1
|
Jaitham U, Pintakham T, Kyi NEMM, Samar M, Jeeno P, Hongsibsong S, Pata S, Wongta A. Portable Thiocholine-Based Sensor for Monitoring Blood Cholinesterase Activity and Detecting Organophosphate and Carbamate Pesticides Using Personal Glucose Meters. Foods 2025; 14:1136. [PMID: 40238274 PMCID: PMC11988904 DOI: 10.3390/foods14071136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
The widespread use of organophosphate and carbamate pesticides in agriculture poses significant health risks due to their cholinesterase (ChE) inhibitory effects. However, existing detection methods are often expensive and require specialized facilities, limiting their accessibility. This study developed a cost-effective, portable, and sensitive sensor using personal glucose meter (PGM) technology to detect ChE activity in human blood and pesticide residues in vegetables. A thiocholine-based assay was designed to measure ChE activity via PGM, enabling the assessment of enzyme inhibition caused by pesticide exposure. The optimized PGM-based sensor achieved limits of detection (LODs) of 0.138 ppm for mevinphos and 0.113 ppm for carbofuran in standard solutions, with strong correlations (R > 0.99) between standard and fortified samples, indicating high sensitivity and accuracy. The method demonstrated reliable detection of ChE inhibition at pesticide concentrations as low as 0.05 ppm. The developed sensor offers a portable and efficient tool for point-of-care diagnostics, environmental monitoring, and food safety applications. This approach enhances public health protection by enabling accessible pesticide detection. Future work will focus on expanding detection capabilities, improving specificity and stability, and conducting clinical validation for broader applications.
Collapse
Affiliation(s)
- Udomsap Jaitham
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (U.J.); (T.P.); (N.E.M.M.K.); (M.S.); (P.J.); (S.H.)
- Environmental and Occupational Health Sciences Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tipsuda Pintakham
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (U.J.); (T.P.); (N.E.M.M.K.); (M.S.); (P.J.); (S.H.)
- Environmental and Occupational Health Sciences Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nan Ei Moh Moh Kyi
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (U.J.); (T.P.); (N.E.M.M.K.); (M.S.); (P.J.); (S.H.)
| | - Muhammad Samar
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (U.J.); (T.P.); (N.E.M.M.K.); (M.S.); (P.J.); (S.H.)
| | - Peerapong Jeeno
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (U.J.); (T.P.); (N.E.M.M.K.); (M.S.); (P.J.); (S.H.)
- Environmental and Occupational Health Sciences Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surat Hongsibsong
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (U.J.); (T.P.); (N.E.M.M.K.); (M.S.); (P.J.); (S.H.)
- Environmental and Occupational Health Sciences Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supansa Pata
- Department of Medical Technology, Faculty of Associate Medical Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Anurak Wongta
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (U.J.); (T.P.); (N.E.M.M.K.); (M.S.); (P.J.); (S.H.)
- Environmental and Occupational Health Sciences Unit, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Dos Santos Araújo S, Fonseca WT, das Graças Fernandes da Silva MF, Forim MR, Fernandes JB, Censi Faria R. Disposable electrochemical biosensor based on acetylcholinesterase for inhibition assays using a natural substance and plant extracts. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2417-2426. [PMID: 40017448 DOI: 10.1039/d4ay02084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
In general, insects are considered pests in agricultural areas, and their control is essential for high productivity of the cultivated areas. Control of these insects can be achieved by the inhibition of enzymes present in the insect's body. The enzyme acetylcholinesterase (AChE) is present in the neuromuscular junctions of vertebrates and invertebrates, and it is an important target for pest control. Herein, we present the development of a disposable electrochemical biosensor based on AChE (Bio-AChE) to rapidly evaluate the presence of new potential inhibitors in crude extracts of plants. Bio-AChE was constructed by modifying the disposable screen-printed carbon electrode (SPCE) with glutathione-decorated gold nanoparticles on which AChE was covalently immobilized. Electrochemical studies confirm the effective immobilization of the enzyme, and the Bio-AChE was applied to assess the inhibitory activity of azadirachtin, obtained from Azadirachta indica, which is a well-known AChE inhibitor. The proposed biosensor showed excellent results, demonstrating the inhibition activity of azadirachtin against AChE. The crude extracts of Picramnia riedelli, P. ciliata, and Toona ciliata were evaluated with the Bio-AChE, and all showed inhibition percentage values of around 50%. The extracts were evaluated by 1H NMR spectra, which identified classes of natural compounds that could be responsible for the inhibition activity. The proposed disposable Bio-AChE was shown to be a reliable method for simple and rapid screening of new inhibitors in plant extracts, opening an avenue for the screening of new natural products with potential for pest control.
Collapse
Affiliation(s)
- Sean Dos Santos Araújo
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, Sao Carlos, SP, 13565-905, Brazil.
| | - Wilson Tiago Fonseca
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, Sao Carlos, SP, 13565-905, Brazil.
| | | | - Moacir Rossi Forim
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, Sao Carlos, SP, 13565-905, Brazil.
| | - João Batista Fernandes
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, Sao Carlos, SP, 13565-905, Brazil.
| | - Ronaldo Censi Faria
- Department of Chemistry, Federal University of São Carlos-UFSCar, Rod. Washington Luís km 235, Sao Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
3
|
Tao X, Mao Y, Wang A, Zeng Z, Zheng S, Jiang C, Chen SY, Lu H. A purine fluorescent derived probe assay for glyphosate and mesotrione via Schiff base cleavage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125254. [PMID: 39388940 DOI: 10.1016/j.saa.2024.125254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
A fluorescent probe derived from purine with Schiff base moiety was developed for the recognization of glyphosate and mesotrione. The detected glyphosate and mesotrione can lead to the dissociation of the Schiff base probe to enhance the fluorescence via a turn-off PET process. Mechanism study revealed that the synergistic effect of the phosphoric acid and the secondary amine moieties in glyphosate results in the bond cleavage of the Schiff base probe. Quantitative measurements of glyphosate and mesotrione were achieved with the detection limits of 17.2 nM and 484.32 nM, respectively. Meanwhile, the detection of glyphosate pesticide in real samples and cells was also conducted, demonstrating the good practicality and cytocompatibility of the probe.
Collapse
Affiliation(s)
- Xuanzuo Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Yanxia Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Anguan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Zhihong Zeng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China.
| | - Shu-Yang Chen
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China.
| |
Collapse
|
4
|
Loguercio LF, Griep J, Demingos PG, Morawski R, Brolo AG, Andrade GFS, Santos JFL. Enhanced enzymatic electrochemical detection of an organophosphate Pesticide: Achieving Wide linearity and femtomolar detection via gold nanoparticles growth within polypyrrole films. Talanta 2025; 281:126714. [PMID: 39232253 DOI: 10.1016/j.talanta.2024.126714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/06/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
The indiscriminate use of pesticides in agriculture demands the development of devices capable of monitoring contaminations in food supplies, in the environment and biological fluids. Simplicity, easy handling, high sensitivities, and low limits-of-detection (LOD) and quantification are some of the required properties for these devices. In this work, we evaluated the effect of incorporating gold nanoparticles into indigo carmine-doped polypyrrole during the electropolymerization of films for use as an acetylcholinesterase (AChE) enzyme-based biosensor. As proof of concept, the pesticide methyl parathion was tested towards the inhibition of AChE. The enzyme was immobilized simply by drop-casting a solution, eliminating the need for any prior surface modification. The biosensors were characterized with cyclic voltammetry, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The assays for the detection of methyl parathion with films containing polypyrrole, indigo carmine and AChE (PPy-IC-AChE) presented a sensitivity of 5.7 μA cm-2 g-1 mL and a LOD of 12 nmol L-1 (3.0 ng L-1) with a linear range from 1.3 x 10-7 mol L-1 to 1.0 x 10-5 mol L-1. The introduction of gold nanoparticles (AuNP) into the film (PPy-IC-AuNP-AChE) led to remarkable improvements on the overall performance, such as a lower redox potential for the enzymatic reaction, a 145 % increase in sensitivity (14 μA cm-2 g-1 mL), a wider detection dynamic range (from 1.3x10-7 to 1.0x10-3 mol L-1), and a very low LOD of 24 fmol L-1 (64 ag mL-1). These findings underscore the potential of using AuNPs to improve the enzymatic performance of biosensor devices.
Collapse
Affiliation(s)
- Lara F Loguercio
- Laboratório de Materiais Aplicados e Interfaces, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15003, Porto Alegre, RS, Brazil
| | - Jordana Griep
- Laboratório de Materiais Aplicados e Interfaces, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15003, Porto Alegre, RS, Brazil
| | - Pedro G Demingos
- Laboratório de Materiais Aplicados e Interfaces, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15003, Porto Alegre, RS, Brazil
| | - Rodrigo Morawski
- Laboratório de Materiais Aplicados e Interfaces, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15003, Porto Alegre, RS, Brazil
| | - Alexandre G Brolo
- Department of Chemistry and Center for Advanced Materials and Related Technologies, University of Victoria, P.O. Box 3065, Victoria, V8W 3V6, BC, Canada
| | - Gustavo F S Andrade
- Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Dept. de Química, Universidade Federal de Juiz de Fora, CEP 36036-900, Juiz De Fora, MG, Brazil
| | - Jacqueline F L Santos
- Laboratório de Materiais Aplicados e Interfaces, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15003, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Liu Y, Zou L, Niu H, Li Z, Ren H, Zhang X, Liao H, Zhou Z, Zhang X, Huang X, Pan H, Rong S, Ma H. Graphite Phase Carbon Nitride Nanosheets-Based Fluorescent Sensors for Analysis and Detection. Crit Rev Anal Chem 2024:1-13. [PMID: 39589754 DOI: 10.1080/10408347.2024.2431222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Fluorescent sensors reflect information such as the concentration or content of the analysis by interacting with a specific recognition group to change the signal of the fluorophore. It has attracted much attention because of its advantages of high sensitivity, fast detection speed and low cost, and it has become an effective alternative to traditional detection methods. Graphitic phase carbon nitride nanosheets (g-CNNs) are a class of carbon-based fluorescent nanomaterials derived from bulk graphite phase carbon nitride (g-C3N4), which have attracted much attention from scholars because of their advantages of low cost, simple fabrication, high quantum yield, strong stability and nontoxicity. Functional modified g-CNNs can greatly improve the photocatalytic performance. At present, although there have been some researches on fluorescent sensors based on g-CNNs. Nevertheless, there are few reviews about the g-CNNs-based fluorescent sensors. Therefore, in addition to summarizing the sensing mechanism of fluorescent sensors (such as photoinduced electron transfer, fluorescence resonance energy transfer, and intramolecular charge transfer) and the advantages and disadvantages of common signal substances, this paper focused on the application progress of g-CNNs-based fluorescent sensors in the field of analysis and detection.
Collapse
Affiliation(s)
- Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zhiren Zhou
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xueqing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Huang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
6
|
Khampieng T, Kewcharoen K, Parnklang T, Kladsomboon S, Chailapakul O, Apilux A. Bi-enzyme assay coupled with silver nanoplate transformation for insecticide detection. NANOSCALE ADVANCES 2024:d4na00585f. [PMID: 39415772 PMCID: PMC11474407 DOI: 10.1039/d4na00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
A novel colorimetric method utilizing a bi-enzyme assay using silver nanoplates (AgNPls) as a direct signal source was developed to enable rapid insecticide detection. This innovative system leverages the in situ generated H2O2 from the consecutive enzyme-catalyzed reactions of acetylcholine hydrolysis and choline oxidation to introduce oxidative etching of AgNPls, transforming them into aggregated silver nanospheres (AgNSs). The morphological transformation of silver nanoparticles could be observed with the naked eye due to the solution's color shifts from pink-violet to blue-violet. The presence of insecticide, i.e., dichlorvos (DDVP), could inhibit acetylcholinesterase activity, thereby limiting H2O2 production and affecting the transformation of AgNPls into aggregated AgNSs. Furthermore, the extent of AgNPl-to-aggregated AgNS transformation and the subsequent solution's color change was inversely proportional to the amount of DDVP. Under optimal conditions, the developed bi-enzyme assay enables the quantification of DDVP within 5 minutes, achieving detection limits of 0.5 ppm and 0.1 ppm by naked-eye detection and UV-visible spectrophotometry, respectively. Furthermore, the practical application of this assay was validated for detecting insecticides in real vegetable samples, demonstrating both accuracy and reliability.
Collapse
Affiliation(s)
- Thitikan Khampieng
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Kaneenard Kewcharoen
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Tewarak Parnklang
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok Bangkok 10800 Thailand
| | - Sumana Kladsomboon
- Department of Radiological Technology, Faculty of Medical Technology, Mahidol University 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand
| | - Amara Apilux
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya Nakhon Pathom 73170 Thailand
| |
Collapse
|
7
|
Creed IF, Erratt KJ, Henley P, Tsimbiri PF, Bend JR, Shivoga WA, Trick CG. A geo-gender-based analysis of human health: The presence of cut flower farms can attenuate pesticide exposure in African communities, with women being the most vulnerable. J Glob Health 2024; 14:04064. [PMID: 39388685 PMCID: PMC11466503 DOI: 10.7189/jogh.14.04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Background The rapid expansion of the cut flower industry in Africa has led to pervasive use and potential exposure of pesticides, raising concerns for local communities. Whether the risks associated with pesticide applications are localised or have broader implications remains unclear. Methods We measured biomarkers of real and perceived pesticide exposure in two Kenyan communities: Naivasha, where the cut flower industry is present, and Mogotio, where the cut flower industry is absent. We measured real exposure by the percentage of acetylcholinesterase (AChE) inhibition and perceived exposure by assessing hair cortisol levels, a biomarker of stress. Additionally, we conducted a demographic survey to evaluate the health and socioeconomic status of participants, as well as their perceptions of pesticide risks associated with the cut flower industry. Results Perceived pesticide exposure was more common in Naivasha (n = 36, 56%) compared to Mogotio (n = 0, 0%), according to community surveys. However, Mogotio residents had significantly higher mean hair cortisol levels (mean (x̄) = 790 ng/g, standard deviation (SD) = 233) and percentage of AChE inhibition (x̄ = 28.5%, SD = 7.3) compared to Naivasha residents, who had lower mean hair cortisol levels (x̄ = 548 ng/g, SD = 187) and percentage of AChE inhibition (x̄ = 14.5%, SD = 10.1). Location (proximity to cut flower farms) and gender were significant factors influencing pesticide exposure, with individuals living outside the cut flower industrial complexes being at higher risk. Women in both communities were the most vulnerable demographic, showing significantly higher mean hair cortisol levels (x̄ = 646 ng/g, SD = 267.4) and percentage of AChE inhibition (x̄ = 22.5%, SD = 12.4) compared to men hair cortisol levels (x̄ = 558.2 ng/g, SD = 208.2) and percentage of AChE inhibition (x̄ = 10.4%, SD = 13.1). Conclusions A heightened awareness of the potential risks of pesticide exposure was widespread within cut flower industrial complexes. This may have led to a reduction in exposure of both workers and non-workers living within or close to these complexes. In contrast, communities living outside these complexes showed higher levels of exposure, possibly due to limited chemical awareness and a lack of precautionary measures. Despite this contrast between communities, women remained the most vulnerable members, likely due to their socioeconomic roles in African society. Monitoring women's pesticide exposure is crucial for providing an early warning system for community exposure.
Collapse
Affiliation(s)
- Irena F Creed
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kevin J Erratt
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Phaedra Henley
- Center for One Health, University of Global Health Equity, Butaro, Rwanda
| | - Pamela F Tsimbiri
- Department of Reproductive Health, Faculty of Health Sciences, Egerton University, Egerton, Kenya
| | - John R Bend
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, Ontario, Canada
| | - William A. Shivoga
- Department of Biological Sciences, Centre of Excellence for Water and Environment Resources Management (CEWERM), Kakamega, Kenya
| | - Charles G Trick
- Department of Health & Society, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Trache D, Tarchoun AF, Abdelaziz A, Bessa W, Thakur S, Hussin MH, Brosse N, Thakur VK. A comprehensive review on processing, characteristics, and applications of cellulose nanofibrils/graphene hybrid-based nanocomposites: Toward a synergy between two-star nanomaterials. Int J Biol Macromol 2024; 268:131633. [PMID: 38641279 DOI: 10.1016/j.ijbiomac.2024.131633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Nanostructured materials are fascinating since they are promising for intensely enhancing materials' performance, and they can offer multifunctional features. Creating such high-performance nanocomposites via effective and mild approaches is an inevitable requirement for sustainable materials engineering. Nanocomposites, which combine two-star nanomaterials, namely, cellulose nanofibrils (CNFs) and graphene derivatives (GNMs), have recently revealed interesting physicochemical properties and excellent performance. Despite numerous studies on the production and application of such systems, there is still a lack of concise information on their practical uses. In this review, recent progress in the production, modification, properties, and emerging uses of CNFs/GNMs hybrid-based nanocomposites in various fields such as flexible energy harvesting and storage, sensors, adsorbents, packaging, and thermal management, among others, are comprehensively examined and described based on recent investigations. Nevertheless, numerous challenges and gaps need to be addressed to successfully introduce such nanomaterials in large-scale industrial applications. This review will certainly help readers understand the design approaches and potential applications of CNFs/GNMs hybrid-based nanocomposites for which new research directions in this emerging topic are discussed.
Collapse
Affiliation(s)
- Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Ahmed Fouzi Tarchoun
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria.
| | - Amir Abdelaziz
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Wissam Bessa
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland.
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAtériau Bois (LERMAB), Faculté des Sciences et Techniques, Université de Lorraine, Bld. des Aiguillettes, F-54500 Vandœuvre-lès-Nancy, France
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, Edinburgh EH9 3JG, UK
| |
Collapse
|
9
|
Mustafa SK, Khan MF, Sagheer M, Kumar D, Pandey S. Advancements in biosensors for cancer detection: revolutionizing diagnostics. Med Oncol 2024; 41:73. [PMID: 38372827 DOI: 10.1007/s12032-023-02297-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Cancer stands as the reigning champion of life-threatening diseases, casting a shadow with the highest global mortality rate. Unleashing the power of early cancer treatment is a vital weapon in the battle for efficient and positive outcomes. Yet, conventional screening procedures wield limitations of exorbitant costs, time-consuming endeavors, and impracticality for repeated testing. Enter bio-marker-based cancer diagnostics, which emerge as a formidable force in the realm of early detection, disease progression assessment, and ultimate cancer therapy. These remarkable devices boast a reputation for their exceptional sensitivity, streamlined setup requirements, and lightning fast response times. In this study, we embark on a captivating exploration of the most recent advancements and enhancements in the field of electrochemical marvels, targeting the detection of numerous cancer biomarkers. With each breakthrough, we inch closer to a future where cancer's grip on humanity weakens, guided by the promise of personalized treatment and improved patient outcomes. Together, we unravel the mysteries that cancer conceals and illuminate a path toward triumph against this daunting adversary. This study celebrates the relentless pursuit of progress, where electrochemical innovations take center stage in the quest for a world free from the clutches of carcinoma.
Collapse
Affiliation(s)
- Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Zip 71491, Tabuk, Saudi Arabia.
| | - Mohd Farhan Khan
- Faculty of Science, Gagan College of Management & Technology, Aligarh, 202002, India
| | - Mehak Sagheer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sadanand Pandey
- Faculty of Applied Sciences and Biotechnology, School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
10
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
11
|
El-Hussieny M, Abd-El-Maksoud MA, Soliman FM, Fouad MA, El-Ashrey MK. Dual-target ligand discovery for Alzheimer's disease: triphenylphosphoranylidene derivatives as inhibitors of acetylcholinesterase and β-amyloid aggregation. J Enzyme Inhib Med Chem 2023; 38:2166040. [PMID: 36695002 PMCID: PMC9879200 DOI: 10.1080/14756366.2023.2166040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Alzheimer disease (AD) is one of the major neurodegenerative diseases that could not be prevented or completely cured and may lead to death. Here, we target AChE and β-amyloid proteins. Synthesising new triphenylphosphporanylidene derivatives based on the surveyed literature and testing their biological activity revealed promising results especially for the acetyl triphenylphosphoranylidene derivative 8c, which showed good inhibitor activity against AChE enzyme with IC50 in the nanomolar range (97.04 nM); on the other hand, it showed poor selectivity for AChE versus butyrylcholinesterase but with some futural structural modification, this selectivity can be improved. 8c showed MMP-2 IC50 of 724.19 nM and Aβ1-42 aggregation IC50 of 302.36 nM. A kinetic study demonstrated that compound 8c uncompetitively inhibited AChE. Moreover, derivative 8c showed low cytotoxicity, good in vivo behavioural studies including Y-maze and passive avoidance tests with activity similar to that of donepezil. Finally, in silico studies for 8c predict its good penetration into BBB and good binding affinity in the AChE binding site.
Collapse
Affiliation(s)
- Marwa El-Hussieny
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt,Marwa El-Hussieny , Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir), Dokki, P.O. 12622, Giza, Egypt
| | | | - Fouad M. Soliman
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Giza, Egypt
| | - Marwa A. Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt,Pharmaceutical Chemistry Department, School of Pharmacy, NewGiza University, Cairo, Egypt
| | - Mohamed K. El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt,CONTACT Mohamed K. El-Ashrey Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, P.O. 11562, Giza, Egypt
| |
Collapse
|
12
|
Maanaki H, Xu T, Chen G, Du X, Wang J. Development of integrated smartphone/resistive biosensor for on-site rapid environmental monitoring of organophosphate pesticides in food and water. BIOSENSORS & BIOELECTRONICS: X 2023; 15:100402. [PMID: 38124900 PMCID: PMC10732357 DOI: 10.1016/j.biosx.2023.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Organophosphate (OP) pesticides remain a worldwide health concern due to their acute or chronic poisoning and widespread use in agriculture around the world. There is a need for robust and field-deployable tools for onsite detection of OP pesticides in food and water. Herein, we present an integrated smartphone/resistive biosensor for simple, rapid, reagentless, and sensitive monitoring of OP pesticides in food and environmental water. The biosensor leverages the hydrolytic activity of acetylcholinesterase (AChE) to its substrate, acetylcholine (ACh), and unique transport properties of polyaniline nanofibers (PAnNFs) of chitosan/AChE/PAnNF/carbon nanotube (CNT) nanocomposite film on a gold interdigitated electrode. The principle of the sensor relies on OP inhibiting AChE, thus, reducing the rate of ACh hydrolysis and consequently decreasing the rate of protons doping the PAnNFs. Such resulted decrease in conductance of PAnNF can be used to quantify OP pesticides in a sample. A mobile app for the biosensor was developed for analyzing measurement data and displaying and sharing testing results. Under optimal conditions, the biosensor demonstrated a wide linear range (1 ppt-100 ppb) with a low detection limit (0.304 ppt) and high reproducibility (RSD <5%) for Paraoxon-Methyl (PM), a model analyte. Furthermore, the biosensor was successfully applied for analyzing PM spiked food/water samples with an average recovery rate of 98.3% and provided comparable results with liquid chromatography-mass spectrometry. As such, the nanosensing platform provides a promising tool for onsite rapid and sensitive detection of OP pesticides in food and environmental water.
Collapse
Affiliation(s)
- Hussian Maanaki
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- NanoDiagnostic Technology, LLC, Kannapolis, NC, 28081, USA
| | - Terry Xu
- Department of Mechanical Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Guibing Chen
- Center for Excellent in Post-Harvest Technologies, North Carolina A & T State University, NC Research Campus, Kannapolis, NC, 28081, USA
| | - Xiuxia Du
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Center for Environmental Monitoring and Informatics Technologies for Public Health, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jun Wang
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- NanoDiagnostic Technology, LLC, Kannapolis, NC, 28081, USA
- Center for Environmental Monitoring and Informatics Technologies for Public Health, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
13
|
Sowa G, Bednarska AJ, Laskowski R. Effects of agricultural landscape structure and canola coverage on biochemical and physiological traits of the ground beetle Poecilus cupreus. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1141-1151. [PMID: 37755556 PMCID: PMC10684619 DOI: 10.1007/s10646-023-02701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
The intensifications in the agricultural landscape and the application of pesticides can cause adverse effects on the fitness of organisms in that landscape. Here, we investigated whether habitats with different agricultural pressures influenced acetylcholinesterase (AChE) activity - a biomarker for exposure to pesticides, respiration rate, and resistance to starvation in the ground beetle Poecilus cupreus. Two differently structured landscapes were selected for the study, one dominated by small (S) and another by large (L) fields. Within each landscape three habitat types were selected: in the S landscape, these were habitats with medium (M), small (S) and no canola (meadow, 0) coverage (i.e., SM, SS, S0), and in the L landscape habitats with large (L), medium (M) and no canola (meadow, 0) coverage (i.e., LL, LM, L0), representing different levels of agricultural pressure. The activity of AChE was the highest in beetles from canola-free habitats (S0 and L0), being significantly higher than in beetles from the SM and SS habitats. The mean respiration rate corrected for body mass was also the highest in S0 and L0 beetles, with significant differences between populations from L0 vs. SS and from S0 vs. SS. Only beetles from S0, SS, L0, and LM were numerous enough to assess the resistance to starvation. Individuals from the LM habitat showed better survival compared to the canola-free habitat in the same landscape (L0), whereas in S landscape the SS beetles survived worse than those from S0, suggesting that characteristics of L landscape may lead to developing mechanisms of starvation resistance of P. cupreus in response to agricultural pressure.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, A. Mickiewicza 33, 31-120, Kraków, Poland
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
14
|
Chauhan N, Saxena K, Rawal R, Yadav L, Jain U. Advances in surface-enhanced Raman spectroscopy-based sensors for detection of various biomarkers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:32-41. [PMID: 37648087 DOI: 10.1016/j.pbiomolbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) allows the ultrasensitive detection of analytes present in traces or even single molecule levels by the generation of electromagnetic fields. It is a powerful vibrational spectroscopic method that is capable to detect traces of chemical and biological analytes. SERS technique is involved in the extremely sophisticated studies of molecules with high specificity and sensitivity. In the vicinity of nanomaterials decorated surfaces, SERS can monitor extremely low concentrations of analytes in a non-destructive manner with narrow line widths. This review article is focused on some recently developed SERS-based sensors for distinct types of analytes like disease-related biomarkers, organic and inorganic molecules, various toxins, dyes, pesticides, bacteria as well as single molecules. This study aims to enlighten the arising sensing approaches based on the SERS technique. Apart from this, some basics of the SERS technique like their mechanism, detection strategy, and involvement of some specific nanomaterials are also highlighted herein. Finally, the study concluded with some discussion of applications of SERS in various fields like food and environmental analysis.
Collapse
Affiliation(s)
- Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, India
| | - Rachna Rawal
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Lalit Yadav
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, India.
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India.
| |
Collapse
|
15
|
Zeng Z, Yang X, Cao Y, Pu S, Zhou X, Gu R, Zhang Y, Wu C, Luo X, He Y. High-efficiency SERS platform based on 3D porous PPDA@Au NPs as a substrate for the detection of pesticides on vegetables. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4842-4850. [PMID: 37702073 DOI: 10.1039/d3ay00808h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Nowadays, the presence of highly toxic and persistent residues of pesticides in water and food around the world is becoming a serious problem, and so their rapid and sensitive detection is critical to human health. In this work, a 3D composite nanoparticle of porous PDA (polydopamine) microspheres and Au NPs (PPDA@Au NPs) was proposed as a SERS substrate to detect pesticides. Porous PDA as a substrate was first synthesized with F127 (Pluronic F127), dopamine hydrochloride, and 1,3,5-TMB (1,3,5-trimethylbenzene) under weakly alkaline conditions by a one-step method. Then, HAuCl4 was in situ reduced in the pores of PPDA spheres and grew sequentially for effecting the reducibility of PPDA. As a result, uniform 3D PPDA@Au NPs with "hot spots" were successfully synthesized as SERS substrates, which could effectively avoid the agglomeration of gold nanoparticles to greatly improve the sensitivity and uniformity of the SERS platform. At the same time, methyl parathion, 4-chlorophenol, and 2,4-D as representatives of pesticides were detected with the proposed PPDA@Au NP-based SERS platform, with detection limits lower than 7.26, 7.52, and 11 ng mL-1, separately. The current work presents a simple preparation method to prepare sensitive and uniform SERS platform PPDA@Au NPs, which have potential for applications in actual pesticide and drug testing.
Collapse
|
16
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
17
|
Shao Q, Jiang C, Chen X, Wang A, Lu L, Chen L, Lu H. Sensing of organophosphorus pesticides by fluorescent complexes based on purine-hydrazone receptor and copper (II) and its application in living-cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122676. [PMID: 37031483 DOI: 10.1016/j.saa.2023.122676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
In this study, we used purine hydrazone derivatives and coumarin aldehyde to synthesize a novel fluorescent sensor (EDTP) by Schiff base reaction, which exhibited significant selective fluorescence quenching of Cu2+, and a distinct change from brilliant yellow to red is present along with the solution color. The detection limit of EDTP for Cu2+ was 109.52 nM. Job's plot experiment, density flooding theory (DFT) and 1H NMR titration experiments revealed the possible binding mechanism of EDTP to Cu2+, the probe EDTP could achieve highly detection of Cu2+ through forming a 1:1 complex. Additionally, this new fluorescent sensor EDTP-Cu2+ can be further applied in the rapid and selective detection of pesticide residues in solutions. When the EDTP-Cu2+ system was subsequently exposed to organophosphorus pesticides (glyphosate and glufosinate-ammonium), it was observed that the fluorescence was recovered and accompanied by a red to yellow color change. This may be attributed to the strong chelation of glyphosate and glufosinate-ammonium with Cu2+, leading to the dissociation of the EDTP-Cu2+ system and thus triggering the fluorescence recovery effect. The detection limits of the EDTP-Cu2+ system is 2.48 nM for glyphosate and 17.23 nM for glufosinate-ammonium, respectively. Finally, the developed sensor system has been successfully utilized image glyphosate and glufosinate-ammonium fluorescence in living cells. Purine fluorescence probes are a potential fluorescent probe for the detection of metal ions and pesticides due to their good characteristics. This study opens up a new way for the detection of fluorescent probes in pesticides.
Collapse
Affiliation(s)
- Qi Shao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Xu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Anguan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Linchuan Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Liang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 212000 Zhenjiang, China.
| |
Collapse
|
18
|
Yamamoto FY, Onishi K, Ralha TR, Silva LFO, Deda B, Pessali TYC, Souza C, Oliveira Ribeiro CA, Abessa DMS. Earlier biomarkers in fish evidencing stress responses to metal and organic pollution along the Doce River Basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121720. [PMID: 37105459 DOI: 10.1016/j.envpol.2023.121720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
The Doce River Basin (DRB) represents a well-described watershed in terms of contamination by metals, especially after a major environmental disaster of a mining tailing dam failure. Despite the massive mortality of the ichthyofauna, very few studies addressed the risks to the health of wild fish exposed to complex mixtures of pollutants from multiple sources. The present study proposed to investigate earlier responses of fish for assessing the impacts of multiple sources of pollution, considering: different niches of fish and target organs; and the influence of seasonality, associated with their probable sources of pollution. To achieve that, fish were collected along the DRB, and biomarkers responses were assessed in target organs and correlated with the levels of inorganic and organic contaminants. As one of the most prominent responses, fishes from the Upper DRB showed the highest expression of the metallothionein and oxidative stress parameters which were related to the higher levels of metals in this region due to the proximity of mining activities. On the other hand, higher levels of DNA damage and increased AChE activity from fish sampled in the Mid and Lower DRB were more associated with organic contaminants, from other sources of pollution than mining residues. The integrated biomarker responses also revealed seasonal variations, with higher values in fishes from the dry season, and pelagic fish showing greater variation within the seasons. The multivariate analysis integrating suitable biomarkers with chemical data represented an adequate strategy for assessing the ecological risks in the DRB, allowing the identification of distinct spatio-temporal impacts from multiple sources of contaminants. The continued exposure of the ichthyofauna representing future risks reinforces the need for ecological restoration and the protection of the fauna from the Doce River.
Collapse
Affiliation(s)
- F Y Yamamoto
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil.
| | - K Onishi
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil.
| | - T R Ralha
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil.
| | - L F O Silva
- Federal University of Paraná, Curitiba, Brazil.
| | - B Deda
- Federal University of Paraná, Curitiba, Brazil.
| | - T Y C Pessali
- Museum of Natural Sciences PUC Minas, Minas Gerais, Brazil.
| | - C Souza
- Federal University of Paraná, Curitiba, Brazil.
| | | | - D M S Abessa
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil.
| |
Collapse
|
19
|
Keresteš O, Pohanka M. Affordable Portable Platform for Classic Photometry and Low-Cost Determination of Cholinesterase Activity. BIOSENSORS 2023; 13:599. [PMID: 37366964 DOI: 10.3390/bios13060599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Excessive use of pesticides could potentially harm the environment for a long time. The reason for this is that the banned pesticide is still likely to be used incorrectly. Carbofuran and other banned pesticides that remain in the environment may also have a negative effect on human beings. In order to provide a better chance for effective environmental screening, this thesis describes a prototype of a photometer tested with cholinesterase to potentially detect pesticides in the environment. The open-source portable photodetection platform uses a color-programmable red, green and blue light-emitting diode (RGB LED) as a light source and a TSL230R light frequency sensor. Acetylcholinesterase from Electrophorus electricus (AChE) with high similarity to human AChE was used for biorecognition. The Ellman method was selected as a standard method. Two analytical approaches were applied: (1) subtraction of the output values after a certain period of time and (2) comparison of the slope values of the linear trend. The optimal preincubation time for carbofuran with AChE was 7 min. The limits of detection for carbofuran were 6.3 nmol/L for the kinetic assay and 13.5 nmol/L for the endpoint assay. The paper demonstrates that the open alternative for commercial photometry is equivalent. The concept based on the OS3P/OS3P could be used as a large-scale screening system.
Collapse
Affiliation(s)
- Ondřej Keresteš
- Faculty of Military Health Sciences, University of Defence, CZ-50001 Hradec Kralove, Czech Republic
| | - Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, CZ-50001 Hradec Kralove, Czech Republic
| |
Collapse
|
20
|
Anchesi I, Schepici G, Chiricosta L, Gugliandolo A, Salamone S, Caprioglio D, Pollastro F, Mazzon E. Δ 8-THC Induces Up-Regulation of Glutamatergic Pathway Genes in Differentiated SH-SY5Y: A Transcriptomic Study. Int J Mol Sci 2023; 24:ijms24119486. [PMID: 37298437 DOI: 10.3390/ijms24119486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cannabinoids, natural or synthetic, have antidepressant, anxiolytic, anticonvulsant, and anti-psychotic properties. Cannabidiol (CBD) and delta-9-tetrahydrocannabinol (Δ9-THC) are the most studied cannabinoids, but recently, attention has turned towards minor cannabinoids. Delta-8-tetrahydrocannabinol (Δ8-THC), an isomer of Δ9-THC, is a compound for which, to date, there is no evidence of its role in the modulation of synaptic pathways. The aim of our work was to evaluate the effects of Δ8-THC on differentiated SH-SY5Y human neuroblastoma cells. Using next generation sequencing (NGS), we investigated whether Δ8-THC could modify the transcriptomic profile of genes involved in synapse functions. Our results showed that Δ8-THC upregulates the expression of genes involved in the glutamatergic pathway and inhibits gene expression at cholinergic synapses. Conversely, Δ8-THC did not modify the transcriptomic profile of genes involved in the GABAergic and dopaminergic pathways.
Collapse
Affiliation(s)
- Ivan Anchesi
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Giovanni Schepici
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Luigi Chiricosta
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Agnese Gugliandolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Salamone
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Diego Caprioglio
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
- PlantaChem S.r.l.s., Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
21
|
Jimenez-Carretero M, Jabalera Y, Sola-Leyva A, Carrasco-Jimenez MP, Jimenez-Lopez C. Nanoassemblies of acetylcholinesterase and β-lactamase immobilized on magnetic nanoparticles as biosensors to detect pollutants in water. Talanta 2023; 258:124406. [PMID: 36870155 DOI: 10.1016/j.talanta.2023.124406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
The use of enzymes immobilized on magnetic nanoparticles to detect contaminants in aqueous samples has gained interest, since it allows the magnetic control, concentration and reuse of the enzymes. In this work, the detection of trace amounts of organophosphate pesticides (chlorpyrifos) and antibiotics (penicillin G) in water was attained by developing a nanoassembly formed by either inorganic or biomimetic magnetic nanoparticles used as substrates to immobilize acetylcholinesterase (AChE) and β-lactamase (BL). Other than the substrate, the optimization of the nanoassembly was done by testing enzyme immobilization both through electrostatic interaction (also reinforced with glutaraldehyde) and covalent bonds (by carbodiimide chemistry). Temperature (25 °C), ionic strength (150 mM NaCl) and pH (7) were set to ensure enzymatic stability and to allow both the nanoparticles and the enzymes to present ionic charges that would allow electrostatic interaction. Under these conditions, the enzyme load on the nanoparticles was ⁓0.1 mg enzyme per mg nanoparticles, and the preserved activity after immobilization was 50-60% of the specific activity of the free enzyme, being covalent bonding the one which yielded better results. Covalent nanoassemblies could detect trace concentrations of pollutants down to 1.43 nM chlorpyrifos and 0.28 nM penicillin G. They even permitted the quantification of 14.3 μM chlorpyrifos and 2.8 μM penicillin G. Also, immobilization conferred higher stability to AChE (⁓94% activity after 20 days storage at 4 °C) and allowed to reuse the BL up to 12 cycles.
Collapse
Affiliation(s)
| | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071, Granada, Spain; Biosanitary Research Institute Ibs.GRANADA, 18014, Granada, Spain.
| | - Maria P Carrasco-Jimenez
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| | | |
Collapse
|
22
|
Thet Tun WS, Saenchoopa A, Daduang S, Daduang J, Kulchat S, Patramanon R. Electrochemical biosensor based on cellulose nanofibers/graphene oxide and acetylcholinesterase for the detection of chlorpyrifos pesticide in water and fruit juice †. RSC Adv 2023; 13:9603-9614. [PMID: 36968027 PMCID: PMC10038066 DOI: 10.1039/d3ra00512g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
In this work, cellulose nanofibers and graphene oxide are used to fabricate a simple and reliable electrochemical biosensor, based on acetylcholinesterase (AChE) for the detection of highly dangerous organophosphates (OPs), utilizing chlorpyrifos as a representative sample. AChE is an enzyme that is essential for neurotransmission and catalyzes the conversion of acetylcholine (ATCh) into thiocholine and acetic acid. The pesticide used in this work, chlorpyrifos, inhibits the catalytic activity of AChE on ATCh, and this inhibition can be measured using square wave voltammetry (SWV). Utilizing a process of surface modification, layers of cellulose nanofibers, graphene oxide, a chitosan-graphene oxide composite, and acetylcholinesterase (AChE/CS-GO/GO/CNFs) were immobilized on a screen-printed carbon electrode (SPCE). The modified SPCE working electrode was characterized using scanning electron microscopy and graphene oxide trapped in the cellulose nanofibers was found to increase the sensitivity of the biosensor. The modified biosensor demonstrated good performance for detection of chlorpyrifos over a linear range of 25–1000 nM under optimum conditions, and the limits of detection and quantification were 2.2 nM and 73 nM, respectively. Our sophisticated technique might offer a more precise, straightforward, quick, and environmentally friendly way to assess chlorpyrifos contamination in water and juice samples. Cellulose nanofibers and graphene oxide are used to fabricate an electrochemical biosensor based on acetylcholinesterase for detecting organophosphates. This biosensor is simple and reliable, and it utilizes chlorpyrifos as a representative sample of highly dangerous OPs.![]()
Collapse
Affiliation(s)
- Wonn Shweyi Thet Tun
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Apichart Saenchoopa
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Sakda Daduang
- Faculty of Pharmaceutical Sciences, Khon Kaen UniversityKhon Kaen 40002Thailand
| | - Jureerat Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| | - Rina Patramanon
- Department of Biochemistry, Faculty of Science, Khon Kaen UniversityKhon Kaen40002Thailand
| |
Collapse
|
23
|
Tsounidi D, Soulis D, Manoli F, Klinakis A, Tsekenis G. AChE-based electrochemical biosensor for pesticide detection in vegetable oils: matrix effects and synergistic inhibition of the immobilized enzyme. Anal Bioanal Chem 2023; 415:615-625. [PMID: 36445454 PMCID: PMC9839810 DOI: 10.1007/s00216-022-04448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Enzyme-based electrochemical biosensors have been widely deployed for the detection of a range of contaminants in different food products due to their significant advantages over other (bio)sensing techniques. Nevertheless, their performance is greatly affected by the sample matrix itself or by the matrix they are presented with in pretreated samples, both of which can impact the accuracy as well as the sensitivity of the measurements. Therefore, and in order to acquire reliable and accurate measurements, matrix effects and their influence on sensor performance should be taken into consideration. Herein, acetylcholinesterase (AChE)-modified electrochemical sensors were employed for the detection of pesticides in vegetable oils. Sensor interrogation with pretreated oil samples, spiked with carbofuran, revealed the inhibitory potential of the extracted matrix varies between different types of vegetable oil and their fatty acid content. In addition, synergies between the extracted matrix from different types of vegetable oils and the carbamate pesticide, carbofuran, were observed, which led to significant deviations of the sensor's performance from its anticipated behavior in buffered solution. Taking the aforementioned into consideration, appropriate calibration curves for each type of vegetable oil were drafted, which allowed for the highly reproducible determination of different pesticide concentrations in pretreated real samples. Collectively, a better understanding of AChE inhibition by single or multiple contaminants present in vegetable oils was gained, which can find many applications in numerous fields, ranging from sensor development to the design of new pesticides and medicinal products.
Collapse
Affiliation(s)
- Dimitra Tsounidi
- grid.417975.90000 0004 0620 8857Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dionysios Soulis
- grid.417975.90000 0004 0620 8857Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Fotini Manoli
- Minerva SA Edible Oils & Food Enterprises, Athens, Greece
| | - Apostolos Klinakis
- grid.417975.90000 0004 0620 8857Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - George Tsekenis
- grid.417975.90000 0004 0620 8857Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
24
|
Enzymatic inhibitive determination of AB-Fubinaca and AB-Pinaca on screen printed carbon tetratiofulvalene electrodes modified with nanoparticles and carbon nanotubes. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. BIOSENSORS 2022; 12:892. [PMID: 36291028 PMCID: PMC9599941 DOI: 10.3390/bios12100892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/30/2023]
Abstract
In recent years, there has been immense advancement in the development of nanobiosensors as these are a fundamental need of the hour that act as a potential candidate integrated with point-of-care-testing for several applications, such as healthcare, the environment, energy harvesting, electronics, and the food industry. Nanomaterials have an important part in efficiently sensing bioreceptors such as cells, enzymes, and antibodies to develop biosensors with high selectivity, peculiarity, and sensibility. It is virtually impossible in science and technology to perform any application without nanomaterials. Nanomaterials are distinguished from fine particles used for numerous applications as a result of being unique in properties such as electrical, thermal, chemical, optical, mechanical, and physical. The combination of nanostructured materials and biosensors is generally known as nanobiosensor technology. These miniaturized nanobiosensors are revolutionizing the healthcare domain for sensing, monitoring, and diagnosing pathogens, viruses, and bacteria. However, the conventional approach is time-consuming, expensive, laborious, and requires sophisticated instruments with skilled operators. Further, automating and integrating is quite a challenging process. Thus, there is a considerable demand for the development of nanobiosensors that can be used along with the POCT module for testing real samples. Additionally, with the advent of nano/biotechnology and the impact on designing portable ultrasensitive devices, it can be stated that it is probably one of the most capable ways of overcoming the aforementioned problems concerning the cumulative requirement for the development of a rapid, economical, and highly sensible device for analyzing applications within biomedical diagnostics, energy harvesting, the environment, food and water, agriculture, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Department of Research & Development, Renalyx Health Systems (P) Limited, Bengaluru 560004, Karnataka, India
| | - Narasimha H. Ayachit
- Department of Physics, Visvesvaraya Technological University (VTU), Belagavi 590018, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
26
|
Loewenthal D, Kamber D, Bisker G. Monitoring the Activity and Inhibition of Cholinesterase Enzymes using Single-Walled Carbon Nanotube Fluorescent Sensors. Anal Chem 2022; 94:14223-14231. [PMID: 36206351 PMCID: PMC9583068 DOI: 10.1021/acs.analchem.2c02471] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholinesterase enzymes are involved in a wide range of bodily functions, and their disruption is linked to pathologies such as neurodegenerative diseases and cancer. While cholinesterase inhibitors are used as drug treatments for diseases such as Alzheimer and dementia at therapeutic doses, acute exposure to high doses, found in pesticides and nerve agents, can be lethal. Therefore, measuring cholinesterase activity is important for numerous applications ranging from the search for novel treatments for neurodegenerative disorders to the on-site detection of potential health hazards. Here, we present the development of a near-infrared (near-IR) fluorescent single-walled carbon nanotube (SWCNT) optical sensor for cholinesterase activity and demonstrate the detection of both acetylcholinesterase and butyrylcholinesterase, as well as their inhibition. We show sub U L-1 sensitivity, demonstrate the optical response at the level of individual nanosensors, and showcase an optical signal output in the 900-1400 nm range, which overlaps with the biological transparency window. To the best of our knowledge, this is the longest wavelength cholinesterase activity sensor reported to date. Our near-IR fluorescence-based approach opens new avenues for spatiotemporal-resolved detection of cholinesterase activity, with numerous applications such as advancing the research of the cholinergic system, detecting on-site potential health hazards, and measuring biomarkers in real-time.
Collapse
Affiliation(s)
- Dan Loewenthal
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv6997801, Israel.,Department of Analytical Chemistry, Israel Institute for Biological Research, Ness-Ziona7410001, Israel
| | - Dotan Kamber
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv6997801, Israel.,The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv6997801, Israel.,Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel Aviv6997801, Israel.,Center for Light Matter Interaction, Tel-Aviv University, Tel Aviv6997801, Israel
| |
Collapse
|
27
|
Rakkhun W, Jantra J, Cheubong C, Teepoo S. Colorimetric test strip cassette readout with a smartphone for on-site and rapid screening test of carbamate pesticides in vegetables. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Vanin AP, Tamagno WA, Alves C, Mesacasa L, Santin LF, Sutorillo NT, Bilibio D, Müller C, Galon L, Kaizer RR. Neuroprotective potential of Cannabis sativa-based oils in Caenorhabditis elegans. Sci Rep 2022; 12:15376. [PMID: 36100636 PMCID: PMC9470673 DOI: 10.1038/s41598-022-19598-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Substances from the Cannabis sativa species, especially cannabidiol (CBD) and Delta-9-tetrahydrocannabinol (Δ9-THC), have attracted medical attention in recent years. The actions of these two main cannabinoids modulate the cholinergic nervous system (CholNS) involving development, synaptic plasticity, and response to endogenous and environmental damage, as a characteristic of many neurodegenerative diseases. The dynamics of these diseases are mediated by specific neurotransmitters, such as the GABAergic nervous system (GNS) and the CholNS. The nematode Caenorhabditis elegans is an important experimental model, which has different neurotransmitter systems that coordinate its behavior and has a transgene strain that encodes the human β-amyloid 1-42 peptide in body wall muscle, one of the main proteins involved in Alzheimer´s disease. Therefore, the objective of this study was to evaluate the protective potential of terpenoids found in C. sativa in the GNS and CholNS of C. elegans. The effect of two C. sativa oils with variations in CBD and THC concentrations on acetylcholinesterase (AChE) activity, lipid peroxidation, and behavior of C. elegans was evaluated. C. sativa oils were efficient in increasing pharyngeal pumping rate and reducing defecation cycle, AChE activity, and ROS levels in N2 strains. In the muscle:Abeta1-42 strain, mainly when using CBD oil, worm movement, body bends, and pharyngeal pumping were increased, with a reduced AChE activity. Consequently, greater investments in scientific research are needed, in addition to breaking the taboo on the use of the C. sativa plant as an alternative for medicinal use, especially in neurodegenerative diseases, which have already shown positive initial results.
Collapse
Affiliation(s)
- Ana Paula Vanin
- Universidade Federal da Fronteira Sul, Erechim, RS, 99.700-000, Brazil
| | - Wagner Antonio Tamagno
- Universidade Federal de Santa Maria, Santa Maria, RS, 97.105-900, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Sertão, RS, 99.170-000, Brazil
| | - Carla Alves
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Sertão, RS, 99.170-000, Brazil
- Universidade de Passo Fundo, Passo Fundo, RS, 99.052-900, Brazil
| | - Letícia Mesacasa
- Universidade de Santa Cruz do Sul, Santa Cruz do Sul, RS, 96.815-900, Brazil
| | - Luciani Figueiredo Santin
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Sertão, RS, 99.170-000, Brazil
| | - Nathália Tafarel Sutorillo
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Sertão, RS, 99.170-000, Brazil
| | - Denise Bilibio
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Sertão, RS, 99.170-000, Brazil
| | - Caroline Müller
- Universidade Federal da Fronteira Sul, Erechim, RS, 99.700-000, Brazil.
| | - Leandro Galon
- Universidade Federal da Fronteira Sul, Erechim, RS, 99.700-000, Brazil
| | - Rosilene Rodrigues Kaizer
- Universidade Federal da Fronteira Sul, Erechim, RS, 99.700-000, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Sertão, RS, 99.170-000, Brazil
| |
Collapse
|
29
|
Johnson ZT, Jared N, Peterson JK, Li J, Smith EA, Walper SA, Hooe SL, Breger JC, Medintz IL, Gomes C, Claussen JC. Enzymatic Laser-Induced Graphene Biosensor for Electrochemical Sensing of the Herbicide Glyphosate. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2200057. [PMID: 36176938 PMCID: PMC9463521 DOI: 10.1002/gch2.202200057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is a globally applied herbicide yet it has been relatively undetectable in-field samples outside of gold-standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers' urine, surface waters and crop residues. Rapid, on-site detection of glyphosate is hindered by lack of field-deployable and easy-to-use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum-decorated laser-induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10-260 µ m, detection limit of 3.03 µ m, and sensitivity of 0.991 nA µ m -1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4-dichlorophenoxyacetic acid, dicamba, parathion-methyl, paraoxon-methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct-write, and selective method of glyphosate detection for herbicide mapping and food analysis.
Collapse
Affiliation(s)
| | - Nathan Jared
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - John K. Peterson
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Jingzhe Li
- Department of ChemistryIowa State UniversityAmesIA50011USA
- The Ames LaboratoryU.S. Department of EnergyAmesIA50011USA
| | - Emily A. Smith
- Department of ChemistryIowa State UniversityAmesIA50011USA
- The Ames LaboratoryU.S. Department of EnergyAmesIA50011USA
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Shelby L. Hooe
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
- National Research CouncilWashington, DC20001USA
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900U.S. Naval Research LaboratoryWashington, D.C20375USA
| | - Carmen Gomes
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | |
Collapse
|
30
|
Yang L, Wu N, Bai R, Chen M, Dong W, Zhou J, Jiang M. A novel strategy for the detection of pyruvate in fermentation processes based on well-distributed enzyme-inorganic hybrid nanoflowers on thiol graphene modified gold electrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Martins-Gomes C, Coutinho TE, Silva TL, Andreani T, Silva AM. Neurotoxicity Assessment of Four Different Pesticides Using In Vitro Enzymatic Inhibition Assays. TOXICS 2022; 10:toxics10080448. [PMID: 36006126 PMCID: PMC9413506 DOI: 10.3390/toxics10080448] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/23/2022]
Abstract
Pesticides affect different organs and tissues according to their bioavailability, chemical properties and further molecular interactions. In animal models exposed to several classes of pesticides, neurotoxic effects have been described, including the reduction of acetylcholinesterase activity in tissue homogenates. However, in homogenates, the reduction in enzymatic activity may also result from lower enzymatic expression and not only from enzymatic inhibition. Thus, in this work, we aimed to investigate the neurotoxic potential of four distinct pesticides: glyphosate (herbicide), imazalil (fungicide), imidacloprid (neonicotinoid insecticide) and lambda-cyhalothrin (pyrethroid insecticide), by assessing their inhibitory effect on the activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase, by using direct in vitro enzymatic inhibition methods. All pesticides dose-dependently inhibited AChE activity, with an inhibition of 11 ± 2% for glyphosate, 48 ± 2% for imidacloprid, 49 ± 3% for imazalil and 50 ± 3% for lambda-cyhalothrin, at 1 mM. Only imazalil inhibited BChE. Imazalil induced dose-dependent inhibition of BChE with identical pattern as that observed for AChE; however, for lower concentrations (up to 500 μM), imazalil showed higher specificity for AChE, and for higher concentrations, the same specificity was found. Imazalil, at 1 mM, inhibited the activity of BChE by 49 ± 1%. None of the pesticides, up to 1 mM, inhibited tyrosinase activity. In conclusion, the herbicide glyphosate shows specificity for AChE but low inhibitory capacity, the insecticides imidacloprid and λ-cyhalothrin present selective AChE inhibition, while the fungicide IMZ is a broad-spectrum cholinesterase inhibitor capable of inhibiting AChE and BChE in an equal manner. Among these pesticides, the insecticides and the fungicide are the ones with higher neurotoxic potential.
Collapse
Affiliation(s)
- Carlos Martins-Gomes
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tiago E. Coutinho
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tânia L. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Tatiana Andreani
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- GreenUPorto—Sustainable Agrifood Production Research Centre & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Amélia M. Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (C.M.-G.); (T.E.C.); (T.L.S.)
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Correspondence: ; Tel.: +351-259-350-921
| |
Collapse
|
32
|
Dispersive liquid-liquid microextraction coupled with microfluidic paper-based analytical device for the determination of organophosphate and carbamate pesticides in the water sample. ANAL SCI 2022; 38:1359-1367. [PMID: 35908131 DOI: 10.1007/s44211-022-00167-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 11/01/2022]
Abstract
A microfluidic paper-based analytical device (µ-PAD) is a promising new technology platform for the development of extremely low-cost sensing devices. However, it has low sensitivity that might not enable to measure maximum allowable concentration of various pollutants in the environment. In this study, a dispersive liquid-liquid microextraction (DLLME) was developed as a preconcentration method to enhance the sensitivity of the µ-PAD for trace analysis of selected pesticides. Four critical parameters (volume of n-hexane and acetone, extraction time, NaCl amount) that affect the efficiency of DLLME have been optimized using response surface methodology. An acceptable mean recovery of 79-97% and 83-93% was observed at 1 µg L-1 and 5 µg L-1 fortification level, respectively, with very good repeatability (2.2-6.01% RSD) and reproducibility (5.60-10.41% RSD). Very high enrichment factors ranging from 317 to 1471 were obtained. The limits of detection for the studied analytes were in the range of 0.18-0.41 µg L-1 which is much lower than the WHO limits of 5-50 µg L-1 for similar category of analytes. Therefore, by coupling DLLME with µ-PAD, a sensitivity that allows to detect environmental threat and also that surpassed most of the previous reports have been achieved in this study. This implies that the preconcentration step has a paramount contribution to address the sensitivity problem associated with µ-PAD.
Collapse
|
33
|
Sen S, Roy A, Sanyal A, Devi PS. A nonenzymatic reduced graphene oxide-based nanosensor for parathion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:730-744. [PMID: 35957670 PMCID: PMC9344548 DOI: 10.3762/bjnano.13.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 06/08/2023]
Abstract
Organophosphate-based pesticides (e.g., parathion (PT)) have toxic effects on human health through their residues. Therefore, cost-effective and rapid detection strategies need to be developed to ensure the consuming food is free of any organophosphate-residue. This work proposed the fabrication of a robust, nonenzymatic electrochemical-sensing electrode modified with electrochemically reduced graphene oxide (ERGO) to detect PT residues in environmental samples (e.g., soil, water) as well as in vegetables and cereals. The ERGO sensor shows a significantly affected electrocatalytic reduction peak at -0.58 V (vs Ag/AgCl) for rapid quantification of PT due to the amplified electroactive surface area of the modified electrode. At optimized experimental conditions, square-wave voltammetric analysis exhibits higher sensitivity (50.5 μA·μM-1·cm-2), excellent selectivity, excellent stability (≈180 days), good reproducibility, and repeatability for interference-free detection of PT residues in actual samples. This electrochemical nanosensor is suitable for point-of-care detection of PT in a wide dynamic range of 3 × 10-11-11 × 10-6 M with a lower detection limit of 10.9 pM. The performance of the nanosensor was validated by adding PT to natural samples and comparing the data via absorption spectroscopy. PT detection results encourage the design of easy-to-use nanosensor-based analytical tools for rapidly monitoring other environmental samples.
Collapse
Affiliation(s)
- Sarani Sen
- Functional Materials and Devices Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- National Institute of Technology Durgapur, Mahatma Gandhi Road, A-Zone, Durgapur, West Bengal 713209, India
| | - Anurag Roy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Ambarish Sanyal
- Functional Materials and Devices Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Parukuttyamma Sujatha Devi
- Chemical Sciences and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India
| |
Collapse
|
34
|
Biosensors and Microfluidic Biosensors: From Fabrication to Application. BIOSENSORS 2022; 12:bios12070543. [PMID: 35884346 PMCID: PMC9313327 DOI: 10.3390/bios12070543] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Biosensors are ubiquitous in a variety of disciplines, such as biochemical, electrochemical, agricultural, and biomedical areas. They can integrate various point-of-care applications, such as in the food, healthcare, environmental monitoring, water quality, forensics, drug development, and biological domains. Multiple strategies have been employed to develop and fabricate miniaturized biosensors, including design, optimization, characterization, and testing. In view of their interactions with high-affinity biomolecules, they find application in the sensitive detection of analytes, even in small sample volumes. Among the many developed techniques, microfluidics have been widely explored; these use fluid mechanics to operate miniaturized biosensors. The currently used commercial devices are bulky, slow in operation, expensive, and require human intervention; thus, it is difficult to automate, integrate, and miniaturize the existing conventional devices for multi-faceted applications. Microfluidic biosensors have the advantages of mobility, operational transparency, controllability, and stability with a small reaction volume for sensing. This review addresses biosensor technologies, including the design, classification, advances, and challenges in microfluidic-based biosensors. The value chain for developing miniaturized microfluidic-based biosensor devices is critically discussed, including fabrication and other associated protocols for application in various point-of-care testing applications.
Collapse
|
35
|
Ahmadi M, Mokhtari A, Bahlakeh G, Karimian H. Flow Injection Chemiluminescence Determination of Ethion and Computational Investigation of the Adsorption Process on Molecularly Imprinted Polymerized High Internal Phase Emulsion. LUMINESCENCE 2022; 37:1514-1523. [PMID: 35816014 DOI: 10.1002/bio.4325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The lack of sufficient selectivity is the main limitation of chemiluminescence (CL) methods; because the CL reagent is not restricted to a specific analyte. This study investigated the preconcentration and determination of ethion by a flow injection CL (FIA-CL) method using a molecularly imprinted poly high internal phase emulsion (MIP-polyHIPE) adsorbent. Preliminary studies showed that ethion could be determined with high sensitivity in the Ru (bipy)3 2+ -acidic Ce (IV) CL system. A MIP-polyHIPE adsorbent was synthesized and used for preconcentration to increase the selectivity and sensitivity of the method. The adsorption of ethion on the adsorbent was investigated using density functional theory (DFT) and molecular dynamics (MD), UV-Vis and FTIR spectrophotometry and liquid chromatography-tandem mass spectrometry (LC-MS-MS). Response surface methodology (RSM) and central composite design (CCD) were used to find optimized concentrations of variables. The linear dynamic range (LDR) and limit of detection (LOD) for ethion in the FIA-CL method were calculated 1.0✕10-9 -2.0✕10-7 and 6.0✕10-10 mol L-1 , respectively. The percentage of relative standard deviation for 5 repetitive measurements of 5.0⨯10-8 mol L-1 ethion was 4.2%. The proposed method was successfully used to separate and preconcentrate ethion from drinking and surface water sources.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ali Mokhtari
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ghasem Bahlakeh
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Hossein Karimian
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| |
Collapse
|
36
|
Acetylcholinesterase Biosensor Based on Functionalized Renewable Carbon Platform for Detection of Carbaryl in Food. BIOSENSORS 2022; 12:bios12070486. [PMID: 35884288 PMCID: PMC9313315 DOI: 10.3390/bios12070486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/05/2023]
Abstract
Enzymatic electrochemical biosensors play an important role in the agri-food sector due to the need to develop sustainable, low-cost, and easy-to-use analytical devices. Such biosensors can be used to monitor pathogens, endocrine disruptors, and pesticides, such as carbaryl, widely used in many crops. The use of renewable carbon (RC) sources, provided from biomass pyrolysis has been often applied in the fabrication of such sensors. This material is a great candidate for biosensor fabrication due to the presence of surface functional groups, porosity, and moderate surface area. This work describes the functionalization of RC material through an acid treatment with a sulfonitric solution HNO3/H2SO4 (1:3) and the resulting material was characterized by scanning electron microscopy. The obtained RC functionalized (RCF) and the acetylcholinesterase enzyme (AChE) were applied in the construction of the electrochemical biosensor on glassy carbon (GC) electrode and used to detect carbaryl in apple samples. The GC/RCF/AChE biosensor was able to detect the carbaryl pesticide from 5.0 to 30.0 nmol L−1, displaying a LOD of 4.5 nmol L−1. The detection of carbaryl in apple samples presented recoveries between 102.5 to 118.6% through the standard addition method. The proposed biosensor is a promising renewable tool for food safety.
Collapse
|
37
|
Rashk-E-Eram, Mukherjee K, Saha A, Bhattacharjee S, Mallick A, Sarkar B. Nanoscale iron for sustainable aquaculture and beyond. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Alnahdi HS, Mousa RMA, El‐Said WA. Development of Organochlorine Pesticide Electrochemical Sensor Based on Fe
3
O
4
Nanoparticles@indium Tin Oxide Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hanan S. Alnahdi
- University of Jeddah, College of Science, Department of Biochemistry P.O. 80327 Jeddah 21589 Saudi Arabia
| | - Rasha Mousa Ahmed Mousa
- University of Jeddah, College of Science, Department of Biochemistry P.O. 80327 Jeddah 21589 Saudi Arabia
| | - Waleed A. El‐Said
- University of Jeddah, College of Science, Department of Chemistry P.O. 80327 Jeddah 21589 Saudi Arabia
- Department of Chemistry Faculty of Science Assiut University Assiut 71516 Egypt
| |
Collapse
|
39
|
A Multicomponent Butyrylcholinesterase Preparation for Enzyme Inhibition-Based Assay of Organophosphorus Pesticides. Catalysts 2022. [DOI: 10.3390/catal12060643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new method of producing butyrylcholinesterase (BChE) preparations, stable in storage and use, has been proposed. The BChE preparation is the enzyme co-immobilized with 0.2 M 5-5′-dithiobis (2-nitrobenzoic acid) in starch or gelatin gel. All experimental preparations retain enzyme activity for at least 300 d. The preparations based on gelatin gel show higher activity but lower sensitivity to the toxicants tested in this study compared to the starch gel-based preparations. A method has been proposed for integrated detection of anti-cholinesterase substances in aqueous solutions using the experimental preparation with immobilized BChE. After the additional incubation of the preparation with the immobilized enzyme in the solution of the analyte, the detection limits of malathion and pirimiphos-methyl determined using the IC20 values were below their maximum allowable concentrations—0.005 µM and 0.03 µM, respectively.
Collapse
|
40
|
Zhang L, Zhao M, Xiao M, Im MH, Abd El-Aty AM, Shao H, She Y. Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review. BIOSENSORS 2022; 12:402. [PMID: 35735550 PMCID: PMC9220870 DOI: 10.3390/bios12060402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
The presence of pyrethroids in food and the environment due to their excessive use and extensive application in the agriculture industry represents a significant threat to public health. Therefore, the determination of the presence of pyrethroids in foods by simple, rapid, and sensitive methods is warranted. Herein, recognition methods for pyrethroids based on electrochemical and optical biosensors from the last five years are reviewed, including surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), chemiluminescence, biochemical, fluorescence, and colorimetric methods. In addition, recognition elements used for pyrethroid detection, including enzymes, antigens/antibodies, aptamers, and molecular-imprinted polymers, are classified and discussed based on the bioreceptor types. The current research status, the advantages and disadvantages of existing methods, and future development trends are discussed. The research progress of rapid pyrethroid detection in our laboratory is also presented.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Mingqi Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Ming Xiao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810000, China;
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongsan 38453, Korea;
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Hua Shao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| |
Collapse
|
41
|
Ghosh S, AlKafaas SS, Bornman C, Apollon W, Hussien AM, Badawy AE, Amer MH, Kamel MB, Mekawy EA, Bedair H. The application of rapid test paper technology for pesticide detection in horticulture crops: a comprehensive review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00248-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
The ever increasing pests and diseases occurring during vegetable crop production is a challenge for agronomists and farmers. One of the practices to avoid or control the attack of the causal agents is the use of pesticides, including herbicides, insecticides nematicides, and molluscicides. However, the use of these products can result in the presence of harmful residues in horticultural crops, which cause several human diseases such as weakened immunity, splenomegaly, renal failure, hepatitis, respiratory diseases, and cancer. Therefore, it was necessary to find safe and effective techniques to detect these residues in horticultural crops and to monitor food security.
Main body
The review discusses the use of conventional methods to detect pesticide residues on horticultural crops, explain the sensitivity of nanoparticle markers to detect a variety of pesticides, discuss the different methods of rapid test paper technology and highlight recent research on rapid test paper detection of pesticides.
Conclusions
The methodologies discussed in the current review can be used in a certain situation, and the variety of methods enable detection of different types of pesticides in the environment. Notably, the highly sensitive immunoassay, which offers the advantages of being low cost, highly specific and sensitive, allows it to be integrated into many detection fields to accurately detect pesticides.
Collapse
|
42
|
Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114655. [PMID: 35131704 DOI: 10.1016/j.jenvman.2022.114655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 μg/L, 2.8 μg/L, 1 μg/L, 0.13 μg/L, 6.0 × 10-5 μg/L, and 4.141 × 10-7 μg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.
Collapse
Affiliation(s)
- Shafali Garg
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - Pankaj Kumar
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - George W Greene
- Deakin University, Institute for Frontier Materials, Burwood, Melbourne, Victoria, Australia
| | - Vandana Mishra
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India
| | - Dror Avisar
- Tel Aviv University, School for Environmental and Earth Sciences, Water Research Center, Tel Aviv, Israel
| | - Radhey Shyam Sharma
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India.
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi, United Arab Emirates; Khalifa University, Research and Innovation Center on CO(2) and Hydrogen, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
43
|
Shamagsumova RV, Vasyk AV, Shurpik DN, Evtugin VG, Stoikov II, Evtugin GA. An Acetylcholinesterase Sensor Based on a Pillar[6]arene–Silver Nanoparticle Composite for the Determination of Drugs for the Treatment of Alzheimer’s Disease. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Liu B, Chen J, Peng Y, Xiao W, Peng Z, Qiu P. Graphitic-phase C 3N 4 nanosheets combined with MnO 2 nanosheets for sensitive fluorescence quenching detection of organophosphorus pesticides. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:441-449. [PMID: 35414329 DOI: 10.1080/03601234.2022.2063608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we have developed a sensitive approach to measure organophosphorus pesticides (OPs) using graphitic-phase C3N4 nanosheets (g-C3N4) combined with a nanomaterial-based quencher, MnO2 nanosheets (MnO2 NS). Since MnO2 NS can quench the fluorescence of g-C3N4 via the inner-filter effect (IFE), enzymatic hydrolysate (thiocholine, TCh) can efficiently trigger the decomposition of MnO2 nanosheets in the presence of acetylcholinesterase (AChE) and acetylthiocholine (ATCh), resulting in the fluorescence recovery of g-C3N4. OPs, as inhibitors to AChE activity, can prevent the generation of TCh and decomposition of MnO2 nanosheets while exhibiting fluorescence quenching. Therefore, the AChE-ATCh-MnO2-g-C3N4 system can be utilized to quantitatively detect OPs based on g-C3N4 fluorescence. Under optimal conditions, the linear ranges for the determination of parathion-methyl (PM) and 2,2-dichlorovinyl dimethyl phosphate (DDVP) were found to be 0.1-2.1 ng/mL and 0.5-16 ng/mL, respectively, with limits of detection of 0.069 ng/mL and 0.20 ng/mL, respectively. The advantages of this assay are user-friendliness, ease of use, and cost effectiveness compared to other more sophisticated analytical instruments.
Collapse
Affiliation(s)
- Bicheng Liu
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Jin Chen
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Yiyang Peng
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Wenyue Xiao
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Zoujun Peng
- Department of Chemistry, Nanchang University, Nanchang, China
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
46
|
Jain U, Saxena K, Hooda V, Balayan S, Singh AP, Tikadar M, Chauhan N. Emerging vistas on pesticides detection based on electrochemical biosensors - An update. Food Chem 2022; 371:131126. [PMID: 34583176 DOI: 10.1016/j.foodchem.2021.131126] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Organophosphates and carbamates pesticides are widely used to increase crop production globally causing a threat to human health and the environment. A variety of pesticides are applied during different stages of vegetable production. Therefore, monitoring the presence of pesticide residues in food and soil has great relevance to sensitive pesticide detection through distinct determination methods that are urgently required. Conventional techniques for the detection of pesticides have several limitations that can be overcome by the development of highly sensitive, fast, reliable and easy-to-use electrochemical biosensors. Herein, we describe the types of biosensors with the main focus on electrochemical biosensors fabricated for the detection of OPPs and carbamates pesticides. An overview of conventional techniques employed for pesticide detection is also discussed. This review aims to provide a glance of recently developed biosensors for some common pesticides like chlorpyrifos, malathion, parathion, paraoxon, and carbaryl which are present in food and environment samples.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Vinita Hooda
- Department of Botany, M. D. University, Rohtak 124001, Haryana, India
| | - Sapna Balayan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Amar Pal Singh
- Amity Institute of Forensic Sciences (AIFS), Amity University Uttar Pradesh (AUUP), Noida 201313, India; Forensic Science Laboratory, Govt. of NCT of Delhi, Sector-14, Rohini, Delhi, India
| | - Mayukh Tikadar
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
47
|
Zhao G, Chu F, Zhou J. A Novel Integrated APCI and MPT Ionization Technique as Online Sensor for Trace Pesticides Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:1816. [PMID: 35270963 PMCID: PMC8914877 DOI: 10.3390/s22051816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
The misuse of pesticides poses a tremendous threat to human health. Excessive pesticide residues have been shown to cause many diseases. Many sensor detection methods have been developed, but most of them suffer from problems such as slow detection speed or narrow detection range. So, the development of rapid, direct and sensitive means of detecting trace amounts of pesticide residues is always necessary. A novel online sensor technique was developed for direct analysis of pesticides in complex matrices with no sample pretreatment. The portable sensor ion source consists of an MPT (microwave plasma torch) with desolventizing capability and an APCI (atmosphere pressure chemical ionization), which provides abundant precursor ions and a strong electric field. The performance which improves the ionization efficiency and suppresses the background signal was verified by using pesticide standard solution and pesticide pear juice solution measurements with an Orbitrap mass spectrometer. The limit of detection (LOD) and the limit of quantization (LOQ) of the method were measured by pear juice solutions that were obtained in the ranges of 0.034-0.79 μg/L and 0.14-1 μg/L. Quantitative curves were obtained ranging from 0.5 to 100 μg/L that showed excellent semi-quantitative ability with correlation coefficients of 0.985-0.997. The recoveries (%) of atrazine, imidacloprid, dimethoate, profenofos, chlorpyrifos, and dichlorvos were 96.6%, 112.7%, 88.1%, 85.5%, 89.2%, and 101.9% with the RSDs ranging from 5.89-14.87%, respectively. The results show that the method has excellent sensitivity and quantification capability for rapid and direct detection of trace pesticide.
Collapse
Affiliation(s)
- Gaosheng Zhao
- State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310027, China;
| | - Fengjian Chu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China;
| | - Jianguang Zhou
- State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Research Center for Analytical Instrumentation, Zhejiang University, Hangzhou 310027, China;
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
48
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
An Enzymatic Reaction Modulated Fluorescence-on Omethoate Biosensor Based on Fe3O4@GO and Copper Nanoparticles. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00210-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
50
|
Research progress of acetylcholinesterase bioelectrochemical sensor based on carbon nanotube composite material in the detection of organophosphorus pesticides. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|