1
|
Shahrior R, Tamkin S, Khan MB, Meraj AJ, Bhuiyan H. In-silico investigation integrated with machine learning to identify potential inhibitors targeting AKT2: Key driver of cancer cell progression and metastasis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 267:108793. [PMID: 40305999 DOI: 10.1016/j.cmpb.2025.108793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND AND OBJECTIVE In search of a key driver for the invasive growth of cancer metastasis, AKT2 is found to be exceptionally expressed in colorectal cancer and its metastasis. Again, exceeding genomic arrangements of AKT2 can be held responsible for HGSC (High-grade serous ovarian cancer) and breast cancer cell metastasis. FDA-approved capivasertib, a potential drug targeting the AKT signaling pathway, has a few side effects such as plausible alterations of liver function and gastrointestinal issues. Hence, this research aims to detect compounds with higher drug potency for selective AKT2 inhibition to encounter the incidence of different types of cancer cell metastasis. METHODS Eight machine-learning models were engaged to classify active and inactive drug candidates among 1148 collected compounds from the CHEMBL database. Potential drug candidates with greater IC50 value and no Lipinski violations were then addressed to molecular docking and molecular dynamics simulation using PyRx, AutoDock Vina and Desmond package. RESULTS From docking studies, three of the initial drug candidates provided greater binding affinities within a range from -10.9 to -9.8 kcal/mol, comparable to that of Capivasertib and backed up by post-docking MM/GBSA analysis. Again, the prediction of pharmacokinetic properties and bioactivity scores of drug candidates revealed their drug-likeliness and safer ADMET profiles for future clinical trials. Finally, 100 ns MD simulation computation for these lead compounds exhibited greater stability and drug potency during interactions with AKT2 protein, followed by PCA and DCCM analysis. CONCLUSION However, future in-vivo research can ascertain whether our proposed drug candidates can pass the standard clinical trials as publicly accessible novel drug targets.
Collapse
Affiliation(s)
- Rahat Shahrior
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Salwa Tamkin
- Department of Computer Science and Engineering, BRAC University, Kha 224, Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka, 1212, Bangladesh
| | - Mohammad Badhruddouza Khan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Ahmed Jebail Meraj
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | - Hanif Bhuiyan
- Data Scientist, Performance & Analytics Group, City of Gold Coast, Bundall, QLD 4217, Australia.
| |
Collapse
|
2
|
Lee WJA, Shao SC, Hsieh MHC, Liao TC, Lin SJ, Lai ECC. Adverse renal events between ranibizumab and aflibercept in patients with diabetic macular oedema in Taiwan: a comparative cohort study. Br J Ophthalmol 2025:bjo-2024-325509. [PMID: 40147840 DOI: 10.1136/bjo-2024-325509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
AIMS To assess and compare the risk of adverse renal events among patients with diabetic macular oedema (DME) who were treated with either intravitreal ranibizumab or aflibercept in Taiwan. METHODS We conducted a population-based retrospective cohort study and employed a target trial emulation framework using Taiwan's National Health Insurance Database from 2011 to 2018.Patients aged over 20 years diagnosed with DME and receiving treatment with either intravitreal aflibercept or ranibizumab were included. We applied propensity score methods to ensure balance in the baseline characteristics between the two treatment groups. The primary outcomes were the adverse renal events, specifically acute renal injury and hospitalisation due to renal events. We employed Cox proportional hazards models to estimate the HRs associated with these outcomes. RESULTS A total of 6330 patients receiving ranibizumab and 1258 patients receiving aflibercept were included in this study. The incidence rates of adverse renal events were 102.2 and 138.7 per 1000 person-years for ranibizumab and aflibercept, respectively. Patients treated with intravitreal aflibercept had a significantly higher risk of experiencing a composite of adverse renal events (HR: 1.42; 95% CI: 1.24 to 1.63), compared with those treated with ranibizumab, and specifically also a higher risk of acute kidney injury (HR: 1.32; 95% CI: 1.08 to 1.63) and hospitalisation due to renal events (HR: 1.43; 95% CI: 1.25 to 1.64). CONCLUSION In comparison to ranibizumab, the intravitreal use of aflibercept was associated with a greater risk of adverse renal events. These findings provide a solid foundation for future studies to validate these results further.
Collapse
Affiliation(s)
- Wan-Ju Annabelle Lee
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Ophthalmology, Chi Mei Medical Center, Tainan, Taiwan
- Population Health Data Center, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Shao
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Population Health Data Center, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacy, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Miyuki Hsing-Chun Hsieh
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Population Health Data Center, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chi Liao
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Population Health Data Center, National Cheng Kung University, Tainan, Taiwan
| | - Swu-Jane Lin
- University of Illinois Chicago, Chicago, Illinois, USA
| | - Edward Chia-Cheng Lai
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Population Health Data Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Ferrer RA, Chen BY, Garcia JPT, Rejano CJF, Tsai PW, Hsueh CC, Tayo LL. Deciphering the Regulatory Potential of Antioxidant and Electron-Shuttling Bioactive Compounds in Oolong Tea. BIOLOGY 2025; 14:487. [PMID: 40427676 PMCID: PMC12109060 DOI: 10.3390/biology14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025]
Abstract
OT has gained attention for its high polyphenol content and therapeutic potential. To elucidate this further, this study investigated the electron-shuttling bioactive compounds of OT and evaluated their effect on dysregulated breast cancer (BC) genes. OT extracts were obtained via solvent extraction (SE) and supercritical fluid extraction (SFE), followed by in vitro assays. Phytochemical analysis revealed that ethanol-extracted OT (OTL-E) had the highest polyphenol, flavonoid, and tannin contents, correlating with strong antioxidant activity, while water-extracted OT (OTL-W) exhibited greater bioelectricity-stimulating properties in microbial fuel cells (MFC), confirmed by cyclic voltammetry (CV). Based on phytochemical analyses, SE displayed a better extraction technique for isolating OT bioactive compounds compared to SFE. In silico approaches through network pharmacology, molecular docking and dynamics simulations revealed that polyphenols with ortho- or para-dihydroxyl groups targeted dysregulated BC proteins involved in kinase signaling, apoptosis, and hormone receptor pathways. Luteolin exhibited the highest binding affinities to MAPK1 and PIK3CA with free energy (ΔG) of -9.1 and -8.4 kcal/mol, respectively. Trajectory-based analyses confirmed enthalpy-favored ligand-induced conformational changes to these oncoproteins, altering their function in BC development. These findings suggest the potential of OT as a bioelectricity-stimulating and chemopreventive agent, warranting further in vitro and in vivo validation.
Collapse
Affiliation(s)
- Regineil A. Ferrer
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (R.A.F.); (J.P.T.G.); (C.J.F.R.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-lan University, I-lan 260, Taiwan; (B.-Y.C.); (C.-C.H.)
| | - Jon Patrick T. Garcia
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (R.A.F.); (J.P.T.G.); (C.J.F.R.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Christine Joyce F. Rejano
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines; (R.A.F.); (J.P.T.G.); (C.J.F.R.)
- School of Graduate Studies, Mapúa University, Manila 1002, Philippines
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-lan University, I-lan 260, Taiwan; (B.-Y.C.); (C.-C.H.)
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
4
|
Regueiro M, Siegmund B, Horst S, Moslin R, Charles L, Petersen A, Tatosian D, Wu H, Lawlor G, Fischer M, D’Haens G, Colombel JF. Concomitant Administration of Ozanimod and Serotonergic Antidepressants in Patients With Ulcerative Colitis or Relapsing Multiple Sclerosis. Inflamm Bowel Dis 2025; 31:1010-1017. [PMID: 39018016 PMCID: PMC11985380 DOI: 10.1093/ibd/izae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Ozanimod, approved for the treatment of moderately to severely active ulcerative colitis (UC) and relapsing multiple sclerosis (RMS), is a weak in vitro monoamine oxidase B (MAO-B) inhibitor. MAO-B inhibitors can cause serotonin accumulation with concomitant use of selective serotonin reuptake inhibitors (SSRIs) or serotonin and norepinephrine reuptake inhibitors (SNRIs). We evaluated the incidence of treatment-emergent adverse events (TEAEs) potentially associated with serotonin accumulation during ozanimod and concomitant SSRI/SNRI use in this post hoc analysis of pooled UC studies and the open-label extension RMS DAYBREAK. METHODS Data for ozanimod 0.92 mg from pooled UC studies (n = 1158; cutoff: January 10, 2022) and RMS DAYBREAK (n = 2257; cutoff: February 1, 2022) were analyzed. Concomitant SSRI/SNRI use was allowed in the UC (n = 67) and RMS (n = 274) studies. A narrow Medical Dictionary for Regulatory Activities search ("serotonin syndrome," "neuroleptic malignant syndrome," and "malignant hyperthermia") and a broad search including terms potentially associated with serotonin accumulation were conducted. The percentages of patients with TEAEs in both searches were analyzed by concomitant SSRI/SNRI use when the TEAE occurred. RESULTS No patients had TEAEs matching the narrow search criteria. No differences were observed in the percentages of patients with ≥1 TEAE matching the broad search regardless of SSRI/SNRI use in UC (with: 25.4% [n = 17 of 67]; without: 15.0% [n = 164 of 1091]) and RMS (with: 12.4% [n = 34 of 274]; without: 15.6% [n = 310 of 1982]) studies. CONCLUSIONS No evidence of increased TEAEs potentially associated with serotonin accumulation was observed with concurrent use of ozanimod and SSRIs/SNRIs. CLINICAL TRIAL REGISTRATION NCT01647516, NCT02531126, NCT02435992, NCT02576717.
Collapse
Affiliation(s)
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases, and Rheumatology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Horst
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | - Monika Fischer
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Geert D’Haens
- Academic Medical Center Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
5
|
Onisuru O, Achilonu I. High-throughput virtual screening and empirical validation of probable inhibitors of Plasmodium falciparum and vivax glutathione transferase using bromosulfophthalein as the benchmark ligand. Int J Biol Macromol 2025; 302:140526. [PMID: 39892549 DOI: 10.1016/j.ijbiomac.2025.140526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Plasmodium falciparum Glutathione S-Transferase (PfGST) and Plasmodium vivax Glutathione S-Transferase (PvGST) play vital roles in detoxification and parasite survival, making them key targets for antimalarial drug development. These enzymes offer potential for creating therapies with improved efficacy, reduced resistance, and minimal toxicity. Natural compounds like flavonoids, known for their antiplasmodial properties, are promising scaffolds for new drug designs. This study computationally screened baicalin (BA) and 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone (TTMF), synthesizable and affordable flavonoids from the MedChemExpress database, as potential inhibitors of PfGST and PvGST, outperforming BSP. Molecular dynamics simulations revealed that BA and TTMF stabilize enzyme interactions through hydrogen bonds and van der Waals forces, altering protein compactness and dynamics, suggesting non-competitive, allosteric inhibition. Empirical validation showed complete enzymatic inhibition by BA and TTMF with IC50 values of 1.69 and 1.71 μM, respectively, while minimizing human GST inhibition. Using 1-chloro-2,4-dinitrobenzene and reduced glutathione (GSH) as substrates, BA and TTMF demonstrated tight binding near the hydrophobic substrate-binding sites of PfGST and PvGST. Spectroscopic analysis using 8-anilino-1-naphthalenesulfonate (ANS) confirmed their ligandin effects and binding at the dimer interface. These findings highlight BA and TTMF as promising candidates for developing effective antimalarial therapies.
Collapse
Affiliation(s)
- Olalekan Onisuru
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa.
| |
Collapse
|
6
|
Zaaba NE, Yuvarayu P, Beegam S, Elzaki O, Arafat K, Attoub S, Nemmar A. Direct Effects of Waterpipe Smoke Extract on Aortic Endothelial Cells: An In Vitro Study. Physiol Res 2025; 74:69-78. [PMID: 40126144 PMCID: PMC11995937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/03/2024] [Indexed: 03/25/2025] Open
Abstract
Waterpipe smoking (WPS) has adverse health effects that include endothelial dysfunction with mechanisms involving oxidative stress and inflammation. Nonetheless, there is a scarcity of data on the direct impact of WPS on endothelial function. In this study, we assessed the in vitro effects of waterpipe smoke extract (WPSE) on aortic endothelial cell lines, namely the TeloHAEC. The WPSE markedly caused concentration- and time-dependent decreases in cellular viability. When compared with the control, at a concentration of 20 % and an incubation period of 48 h, the WPSE significantly increased the levels of lactate dehydrogenase, and markers of oxidative stress including thiobarbituric acid reactive substances, superoxide dismutase, catalase, and reduced glutathione. Moreover, the concentrations of proinflammatory cytokine (tumor necrosis factor alpha), and adhesion molecules (E-selectin and intercellular adhesion molecule-1) were also significantly augmented. Likewise, WPSE triggered mitochondrial dysfunction, DNA oxidative damage, as well as apoptosis in TeloHAEC cells. Similarly, cells cultured with WPSE have shown increased expression of phosphorylated nuclear factor-kappaB and hypoxia-inducible factor 1-alpha (HIF-1alpha). In conclusion, our study showed that WPSE triggers endothelial inflammation, oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis via mechanisms involving the activation of nuclear factor-kappaB and HIF-1alpha. Key words Waterpipe smoking, Aortic endothelial cells, Inflammation, Oxidative Stress.
Collapse
Affiliation(s)
- N E Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
7
|
Duda Ł, Budryn G, Olszewska MA, Rutkowska M, Kruczkowska W, Grabowska K, Kołat D, Jaśkiewicz A, Pasieka ZW, Kłosiński KK. Evaluation of Inulin and Polyphenol Content and the Cytotoxicity of Cichorium intybus L. var. foliosum Root Extracts Obtained by Pectinase- and Pressure-Assisted Extraction. Nutrients 2025; 17:1040. [PMID: 40292483 PMCID: PMC11944710 DOI: 10.3390/nu17061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Cichorium intybus L., a member of the Asteraceae family, has numerous health-promoting properties that categorize its preparations as functional foods and herbal medicines. Most previous research focused on the root of C. intybus var. sativum (industrial chicory) as a rich source of inulin, while the witloof variety (C. intybus var. foliosum) is less explored. OBJECTIVES This study aimed to evaluate the cytotoxicity of C. intybus var. foliosum root extracts obtained with different extraction protocols and to analyze their polysaccharide and polyphenol content. METHODS Freeze-dried root extracts were prepared using water and three extraction methods: pectinase-assisted, pressure-assisted, and a combination of both. The contents of inulin, total polyphenols, and total caffeic acid derivatives in the extracts were measured by the Layne-Eynon, Folin-Ciocalteu, and UHPLC-PDA methods, respectively. Cytotoxicity of the extracts and inulin was tested in vitro using the L929 cell line, MTT method, and paracetamol as the reference standard. RESULTS Inulin levels in the extracts ranged from 43.88 to 50.95 g/100 g dry matter (dm), total polyphenols were between 816.7 and 906.4 mg/100 g dm, and total phenolic acids ranged from 11.50 to 187.1 mg/100 dm, with pressure-assisted extraction yielding the highest phytochemical recovery. The cytotoxicity tests showed IC50 values from 4.72 to 7.31 mg/mL for the extracts, compared to 3.02 for paracetamol and 19.77 for inulin. CONCLUSIONS Given the high content of active compounds and low cytotoxicity, the root extracts of C. intybus var. foliosum merit further research into their functional and medicinal properties. Pressure-assisted extraction is recommended for effective extraction of chicory.
Collapse
Affiliation(s)
- Łukasz Duda
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (K.G.); (D.K.); (Z.W.P.)
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Lodz, Poland;
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.A.O.); (M.R.)
| | - Magdalena Rutkowska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.A.O.); (M.R.)
| | - Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (K.G.); (D.K.); (Z.W.P.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (K.G.); (D.K.); (Z.W.P.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (K.G.); (D.K.); (Z.W.P.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Andrzej Jaśkiewicz
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| | - Zbigniew Włodzimierz Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (K.G.); (D.K.); (Z.W.P.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (K.G.); (D.K.); (Z.W.P.)
- Biomaterials Research Laboratory, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
8
|
Saberikia H, Rashno M, Babadi F, Rakhshan V. Preliminary cytotoxicity assessment of Jaftex vs. chlorhexidine mouthwashes on human gingival fibroblasts and oral squamous cell carcinoma. BMC Oral Health 2025; 25:379. [PMID: 40082866 PMCID: PMC11907904 DOI: 10.1186/s12903-025-05630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Jaftex is a new herbal mouthwash that consists of the aqueous extract of Jaft oak, thymus, and the aqueous extract of Satureja Bachtiarica. Its cytotoxicity remains unknown. METHODS The sample size was determined as 180 specimens as 3 specimens for each of the 60 different combinations of 2 mouthwashes, 2 cell lines, 3 exposure times (24, 48, 72 h), and 5 mouthwash doses. Also, there were 36 positive and negative controls. Jaftex 1% and chlorhexidine 0.2% were sterilized and diluted 1:2, 1:4, 1:8, 1:16, and 1:32 of the original concentration. Each drug dilution was made available in triplicate. OCC and HuGu cells were exposed to these concentrations at 37 °C for 24 h (n = 60), 48 h (n = 60), and 72 h (n = 60). The optical densities (ODs) were measured for each of the 180 experimental specimens and 36 positive and negative specimens. Also the IC50 was calculated. The results were analyzed (α = 0.05). RESULTS The viability was much higher in the case of Jaftex compared with CHX. The viability was higher in OCC compared to HuGu. All pairwise comparisons between each two dosages were significant (all P values ≤ 0.013) in a way that by reducing the dosage, the viability increased. CONCLUSIONS The toxicity of Jaftex was significantly lower than that of chlorhexidine. Also, the toxicity of both mouthwashes against the HuGu cell line was higher than the OCC-18 cell line. During 24, 48, and 72 h, the mouthwash toxicity increased significantly.
Collapse
Affiliation(s)
- Hamed Saberikia
- Student Research Committee, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Babadi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Vahid Rakhshan
- Formerly, Dental School, Azad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Qureshi KA, Parvez A, Jaremko M. Repurposing eugenol and cinnamaldehyde as potent antimicrobial agents: A comprehensive in-vitro and in-silico study. Bioorg Chem 2025; 156:108199. [PMID: 39855115 DOI: 10.1016/j.bioorg.2025.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Multi-drug-resistant (MDR) pathogens represent a critical global health threat, necessitating the development of novel antimicrobial agents with broad-spectrum activity and minimal toxicity. This study investigates the antimicrobial and anti-biofilm properties of 4-Allyl-2-methoxyphenol (eugenol, EU) and (E)-3-Phenylprop-2-enal (cinnamaldehyde, CN) against 19 clinically significant pathogens through a combination of in-vitro assays and in-silico analyses. EU displayed remarkable activity, particularly against Aspergillus niger (20.5 ± 0.5 mm), and strong binding affinities with key protein targets, including peptide deformylase and β-carbonic anhydrase, with binding free energies (ΔG) ranging from -12.75 to -0.60 kcal/mol. CN exhibited exceptional activity against Staphylococcus epidermidis (29.6 ± 0.4 mm) and Candida albicans (36.6 ± 0.4 mm), supported by a significant binding affinity with β-carbonic anhydrase (ΔG: -5.23 kcal/mol). Dissociation constants (Kd) derived from MM-GBSA analyses indicated EU's strong inhibitory potential with nano- to picomolar Kd values, directly correlating with low IC50 values. CN demonstrated moderate inhibitory activity with Kd in the micromolar range. Molecular dynamics (MD) simulations confirmed the stability of these protein-ligand complexes, revealing critical hydrophobic interactions, such as those involving PHE122, that contributed to binding stabilization. ADMET profiling further underscored the favorable pharmacokinetics and safety of both compounds. These findings establish EU and CN as promising candidates for antimicrobial therapy, with potential applications in combating MDR pathogens and biofilm-associated infections. The complementary strengths of EU and CN warrant further structural optimization and combination studies, offering new avenues in the development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Kamal A Qureshi
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Adil Parvez
- NextGen Life Sciences Pvt. Ltd., New Delhi 110092, India.
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
10
|
Islam KMT, Mahmud S. In-silico exploring pathway and mechanism-based therapeutics for allergic rhinitis: Network pharmacology, molecular docking, ADMET, quantum chemistry and machine learning based QSAR approaches. Comput Biol Med 2025; 187:109754. [PMID: 39908918 DOI: 10.1016/j.compbiomed.2025.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Allergic rhinitis is a devastating health complication that interrupts the quality of daily life and significantly affects around 40 % of the population worldwide. Despite the availability of various treatment options, many patients continue to struggle with persistent symptoms and side effects, highlighting the need for innovative therapeutic approaches. Therefore, identifying pathway and mechanism-based targeted therapies with more effective and fewer side effects could aid current therapeutics and provide novel therapeutic advantages. This study aimed to identify potential drug candidates for allergic rhinitis treatment by employing in-silico approaches, including network pharmacology, molecular docking, ADMET, similarity, pharmacophore modeling, quantum chemistry, and machine learning-based QSAR modeling. From three traditionally used medicinal plants known as allergic rhinitis curing, Xanthium strumarium, Magnolia liliiflora, and Tylophora indica, 241 compounds were obtained, and their favorable ADMET properties were analyzed. Network pharmacology revealed 203 potential therapeutic targets, with 15 hub targets identified through protein-protein interaction network analysis and most of them play key roles in inflammatory and immune pathways confirmed by KEGG pathway analysis. Molecular docking, similarity testing, and pharmacophore modeling studies identified promising compounds Quercetin, Yinyanghuo E, Uralenin, CID:90643991, CID:42607537, CID:76329670, Heracetin, and Fisetin exhibiting strong binding affinities with key regulatory targets, NFKB1, TRAF6, and key cytokines IL5, and IL6 that directly and indirectly involved in allergic reactions. Quantum chemistry calculations revealed favorable electronic properties and reactivities of these compounds. The machine learning-based QSAR model predicted IC50 < 50 nM for almost all compounds, indicating highly potent inhibitors. Hence, this in-silico study identified some novel promising drug candidates for treating allergic rhinitis by targeting crucial inflammatory and immune pathways, offering improved treatment outcomes and reduced side effects, subject to further experimental validation.
Collapse
Affiliation(s)
- K M Tanjida Islam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh.
| |
Collapse
|
11
|
Méndez D, Tellería F, Alarcón M, Montecino-Garrido H, Molina-Gutiérrez N, Morales-Malvarez L, Deras B, Mansilla S, Castro L, Trostchansky A, Araya-Maturana R, Fuentes E. MITOCDNB DECREASES PLATELET ACTIVATION THROUGH ITS SELECTIVE ACTION ON MITOCHONDRIAL THIOREDOXIN REDUCTASE. Biomed Pharmacother 2025; 183:117840. [PMID: 39842272 DOI: 10.1016/j.biopha.2025.117840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro. Cytotoxicity and viability tests were performed on human platelets from volunteer donors, together with experiments on aggregation, platelet activation, mitochondrial function, mitochondrial respiration, and thioredoxin reductase 2 (TrxR2) enzymatic activity in isolated platelet mitochondria. The compound MitoCDNB, corresponding to the molecule 5-chloro-2,4-dinitrophenylamino linked with triphenylphosphonium cation (TPP+) by a butyl chain and methanesulfonate as the counterion, was evaluated. MitoCDNB demonstrates potent, high mitochondria-selective antiplatelet effects that provide a novel approach to platelet inhibition with potentially minimized systemic risks. Here, we describe the first compound that inhibits platelet activation by decreasing TrxR2 enzymatic activity and collagen-stimulated maximal mitochondrial respiration, preventing aggregation and platelet activation. These results can be used to develop new antiplatelet drugs targeting mitochondria.
Collapse
Affiliation(s)
- Diego Méndez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Francisca Tellería
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Héctor Montecino-Garrido
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Nacim Molina-Gutiérrez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Lisandra Morales-Malvarez
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile; Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| | - Bessy Deras
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Santiago Mansilla
- Departamento de Métodos Cuantitativos and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Laura Castro
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Andrés Trostchansky
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile.
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
12
|
Abu-Soud HM, Camp OG, Ramadoss J, Chatzicharalampous C, Kofinas G, Kofinas JD. Regulation of nitric oxide generation and consumption. Int J Biol Sci 2025; 21:1097-1109. [PMID: 39897032 PMCID: PMC11781162 DOI: 10.7150/ijbs.105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Nitric oxide (NO), originally discovered for its role in cardiovascular function, is a key molecule in physiological processes including metabolism, neurotransmission (including memory, learning, neuroprotection and synaptic plasticity), immunity, reproduction, and much more. NO can be synthesized by the catalytic activity of the enzyme nitric oxide synthase (NOS), which is found biologically in three isoforms, or nonenzymatically based on simple reduction of nitrate and nitrite or by the NO-donor S-nitrosothiol (R-SNO). Importantly, the deficiency of NO has been noted in a wide range of pathologies including cardiovascular disease, cancer, erectile dysfunction, male and female infertility, and mitochondrial disease. While there are several pathways that can lead to a reduction in the bioavailability of NO (i.e., consumption, inhibition, and substrate competition) it is the conclusion of the authors that multiple pathways co-exist in pathological states. This article outlines for the first time the major pathways of NO generation, the importance of NO in health, NO scavenging and enzyme inhibition, and the potential benefits of supplementation.
Collapse
Affiliation(s)
- Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Jayanth Ramadoss
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | | - George Kofinas
- Kofinas Fertility Group, 65 Broadway, 14th floor, New York, NY 10006, USA
| | - Jason D Kofinas
- Kofinas Fertility Group, 65 Broadway, 14th floor, New York, NY 10006, USA
| |
Collapse
|
13
|
Loyola-Leyva A, Hernandez-Vidales K, Ruiz-Garcia J, Loyola-Rodriguez JP. Characterization of Green Synthesized Nanoparticles with Anti-diabetic Properties. A Systematic Review. Curr Diabetes Rev 2025; 21:67-85. [PMID: 38778591 DOI: 10.2174/0115733998306451240425135229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Plants are used in medicine because they are low-cost, widely available, and have few side effects (compared to pharmacological treatment). Plants have phytocompounds with antidiabetic properties that can be delivered using nanoparticles (NPs). OBJECTIVE To describe the antidiabetic properties of green synthesized NPs (GSNPs) and their characterization methods. METHODS Three databases were consulted using the terms "type 2 diabetes mellitus," "antidiabetic effects," "phytochemicals," "plants," and "nanoparticles." Studies describing the antidiabetic effects (in vitro or animal models) of NPs synthesized by plant extracts and characterizing them through UV-Vis spectroscopy, FTIR, XRD, SEM, TEM, and DLS were included. RESULTS 16 studies were included. In vitro studies reported enzyme inhibition values between 11% (H. polyrhizus) and 100% (A. concinna) for alfa-amylase and between 41.1% (M. zapota) and 100% (A. concinna) for alfa-glucosidase. Animal studies with Wistar Albino rats having diabetes (induced by alloxan or streptozotocin) reported improved blood glucose, triglycerides, total cholesterol, LDL, and HDL after treatment with GSNPs. Regarding characterization, NP sizes were measured with DLS (25-181.5 nm), SEM (52.1-91 nm), and TEM (8.7-40.6 nm). The surface charge was analyzed with zeta potential (-30.7 to -2.9 mV). UV-Vis spectroscopy was employed to confirm the formations of AgNPs (360-460 nm), AuNPs (524-540 nm), and ZnONPs (300-400 nm), and FTIR was used to identify plant extract functional groups. CONCLUSION GSNP characterization (shape, size, zeta potential, and others) is essential to know the viability and stability, which are important to achieve health benefits for biomedical applications. Studies reported good enzyme inhibition percentages in in vitro studies, decreasing blood glucose levels and improving lipid profiles in animal models with diabetes. However, these studies had limitations in the methodology and potential risk of bias, so results need careful interpretation.
Collapse
Affiliation(s)
- Alejandra Loyola-Leyva
- Biological Physics Laboratory, Physics Institute. Autonomous University of San Luis Potosí, (Universidad Autónoma de San Luis Potosí), Av. Manuel Nava #6, Zona Universitaria, C.P. 78290, San Luis Potosí, S.L.P., México
| | - Karen Hernandez-Vidales
- Institute of Applied Science and Technology, National Autonomous University of Mexico, Cto. Exterior S/N, C.U., Coyoacán, C.P. 04510, Ciudad de México, México
| | - Jaime Ruiz-Garcia
- Biological Physics Laboratory, Physics Institute. Autonomous University of San Luis Potosí, (Universidad Autónoma de San Luis Potosí), Av. Manuel Nava #6, Zona Universitaria, C.P. 78290, San Luis Potosí, S.L.P., México
| | - Juan Pablo Loyola-Rodriguez
- Biological Physics Laboratory, Physics Institute. Autonomous University of San Luis Potosí, (Universidad Autónoma de San Luis Potosí), Av. Manuel Nava #6, Zona Universitaria, C.P. 78290, San Luis Potosí, S.L.P., México
| |
Collapse
|
14
|
Sun R, Li S, Ye W, Lu Y. Development of a prognostic model based on lysosome-related genes for ovarian cancer: insights into tumor microenvironment, mutation patterns, and personalized treatment strategies. Cancer Cell Int 2024; 24:419. [PMID: 39702158 DOI: 10.1186/s12935-024-03586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Ovarian cancer (OC) is often associated with an unfavorable prognosis. Given the crucial involvement of lysosomes in tumor advancement, lysosome-related genes (LRGs) hold promise as potential therapeutic targets. METHODS To identify differentially expressed lysosome-related genes (DE-LRGs), we performed a matching analysis between differentially expressed genes (DEGs) in OC and the pool of LRGs. Genes with prognostic significance were analyzed using multiple regression analyses to construct a prognostic risk signature. The model's efficacy was validated through survival analysis in various cohorts. We further explored the model's correlation with clinical attributes, tumor microenvironment (TME), mutational patterns, and drug sensitivity. The quantitative real-time polymerase chain reaction (qRT-PCR) validated gene expression in OC cells. RESULTS A 10-gene prognostic risk signature was established. Survival analysis confirmed its predictive accuracy across cohorts. The signature served as an independent prognostic element for OC. The high-risk and low-risk groups demonstrated notable disparities in terms of immune infiltration patterns, mutational characteristics, and sensitivity to therapeutic agents. The qRT-PCR results corroborated and validated the findings obtained from the bioinformatic analyses. CONCLUSIONS We devised a 10-LRG prognostic model linked to TME, offering insights for tailored OC treatments.
Collapse
Affiliation(s)
- Ran Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Siyi Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Wanlu Ye
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yanming Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
15
|
Yadav MK, Dahiya V, Tripathi MK, Chaturvedi N, Rashmi M, Ghosh A, Raj VS. Unleashing the future: The revolutionary role of machine learning and artificial intelligence in drug discovery. Eur J Pharmacol 2024; 985:177103. [PMID: 39515559 DOI: 10.1016/j.ejphar.2024.177103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Drug discovery is a complex and multifaceted process aimed at identifying new therapeutic compounds with the potential to treat various diseases. Traditional methods of drug discovery are often time-consuming, expensive, and characterized by low success rates. Because of this, there is an urgent need to improve the drug development process using new technologies. The integration of the current state-of-art of artificial intelligence (AI) and machine learning (ML) approaches with conventional methods will enhance the efficiency and effectiveness of pharmaceutical research. This review highlights the transformative impact of AI and ML in drug discovery, discussing current applications, challenges, and future directions in harnessing these technologies to accelerate the development of innovative therapeutics. We have discussed the latest developments in AI and ML technologies to streamline several stages of drug discovery, from target identification and validation to lead optimization and preclinical studies.
Collapse
Affiliation(s)
- Manoj Kumar Yadav
- Department of Biomedical Engineering, SRM University Delhi-NCR, Sonepat, Haryana, India.
| | - Vandana Dahiya
- Department of Biomedical Engineering, SRM University Delhi-NCR, Sonepat, Haryana, India
| | | | - Navaneet Chaturvedi
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Mayank Rashmi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Arabinda Ghosh
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, India
| | - V Samuel Raj
- Center for Drug Design Discovery and Development (C4D), SRM University Delhi-NCR, Sonepat, Haryana, India.
| |
Collapse
|
16
|
Arzuk E, Armağan G. Genistein and daidzein induce ferroptosis in MDA-MB-231 cells. J Pharm Pharmacol 2024; 76:1599-1608. [PMID: 39245043 DOI: 10.1093/jpp/rgae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVES In recent years, there has been a growing interest in targeting ferroptosis for the treatment and prevention of multiple cancers. This study aimed to assess the contribution of ferroptosis to the antiproliferative effects of genistein (GN) and daidzein (DZ) in breast cancer cell lines. METHODS MDA-MB-231 and MCF-7 cells were employed as an in vitro model. The antiproliferative effects of GN and DZ were determined by WST-1 assay in the presence of specific inhibitors of different cell death pathways. The mRNA expressions of Gpx4 and Fsp-1, the levels of lipid peroxidation, glutathione (GSH)/glutathione disulfide (GSSG) ratio, and intracellular iron ion content were assessed in GN- or DZ-treated cells. RESULTS GN and DZ were found to cause ferroptotic cell death in MDA-MB-231, as confirmed by the reversal of viability when cells were pretreated with ferrostatin-1. Furthermore, both phytochemicals induced biochemical markers of ferroptosis, including lipid peroxidation and iron ions levels, and decreased GSH/GSSG levels. The mRNA expression levels of the main anti-ferroptotic genes, Gpx4 and Fsp-1, were diminished by the treatment of both phytochemicals. Surprisingly, ferroptosis did not play a role in GN- or DZ-induced cell death in MCF-7 cells. CONCLUSION Our findings highlight the potential of GN and DZ as ferroptosis inducers in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35080, İzmir, Turkey
| | - Güliz Armağan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35080, İzmir, Turkey
| |
Collapse
|
17
|
Wichka I, Lai PK. Rapid discovery of Transglutaminase 2 inhibitors for celiac disease with boosting ensemble machine learning. Comput Struct Biotechnol J 2024; 23:3669-3679. [PMID: 39498152 PMCID: PMC11532751 DOI: 10.1016/j.csbj.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/07/2024] Open
Abstract
Celiac disease poses a significant health challenge for individuals consuming gluten-containing foods. While the availability of gluten-free products has increased, there is still a need for therapeutic treatments. The advancement of computational drug design, particularly using bio-cheminformatics-oriented machine learning, offers promising avenues for developing such therapies. One promising target is Transglutaminase 2 (TG2), a protein involved in the autoimmune response triggered by gluten consumption. In this study, we utilized data from approximately 1100 TG2 inhibition assays to develop ligand-based molecular screening techniques using ensemble machine-learning models and extensive molecular feature libraries. Various classifiers, including tree-based methods, artificial neural networks, and graph neural networks, were evaluated to identify primary systems for predictive analysis and feature significance assessment. Boosting ensembles of perceptron deep learning and low-depth random forest weak learners emerged as the most effective, achieving over 90 % accuracy, significantly outperforming a baseline of 64 %. Key features, such as the presence of a terminal Michael acceptor group and a sulfonamide group, were identified as important for activity. Additionally, a regression model was created to rank active compounds. We developed a web application, Celiac Informatics (https://celiac-informatics-v1-2b0a85e75868.herokuapp.com), to facilitate the screening of potential therapeutic molecules for celiac disease. The web app also provides drug-likeness reports, supporting the development of novel drugs.
Collapse
Affiliation(s)
| | - Pin-Kuang Lai
- Corresponding author at: Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
18
|
E U, T M, A V G, D P. A comprehensive survey of drug-target interaction analysis in allopathy and siddha medicine. Artif Intell Med 2024; 157:102986. [PMID: 39326289 DOI: 10.1016/j.artmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Effective drug delivery is the cornerstone of modern healthcare, ensuring therapeutic compounds reach their intended targets efficiently. This paper explores the potential of personalized and holistic healthcare, driven by the synergy between traditional and allopathic medicine systems, with a specific focus on the vast reservoir of medicinal compounds found in plants rooted in the historical legacy of traditional medicine. Motivated by the desire to unlock the therapeutic potential of medicinal plants and bridge the gap between traditional and allopathic medicine, this survey delves into in-silico computational approaches for studying Drug-Target Interactions (DTI) within the contexts of allopathy and siddha medicine. The contributions of this survey are multifaceted: it offers a comprehensive overview of in-silico methods for DTI analysis in both systems, identifies common challenges in DTI studies, provides insights into future directions to advance DTI analysis, and includes a comparative analysis of DTI in allopathy and siddha medicine. The findings of this survey highlight the pivotal role of in-silico computational approaches in advancing drug research and development in both allopathy and siddha medicine, emphasizing the importance of integrating these methods to drive the future of personalized healthcare.
Collapse
Affiliation(s)
- Uma E
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India.
| | - Mala T
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Geetha A V
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| | - Priyanka D
- Department of Information Science and Technology, College of Engineering Guindy, Chennai, India
| |
Collapse
|
19
|
Jiang Z, Xu Y, Yang L, Huang X, Bao J. Bile acid conjugated chitosan nanoparticles promote the proliferation and epithelial-mesenchymal transition of hepatocellular carcinoma by regulating the PI3K/Akt/mTOR pathway. Carbohydr Res 2024; 545:109296. [PMID: 39471534 DOI: 10.1016/j.carres.2024.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Bile acids have been known to play significant roles at certain physiological levels in gastrointestinal metabolism. Yet, they are known to be carcinogenic and aid in tumor progression in most cases, although the roles remain uncertain. Hence, we tested the cytotoxic potential of cholic acid (CA) loaded chitosan nanoparticles (CNPs) on Hep3B cells. The physicochemical properties of the CNPs synthesized with CA load (CA-CNPs) were determined using standard techniques such as ultraviolet-visible spectrophotometry (UV-Vis), fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The characteristic peak for chitosan nanoparticles were observed for plain CNPs (pCNPs) and CA-CNPs at around 300 nm as per UV-Vis analysis. FTIR analysis indicated the possible trapping of CA onto CNPs as certain peaks were retained and some peaks were shifted. XRD analysis determined that the peaks representing CA and pCNPs were collectively obtained in CA-CNPs. As per DLS analysis, the particle size, PDI and ζ-potential of the CA-CNPs were 259 nm, 0.284 and 30.4 mV. Further, the CA-CNPs were non-cytotoxic on Hep3B cells at the maximum tested concentration of 500 μg/mL. The viability at 500 μg/mL of CA-CNPs was two-fold higher than 500 μg/mL of pCNPs. Also, the pCNPs were not hemolytic and therefore could not have played a role in the increase of viability after treatment with CA-CNPs, which indicates that CA posed a major role in increased viability of Hep3B cells. As per quantitative PCR (qPCR), the upregulated gene expressions of PI3K, Akt, mTORC2, cMyc, Fibronectin, hVPS34, Slug and ZEB1 and the downregulated expression of the tumor suppressor PTEN indicates that PI3K/Akt/mTOR pathway mediated the induction of epithelial-to-mesenchymal transition (EMT) in response to CA-CNPs treatment on Hep3B cells.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Oncology, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, 222002, China
| | - Yi Xu
- Phase I Clinical Trial Center, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, 222002, China
| | - Liu Yang
- Department of Colorectal Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affifiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jun Bao
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
20
|
Villegas M, Bayat F, Kramer T, Schwarz E, Wilson D, Hosseinidoust Z, Didar TF. Emerging Strategies to Prevent Bacterial Infections on Titanium-Based Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404351. [PMID: 39161205 DOI: 10.1002/smll.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.
Collapse
Affiliation(s)
- Martin Villegas
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Taylor Kramer
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Elise Schwarz
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - David Wilson
- Division of Orthopedic Surgery, Halifax Infirmary, Halifax, NS, B3H3A6, Canada
| | - Zeinab Hosseinidoust
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
21
|
Ivanov J, Tenchov R, Ralhan K, Iyer KA, Agarwal S, Zhou QA. In Silico Insights: QSAR Modeling of TBK1 Kinase Inhibitors for Enhanced Drug Discovery. J Chem Inf Model 2024; 64:7488-7502. [PMID: 39289178 PMCID: PMC11480986 DOI: 10.1021/acs.jcim.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
TBK1, or TANK-binding kinase 1, is an enzyme that functions as a serine/threonine protein kinase. It plays a crucial role in various cellular processes, including the innate immune response to viruses, cell proliferation, apoptosis, autophagy, and antitumor immunity. Dysregulation of TBK1 activity can lead to autoimmune diseases, neurodegenerative disorders, and cancer. Due to its central role in these critical pathways, TBK1 is a significant focus of research for therapeutic drug development. In this paper, we explore data from the CAS Content Collection regarding TBK1 and its implication in a large assortment of diseases and disorders. With the demand for developing efficient TBK1 inhibitors being outlined, we focus on utilizing a machine learning approach for developing predictive models for TBK1 inhibition, derived from the fragment-functional analysis descriptors. Using the extensive CAS Content Collection, we assembled a training set of TBK1 inhibitors with experimentally measured IC50 values. We explored several machine learning techniques combined with various molecular descriptors to derive and select the best TBK1 inhibitor QSAR models. Certain significant structural alerts that potentially contribute to inhibition of TBK1 are outlined and discussed. The merit of the article stems from identifying the most adequate TBK1 QSAR models and subsequent successful development of advanced positive training data to facilitate and enhance drug discovery for an important therapeutic target such as TBK1 inhibitors, based on an extensive, wide-ranging set of scientific information provided by the CAS Content Collection.
Collapse
Affiliation(s)
- Julian
M. Ivanov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | | | | |
Collapse
|
22
|
Hongal AM, Shettar AK, Hoskeri JH, Vedamurthy AB. Silver nanoparticles mediated apoptosis and cell cycle arrest in lung cancer A549. 3 Biotech 2024; 14:238. [PMID: 39310035 PMCID: PMC11415561 DOI: 10.1007/s13205-024-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
The present study was aimed to synthesize the silver nanoparticles from Alangium salvifolium Wang. and evaluating its biomedical applications. The leaves of A. salvifolium collected and subjected for the standard procedure of Soxhlet extraction using distilled water as a solvent. With the help of an aqueous extract AgNPs were synthesized from silver nitrate using phyto-reduction method. Further, synthesized AgNPs were characterized using several analytical techniques such as UV, FTIR, SEM-EDX, XRD, particles size and zeta potential. Synthesized AgNPs were tested for antibacterial, antioxidant, anticancer for lung cancer cell line and flowcytometry-based pathway studies. The visual observation confirmed the formation of AgNPs from the aqueous extract by changing yellow to brown colour formation. Further, characterization techniques also confirmed the formation of AgNPs. Antibacterial activity results showed that the tested AgNPs were potent against bacterial pathogens with a higher zone of inhibition. Further, the antioxidant and anticancer activity of AgNPs revealed that the AgNPs have exhibited significant results with a good percentage of inhibition. Further, the flow cytometry studies confirmed that the AgNPs inducing apoptosis and cell cycle arrest in lung cancer. The phytochemicals of A. salvifolium plant have successfully synthesized AgNPs. In the case of performed biological activity, the synthesized silver nanoparticles exhibited potent activity. In future these AgNPs can be taken for molecular and in vivo studies to identify their efficacy using in vivo and molecular models.
Collapse
Affiliation(s)
- Annapurneshwari M. Hongal
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| | - Arun K. Shettar
- Division of Pre-Clinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd, Hubli, Karnataka 580031 India
| | - Joy H. Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women’s University, Vijayapura, Karnataka India
| | - A. B. Vedamurthy
- P G Department of Studies in Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003 India
| |
Collapse
|
23
|
Khodr V, Clauzier L, Machillot P, Sales A, Migliorini E, Picart C. Development of an automated high-content immunofluorescence assay of pSmads quantification: Proof-of-concept with drugs inhibiting the BMP/TGF-β pathways. Biotechnol J 2024; 19:e2400007. [PMID: 39295554 DOI: 10.1002/biot.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Bone morphogenetic proteins (BMPs) and transforming growth factors (TGF-β) are members of the TGF-β superfamily, known for their roles in several physiological and pathological processes. These factors are known to bind in vivo to BMP and TGF-β receptors, respectively, which induces the phosphorylation of Smad (pSmad) transcription factors. This pathway is generally studied with Western blot and luciferase bioluminescence assay, which presents some limitations. PURPOSE In this work, we developed and optimized a high-throughput assay to study pSmad pathways using immunofluorescence (IF) as an alternative to Western blot. We aimed to overcome the technical challenges usually faced in the classical IF assay in image acquisition, analysis, and quantification. METHODS We used C2C12 cells as a cellular model. The cells were stimulated with BMP-2 and TGF-β1 that were delivered either in solution (soluble) or via a biomaterial presenting the growth factor (GF), that is in a "matrix-bound" manner. Image acquisition parameters, analysis methods, and quantification of pSmads using IF were optimized for cells cultured on two types of supports: on bare glass and on a biomimetic coating made by self-assembly of the biopolymers hyaluronic acid and poly(l-lysine), which was crosslinked and then loaded with the GFs. RESULTS We performed high-content kinetic studies of pSmad expression for cells cultured in 96-well microplates in response to soluble and matrix-bound BMP-2 and TGF-β1. The detection limit of the IF-based assay was found to be similar to Western blot. Additionally, we provide a proof-of-concept for drug testing using inhibitors of BMP and TGF-β receptors, under conditions where specific signaling pathways are engaged via the ligand/receptor interactions. Altogether, our findings offer perspectives for future mechanistic studies on cell signaling and for studies at the single cell level using imaging methods.
Collapse
Affiliation(s)
- Valia Khodr
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR, Grenoble, France
| | - Laura Clauzier
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Paul Machillot
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Adrià Sales
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Elisa Migliorini
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Catherine Picart
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR, Grenoble, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
24
|
Lopez UM, Hasan MM, Havranek B, Islam SM. SARS-CoV-2 Resistance to Small Molecule Inhibitors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2024; 11:127-139. [PMID: 39559548 PMCID: PMC11573241 DOI: 10.1007/s40588-024-00229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 11/20/2024]
Abstract
Purpose of the Review SARS-CoV-2 undergoes genetic mutations like many other viruses. Some mutations lead to the emergence of new Variants of Concern (VOCs), affecting transmissibility, illness severity, and the effectiveness of antiviral drugs. Continuous monitoring and research are crucial to comprehend variant behavior and develop effective response strategies, including identifying mutations that may affect current drug therapies. Recent Findings Antiviral therapies such as Nirmatrelvir and Ensitrelvir focus on inhibiting 3CLpro, whereas Remdesivir, Favipiravir, and Molnupiravir target nsp12, thereby reducing the viral load. However, the emergence of resistant mutations in 3CLpro and nsp12 could impact the efficiency of these small molecule drug therapeutics. Summary This manuscript summarizes mutations in 3CLpro and nsp12, which could potentially reduce the efficacy of drugs. Additionally, it encapsulates recent advancements in small molecule antivirals targeting SARS-CoV-2 viral proteins, including their potential for developing resistance against emerging variants.
Collapse
Affiliation(s)
- Uxua Modrego Lopez
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Md Mehedi Hasan
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | - Brandon Havranek
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shahidul M Islam
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
25
|
Zhang C, Tian K, Meng Z, Zhang J, Lu Y, Tan L, Zhang M, Xu D. A versatile dilution-treatment-detection microfluidic chip platform for rapid In vitro lung cancer drug combination sensitivity evaluation. Talanta 2024; 277:126298. [PMID: 38823330 DOI: 10.1016/j.talanta.2024.126298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Combination drug therapy represents an effective strategy for treating certain drug-resistant and intractable cancer cases. However, determining the optimal combination of drugs and dosages is challenging due to clonal diversity in patients' tumors and the lack of rapid drug sensitivity evaluation methods. Microfluidic technology offers promising solutions to this issue. In this study, we propose a versatile microfluidic chip platform capable of integrating all processes, including dilution, treatment, and detection, for in vitro drug sensitivity assays. This platform innovatively incorporates several modules, including automated discrete drug logarithmic concentration generation, on-chip cell perfusion culture, and parallel drug treatments of cancer cell models. Moreover, it is compatible with microplate readers or high-content imaging systems for swift detection and automated monitoring, simplifying on-chip drug evaluation. Proof of concept is demonstrated by assessing the in vitro potency of two drugs, cisplatin, and etoposide, against the lung adenocarcinoma A549 cell line, under both single-drug and combination treatment conditions. The findings reveal that, compared to conventional microplate approaches with static cultivation, this on-chip automated perfusion bioassays yield comparable IC50 values with lower variation and a 50 % reduction in drug preparation time. This versatile dilution-treatment-detection microfluidic platform offers a promising tool for rapid and precise drug assessments, facilitating in vitro drug sensitivity evaluation in personalized cancer chemotherapy.
Collapse
Affiliation(s)
- Chenchen Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Kuo Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Zixun Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Jianing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Yihong Lu
- NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Li Tan
- NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Mei Zhang
- NMPA Key Laboratory for Impurity Profile of Chemical Drugs, Jiangsu Institute for Food and Drug Control, Nanjing, China
| | - Danke Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| |
Collapse
|
26
|
Paşa S, Atlan M, Temel H, Türkmenoğlu B, Ertaş A, Okan A, Yilmaz S, Ateş Ş. Histopathological, Antioxidant, and Enzyme Activity of Boronic Incorporated Catechin Compound: Screening of Bioactivity with Molecular Docking Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2024; 50:1446-1465. [DOI: 10.1134/s1068162024040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2025]
|
27
|
Mafi A, Hedayati N, Milasi YE, Kahkesh S, Daviran M, Farahani N, Hashemi M, Nabavi N, Alimohammadi M, Rahimzadeh P, Taheriazam A. The function and mechanism of circRNAs in 5-fluorouracil resistance in tumors: Biological mechanisms and future potential. Pathol Res Pract 2024; 260:155457. [PMID: 39018926 DOI: 10.1016/j.prp.2024.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
5-Fluorouracil (5-FU) is a well-known chemotherapy drug extensively used in the treatment of breast cancer. It works by inhibiting cancer cell proliferation and inducing cell death through direct incorporation into DNA and RNA via thymidylate synthase (TS). Circular RNAs (circRNAs), a novel family of endogenous non-coding RNAs (ncRNAs) with limited protein-coding potential, contribute to 5-FU resistance. Their identification and targeting are crucial for enhancing chemosensitivity. CircRNAs can regulate tumor formation and invasion by adhering to microRNAs (miRNAs) and interacting with RNA-binding proteins, regulating transcription and translation. MiRNAs can influence enzymes responsible for 5-FU metabolism in cancer cells, affecting their sensitivity or resistance to the drug. In the context of 5-FU resistance, circRNAs can target miRNAs and regulate biological processes such as cell proliferation, cell death, glucose metabolism, hypoxia, epithelial-to-mesenchymal transition (EMT), and drug efflux. This review focuses on the function of circRNAs in 5-FU resistance, discussing the underlying molecular pathways and biological mechanisms. It also presents recent circRNA/miRNA-targeted cancer therapeutic strategies for future clinical application.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Minoo Daviran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
28
|
Bauer I, Rimbach G, Cordeiro S, Bosy-Westphal A, Weghuber J, Ipharraguerre IR, Lüersen K. A comprehensive in-vitro/ in-vivo screening toolbox for the elucidation of glucose homeostasis modulating properties of plant extracts (from roots) and its bioactives. Front Pharmacol 2024; 15:1396292. [PMID: 38989154 PMCID: PMC11233739 DOI: 10.3389/fphar.2024.1396292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.
Collapse
Affiliation(s)
- Ilka Bauer
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Anja Bosy-Westphal
- Division of Human Nutrition, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Ignacio R. Ipharraguerre
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
29
|
Li W, Quigley K. Bone morphogenetic protein signalling in pulmonary arterial hypertension: revisiting the BMPRII connection. Biochem Soc Trans 2024; 52:1515-1528. [PMID: 38716930 PMCID: PMC11346422 DOI: 10.1042/bst20231547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and life-threatening vascular disorder, characterised by abnormal remodelling of the pulmonary vessels and elevated pulmonary artery pressure, leading to right ventricular hypertrophy and right-sided heart failure. The importance of bone morphogenetic protein (BMP) signalling in the pathogenesis of PAH is demonstrated by human genetic studies. Many PAH risk genes are involved in the BMP signalling pathway and are highly expressed or preferentially act on vascular endothelial cells. Endothelial dysfunction is recognised as an initial trigger for PAH, and endothelial BMP signalling plays a crucial role in the maintenance of endothelial integrity. BMPR2 is the most prevalent PAH gene, found in over 80% of heritable cases. As BMPRII protein is the major type II receptor for a large family of BMP ligands and expressed ubiquitously in many tissues, dysregulated BMP signalling in other cells may also contribute to PAH pathobiology. Sotatercept, which contains the extracellular domain of another transforming growth factor-β family type II receptor ActRIIA fused to immunoglobin Fc domain, was recently approved by the FDA as a treatment for PAH. Neither its target cells nor its mechanism of action is fully understood. This review will revisit BMPRII function and its extracellular regulation, summarise how dysregulated BMP signalling in endothelial cells and smooth muscle cells may contribute to PAH pathogenesis, and discuss how novel therapeutics targeting the extracellular regulation of BMP signalling, such as BMP9 and Sotatercept, can be related to restoring BMPRII function.
Collapse
Affiliation(s)
- Wei Li
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| | - Kate Quigley
- VPD Heart and Lung Research Institute, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0BB, U.K
| |
Collapse
|
30
|
Jamtsho T, Loukas A, Wangchuk P. Pharmaceutical Potential of Remedial Plants and Helminths for Treating Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:819. [PMID: 39065669 PMCID: PMC11279646 DOI: 10.3390/ph17070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Research is increasingly revealing that inflammation significantly contributes to various diseases, particularly inflammatory bowel disease (IBD). IBD is a major medical challenge due to its chronic nature, affecting at least one in a thousand individuals in many Western countries, with rising incidence in developing nations. Historically, indigenous people have used natural products to treat ailments, including IBD. Ethnobotanically guided studies have shown that plant-derived extracts and compounds effectively modulate immune responses and reduce inflammation. Similarly, helminths and their products offer unique mechanisms to modulate host immunity and alleviate inflammatory responses. This review explored the pharmaceutical potential of Aboriginal remedial plants and helminths for treating IBD, emphasizing recent advances in discovering anti-inflammatory small-molecule drug leads. The literature from Scopus, MEDLINE Ovid, PubMed, Google Scholar, and Web of Science was retrieved using keywords such as natural product, small molecule, cytokines, remedial plants, and helminths. This review identified 55 important Aboriginal medicinal plants and 9 helminth species that have been studied for their anti-inflammatory properties using animal models and in vitro cell assays. For example, curcumin, berberine, and triptolide, which have been isolated from plants; and the excretory-secretory products and their protein, which have been collected from helminths, have demonstrated anti-inflammatory activity with lower toxicity and fewer side effects. High-throughput screening, molecular docking, artificial intelligence, and machine learning have been engaged in compound identification, while clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and RNA sequencing have been employed to understand molecular interactions and regulations. While there is potential for pharmaceutical application of Aboriginal medicinal plants and gastrointestinal parasites in treating IBD, there is an urgent need to qualify these plant and helminth therapies through reproducible clinical and mechanistic studies.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
31
|
Bastos RS, de Aguiar CPO, Cruz JN, Ramos RS, Kimani NM, de Souza JSN, Chaves MH, de Freitas HF, Pita SSR, dos Santos CBR. Rational Approach toward COVID-19's Main Protease Inhibitors: A Hierarchical Biochemoinformatics Analysis. Int J Mol Sci 2024; 25:6715. [PMID: 38928422 PMCID: PMC11204165 DOI: 10.3390/ijms25126715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the potential of selected compounds as inhibitors of SARS-CoV-2 Mpro through pharmacokinetic and toxicological analyses, molecular docking, and molecular dynamics simulations. In silico molecular docking simulations revealed promising ligands with favorable binding affinities for Mpro, ranging from -6.2 to -9.5 kcal/mol. Moreover, molecular dynamics simulations demonstrated the stability of protein-ligand complexes over 200 ns, maintaining protein secondary structures. MM-PBSA analysis revealed favorable interactions between ligands and Mpro, with negative binding energy values. Hydrogen bond formation capacity during molecular dynamics was confirmed, indicating consistent interactions with Mpro catalytic residues. Based on these findings, selected ligands show promise for future studies in developing COVID-19 treatments.
Collapse
Affiliation(s)
- Ruan S. Bastos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Christiane P. O. de Aguiar
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Jorddy N. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Ryan S. Ramos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Njogu M. Kimani
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya
- Natural Product Chemistry and Computational Drug Discovery Laboratory, Embu P.O. Box 6-60100, Kenya
| | - João S. N. de Souza
- Chemistry Department, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Mariana H. Chaves
- Chemistry Department, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Humberto F. de Freitas
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Federal University of Bahia, Av. Barão de Jeremoabo, 147, Pharmacy College, Ondina, Salvador 40170-115, BA, Brazil; (H.F.d.F.); (S.S.R.P.)
| | - Samuel S. R. Pita
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Federal University of Bahia, Av. Barão de Jeremoabo, 147, Pharmacy College, Ondina, Salvador 40170-115, BA, Brazil; (H.F.d.F.); (S.S.R.P.)
| | - Cleydson B. R. dos Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| |
Collapse
|
32
|
Nemr OT, Abdel-wahab MS, Hamza ZS, Ahmed SA, El-Bassuony AA, Abdel-Gawad OF, Mohamed HS. Investigating the Anticancer and Antioxidant Potentials of a Polymer-Grafted Sodium Alginate Composite Embedded with CuO and TiO2 Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:2713-2728. [DOI: 10.1007/s10924-024-03255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 01/04/2025]
Abstract
AbstractIn this study, we conducted the synthesis of a composite material by grafting an acrylonitrile-co-styrene (AN-co-St) polymer into sodium alginate and incorporating CuO (copper oxide) and TiO2 (titanium dioxide) nanoparticles. The primary objective was to investigate the potential anticancer and antioxidant activities of the composite material. First, CuO and TiO2 nanoparticles were synthesized and characterized for their size, morphology, and surface properties. Subsequently, these nanoparticles were integrated into the sodium alginate matrix, which had been grafted with the AN-co-St polymer, resulting in the formation of the composite material. To confirm successful nanoparticle incorporation and assess the structural integrity of the composite, various techniques such as X-ray diffraction analysis (XRD), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed. The composite material’s anticancer and antioxidant activities were then evaluated. In vitro cell viability assays using the HepG-2 cell line were performed to assess potential cytotoxic effects, while antioxidant (DPPH) assays were conducted to determine the composite’s ability to scavenge free radicals and protect against oxidative stress. Preliminary results indicate that the composite material demonstrated promising anticancer and antioxidant activities. The presence of CuO and TiO2 nanoparticles within the composite contributed to these effects, as these nanoparticles are known to possess anticancer and antioxidant properties. Furthermore, the grafting of the AN-co-St polymer into sodium alginate enhanced the overall performance and stability of the composite material.
Collapse
|
33
|
Sharma D, Adnan D, Abdel-Reheem MK, Anafi RC, Leary DD, Bishehsari F. Circadian transcriptome of pancreatic adenocarcinoma unravels chronotherapeutic targets. JCI Insight 2024; 9:e177697. [PMID: 38716727 PMCID: PMC11141942 DOI: 10.1172/jci.insight.177697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 06/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Mostafa K. Abdel-Reheem
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Ron C. Anafi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel D. Leary
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Gastroenterology and
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
34
|
Ono T, Noguchi R, Osaki J, Akiyama T, Adachi Y, Kojima N, Toda Y, Fukushima S, Yoshimatsu Y, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-DFSP5-C1: a novel patient-derived dermatofibrosarcoma protuberans cell line. Hum Cell 2024; 37:854-864. [PMID: 38372888 DOI: 10.1007/s13577-024-01030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024]
Abstract
Dermatofibrosarcoma protuberans (DFSP) is the most prevalent dermal sarcoma, characterized by the presence of the fusion of the collagen type I alpha 1 (COL1A1) gene with the platelet-derived growth factor beta chain (PDGFB) gene. Although PDGF receptor inhibitor imatinib mesylate was approved for the treating patients with unresectable or metastatic DFSP, disease progression was shown in 9.2% of the patients. Therefore, developing novel therapeutic strategies is crucial for improving the prognosis of DFSP. Patient-derived cell lines play a vital role in preclinical studies; however, only a limited number of DFSP cell lines are currently available in public cell banks. Here, we successfully established a novel DFSP cell line (NCC-DFSP5-C1) using surgically resected tumor tissue from a patient with DFSP. NCC-DFSP5-C1 cells were confirmed to carry the COL1A1-PDGFB translocation and maintain the same mutation as the original tumor tissue. They exhibited consistent growth, formed spheroids, and were invasive. By screening a drug library using NCC-DFSP5-C1 and four previously established DFSP cell lines, we identified anti-cancer drugs that inhibit DFSP cell proliferation. Our observations suggest that the NCC-DFSP5-C1 cell line holds promise as a valuable tool for conducting fundamental and preclinical studies for DFSP.
Collapse
Affiliation(s)
- Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Julia Osaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Taro Akiyama, Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8670, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoki Kojima
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yu Toda
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Suguru Fukushima
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center, 4-9-13 Yohnan, Utsunomiya, Tochigi, 320-0834, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
35
|
Wang Y, Paidi VK, Wang W, Wang Y, Jia G, Yan T, Cui X, Cai S, Zhao J, Lee KS, Lee LYS, Wong KY. Spatial engineering of single-atom Fe adjacent to Cu-assisted nanozymes for biomimetic O 2 activation. Nat Commun 2024; 15:2239. [PMID: 38472201 DOI: 10.1038/s41467-024-46528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The precise design of single-atom nanozymes (SAzymes) and understanding of their biocatalytic mechanisms hold great promise for developing ideal bio-enzyme substitutes. While considerable efforts have been directed towards mimicking partial bio-inspired structures, the integration of heterogeneous SAzymes configurations and homogeneous enzyme-like mechanism remains an enormous challenge. Here, we show a spatial engineering strategy to fabricate dual-sites SAzymes with atomic Fe active center and adjacent Cu sites. Compared to planar Fe-Cu dual-atomic sites, vertically stacked Fe-Cu geometry in FePc@2D-Cu-N-C possesses highly optimized scaffolds, favorable substrate affinity, and fast electron transfer. These characteristics of FePc@2D-Cu-N-C SAzyme induces biomimetic O2 activation through homogenous enzymatic pathway, resembling functional and mechanistic similarity to natural cytochrome c oxidase. Furthermore, it presents an appealing alternative of cytochrome P450 3A4 for drug metabolism and drug-drug interaction. These findings are expected to deepen the fundamental understanding of atomic-level design in next-generation bio-inspired nanozymes.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Vinod K Paidi
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, Grenoble, 38043, Cedex 9, France
| | - Weizhen Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yong Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Guangri Jia
- State Key Laboratory of Automotive Simulation and Control, Department of Materials Science, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Tingyu Yan
- Key Laboratory of Photonic and Electronic Bandgap Materials of MOE, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, Department of Materials Science, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Songhua Cai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jingxiang Zhao
- Key Laboratory of Photonic and Electronic Bandgap Materials of MOE, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, PR China.
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
36
|
Deng HY, Zhang LW, Tang FQ, Zhou M, Li MN, Lu LL, Li YH. Identification and Validation of a Novel Anoikis-Related Gene Signature for Predicting Survival in Patients With Serous Ovarian Cancer. World J Oncol 2024; 15:45-57. [PMID: 38274727 PMCID: PMC10807923 DOI: 10.14740/wjon1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024] Open
Abstract
Background Ovarian cancer is an extremely deadly gynecological malignancy, with a 5-year survival rate below 30%. Among the different histological subtypes, serous ovarian cancer (SOC) is the most common. Anoikis significantly contributes to the progression of ovarian cancer. Therefore, identifying an anoikis-related signature that can serve as potential prognostic predictors for SOC is of great significance. Methods We intersected 308 anoikis-related genes (ARGs) and identified those significantly associated with SOC prognosis using univariate Cox regression. A LASSO Cox regression model was constructed and evaluated using Kaplan-Meier and receiver operating characteristic (ROC) analyses in TCGA (The Cancer Genome Atlas) and GSE26193 cohorts. We conducted quantitative real-time polymerase chain reaction (qPCR) to assess mRNA levels and applied bioinformatics to investigate the correlation between risk groups and gene expression, mutations, pathways, tumor immune microenvironment (TIME), and drug sensitivity in SOC. Results Among 308 ARGs, 28 were significantly associated with SOC prognosis. A 13-gene prognostic model was established through LASSO Cox regression in TCGA cohort. High-risk group had poorer prognosis than low-risk group (median overall survival (mOS): 34.2 vs. 57.1 months, hazard ratio (HR): 2.590, 95% confidence interval (CI): 0.159 - 6.00, P < 0.001). The area under the curve (AUC) values of 0.63, 0.65, and 0.74 reflected the predictive performance for 3-, 5-, and 8-year overall survival (OS) in GSE26193 validation cohort. Functional enrichment, pathway analysis, and TIME analysis identified distinct characteristics between risk groups. Drug sensitivity analysis revealed potential drug advantages for each group. Furthermore, qPCR validation once again confirmed the effectiveness of the risk model in SOC patients. Conclusions We developed and validated a robust ARG model, which could be used to predict OS in SOC patients. By systematically analyzing the correlation between the risk score of the ARGs signature model and various patterns, including the TIME and drug sensitivity, our findings suggest that this prognostic model contributes to the advancement of personalized and precise therapeutic strategies. Nevertheless, further validation studies and investigations into the underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Hong Yu Deng
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- These authors contributed equally to this work
| | - Li Wen Zhang
- Shanghai OrigiMed Co., Ltd., Shanghai 201112, China
- These authors contributed equally to this work
| | - Fa Qing Tang
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ming Zhou
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Meng Na Li
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lei Lei Lu
- Shanghai OrigiMed Co., Ltd., Shanghai 201112, China
| | - Ying Hua Li
- Gynecological Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
37
|
de Camargo LJ, Maia MAC, Dos Santos Woloski R, Rizzi C, Moreira GMSG, Pich CT, da Silva Pinto L. Characterization of a Molecularly Engineered Banlec-Type Lectin (rBTL). Mol Biotechnol 2024; 66:288-299. [PMID: 37097521 DOI: 10.1007/s12033-023-00752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Lectins are proteins that reversibly bind to carbohydrates and are commonly found across many species. The Banana Lectin (BanLec) is a member of the Jacalin-related Lectins, heavily studied for its immunomodulatory, antiproliferative, and antiviral activity. In this study, a novel sequence was generated in silico considering the native BanLec amino acid sequence and 9 other lectins belonging to JRL. Based on multiple alignment of these proteins, 11 amino acids of the BanLec sequence were modified because of their potential for interference in active binding site properties resulting in a new lectin named recombinant BanLec-type Lectin (rBTL). rBTL was expressed in E. coli and was able to keep biological activity in hemagglutination assay (rat erythrocytes), maintaining similar structure with the native lectin. Antiproliferative activity was demonstrated on human melanoma lineage (A375), evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT). rBTL was able to inhibit cellular growth in a concentration-dependent manner, in an 8-h incubation, 12 µg/mL of rBTL led to a 28.94% of cell survival compared to cell control with 100%. Through a nonlinear fit out log-concentration versus biological response, an IC50% of 3.649 µg/mL of rBTL was determined. In conclusion, it is possible to state that the changes made to the rBTL sequence maintained the structure of the carbohydrate-binding site without changing specificity. The new lectin is biologically active, with an improved carbohydrate recognition spectrum compared to nBanLec, and can also be considered cytotoxic for A375 cells.
Collapse
Affiliation(s)
- Laura Junqueira de Camargo
- Laboratório de Bioinformática E Proteômica, Programa de Pós-Graduação Em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
- Laboratório de Virologia Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil.
| | - Mara Andrade Colares Maia
- Laboratório de Vacinologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rafael Dos Santos Woloski
- Laboratório de Bioinformática E Proteômica, Programa de Pós-Graduação Em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Caroline Rizzi
- Laboratório de Vacinologia - Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Claus Tröger Pich
- Universidade Federal de Santa Catarina - UFSC, Campus Araranguá, Rua Pedro João Pereira, 150. Bairro Mato Alto, CEP 88905120, Araranguá, SC, Brazil
| | - Luciano da Silva Pinto
- Laboratório de Bioinformática E Proteômica, Programa de Pós-Graduação Em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
38
|
Sun J, Li Y, Chen R, Xie Y, Wei J, Li B. Exploring the role of lactylation-related genes in osteosarcoma: A deep dive into prognostic significance and therapeutic potential. ENVIRONMENTAL TOXICOLOGY 2024; 39:1001-1017. [PMID: 38009602 DOI: 10.1002/tox.24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 11/29/2023]
Abstract
Osteosarcoma (OS), notorious for its complex pathogenesis and formidable prognosis, represents a significant medical quandary. This research embarked on a quest to unravel the implications of lactylation-related genes (LRGs) in OS, offering a novel lens through which to interpret its intricacies. A meticulous evaluation of 329 LRGs within the TARGET dataset spotlighted 27 paramount genes, intricately intertwined with survival. These genes highlighted metabolic processes-particularly amino acid metabolism-as key players, as evidenced in both GO and KEGG analyses. Utilizing consensus clustering and principal component analysis, the 93 OS samples were segmented into two distinct groups, differing notably in overall and event-free survival. Cluster 2 demonstrated a heightened immune response, contrasting the other cluster. Machine learning techniques, like generalized boosted model, CoxBoost, and RSF, spotlighted MYC and GOT2 as critical genes. Using multivariate Cox regression, a risk model was developed, categorizing patients into high and low-risk groups, each displaying varied survival patterns. Additionally, a contrast was observed between MYC and GOT2's associations with HLA molecules, emphasizing their distinct roles in antigen presentation. Potential therapeutic avenues were identified for each risk group, with special attention to mutations in MYC, particularly amplifications, hinting at its role in tumor progression. Finally, delving deeper into the role of MYC, Western blot analyses exhibited amplified myc protein levels in OS cells U-2 and MG-63 when juxtaposed against human osteoblastic cells Hfob1.19. A focused knockdown of myc in OS cells subsequently confirmed its influence on cell proliferation and migration, with reduced myc expression resulting in inhibited cell activities. Furthermore, immunofluorescence assays corroborated myc's heightened expression in OS cells relative to normal osteoblastic cells. In summary, this study accentuates the vital role of LRGs and specifically MYC in OS, ushering in a horizon of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Jingdong Sun
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yong Li
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Rui Chen
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yi Xie
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jie Wei
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Binbin Li
- Department of Orthopedics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
39
|
Nowak D, Huczyński A, Bachorz RA, Hoffmann M. Machine Learning Application for Medicinal Chemistry: Colchicine Case, New Structures, and Anticancer Activity Prediction. Pharmaceuticals (Basel) 2024; 17:173. [PMID: 38399388 PMCID: PMC10892630 DOI: 10.3390/ph17020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
In the contemporary era, the exploration of machine learning (ML) has gained widespread attention and is being leveraged to augment traditional methodologies in quantitative structure-activity relationship (QSAR) investigations. The principal objective of this research was to assess the anticancer potential of colchicine-based compounds across five distinct cell lines. This research endeavor ultimately sought to construct ML models proficient in forecasting anticancer activity as quantified by the IC50 value, while concurrently generating innovative colchicine-derived compounds. The resistance index (RI) is computed to evaluate the drug resistance exhibited by LoVo/DX cells relative to LoVo cancer cell lines. Meanwhile, the selectivity index (SI) is computed to determine the potential of a compound to demonstrate superior efficacy against tumor cells compared to its toxicity against normal cells, such as BALB/3T3. We introduce a novel ML system adept at recommending novel chemical structures predicated on known anticancer activity. Our investigation entailed the assessment of inhibitory capabilities across five cell lines, employing predictive models utilizing various algorithms, including random forest, decision tree, support vector machines, k-nearest neighbors, and multiple linear regression. The most proficient model, as determined by quality metrics, was employed to predict the anticancer activity of novel colchicine-based compounds. This methodological approach yielded the establishment of a library encompassing new colchicine-based compounds, each assigned an IC50 value. Additionally, this study resulted in the development of a validated predictive model, capable of reasonably estimating IC50 values based on molecular structure input.
Collapse
Affiliation(s)
- Damian Nowak
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Rafał Adam Bachorz
- Institute of Medical Biology of Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland;
- Institute of Computing Science, Faculty of Computing, Poznań University of Technology, Piotrowo 2, 60-965 Poznań, Poland
| | - Marcin Hoffmann
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
40
|
Karati D, Saha A, Roy S, Mukherjee S. PIM Kinase Inhibitors as Novel Promising Therapeutic Scaffolds in Cancer Therapy. Curr Top Med Chem 2024; 24:2489-2508. [PMID: 39297470 DOI: 10.2174/0115680266321659240906114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 11/21/2024]
Abstract
Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target. The pro-viral Integration site for moloney murine leukaemia virus (PIM) kinases is responsible for the tumorigenesis, by phosphorylating the proteins that control the cell cycle and cell proliferation. PIM-1, PIM-2, and PIM-3 are the three distinct isoforms of PIM kinases. The JAK/STAT pathway is essential for controlling how PIM genes are expressed. PIM kinase is also linked withPI3K/AKT/mTOR pathway in various types of cancers. The overexpression of PIM kinase will cause cancer. Currently, there are significant efforts being made in medication design and development to target its inhibition. A few small chemical inhibitors (E.g., SGI-1776, AZD1208, LGH447) that specifically target the PIM proteins' adenosine triphosphate (ATP)-binding domain have been identified. PIM kinase antagonists have a remarkable effect on different types of cancer. Despite conducting clinical trials on SGI-1776, the first PIM inhibitory agent, was prematurely withdrawn, making it unable to generate concept evidence. On the other hand, in recent years, it has aided in hastening the identification of multiple new PIM inhibitors. Cyanopyridines and Pyrazolo[1,5-a]pyrimidinecan act as potent PIM kinase inhibitors for cancer therapy. We explore the involvement of oncogenic transcription factor c-Mycandmi-RNA in relation to PIM kinase. In this article, we highlight the oncogenic effects, and structural insights into PIM kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Ankur Saha
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| |
Collapse
|
41
|
Chandra S, Tan EY, Empeslidis T, Sivaprasad S. Tyrosine Kinase Inhibitors and their role in treating neovascular age-related macular degeneration and diabetic macular oedema. Eye (Lond) 2023; 37:3725-3733. [PMID: 37286867 PMCID: PMC10697959 DOI: 10.1038/s41433-023-02610-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
The advent of intravitreal anti-VEGF injections has revolutionised the treatment of both neovascular age-related macular degeneration (nAMD or wet AMD) and diabetic macular oedema (DMO). Despite their efficacy, anti-VEGF injections precipitate significant treatment burden for patients, caregivers and healthcare systems due to the high frequency of injections required to sustain treatment benefit. Therefore, there remains an unmet need for lower-burden therapies. Tyrosine kinase inhibitors (TKI) are a novel class of drugs that may have considerable potential in addressing this issue. This review will summarise and discuss the results of various pilot studies and clinical trials exploring the role of TKIs in treatment of nAMD and DMO, highlighting promising candidates and possible challenges in developments.
Collapse
Affiliation(s)
- Shruti Chandra
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK
| | - Emanuel Yuquan Tan
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
- Queen Mary University of London, Faculty of Medicine and Dentistry, Bethnal Green, London, E1 4NS, UK
| | | | - Sobha Sivaprasad
- National Institute of Health Research Moorfields Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- University College London, Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
42
|
Bhandare SD, Malode SS. Cytotoxic activity of isoquinoline alkaloids and herbal extracts from selected plants against human cancer cell lines: harnessing the research potential in cancer drug discovery with modern scientific trends and technology. Toxicol Res (Camb) 2023; 12:1034-1040. [PMID: 38145094 PMCID: PMC10734601 DOI: 10.1093/toxres/tfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/28/2023] [Accepted: 11/05/2023] [Indexed: 12/26/2023] Open
Abstract
The increasing prevalence of cancer has led to a growing interest in alternative medicine methods and treatments. This study aimed to assess the cytotoxicity of isoquinoline alkaloids and herbal extracts from selected plants against human cancer cell lines, including melanoma and squamous cell carcinoma. The investigation involved in vitro cell viability assays using various cancer cell lines and normal skin fibroblasts as control cells. Additionally, a zebrafish model was employed for in vivo evaluation of cytotoxic activity. The results indicated that the tested alkaloids and extracts exhibited promising cytotoxic effects, showing higher potency than standard chemotherapeutic drugs. In comparison, these findings support the exploration of isoquinoline alkaloids and herbal extracts as potential candidates for developing novel anti-melanoma and anti-squamous cell carcinoma drugs. The primary inclusion criterion that was taken into consideration in this study effort was the therapeutic application of the cytotoxic effects of specific plant-based pharmacological components or chemicals produced from herbal extracts that are ordinarily cytotoxic.
Collapse
Affiliation(s)
- Saurabh Dilip Bhandare
- Nashik Gramin Shikshan Prasarak Mandal’s College of Pharmacy, Bramha Valley Educational Campus, Anjaneri, Trambakeshwar, Trambak Road, Nashik, Maharashtra 422213, India
| | - Sarika Shivaji Malode
- Nashik Gramin Shikshan Prasarak Mandal’s College of Pharmacy, Bramha Valley Educational Campus, Anjaneri, Trambakeshwar, Trambak Road, Nashik, Maharashtra 422213, India
| |
Collapse
|
43
|
Martín-Montes Á, Jimenez-Falcao S, Gómez-Ruiz S, Marín C, Mendez-Arriaga JM. First-Row Transition 7-Oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine Metal Complexes: Antiparasitic Activity and Release Studies. Pharmaceuticals (Basel) 2023; 16:1380. [PMID: 37895851 PMCID: PMC10610057 DOI: 10.3390/ph16101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Leishmaniasis and Chagas disease are still considered neglected illnesses due to the lack of investment in research, despite the fact that almost one million new cases are reported every year. Four 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO) first-row transition complexes (Cu, Co, Ni, Zn) have been studied for the first time in vitro against five different species of Leishmania spp. (L. infantum, L. braziliensis, L. donovani, L. peruviana and L. mexicana) as well as Trypanosoma cruzi, showing higher efficacy than the reference commercial drugs. UV and luminescence properties were also evaluated. As a proof of concept, anchoring of a model high-effective-metal complex as an antiparasitic agent on silica nanoparticles was carried out for the first time, and drug-release behaviour was evaluated, assessing this new approach for drug vehiculation.
Collapse
Affiliation(s)
- Álvaro Martín-Montes
- Departamento De Parasitología, Universidad De Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Sandra Jimenez-Falcao
- Organic Nanotechnology Lab, Departamento De Materiales Y Producción Aeroespacial E.T.S.I Aeronáutica Y Del Espacio, Universidad Politécnica De Madrid, 28040 Madrid, Spain;
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain;
| | - Clotilde Marín
- Departamento De Parasitología, Universidad De Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - José M. Mendez-Arriaga
- COMET-NANO Group, Departamento De Biología y Geología, Física Y Química Inorgánica, E.S.C.E.T., Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain;
| |
Collapse
|
44
|
Sabri H, Derakhshan Barjoei MM, Azarm A, Sadighnia N, Shakiba R, Aghebati G, Hadilou N, Kheiri P, Ghanbari F, Deravi N, Mokhtari M. The Yin and Yang of Sodium Lauryl Sulfate Use for Oral and Periodontal Health: A Literature Review. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2023; 24:262-276. [PMID: 37727352 PMCID: PMC10506142 DOI: 10.30476/dentjods.2022.95108.1836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/27/2022] [Accepted: 08/27/2022] [Indexed: 09/21/2023]
Abstract
Sodium lauryl sulfate (SLS) is an anionic surfactant, which has a wide range of usage in the health sector and in dental pharmaceutical products, especially in toothpastes. The objective of this review was to investigate the effects of SLS containing dentifrices on oral and periodontal health, possible side effects, and its benefits. A thorough literature search was done using databases of PubMed and Google Scholar and finally, 40 articles were included in the study. This narrative review revealed the sources of discrepancy and conflicting results regarding the impact of SLS on oral cavity as well as a lack of sufficient evidence in most topics. Hence, the evidence suggests improved drug bioavailability when used as a solubilizer, improved plaque control, and reduction in bad breath. On the other hand, SLS can serve as a risk indicator of prolonged oral wound healing time, recurrent aphthous stomatitis.
Collapse
Affiliation(s)
- Hamoun Sabri
- Dept. of Periodontics and Oral Medicine, University of Michigan Dental School, Ann arbor, MI, USA
| | - Mohammad Moein Derakhshan Barjoei
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- USERN Office, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Azarm
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Negar Sadighnia
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Shakiba
- School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazal Aghebati
- School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Hadilou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Kheiri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Ghanbari
- Dept. of Pediatric Dentistry, Dental School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Melika Mokhtari
- Student Research Committee, Dental Faculty, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
45
|
Verkhovskii RA, Ivanov AN, Lengert EV, Tulyakova KA, Shilyagina NY, Ermakov AV. Current Principles, Challenges, and New Metrics in pH-Responsive Drug Delivery Systems for Systemic Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051566. [PMID: 37242807 DOI: 10.3390/pharmaceutics15051566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.
Collapse
Affiliation(s)
- Roman A Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Alexey N Ivanov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | - Ekaterina V Lengert
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Ksenia A Tulyakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Natalia Yu Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Alexey V Ermakov
- Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
46
|
Ruman UE, Zubair M, Zeeshan MH. Analytical assessment of modulated electric flux triggered degradation of chlorfenapyr and deltamethrin pesticides in guava fruits. Anal Biochem 2023; 670:115148. [PMID: 37019252 DOI: 10.1016/j.ab.2023.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The purpose of this study was to explore the new effective method and investigate the dissipation of chlorfenapyr and deltamethrin (DM) pesticides used in the treatment of guava fruit from tropical and sub-tropical areas of Pakistan. Five different solutions of varying concentrations of pesticides were prepared. This study involved the in-vitro and in-vivo analysis of modulated electric flux-triggered degradation as an efficient method for the safer degradation of selected pesticides. The Taser gun was used as a tool for providing different numbers of electrical shocks of million voltages to the pesticides present in guava fruit at different temperatures. The degraded pesticides were extracted and analyzed by High-performance liquid chromatography (HPLC). The HPLC chromatograms verified that significant dissipation of pesticides took place when these were exposed to 9 shocks at 37 °C, which proved the efficiency of this degradation method. More than 50% of the total spray of both pesticides was dissipated. Thus, modulated electrical flux-triggered degradation is one of the effective methods for pesticide degradation.
Collapse
|
47
|
Lee J, Baek H, Jang J, Park J, Cha SR, Hong SH, Kim J, Lee JH, Hong IS, Wang SJ, Lee JY, Song MH, Yang SR. Establishment of a human induced pluripotent stem cell derived alveolar organoid for toxicity assessment. Toxicol In Vitro 2023; 89:105585. [PMID: 36931533 DOI: 10.1016/j.tiv.2023.105585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Alveolar epithelial cells (AECs) are vulnerable to injury, which can result in epithelial hyperplasia, apoptosis, and chronic inflammation. In this study, we developed human induced pluripotent stem cell (hiPS) cell-derived AECs (iAECs) and the iAECs based organoids (AOs) for testing AEC toxicity after chemical exposure. HiPS cells were cultured for 14 days with differentiation medium corresponding to each step, and the iAECs-based AOs were maintained for another 14 days. SFTPC and AQP5 were expressed in the AOs, and mRNA levels of SOX9, NKX2.1, GATA6, HOPX, and ID2 were increased. The AOs were exposed for 24 h to nine chemical substances, and IC50 values of the nine chemicals were determined using MTT assay. When the correlations between iAECs 2D culture and AOs 3D culture were calculated using Pearson's correlation coefficient r value, the nine chemicals that caused a significant decrease of cell viability in 3D culture were found to be highly correlated in 2D culture. The cytotoxicity and nitric oxide release in AO cultured with macrophages were then investigated. When AOs with macrophages were exposed to sodium chromate for 24 h, the IC50 value and nitric oxide production were higher than when the AOs were exposed alone. Taken together, the AO-based 3D culture system provides a useful platform for understanding biological characteristics of AECs and modeling chemical exposures.
Collapse
Affiliation(s)
- Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyosin Baek
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jieun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - In-Sun Hong
- Environmental Health Research Department, Risk Assessment Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Seung-Jun Wang
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Ji Young Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Myung Ha Song
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
48
|
Sousa M, Afonso AC, Teixeira LS, Borges A, Saavedra MJ, Simões LC, Simões M. Hydrocinnamic Acid and Perillyl Alcohol Potentiate the Action of Antibiotics against Escherichia coli. Antibiotics (Basel) 2023; 12:antibiotics12020360. [PMID: 36830271 PMCID: PMC9952493 DOI: 10.3390/antibiotics12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The treatment of bacterial infections has been troubled by the increased resistance to antibiotics, instigating the search for new antimicrobial therapies. Phytochemicals have demonstrated broad-spectrum and effective antibacterial effects as well as antibiotic resistance-modifying activity. In this study, perillyl alcohol and hydrocinnamic acid were characterized for their antimicrobial action against Escherichia coli. Furthermore, dual and triple combinations of these molecules with the antibiotics chloramphenicol and amoxicillin were investigated for the first time. Perillyl alcohol had a minimum inhibitory concentration (MIC) of 256 µg/mL and a minimum bactericidal concentration (MBC) of 512 µg/mL. Hydrocinnamic acid had a MIC of 2048 µg/mL and an MBC > 2048 µg/mL. Checkerboard and time-kill assays demonstrated synergism or additive effects for the dual combinations chloramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid, and amoxicillin/hydrocinnamic acid at low concentrations of both molecules. Combenefit analysis showed synergism for various concentrations of amoxicillin with each phytochemical. Combinations of chloramphenicol with perillyl alcohol and hydrocinnamic acid revealed synergism mainly at low concentrations of antibiotics (up to 2 μg/mL of chloramphenicol with perillyl alcohol; 0.5 μg/mL of chloramphenicol with hydrocinnamic acid). The results highlight the potential of combinatorial therapies for microbial growth control, where phytochemicals can play an important role as potentiators or resistance-modifying agents.
Collapse
Affiliation(s)
- Mariana Sousa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Ana Cristina Afonso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
- CEB, LABBELS—Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lília Soares Teixeira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Maria José Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lúcia Chaves Simões
- CEB, LABBELS—Centre of Biological Engineering, Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, School of Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Correspondence:
| |
Collapse
|
49
|
Mosiane KS, Nweke EE, Balogun M, Fru PN. Polyethyleneglycol-Betulinic Acid (PEG-BA) Polymer-Drug Conjugate Induces Apoptosis and Antioxidation in a Biological Model of Pancreatic Cancer. Polymers (Basel) 2023; 15:448. [PMID: 36679328 PMCID: PMC9863557 DOI: 10.3390/polym15020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive solid malignancies with poor treatment response and low survival rates. Herbal medicines such as betulinic acid (BA) have shown potential in treating various solid tumours, but with limitations that can be circumvented by polymer-drug conjugation. Polyethylene glycol-BA (PEG-BA) polymer-drug conjugate has previously shown selective anticancer activity against PC cells. Here, we elucidate the mechanism of cell death and the cell death pathway, anti-inflammatory and antioxidant activities of PEG-BA. PEG-BA induced apoptotic cell death by arresting MIA-PaCa-2 cells in the Sub-G1 phase of the cell cycle compared with BA and untreated cells (39.50 ± 5.32% > 19.63 ± 4.49% > 4.57 ± 0.82%). NFκB/p65 protein expression was moderately increased by PEG-BA (2.70 vs. 3.09 ± 0.42 ng/mL; p = 0.1521). However, significant (p < 0.05) overexpression of the proapoptotic genes TNF (23.72 ± 1.03) and CASPASE 3 (12,059.98 ± 1.74) compared with untreated cells was notable. The antioxidant potential of PEG-BA was greater (IC50 = 15.59 ± 0.64 µM) compared with ascorbic acid (25.58 ± 0.44 µM) and BA-only (>100 µM) and further confirmed with the improved reduction of hydroperoxide levels compared with BA-only (518.80 ± 25.53 µM vs. 542.43 ± 9.70 µM). In conclusion, PEG-BA activated both the intrinsic and extrinsic pathways of apoptosis and improved antioxidant activities in PC cells, suggesting enhanced anticancer activity upon conjugation.
Collapse
Affiliation(s)
- Karabo Sekopi Mosiane
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Mohammed Balogun
- Biopolymer Modification and Therapeutics Lab, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa
| | - Pascaline Nanga Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
50
|
Kahraman HA, Tutun H, Kaya MM, Usluer MS, Tutun S, Yaman C, Sevin S, Keyvan E. Ethanolic extract of Turkish bee pollen and propolis: phenolic composition, antiradical, antiproliferative and antibacterial activities. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2045217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Hidayet Tutun
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Muhammet Mükerrem Kaya
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Melike Sultan Usluer
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Soner Tutun
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ceren Yaman
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Sedat Sevin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Burdur, Turkey
| | - Erhan Keyvan
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|