR 5244 CNRS/IFREMER/Univ. Montpellier, Montpellier, F-34095, France
| | - Amine Hachemi
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Murielle Dutertre
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Aurore Gorlas
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Lucie Morand
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Christine Saint-Pierre
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Thierry Douki
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Jean Armengaud
- CEA, DSV-Li2D, Laboratory "Innovative Technologies for Detection and Diagnostics", BP 17171, Bagnols-sur-Cèze, F-30207, France
| | - Didier Gasparutto
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| | - Fabrice Confalonieri
- University of Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Jean Breton
- University of Grenoble Alpes, INAC, LCIB , F-38000 Grenoble, France.,CEA, INAC, SyMMES, F-38000 Grenoble, France
| |
Collapse
|
31
|
Wang LJ, Ma F, Tang B, Zhang CY. Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity. Anal Chem 2016; 88:7523-9. [DOI: 10.1021/acs.analchem.6b00664] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Li-juan Wang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Fei Ma
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-yang Zhang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education,
Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
32
|
Talhaoui I, Shafirovich V, Liu Z, Saint-Pierre C, Akishev Z, Matkarimov BT, Gasparutto D, Geacintov NE, Saparbaev M. Oxidatively Generated Guanine(C8)-Thymine(N3) Intrastrand Cross-links in Double-stranded DNA Are Repaired by Base Excision Repair Pathways. J Biol Chem 2015; 290:14610-7. [PMID: 25903131 DOI: 10.1074/jbc.m115.647487] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Oxidatively generated guanine radical cations in DNA can undergo various nucleophilic reactions including the formation of C8-guanine cross-links with adjacent or nearby N3-thymines in DNA in the presence of O2. The G*[C8-N3]T* lesions have been identified in the DNA of human cells exposed to oxidative stress, and are most likely genotoxic if not removed by cellular defense mechanisms. It has been shown that the G*[C8-N3]T* lesions are substrates of nucleotide excision repair in human cell extracts. Cleavage at the sites of the lesions was also observed but not further investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506-2517). Using a panel of eukaryotic and prokaryotic bifunctional DNA glycosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the analysis of cleavage fragments by PAGE and MALDI-TOF/MS show that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on either side of G*, that none of the recovered cleavage fragments contain G*, and that T* is converted to a normal T in the 3'-fragment cleavage products. The abilities of the DNA glycosylases to incise the DNA strand adjacent to G*, while this base is initially cross-linked with T*, is a surprising observation and an indication of the versatility of these base excision repair proteins.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- From the Groupe "Réparation de l'ADN," CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, F-94805 Villejuif Cedex, France
| | | | - Zhi Liu
- the Chemistry Department, New York University, New York, New York 10003-5180
| | | | - Zhiger Akishev
- Department of Molecular Biology and Genetics, Faculty of Biology, al-Farabi Kazakh National University, 530038, Almaty, Kazakhstan
| | - Bakhyt T Matkarimov
- Nazarbayev University Research and Innovation System, Astana 010000, Kazakhstan, and
| | - Didier Gasparutto
- Université Grenoble Alpes, CEA, INAC/SCIB-UMR E3/LAN, F-38000 Grenoble, France
| | | | - Murat Saparbaev
- From the Groupe "Réparation de l'ADN," CNRS UMR8200, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, F-94805 Villejuif Cedex, France,
| |
Collapse
|
33
|
Zhang T, Zhao H, Quan X, Chen S. An electrochemiluminescence sensing for DNA glycosylase assay with enhanced host-guest recognition technique based on α-cyclodextrin functionalized gold/silica cell-shell nanoparticles. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Liu X, Chen M, Hou T, Wang X, Liu S, Li F. A novel electrochemical biosensor for label-free detection of uracil DNA glycosylase activity based on enzyme-catalyzed removal of uracil bases inducing strand release. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.09.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Mullins EA, Rubinson EH, Pereira KN, Calcutt MW, Christov PP, Eichman BF. An HPLC-tandem mass spectrometry method for simultaneous detection of alkylated base excision repair products. Methods 2013; 64:59-66. [PMID: 23876937 DOI: 10.1016/j.ymeth.2013.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022] Open
Abstract
DNA glycosylases excise a broad spectrum of alkylated, oxidized, and deaminated nucleobases from DNA as the initial step in base excision repair. Substrate specificity and base excision activity are typically characterized by monitoring the release of modified nucleobases either from a genomic DNA substrate that has been treated with a modifying agent or from a synthetic oligonucleotide containing a defined lesion of interest. Detection of nucleobases from genomic DNA has traditionally involved HPLC separation and scintillation detection of radiolabeled nucleobases, which in the case of alkylation adducts can be laborious and costly. Here, we describe a mass spectrometry method to simultaneously detect and quantify multiple alkylpurine adducts released from genomic DNA that has been treated with N-methyl-N-nitrosourea (MNU). We illustrate the utility of this method by monitoring the excision of N3-methyladenine (3 mA) and N7-methylguanine (7 mG) by a panel of previously characterized prokaryotic and eukaryotic alkylpurine DNA glycosylases, enabling a comparison of substrate specificity and enzyme activity by various methods. Detailed protocols for these methods, along with preparation of genomic and oligonucleotide alkyl-DNA substrates, are also described.
Collapse
Affiliation(s)
- Elwood A Mullins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
36
|
Nguyen VT, Le DV, Nie C, Zhou DM, Wang YZ, Tang LJ, Jiang JH, Yu RQ. Enzyme-catalyzed assembly of gold nanoparticles for visualized screening of DNA base excision repair. Talanta 2012; 100:303-7. [DOI: 10.1016/j.talanta.2012.07.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 12/01/2022]
|
37
|
Kim CH, Darwanto A, Theruvathu JA, Herring JL, Sowers LC. Polymerase incorporation and miscoding properties of 5-chlorouracil. Chem Res Toxicol 2010; 23:740-8. [PMID: 20104909 DOI: 10.1021/tx900302j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation-mediated hypochlorous acid (HOCl) can damage DNA, DNA precursors, and other biological molecules, thereby producing an array of damage products such as 5-chlorouracil (ClU). In this study, we prepared and studied 5-chloro-2'-deoxyuridine (CldU) and ClU-containing oligonucleotide templates. We demonstrate that human K-562 cells grown in culture with 10 muM CldU incorporate substantial amounts of CldU without significant toxicity. When in the template, ClU residues pair with dATP but also with dGTP, in a pH-dependent manner with incorporation by human polymerase beta, avian myeloblastosis virus reverse transcriptase (AMV-RT), and Escherichia coli Klenow fragment (exo(-)) polymerase. The enhanced miscoding of ClU is attributed to the electron-withdrawing 5-chlorine substituent that promotes the formation of an ionized ClU-G mispair. When mispaired with G, ClU is targeted for removal by human glycosylases. The formation, incorporation, and repair of ClU could promote transition mutations and other forms of heritable DNA damage.
Collapse
Affiliation(s)
- Cherine H Kim
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | | | | | | | | |
Collapse
|