1
|
Sarsenbayeva A, Sadak S, Kucuk I, Kudreyeva L, Bakytzhanovna AM, Uslu B. Molybdenum-Based Electrochemical Sensors for Breast Cancer Biomarker Detection: Advances and Challenges. Crit Rev Anal Chem 2025:1-21. [PMID: 40257753 DOI: 10.1080/10408347.2025.2487581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Breast cancer, which is considered the most common type of cancer among women worldwide, is estimated to reach 4.4 million cases in 2070. Early diagnosis has become very important to prevent this expected increase. Various traditional methods, such as mammography, biopsy, enzyme immunoassay (EI), liquid biopsy, immunohistochemistry (IGH), fluorescence in situ hybridization (FISH) are used to diagnose breast cancer, but the fact that these methods are very expensive, have low sensitivity, and cause mutations in tissues due to X-rays has led researchers to discover faster, more cost-effective, and easily detectable methods. In particular, increased levels of new blood-based biomarkers in the circulation can be detected sensitively and selectively by electrochemical methods to facilitate early disease screening and rapid diagnosis. This comprehensive review focuses on the prevalence and pathology of breast cancer, clinical diagnosis of breast cancer, and electrochemical sensors of molybdenum-based compounds for the detection of various breast cancer biomarkers in recent years. Electrochemical analysis studies carried out in the field in recent years are compiled and are considered as aptamer-based, nucleotide-based, and immunosensors. The chemical properties of molybdenum compounds are discussed, and the modifications of these compounds to the electrode surface are discussed under 4 headings: drop casting, electrodeposition, atomic layer deposition, and electrophoretic deposition.
Collapse
Affiliation(s)
- Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Selenay Sadak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ipek Kucuk
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| | - Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Abu Moldir Bakytzhanovna
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Tiwari RK, Mishra R, Sharma SK, Prabhu N, Nagar MR, Grigalevicius S. Advancing Cancer Treatment and Diagnosis: A Review on Photodynamic Therapy Using OLED Technology. Molecules 2025; 30:1305. [PMID: 40142080 PMCID: PMC11946556 DOI: 10.3390/molecules30061305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Photodynamic therapy (PDT) is an innovative and non-invasive approach to treating apparent tumours with minimal toxicity. PDT has a long-standing application in antitumor treatment utilizing various photosensitizers (PSs) for different tumours. Historically, light has served as a therapeutic tool in many diseases. PDT involves a dual treatment process in which light energy and PSs are combined to ablate tumour cells following light activation. In general, PDT exhibits reduced side effects and toxicity compared to chemotherapy and radiotherapy, as it spares the extracellular matrix, facilitating excellent tissue healing and minimizing scarring. In addition, PSs can serve in diagnostic roles in tumour identification, termed photodynamic diagnosis (PDD). Advancements in flexible light sources that produce uniform illumination could significantly enhance the consistency of light delivery. This review outlines the clinical applications of OLEDs in PDT for cancer, addressing both diagnostic and therapeutic methods. Furthermore, we will explore various tumour cases using PDT with OLEDs. In particular, antimicrobial PDT targets antibiotic-resistant strains in diabetic foot ulcers, while metronomic PDT promotes cancer cell apoptosis through prolonged, low-intensity light exposure. Our emphasis is on PDT employing organic light-emitting diodes (OLEDs). Furthermore, the combination of PDT with NIR-OLEDs is examined for its potential to enhance tumour-targeting effectiveness, possibly exceeding the results of standalone treatments.
Collapse
Affiliation(s)
- Rajesh Kumar Tiwari
- School of Information and Communication Technology, Gautam Buddha University, Greater Noida 201312, India; (R.K.T.); (R.M.); (S.K.S.)
| | - Rajesh Mishra
- School of Information and Communication Technology, Gautam Buddha University, Greater Noida 201312, India; (R.K.T.); (R.M.); (S.K.S.)
| | - Sanjay Kumar Sharma
- School of Information and Communication Technology, Gautam Buddha University, Greater Noida 201312, India; (R.K.T.); (R.M.); (S.K.S.)
| | - Nakshathra Prabhu
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Mangey Ram Nagar
- School of Electronics, Noida Institute of Engineering and Technology, Greater Noida 201306, India
| | - Saulius Grigalevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254 Kaunas, Lithuania
| |
Collapse
|
3
|
Yazdani Y, Jalali F, Tahmasbi H, Akbari M, Talebi N, Shahrtash SA, Mobed A, Alem M, Ghazi F, Dadashpour M. Recent advancements in nanomaterial-based biosensors for diagnosis of breast cancer: a comprehensive review. Cancer Cell Int 2025; 25:50. [PMID: 39966938 PMCID: PMC11834589 DOI: 10.1186/s12935-025-03663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
Researchers have found that mutations in the BRCA gene associated with breast cancer have a 40-50% chance of being associated with high risk for hereditary breast cancer (BC). Therefore, detecting BRCA1 is crucial for genetic analysis, early detection, and clinical treatment of BC. Traditional detection methods for BRCA1 include high-performance liquid chromatography (HPLC), single-strand conformation polymorphism assays (SSCP), PCR, real-time PCR, and DNA sequencing. However, these methods are limited by cost, analysis time, and complexity. Therefore, it is necessary to develop an ultrasensitive, fast, low-cost, simple method for BRCA1 detection. In recent years, various BC biosensing strategies have been investigated, including optical, electrical, electrochemical, and mechanical biosensing. In particular, the high sensitivity and short detection times of electrochemical biosensors make them suitable for recognizing BC biomarkers. Additionally, the sensitivity of electrochemical biosensors can be increased by incorporating nanomaterials. In this regard, the main focus of the present study is the introduction of common methods for diagnosing the BRCA-1/2 genes. In addition to introducing biosensors as an efficient tool, it also discusses the latest and most significant biosensors developed for detecting the BRCA gene.
Collapse
Affiliation(s)
- Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshtehsadat Jalali
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Tahmasbi
- Department of Microbiology and Biotechnology, Faculty of Biotechnology, Bangalore University, Bangalore, India
| | - Mitra Akbari
- Eye Research Center, Eye Department, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Neda Talebi
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Ahmad Mobed
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Alem
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Farhood Ghazi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Parihar A, Vishwakarma P, Prajapati P, Khan R. Non-invasive ultra-sensitive detection of breast cancer biomarker using cerium nanoparticle functionalized graphene oxide enabled impedimetric aptasensor. Biosens Bioelectron 2025; 268:116925. [PMID: 39541781 DOI: 10.1016/j.bios.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane protein and a key biomarker implicated in the pathogenesis of breast cancer. Early and precise detection of EGFR is crucial for effective diagnosis, prognosis, and therapeutic intervention. However, conventional EGFR detection techniques, such as biopsy and immunohistochemistry, are often invasive, time-consuming, and limited in sensitivity, highlighting the demand for non-invasive, highly sensitive detection methods. In this study, we fabricated a cerium oxide (CeO₂) and graphene oxide (GO) nanocomposite-based aptasensor for the non-invasive detection of EGFR using electrochemical impedance spectroscopy (EIS). The CeO₂-GO nanocomposite was synthesized via the sol-gel method and characterized through UV-Vis spectroscopy, FTIR, TEM, and XRD, confirming the crystalline structure of hexagonal CeO₂ nanoparticles on amorphous GO sheets. The nanocomposite was functionalized with aptamers specific to EGFR using covalent coupling reactions. The EIS analysis of the fabricated aptasensor (GCE/CeO₂-GO/EGFR-Apt/BSA) demonstrated a wide linear detection range from 10 fg mL-1 to 100 ng mL-1, with an ultralow detection limit of 1.87 fg mL-1 in PBS, 3.16 fg mL-1 in serum, 5.31 fg mL-1 in sweat, and 6.14 fg mL-1 in saliva samples. These results highlight the aptasensor's high sensitivity, specificity, and potential for real-time, non-invasive EGFR monitoring in clinical samples such as serum, sweat, and saliva. This approach would facilitate early detection of cancer and personalized diagnostics in point-of-care settings.
Collapse
Affiliation(s)
- Arpana Parihar
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, 462020, MP, India; Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India.
| | - Preeti Vishwakarma
- Department of Microbiology, Barkatullah University, Hoshangabad Road, Bhopal, 462026, MP, India
| | - Pradeep Prajapati
- Department of Microbiology, Barkatullah University, Hoshangabad Road, Bhopal, 462026, MP, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Tayfour Ahmed AE, Dhahi T, Attia TA, Elhassan Ali FA, Elobaid ME, Adam T, Gopinath SC. AI-optimized electrochemical aptasensors for stable, reproducible detection of neurodegenerative diseases, cancer, and coronavirus. Heliyon 2025; 11:e41338. [PMID: 39834418 PMCID: PMC11742820 DOI: 10.1016/j.heliyon.2024.e41338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
AI-optimized electrochemical aptasensors are transforming diagnostic testing by offering high sensitivity, selectivity, and rapid response times. Leveraging data-driven AI techniques, these sensors provide a non-invasive, cost-effective alternative to traditional methods, with applications in detecting molecular biomarkers for neurodegenerative diseases, cancer, and coronavirus. The performance metrics outlined in the comparative table illustrate the significant advancements enabled by AI integration. Sensitivity increases from 60 to 75 % in ordinary aptasensors to 85-95 %, while specificity improves from 70-80 % to 90-98 %. This enhanced performance allows for ultra-low detection limits, such as 10 fM for carcinoembryonic antigen (CEA) and 20 fM for mucin-1 (MUC1) using Electrochemical Impedance Spectroscopy (EIS), and 1 pM for prostate-specific antigen (PSA) with Differential Pulse Voltammetry (DPV). Similarly, Square Wave Voltammetry (SWV) and potentiometric sensors have detected alpha-fetoprotein (AFP) at 5 fM and epithelial cell adhesion molecule (EpCAM) at 100 fM, respectively. AI integration also enhances reproducibility, reduces false positives and negatives (from 15-20 % to 5-10 %), and significantly decreases response times (from 10-15 s to 2-3 s). These advancements improve data processing speeds (from 10 to 20 min per sample to 2-5 min) and calibration accuracy (<2 % margin of error compared to 5-10 %), while expanding application scope to multi-target biomarker detection. This review highlights how these advancements position AI-optimized electrochemical aptasensors as powerful tools for personalized treatment, point-of-care testing, and continuous health monitoring. Despite a higher cost ($500-$1,500/unit), their enhanced portability and diagnostic performance promise to revolutionize healthcare, environmental monitoring, and food safety, ultimately improving public health outcomes.
Collapse
Affiliation(s)
- Amira Elsir Tayfour Ahmed
- Department of Information System, College of Science & Arts King Khalid University, Mohyel, Asser, Saudi Arabia
| | - Th.S. Dhahi
- Health and Medical Technicals College, Southern Technical University, Basrah, Iraq
| | - Tahani A. Attia
- Department of Computer Engineering, College of Computer Science and Engineering, University of Ha'il, Saudi Arabia
- DEEE, Faculty of Engineering, University of Khartoum, Sudan
| | | | - Mohamed Elshaikh Elobaid
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Tijjani Adam
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Subash C.B. Gopinath
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, Tamil Nadu, India
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| |
Collapse
|
6
|
Kiani P, Vatankhahan H, Zare-Hoseinabadi A, Ferdosi F, Ehtiati S, Heidari P, Dorostgou Z, Movahedpour A, Baktash A, Rajabivahid M, Khatami SH. Electrochemical biosensors for early detection of breast cancer. Clin Chim Acta 2025; 564:119923. [PMID: 39153652 DOI: 10.1016/j.cca.2024.119923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel. Recent shifts towards biosensor technologies offer a promising alternative for monitoring biological processes and providing accurate health diagnostics in a cost-effective, non-invasive manner. These biosensors are particularly advantageous for early detection of primary tumors, metastases, and recurrent diseases, contributing to more effective breast cancer management. The integration of biosensor technology into medical devices has led to the development of low-cost, adaptable, and efficient diagnostic tools. In this framework, electrochemical screening platforms have garnered significant attention due to their selectivity, affordability, and ease of result interpretation. The current review discusses various breast cancer biomarkers and the potential of electrochemical biosensors to revolutionize early cancer detection, making provision for new diagnostic platforms and personalized healthcare solutions.
Collapse
Affiliation(s)
- Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | | - Aria Baktash
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Han JY, Kim H, Hong YS, Lee M, Han SJ, Ku SY. Planned Immediate Chemotherapy and Cryopreservation of Oocytes or Embryos for Fertility Preservation in Women with Malignancies. J Adolesc Young Adult Oncol 2024. [PMID: 39379069 DOI: 10.1089/jayao.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Purpose: Oocyte and embryo cryopreservation before gonadotoxic treatment are established methods to increase the likelihood of live births. Although several sociodemographic factors were found to be associated with undergoing fertility preservation (FP) treatment, clinical characteristics such as planned immediate chemotherapy were not fully investigated. We aimed to investigate whether the planned immediate chemotherapy is related to the decision to undergo oocyte/embryo cryopreservation for FP with adjustment for other clinical characteristics. Methods: This institutional cohort study included 491 premenopausal women aged 19 years or older who visited the FP clinic at a tertiary medical center between 2006 and 2019. The primary outcome was whether the participants underwent oocyte/embryo cryopreservation. We evaluated the odds ratios (ORs) and corresponding 95% confidence intervals (CIs) of undergoing oocyte/embryo cryopreservation according to whether immediate chemotherapy was planned using univariable and multivariable logistic regression. Results: Women scheduled for immediate chemotherapy were much less likely to undergo oocyte/embryo cryopreservation than women not scheduled for immediate chemotherapy (OR = 0.46, 95% CI 0.27-0.76) in univariable logistic regression analysis. After adjustment for covariates such as marital status, type of malignancies, and calendar year period, women scheduled for immediate chemotherapy were still less likely to undergo oocyte/embryo cryopreservation than women not scheduled for immediate chemotherapy (OR = 0.31, 95% CI: 0.17-0.56). The association was not different according to the type of malignancies (p for interaction = 0.13). Regarding breast cancer, the OR for undergoing oocyte/embryo cryopreservation in women scheduled for immediate chemotherapy was robust compared with those not planned for immediate chemotherapy (OR = 0.25, 95% CI: 0.12-0.53). Conclusion: The present study demonstrated that planned immediate chemotherapy was negatively associated with undergoing oocyte/embryo cryopreservation. This information can be helpful for FP counseling.
Collapse
Affiliation(s)
- Ji Yeon Han
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Yun Soo Hong
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Minhee Lee
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Soo Jin Han
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
8
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Hasan MR, Mughees M, Shaikh S, Choudhary F, Nizam A, Rizwan A, Ansari O, Iqbal Y, Pilloton R, Wajid S, Narang J. From Biosensors to Robotics: Pioneering Advances in Breast Cancer Management. SENSORS (BASEL, SWITZERLAND) 2024; 24:6149. [PMID: 39338894 PMCID: PMC11435941 DOI: 10.3390/s24186149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Breast cancer stands as the most prevalent form of cancer amongst females, constituting more than one-third of all cancer cases affecting women. It causes aberrant cell development, which can assault or spread to other sections of the body, perhaps leading to the patient's death. Based on research findings, timely detection can diminish the likelihood of mortality and enhance the quality of healthcare provided for the illness. However, current technologies can only identify cancer at an advanced stage. Consequently, there is a substantial demand for rapid and productive approaches to detecting breast cancer. Researchers are actively pursuing precise and timely methods for the diagnosis of breast cancer, aiming to achieve enhanced accuracy and early detection. Biosensor technology can allow for the speedy and accurate diagnosis of cancer-related cells, as well as a more sensitive and specialized technique for generating them. Additionally, numerous treatments for breast cancer are depicted such as herbal therapy, nanomaterial-based drug delivery, miRNA targeting, CRISPR technology, immunotherapy, and precision medicine. Early detection and efficient therapy are necessary to manage such a severe illness properly.
Collapse
Affiliation(s)
- Mohd. Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Mohd Mughees
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Shifa Shaikh
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Furqan Choudhary
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Anam Nizam
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Amber Rizwan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Onaiza Ansari
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Yusra Iqbal
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Roberto Pilloton
- CNR-IC, Area della Ricerca di RM1, Via Salaria km 29.3, Monterotondo, I-00015 Rome, Italy
| | - Saima Wajid
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| |
Collapse
|
10
|
Parihar A, Khan R. Yttrium Functionalized Reduced Graphene Oxide Nanocomposite-Based Aptasensor for Ultrasensitive Detection of a Breast Cancer Biomarker. ACS APPLIED NANO MATERIALS 2024; 7:18207-18218. [DOI: 10.1021/acsanm.3c03234] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026 MP, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026 MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Turk Z, Armani A, Jafari-Gharabaghlou D, Madakbas S, Bonabi E, Zarghami N. A new insight into the early detection of HER2 protein in breast cancer patients with a focus on electrochemical biosensors approaches: A review. Int J Biol Macromol 2024; 272:132710. [PMID: 38825266 DOI: 10.1016/j.ijbiomac.2024.132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Breast cancer is one of the leading causes of death in women and is a prevalent kind of cancerous growth, representing a substantial risk to women's health. Early detection of breast cancer is essential for effective treatment and improved survival rates. Biomarkers, active substances that signal the existence and advancement of a tumor, play a significant role in the early detection of breast cancer. Hence, accurate identification of biomarkers for tumors is crucial for diagnosing and treating breast cancer. However, the primary diagnostic methods used for the detection of breast cancer require specific equipment, skilled professionals, and specialized analysis, leading to elevated detection expenses. Regarding this obstacle, recent studies emphasize electrochemical biosensors as more advanced and sensitive detection tools compared to traditional methods. Electrochemical biosensors are employed to identify biomarkers that act as unique indicators for the onset, recurrence, and monitoring of therapeutic interventions for breast cancer. This study aims to provide a summary of the electrochemical biosensors that have been employed for the detection of breast cancer at an early stage over the past decade. Initially, the text provides concise information about breast cancer and tumor biomarkers. Subsequently, an in-depth analysis is conducted to systematically review the progress of electrochemical biosensors developed for the stable, specific, and sensitive identification of biomarkers associated with breast cancer. Particular emphasis was given to crucial clinical biomarkers, specifically the human epidermal growth factor receptor-2 (HER2). The analysis then explores the limitations and challenges inherent in the design of effective biosensors for diagnosing and treating breast cancer. Ultimately, we provided an overview of future research directions and concluded by outlining the advantages of electrochemical biosensor approaches.
Collapse
Affiliation(s)
- Zeynep Turk
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul Aydin University, Istanbul, Türkiye
| | - Arta Armani
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyfullah Madakbas
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.
| |
Collapse
|
12
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R, Kumar Srivastava A. Electrochemical Nanobiosensor of Ionic Liquid Functionalized MoO 3-rGO for Sensitive Detection of Carcinoembryonic Antigen. Chempluschem 2024; 89:e202300625. [PMID: 38321835 DOI: 10.1002/cplu.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Early diagnosis of cancer can be achieved by detecting associated biomarkers before the appearance of symptoms. Herein, we have developed an electrochemical immunosensor of ionic liquid tailored to molybdenum trioxide-reduced graphene oxide (MoO3-rGO-IL) nanocomposite to detect carcinoembryonic antigen (CEA), a cancer biomarker. The MoO3-rGO-IL nanocomposite has been synthesized in situ via the hydrothermal method. The functionalization of 1-butyl-3-methylimidazolium tetrafluoroborate IL with MoO3-rGO synergistically improves the electrochemical and surface properties of the nanocomposite. The characterization studies revealed that the MoO3-rGO-IL nanocomposite is a highly appropriate material for the construction of immunosensors. The material exhibits exceptional electrical conductivity, surface properties, stability, and a large electrochemical effective surface area (13.77×10-2 cm2) making it ideal for fabricating immunosensors. The quantitative outcome showed that the developed immunosensor (BSA/anti-CEA/MoO3-rGO-IL/GCE) possesses excellent sensitivity, broad linearity from 25 fg mL-1 to 100 ng mL-1, and a low detection limit of 1.19 fg mL-1. Moreover, the remarkable selectivity, repeatability, and efficiency of detecting CEA in serum specimens demonstrated the feasibility of the immunosensor. Thus, the projected electrochemical immunosensor can potentially be utilized for the quantification of CEA in clinical specimens.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Mohd Abubakar Sadique
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Shalu Yadav
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Raju Khan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Avanish Kumar Srivastava
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
13
|
Vatankhahan H, Esteki F, Jabalameli MA, Kiani P, Ehtiati S, Movahedpour A, Vakili O, Khatami SH. Electrochemical biosensors for early diagnosis of glioblastoma. Clin Chim Acta 2024; 557:117878. [PMID: 38493942 DOI: 10.1016/j.cca.2024.117878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and life-threatening neurological malignancy of predominant astrocyte origin. This type of neoplasm can develop in either the brain or the spine and is also known as glioblastoma multiforme. Although current diagnostic methods such as magnetic resonance imaging (MRI) and positron emission tomography (PET) facilitate tumor location, these approaches are unable to assess disease severity. Furthermore, interpretation of imaging studies requires significant expertise which can have substantial inter-observer variability, thus challenging diagnosis and potentially delaying treatment. In contrast, biosensing systems offer a promising alternative to these traditional approaches. These technologies can continuously monitor specific molecules, providing valuable real-time data on treatment response, and could significantly improve patient outcomes. Among various types of biosensors, electrochemical systems are preferred over other types, as they do not require expensive or complex equipment or procedures and can be made with readily available materials and methods. Moreover, electrochemical biosensors can detect very small amounts of analytes with high accuracy and specificity by using various signal amplification strategies and recognition elements. Considering the advantages of electrochemical biosensors compared to other biosensing methods, we aim to highlight the potential application(s) of these sensors for GBM theranostics. The review's innovative insights are expected to antecede the development of novel biosensors and associated diagnostic platforms, ultimately restructuring GBM detection strategies.
Collapse
Affiliation(s)
- Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnaz Esteki
- Department of Medical Laboratory Sciences, School of Paramedicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Amin Jabalameli
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Singh S, Raucci A, Cimmino W, Cinti S. Paper-Based Analytical Devices for Cancer Liquid Biopsy. Anal Chem 2024; 96:3698-3706. [PMID: 38377543 DOI: 10.1021/acs.analchem.3c04478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Liquid biopsies have caused a significant revolution in cancer diagnosis, and the use of point of care (PoC) platforms has the potential to bring liquid biopsy-based cancer detection closer to patients. These platforms provide rapid and on-site analysis by reducing the time between sample collection and results output. The aim of this tutorial content is to provide readers an in-depth understanding regarding the choice of the ideal sensing platform suitable for specific cancer-related biomarkers.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ada Raucci
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Wanda Cimmino
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
- BAT Center- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Naples, Italy
- Bioelectronics Task Force at University of Naples Federico II, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
15
|
Palanisamy H, Manoharan JP, Vidyalakshmi S. Prognostic microRNAs as biomarkers for prostate cancer. J Cancer Res Ther 2024; 20:297-303. [PMID: 38554337 DOI: 10.4103/jcrt.jcrt_1469_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/01/2022] [Indexed: 04/01/2024]
Abstract
OBJECTIVE Prostate cancer is the second largest cancer, most commonly diagnosed in men. Several studies reveal that miRNAs (microRNAs) are involved in various stages of prostate cancer. miRNAs are a family of small non-coding RNA species that have been implicated in the post-transcriptional regulation of gene expression. The present in silico study aims at identifying miRNA biomarkers that are significantly associated with the regulation of genes involved in prostate cancer. METHODS Dataset of miRNA and mRNA of prostate adenocarcinoma patients and controls was downloaded from The Cancer Genome Atlas (TCGA), and differential gene expression analysis was carried out. ROC and Kaplan-Meier survival analyses were performed on differentially expressed miRNAs. Pathway analysis was carried out for significant miRNAs, and protein-protein interaction of involved genes and miRNAs was examined. RESULTS A total of 185 miRNAs were differentially expressed between the patients and the control. ROC and Kaplan-Meier survival analysis showed that the two miRNAs hsa-mir-133b and hsa-mir-17-5p were found to be significantly associated with prostate cancer prognosis. HAS2 and EPHA10 gene targets of identified miRNA were also differentially expressed. A protein-protein interaction (PPI) network was constructed, and the HAS2 gene was found to be interacting with the epidermal growth factor receptor (EGFR). CONCLUSION This study highlights the potential of hsa-mir-133b and hsa-mir-17-5p miRNAs as biomarkers for the prognosis of prostate cancer. However, further experimental studies are required to validate this finding.
Collapse
Affiliation(s)
- Hema Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore Tamil Nadu, India
| | | | | |
Collapse
|
16
|
Parihar A, Choudhary N, Sharma P, Khan R. Carbon nanomaterials-based electrochemical aptasensor for point-of-care diagnostics of cancer biomarkers. MATERIALS TODAY CHEMISTRY 2023; 30:101499. [DOI: 10.1016/j.mtchem.2023.101499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
17
|
Kumari S, Islam M, Gupta A. Paper-based multiplex biosensors for inexpensive healthcare diagnostics: a comprehensive review. Biomed Microdevices 2023; 25:17. [PMID: 37133791 DOI: 10.1007/s10544-023-00656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
Multiplex detection is a smart and an emerging approach in point-of-care testing as it reduces analysis time and testing cost by detecting multiple analytes or biomarkers simultaneously which are crucial for disease detection at an early stage. Application of inexpensive substrate such as paper has immense potential and matter of research interest in the area of point of care testing for multiplexed analysis as it possesses several unique advantages. This study presents the use of paper, strategies adopted to refine the design created on paper and lateral flow strips to enhance the signal, increase the sensitivity and specificity of multiplexed biosensors. An overview of different multiplexed detection studies performed using biological samples has also been reviewed along with the challenges and advantages offered by multiplexed analysis.
Collapse
Affiliation(s)
- Shrishti Kumari
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 342037, Rajasthan, India
| | - Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ankur Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Jodhpur 342037, Rajasthan, India.
| |
Collapse
|
18
|
Parihar A, Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Khare V, Khan R, Natarajan S, Srivastava AK. Internet-of-medical-things integrated point-of-care biosensing devices for infectious diseases: Toward better preparedness for futuristic pandemics. Bioeng Transl Med 2023; 8:e10481. [PMID: 37206204 PMCID: PMC10189496 DOI: 10.1002/btm2.10481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Microbial pathogens have threatened the world due to their pathogenicity and ability to spread in communities. The conventional laboratory-based diagnostics of microbes such as bacteria and viruses need bulky expensive experimental instruments and skilled personnel which limits their usage in resource-limited settings. The biosensors-based point-of-care (POC) diagnostics have shown huge potential to detect microbial pathogens in a faster, cost-effective, and user-friendly manner. The use of various transducers such as electrochemical and optical along with microfluidic integrated biosensors further enhances the sensitivity and selectivity of detection. Additionally, microfluidic-based biosensors offer the advantages of multiplexed detection of analyte and the ability to deal with nanoliters volume of fluid in an integrated portable platform. In the present review, we discussed the design and fabrication of POCT devices for the detection of microbial pathogens which include bacteria, viruses, fungi, and parasites. The electrochemical techniques and current advances in this field in terms of integrated electrochemical platforms that include mainly microfluidic- based approaches and smartphone and Internet-of-things (IoT) and Internet-of-Medical-Things (IoMT) integrated systems have been highlighted. Further, the availability of commercial biosensors for the detection of microbial pathogens will be briefed. In the end, the challenges while fabrication of POC biosensors and expected future advances in the field of biosensing have been discussed. The integrated biosensor-based platforms with the IoT/IoMT usually collect the data to track the community spread of infectious diseases which would be beneficial in terms of better preparedness for current and futuristic pandemics and is expected to prevent social and economic losses.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Pushpesh Ranjan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Vedika Khare
- School of Nanotechnology, UTD, RGPV CampusBhopalMadhya PradeshIndia
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Sathish Natarajan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Avanish K. Srivastava
- Industrial Waste Utilization, Nano and Biomaterials, CSIR‐Advanced Materials and Processes Research Institute (AMPRI)BhopalMadhya PradeshIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
19
|
Ranjbari S, Rezayi M, Arefinia R, Aghaee-Bakhtiari SH, Hatamluyi B, Pasdar A. A novel electrochemical biosensor based on signal amplification of Au HFGNs/PnBA-MXene nanocomposite for the detection of miRNA-122 as a biomarker of breast cancer. Talanta 2023; 255:124247. [PMID: 36603443 DOI: 10.1016/j.talanta.2022.124247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023]
Abstract
Cancer is one of the leading causes of death worldwide and a crisis for global health. Breast cancer is the second most common cancer globally. In the perusal, a novel electrochemical biosensor amplified with hierarchical flower-like gold, poly (n-butyl acrylate), and MXene (AuHFGNs/PnBA-MXene) nanocomposite and activated by highly special antisense ssDNA (single-stranded DNA) provide a promising alternative for miRNA-122 detection as a biomarker of breast cancer. The biosensor presented a detection limit of 0.0035 aM (S/N = 3) with a linear range from 0.01 aM to 10 nM. The platform was tried on 20 breast cancer miRNAs extracted from actual serum specimens (10 positives and 10 negatives). Founded on the quantitatively obtained outcomes and statistic analysis (t-test, box-graph, receiver performance characteristic curve, and cut-off amount), the biosensor showed a meaningful discrepancy between the native and positive groups with 100% specificity and 100% sensitivity. While, RT-qPCR showed less specificity and sensitivity (70% specificity, 100% sensitivity) than the proposed biosensor. To assess the quantitative capacity and biosensor detection limit for clinical tests, the biosensor diagnosis performance for continually diluted miRNA extracted from patients was compared to that gained by RT-qPCR results, indicating that the biosensor detection limit was lower than RT-qPCR. ssDNA/AuHFGN/PnBA-MXene/GCE displayed little cross-reaction with other sequences and also showed desirable stability, reproducibility, and specificity and stayed stable until 32 days. As a result, the designed biosensor can perform as a hopeful method for diagnosis applications.
Collapse
Affiliation(s)
- Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Reza Arefinia
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Behnaz Hatamluyi
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Thome C, Hoertdoerfer WS, Bendorf JR, Lee JG, Shields CW. Electrokinetic Active Particles for Motion-Based Biomolecule Detection. NANO LETTERS 2023; 23:2379-2387. [PMID: 36881680 PMCID: PMC10038089 DOI: 10.1021/acs.nanolett.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Detection of biomolecules is essential for patient diagnosis, disease management, and numerous other applications. Recently, nano- and microparticle-based detection has been explored for improving traditional assays by reducing required sample volumes and assay times as well as enhancing tunability. Among these approaches, active particle-based assays that couple particle motion to biomolecule concentration expand assay accessibility through simplified signal outputs. However, most of these approaches require secondary labeling, which complicates workflows and introduces additional points of error. Here, we show a proof-of-concept for a label-free, motion-based biomolecule detection system using electrokinetic active particles. We prepare induced-charge electrophoretic microsensors (ICEMs) for the capture of two model biomolecules, streptavidin and ovalbumin, and show that the specific capture of the biomolecules leads to direct signal transduction through ICEM speed suppression at concentrations as low as 0.1 nM. This work lays the foundation for a new paradigm of rapid, simple, and label-free biomolecule detection using active particles.
Collapse
Affiliation(s)
- Cooper
P. Thome
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Wren S. Hoertdoerfer
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Julia R. Bendorf
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - Jin Gyun Lee
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| | - C. Wyatt Shields
- Department of Chemical and
Biological Engineering, University of Colorado
Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
21
|
Manikandan S, Vickram S, Sirohi R, Subbaiya R, Krishnan RY, Karmegam N, Sumathijones C, Rajagopal R, Chang SW, Ravindran B, Awasthi MK. Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. BIORESOURCE TECHNOLOGY 2023; 372:128679. [PMID: 36706818 DOI: 10.1016/j.biortech.2023.128679] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biofuel or biogas have become the primary source of bio-energy, providing an alternative to conventionally used energy that can meet the growing energy demand for people all over the world while reducing greenhouse gas emissions. Enzyme hydrolysis in bioethanol production is a critical step in obtaining sugars fermented during the final fermentation process. More efficient enzymes are being researched to provide a more cost-effective technique during enzymatic hydrolysis. The exploitation of microbial catabolic biochemical reactions to produce electric energy can be used for complex renewable biomasses and organic wastes in microbial fuel cells. In hydrolysis methods, a variety of diverse enzyme strategies are used to promote efficient bioethanol production from various lignocellulosic biomasses like agricultural wastes, wood feedstocks, and sea algae. This paper investigates the most recent enzyme hydrolysis pathways, microbial fermentation, microbial fuel cells, and anaerobic digestion in the manufacture of bioethanol/bioenergy from lignocellulose biomass.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ranjna Sirohi
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248001 Uttarakhand, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Radhakrishnan Yedhu Krishnan
- Department of Food Technology, Amal Jyothi College of Engineering, Kanjirappally, Kottayam 686 518, Kerala, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, India
| | - C Sumathijones
- Department of Pharmacology, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, India
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road3#, Shaanxi, Yangling 712100, China.
| |
Collapse
|
22
|
Thenrajan T, Alwarappan S, Wilson J. Molecular Diagnosis and Cancer Prognosis-A Concise Review. Diagnostics (Basel) 2023; 13:766. [PMID: 36832253 PMCID: PMC9955694 DOI: 10.3390/diagnostics13040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a complicated disease. Globally, it is one of the major causes for morbidity and mortality. A critical challenge associated with it is the difficulty to accurately diagnose it at an early stage. The malignancy due to multistage and heterogeneity that result from genetic and epigenetic modifications poses critical challenge to diagnose and monitor the progress at an early stage. Current diagnostic techniques normally suggest invasive biopsy procedure that can cause further infections and bleeding. Therefore, noninvasive diagnostic methods with high accuracy, safety and earliest detection are the needs of the hour. Herein, we provide a detailed review on the advanced methodologies and protocols developed for the detection of cancer biomarkers based on proteins, nucleic acids and extracellular vesicles. Furthermore, existing challenges and the improvements essential for the rapid, sensitive and noninvasive detection have also been discussed.
Collapse
Affiliation(s)
- Thatchanamoorthy Thenrajan
- Polymer Electronics Lab., Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamilnadu, India
| | - Jeyaraj Wilson
- Polymer Electronics Lab., Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
23
|
Pal M, Selvaraju S, Khan R. Editorial: Multi-omics approaches in cancer research with applications in tumour prognosis, metastasis and biosensor based diagnosis of biomarkers. Front Oncol 2023; 13:1168975. [PMID: 37025601 PMCID: PMC10071029 DOI: 10.3389/fonc.2023.1168975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/08/2023] Open
Affiliation(s)
- Mintu Pal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, Punjab, India
- *Correspondence: Mintu Pal,
| | - Sudhagar Selvaraju
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Saha S, Sachdev M, Mitra SK. Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers. BIOMICROFLUIDICS 2023; 17:011502. [PMID: 36844882 PMCID: PMC9949901 DOI: 10.1063/5.0135525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Collapse
Affiliation(s)
| | - Manoj Sachdev
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K. Mitra
- Micro and Nanoscale Transport Laboratory, Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Cavada BS, Oliveira MVD, Osterne VJS, Pinto-Junior VR, Martins FWV, Correia-Neto C, Pinheiro RF, Leal RB, Nascimento KS. Recent advances in the use of legume lectins for the diagnosis and treatment of breast cancer. Biochimie 2022; 208:100-116. [PMID: 36586566 DOI: 10.1016/j.biochi.2022.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Poor lifestyle choices and genetic predisposition are factors that increase the number of cancer cases, one example being breast cancer, the third most diagnosed type of malignancy. Currently, there is a demand for the development of new strategies to ensure early detection and treatment options that could contribute to the complete remission of breast tumors, which could lead to increased overall survival rates. In this context, the glycans observed at the surface of cancer cells are presented as efficient tumor cell markers. These carbohydrate structures can be recognized by lectins which can act as decoders of the glycocode. The application of plant lectins as tools for diagnosis/treatment of breast cancer encompasses the detection and sorting of glycans found in healthy and malignant cells. Here, we present an overview of the most recent studies in this field, demonstrating the potential of lectins as: mapping agents to detect differentially expressed glycans in breast cancer, as histochemistry/cytochemistry analysis agents, in lectin arrays, immobilized in chromatographic matrices, in drug delivery, and as biosensing agents. In addition, we describe lectins that present antiproliferative effects by themselves and/or in conjunction with other drugs in a synergistic effect.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| | - Messias Vital de Oliveira
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vinícius Jose Silva Osterne
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Vanir Reis Pinto-Junior
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Cornevile Correia-Neto
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ronald Feitosa Pinheiro
- Núcleo de Pesquisa e Desenvolvimento de Medicações (NPDM), Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Kyria Santiago Nascimento
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| |
Collapse
|
26
|
Kumar N, Yadav S, Sadique MA, Khan R. Electrochemically Exfoliated Graphene Quantum Dots Based Biosensor for CD44 Breast Cancer Biomarker. BIOSENSORS 2022; 12:bios12110966. [PMID: 36354475 PMCID: PMC9688700 DOI: 10.3390/bios12110966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/25/2023]
Abstract
An innovative electrochemical biosensor based on graphene quantum dots (GQDs) is developed for a simple, rapid, and highly sensitive primary diagnosis of the breast cancer biomarker cluster of differentiation-44 (CD44) antigen. Herein, electrochemical exfoliation of waste dry batteries provides facile, eco-friendly, and cost-effective synthesis of GQDs. Transmission electron microscopy (TEM) analysis reveals that GQDs exhibit spherical shapes with an average diameter of 4.75 nm. Further, electrochemical analysis through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) reveals that the electrochemical properties of GQDs are suitable for biosensing applications. Subsequently, GQDs have a large electroactive surface area that has been utilized for the immobilization of CD44 antibodies to fabricate the electrochemical biosensor. The electroanalytical performance of GQDs for CD44 biosensing capabilities is studied by differential pulse voltammetry (DPV). The developed electrochemical biosensor has high sensitivity with the lowest detection limit (LOD) of 2.11 fg/mL in the linear range of 0.1 pg/mL to 100.0 ng/mL in phosphate buffer saline (PBS). Further, the linear response of the electrochemical biosensor for CD44 antigen concentration is in the range of 1.0 pg/mL to 100.0 ng/mL with a LOD of 2.71 fg/mL in spiked serum samples. The outcomes suggest that the synthesized GQDs demonstrate promising attributes to be utilized as a viable nanomaterial in biosensing applications.
Collapse
Affiliation(s)
- Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
Mohammadpour-Haratbar A, Zare Y, Rhee KY. Electrochemical biosensors based on polymer nanocomposites for detecting breast cancer: Recent progress and future prospects. Adv Colloid Interface Sci 2022; 309:102795. [DOI: 10.1016/j.cis.2022.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
|
28
|
Singh R, Alshaghdali K, Saeed A, Kausar MA, Aldakheel FM, Anwar S, Mishra D, Srivastava M. Prospects of microbial-engineering for the production of graphene and its derivatives: Application to design nanosystms for cancer theranostics. Semin Cancer Biol 2022; 86:885-898. [PMID: 34020029 DOI: 10.1016/j.semcancer.2021.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023]
Abstract
Cancer is known as one of the leading causes of morbidity and fatality, currently faced by our society. The prevalence of cancer related dieses is rapidly increasing around the world. To reduce the mortality rates, early diagnosis and subsequent treatment of cancer in timely manner is quite essential. Advancements have been made to achieve effective theranostics strategies to tackle cancerous dieses, yet very challenging to overcome this issue. Recently, advances made in the field of nanotechnology have shown tremendous potential for cancer theranostics. Different types of nanomaterials have been successfully employed to develop sophisticated diagnosis and therapy techniques. In this context, graphene and its derivatives e.g. graphene oxide (GO) and reduced graphene oxide (RGO) have been investigated as promising candidates to design graphene-based nanosystems for the diagnosis and therapeutic purpose. Further, to synthesize graphene and its derivatives different types of physicochemical methods are being adopted. However, each method has its own advantage and disadvantages. In this reference, among diverse biological methods, microbial technique can be one of the most promising and eco-friendly approach for the preparation of graphene and its derivatives, particularly GO and RGO. In this review, we summarize studies performed on the preparation of graphene and its derivatives following microbial routes meanwhile focus has been made on the preparation method and the possible mechanism involved therein. Thereafter, we have discussed applications of graphene and its derivatives to developed advanced nanosystem that can be imperative for the cancer theranostics. Results of recent studies exploring applications graphene based nanosystem for the preparation of different types of biosensors for early diagnosis; advanced therapeutic approaches by designing drug delivery nanosystems along with multifunctionality (e.g cancer imaging, drug delivery, photodynamic and photo thermal therapy) in cancer theranostics have been discussed. Particularly, emphasis has been given on the preparation techniques of graphene based nanosystems, being employed in designing of biosensing platforms, drug delivery and multifunctional nanosystems. Moreover, issues have been discussed on the preparation of graphene and its derivatives following microbial technique and the implementation of graphene based nanosystems in cancer theranostics.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia; Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, P.O Box 12810, Khartoum, Sudan
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11564, Saudi Arabia; Prince Sattam Chair for Epidemiology and Public Health Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Debabrata Mishra
- Department of Physics & Astrophysics, University of Delhi, Delhi, 110007, India
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi, 221005, India.
| |
Collapse
|
29
|
C.C.G. Carneiro M, Rodrigues LR, Moreira FT, Goreti F. Sales M. Paper-based ELISA for fast CA 15–3 detection in point-of-care. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Impedimetric aptasensor based on zirconium-cobalt metal-organic framework for detection of carcinoembryonic antigen. Mikrochim Acta 2022; 189:338. [PMID: 35980479 DOI: 10.1007/s00604-022-05427-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
A zirconium-cobalt metal-organic framework (ZrCo-MOF) was prepared and used as sensing material to fabricate an aptasensor for trace detection of carcinoembryonic antigen (CEA). The ZrCo-MOF integrates the 3D porous structure and abundant defects of the MOF framework, the catalytic activity and inherent redox behavior of Co, and high stability of Zr-MOF, providing abundant active sites to effectively anchor aptamers. As a result, the ZrCo-MOF-based aptasensor shows high sensitivity to detect CEA via specific recognition between aptamer and CEA, as well as the formation of aptamer-CEA complex. A detection limit of 0.35 fg·mL-1 was deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.001-100 pg·mL-1 for CEA, which was substantially lower than those of most reported CEA biosensors. The ZrCo-MOF-based aptasensor also shows good selectivity, reproducibility, regenerability, stability, and applicability for human serum sample. Therefore, the developed ZrCo-MOF-based aptasensor will be promising for ultrasensitive detection of biomarkers and the early diagnosis of cancer. This work presents a novel electrochemical aptasensor for the trace detection of carcinoembryonic antigen (CEA) based on a zirconium-cobalt metal-organic framework (ZrCo-MOF), which shows low detection limit of 0.35 fg·mL-1, high selectivity as well as good reproducibility, regenerability, stability, and applicability. The result provides a promising approach to detect the cancer biomarkers in an early age.
Collapse
|
31
|
Dyan B, Seele PP, Skepu A, Mdluli PS, Mosebi S, Sibuyi NRS. A Review of the Nucleic Acid-Based Lateral Flow Assay for Detection of Breast Cancer from Circulating Biomarkers at a Point-of-Care in Low Income Countries. Diagnostics (Basel) 2022; 12:diagnostics12081973. [PMID: 36010323 PMCID: PMC9406634 DOI: 10.3390/diagnostics12081973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
The current levels of breast cancer in African women have contributed to the high mortality rates among them. In South Africa, the incidence of breast cancer is also on the rise due to changes in behavioural and biological risk factors. Such low survival rates can be attributed to the late diagnosis of the disease due to a lack of access and the high costs of the current diagnostic tools. Breast cancer is asymptomatic at early stages, which is the best time to detect it and intervene to prevent high mortality rates. Proper risk assessment, campaigns, and access to adequate healthcare need to be prioritised among patients at an early stage. Early detection of breast cancer can significantly improve the survival rate of breast cancer patients, since therapeutic strategies are more effective at this stage. Early detection of breast cancer can be achieved by developing devices that are simple, sensitive, low-cost, and employed at point-of-care (POC), especially in low-income countries (LICs). Nucleic-acid-based lateral flow assays (NABLFAs) that combine molecular detection with the immunochemical visualisation principles, have recently emerged as tools for disease diagnosis, even for low biomarker concentrations. Detection of circulating genetic biomarkers in non-invasively collected biological fluids with NABLFAs presents an appealing and suitable method for POC testing in resource-limited regions and/or LICs. Diagnosis of breast cancer at an early stage will improve the survival rates of the patients. This review covers the analysis of the current state of NABLFA technologies used in developing countries to reduce the scourge of breast cancer.
Collapse
Affiliation(s)
- Busiswa Dyan
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa
- Correspondence: (B.D.); (N.R.S.S.)
| | - Palesa Pamela Seele
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
| | - Amanda Skepu
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
| | - Phumlane Selby Mdluli
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
- Correspondence: (B.D.); (N.R.S.S.)
| |
Collapse
|
32
|
A colorimetric biosensor based on peroxidase-like activity of CuO nanoparticles for simultaneous detection of microRNAs. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Wu HF, Kailasa SK. Recent advances in nanomaterials-based optical sensors for detection of various biomarkers (inorganic species, organic and biomolecules). LUMINESCENCE 2022. [PMID: 35929140 DOI: 10.1002/bio.4353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
Abstract
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Further, this review emphasis on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+ , Cu2+ , Hg2+ , F- , peptides, and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in Tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.
Collapse
Affiliation(s)
- Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
34
|
Singh DD, Sharma S. Investigations on the Biological Activity of Allium sativum Agglutinin
(ASA) Isolated from Garlic. Protein Pept Lett 2022; 29:555-566. [DOI: 10.2174/0929866529999220509122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
Abstract
Background:
Garlic (Allium sativum) from the family Amaryllidaceae is widely used in
culinary and is reported to have potential anticancer, anti-diabetic, antimicrobial, and
cardioprotective activities. Allium sativum agglutinin (ASA) is a bulb-type lectin (BTL) domaincontaining
lectin isolated from garlic and has been studied for its various biological functions.
Previous studies have reported the anti-cancer effects of ASA on histiocytic lymphoma (U937),
promyelocytic leukemia (HL60), and oral cancer (KB).
Methods:
In this study, we have purified and characterized ASA and evaluated it for its anticancer
effects on other cancer cell lines. MTT assay and FACS analysis was done to corroborate the
anticancer findings against cervical (HeLa) and lung cancer (A549) cell lines.
Results:
IC50 value of 37 μg/ml in HeLa and a weak activity (26.4 ± 1.9% cellular inhibition at
100μg/ml treatment) in A549 were found in the MTT assay. FACS analysis further corroborated
these findings and showed the apoptotic effects of ASA in these cell lines.
Conclusion:
Anticancer activity for members of bulb-type lectin (BTL) domain-containing lectins
has been widely reported, and we hope that our study forms a basis for the development of ASA as
a therapeutic agent.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Department of Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh-160014 India
| | - Shally Sharma
- Department of Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh-160014 India
| |
Collapse
|
35
|
Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS APPLIED BIO MATERIALS 2022; 5:2046-2068. [PMID: 35473316 PMCID: PMC9063993 DOI: 10.1021/acsabm.1c01320] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Recent advances in microfluidics-based point-of-care testing (POCT) technology such as paper, array, and beads have shown promising results for diagnosing various infectious diseases. The fast and timely detection of viral infection has proven to be a critical step for deciding the therapeutic outcome in the current COVID-19 pandemic, which in turn not only enhances the patient survival rate but also reduces the disease-associated comorbidities. In the present scenario, rapid, noninvasive detection of the virus using low cost and high throughput microfluidics-based POCT devices embraces the advantages over existing diagnostic technologies, for which a centralized lab facility, expensive instruments, sample pretreatment, and skilled personnel are required. Microfluidic-based multiplexed POCT devices can be a boon for clinical diagnosis in developing countries that lacks a centralized health care system and resources. The microfluidic devices can be used for disease diagnosis and exploited for the development and testing of drug efficacy for disease treatment in model systems. The havoc created by the second wave of COVID-19 led several countries' governments to the back front. The lack of diagnostic kits, medical devices, and human resources created a huge demand for a technology that can be remotely operated with single touch and data that can be analyzed on a phone. Recent advancements in information technology and the use of smartphones led to a paradigm shift in the development of diagnostic devices, which can be explored to deal with the current pandemic situation. This review sheds light on various approaches for the development of cost-effective microfluidics POCT devices. The successfully used microfluidic devices for COVID-19 detection under clinical settings along with their pros and cons have been discussed here. Further, the integration of microfluidic devices with smartphones and wireless network systems using the Internet-of-things will enable readers for manufacturing advanced POCT devices for remote disease management in low resource settings.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Mechanical Engineering, Indian Institute of Information Technology Design & Manufacturing Kancheepuram, Chennai 600127, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh 462026, India
| | - Udwesh Panda
- Department of Mechanical Engineering, Indian Institute of Information Technology Design & Manufacturing Kancheepuram, Chennai 600127, India
| | | |
Collapse
|
36
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R. An Electrochemical Immunosensor Based on Gold-Graphene Oxide Nanocomposites with Ionic Liquid for Detecting the Breast Cancer CD44 Biomarker. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20802-20812. [PMID: 35482593 DOI: 10.1021/acsami.2c03905] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We develop a highly sensitive electrochemical immunosensor for the detection of a cluster of differentiation-44 (CD44) antigen, a breast cancer biomarker. The hybrid nanocomposite consists of graphene oxide, ionic liquid, and gold nanoparticles (GO-IL-AuNPs) immobilized on a glassy carbon electrode. GO favors the immobilization of antibodies because of the availability of oxygen functionalities. However, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM.BF4) and AuNPs facilitate electron transfer and increase the effective surface area, which enhances the performance of the immunosensor. Furthermore, UV-visible, fourier transform infrared and Raman spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, voltammetry, and electrochemical impedance spectroscopy characterization techniques have been employed to investigate the structural and chemical properties of the nanomaterials. The quantitative detection of CD44 antigen has been accomplished via differential pulse voltammetry and EIS detection techniques. It has been quantified that the proposed immunosensor offers excellent detection ability in both phosphate-buffered saline (PBS) and serum samples. Under optimum conditions, the linear detection range of the immunosensor for CD44 antigen is 5.0 fg mL-1 to 50.0 μg mL-1 and the limit of detection is 2.0 and 1.90 fg mL-1 as observed via DPV and EIS, respectively, in PBS. Additionally, the immunosensor has high sensitivity and specificity and can be successfully applied for the detection of CD44 antigen in clinical samples.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
37
|
Parihar A, Singhal A, Kumar N, Khan R, Khan MA, Srivastava AK. Next-Generation Intelligent MXene-Based Electrochemical Aptasensors for Point-of-Care Cancer Diagnostics. NANO-MICRO LETTERS 2022; 14:100. [PMID: 35403935 PMCID: PMC8995416 DOI: 10.1007/s40820-022-00845-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023]
Abstract
Delayed diagnosis of cancer using conventional diagnostic modalities needs to be addressed to reduce the mortality rate of cancer. Recently, 2D nanomaterial-enabled advanced biosensors have shown potential towards the early diagnosis of cancer. The high surface area, surface functional groups availability, and excellent electrical conductivity of MXene make it the 2D material of choice for the fabrication of advanced electrochemical biosensors for disease diagnostics. MXene-enabled electrochemical aptasensors have shown great promise for the detection of cancer biomarkers with a femtomolar limit of detection. Additionally, the stability, ease of synthesis, good reproducibility, and high specificity offered by MXene-enabled aptasensors hold promise to be the mainstream diagnostic approach. In this review, the design and fabrication of MXene-based electrochemical aptasensors for the detection of cancer biomarkers have been discussed. Besides, various synthetic processes and useful properties of MXenes which can be tuned and optimized easily and efficiently to fabricate sensitive biosensors have been elucidated. Further, futuristic sensing applications along with challenges will be deliberated herein.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| | - Ayushi Singhal
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Kumar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mohd Akram Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
| | - Avanish K Srivastava
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
38
|
Hong R, Sun H, Li D, Yang W, Fan K, Liu C, Dong L, Wang G. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Life (Basel) 2022; 12:342. [PMID: 35330093 PMCID: PMC8955405 DOI: 10.3390/life12030342] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has the highest cancer incidence rate in women. Early screening of breast cancer can effectively improve the treatment effect of patients. However, the main diagnostic techniques available for the detection of breast cancer require the corresponding equipment, professional practitioners, and expert analysis, and the detection cost is high. Tumor markers are a kind of active substance that can indicate the existence and growth of the tumor. The detection of tumor markers can effectively assist the diagnosis and treatment of breast cancer. The conventional detection methods of tumor markers have some shortcomings, such as insufficient sensitivity, expensive equipment, and complicated operations. Compared with these methods, biosensors have the advantages of high sensitivity, simple operation, low equipment cost, and can quantitatively detect all kinds of tumor markers. This review summarizes the biosensors (2013-2021) for the detection of breast cancer biomarkers. Firstly, the various reported tumor markers of breast cancer are introduced. Then, the development of biosensors designed for the sensitive, stable, and selective recognition of breast cancer biomarkers was systematically discussed, with special attention to the main clinical biomarkers, such as human epidermal growth factor receptor-2 (HER2) and estrogen receptor (ER). Finally, the opportunities and challenges of developing efficient biosensors in breast cancer diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Rui Hong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongyu Sun
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kai Fan
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
39
|
Yadav S, Sadique MA, Kaushik A, Ranjan P, Khan R, Srivastava AK. Borophene as an emerging 2D flatland for biomedical applications: current challenges and future prospects. J Mater Chem B 2022; 10:1146-1175. [PMID: 35107476 DOI: 10.1039/d1tb02277f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, two-dimensional (2D)-borophene has emerged as a remarkable translational nanomaterial substituting its predecessors in the field of biomedical sensors, diagnostic tools, high-performance healthcare devices, super-capacitors, and energy storage devices. Borophene justifies its demand due to high-performance and controlled optical, electrical, mechanical, thermal, and magnetic properties as compared with other 2D-nanomaterials. However, continuous efforts are being made to translate theoretical and experimental knowledge into pragmatic platforms. To cover the associated knowledge gap, this review explores the computational and experimental chemistry needed to optimize borophene with desired properties. High electrical conductivity due to destabilization of the highest occupied molecular orbital (HOMO), nano-engineering at the monolayer level, chemistry-oriented biocompatibility, and photo-induced features project borophene for biosensing, bioimaging, cancer treatment, and theragnostic applications. Besides, the polymorphs of borophene have been useful to develop specific bonding for DNA sequencing and high-performance medical equipment. In this review, an overall critical and careful discussion of systematic advancements in borophene-based futuristic biomedical applications including artificial intelligence (AI), Internet-of-Things (IoT), and Internet-of-Medical Things (IoMT) assisted smart devices in healthcare to develop high-performance biomedical systems along with challenges and prospects is extensively addressed. Consequently, this review will serve as a key supportive platform as it explores borophene for next-generation biomedical applications. Finally, we have proposed the potential use of borophene in healthcare management strategies.
Collapse
Affiliation(s)
- Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
40
|
Carneiro LP, Pinto AM, Mendes A, Goreti F. Sales M. An all-in-one approach for self-powered sensing: A methanol fuel cell modified with a molecularly imprinted polymer for cancer biomarker detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Point-of-care detection assay based on biomarker-imprinted polymer for different cancers: a state-of-the-art review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Shahbazi N, Zare-Dorabei R, Naghib SM. Design of a Ratiometric Plasmonic Biosensor for Herceptin Detection in HER2-Positive Breast Cancer. ACS Biomater Sci Eng 2022; 8:871-879. [PMID: 35044154 DOI: 10.1021/acsbiomaterials.1c01369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Breast cancer is the most common cause of cancer death in women; therefore, its early detection and treatment are crucial. To achieve this goal, we designed an optical sensor based on direct interaction of trastuzumab [Herceptin (HER)], a monoclonal antibody used to treat HER2-positive breast cancer, with plasmonic nanoparticles. Surface-modified gold nanoparticles (AuNPs) have gained considerable attention in biosensing techniques over the last years, which actuated these nanoparticles to the heart of various biosensing notions. We have exploited the localized surface plasmon resonance (LSPR) of gold nanoparticles to determine HER in human serum. AuNPs were decorated with negatively charged citrate ions, yielding enhanced direct-surface interaction with HER antibodies. The AuNPs are mixed with silver nanoparticles (AgNPs) in an optimized ratio to increase selectivity and sensitivity further. AuNPs detect the HER antibodies using LSPR, whereas AgNPs help monitor interferences' effect on the sensing media. The three effective factors in HER sensing, including the nanoparticle ratio, temperature, and pH were optimized via response surface methodology (RSM) based on the central composite design (CCD). The sensor's response toward HER was achieved in the linear range of 0.5 × 10-7 to 40 × 10-7 M with the detection limit of 3.7 × 10-9 M and relative standard deviation (RSD) less than 5%. The selectivity of the LSPR sensor was assessed by monitoring its response toward HER in the presence of other biological molecules with similar physicochemical properties. Rapid response time (less than 1 min), selectivity, and the simplicity of the developed LSPR-based sensor are the key advantages of the developed sensor.
Collapse
Affiliation(s)
- Neda Shahbazi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
43
|
Kanugo A, Gautam RK, Kamal MA. Recent advances of nanotechnology in the diagnosis and therapy of triple-negative breast cancer (TNBC). Curr Pharm Biotechnol 2021; 23:1581-1595. [PMID: 34967294 DOI: 10.2174/1389201023666211230113658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of advanced treatment of triple-negative breast cancer (TNBC) is the utmost need of an era. TNBC is recognized as the most aggressive, metastatic cancer and the leading cause of mortality in females worldwide. The lack of expression of triple receptors namely, estrogen, progesterone, and human epidermal receptor2 defined TNBC. OBJECTIVE The current review introduced the novel biomarkers such as miRNA and family, PD1, EGFR, VEGF, TILs, P53, AR and PI3K, etc. contributed significantly to the prognosis and diagnosis of TNBC. Once diagnosed the utilization advanced approaches available for TNBC because of the limitations of chemotherapy. Novel approaches include lipid-based (liposomes, SLN, NLC, and SNEDDS), polymer-based (micelle, nanoparticles, dendrimers, and quantum dots), advanced nanocarriers such as (exosomes, antibody and peptide-drug conjugates), carbon-based nanocarriers (Carbon nanotubes, and graphene oxide). Lipid-based delivery is used for excellent carriers for hydrophobic drugs, biocompatibility, and lesser systemic toxicities than chemotherapeutic agents. Polymer-based approaches are preferred over lipids for providing longer circulation time, nanosize, high loading efficiency, high linking; avoiding the expulsion of drugs, targeted action, diagnostic and biosensing abilities. Advanced approaches like exosomes, conjugated moieties are preferred over polymeric for possessing potency, high penetrability, biomarkers, and avoiding the toxicity of tissues. Carbon-based gained wide applicability for their unique properties like a versatile carrier, prognostic, diagnostic, sensing, photodynamic, and photothermal characteristics. CONCLUSION The survival rate can be increased by utilizing several kinds of biomarkers. The advanced approaches can also be significantly useful in the prognosis and theranostic of triple-negative breast cancer. One of the biggest successes in treating with nanotechnology-based approaches is the marked reduction of systemic toxicity with high therapeutic effectiveness compared with chemotherapy, surgery, etc. The requirements such as prompt diagnosis, longer circulation time, high efficiency, and high potency, can be fulfilled with these nanocarriers.
Collapse
Affiliation(s)
- Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, Dhule, India
| | - Rupesh K Gautam
- Department of Pharmacology, MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur-Ambala (Haryana) India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
44
|
Electrochemical bioassay coupled to LAMP reaction for determination of high-risk HPV infection in crude lysates. Anal Chim Acta 2021; 1187:339145. [PMID: 34753575 DOI: 10.1016/j.aca.2021.339145] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 12/29/2022]
Abstract
Electrochemical (EC) detection of DNA biomarkers represents an interesting tool in molecular oncology due to its sensitivity, simplicity, low cost or rapid times of measurement. However, majority of EC assays, same as most optical-based techniques, require preceding DNA extraction step to remove other cellular components, making these assays more laborious and time-consuming. One option to circumvent this is to use LAMP (loop-mediated amplification), an isothermal amplification technique that can amplify DNA directly in crude lysates in a short time at a constant temperature. Here, we coupled the LAMP reaction with EC readout to detect DNA from the two most common oncogenic human papillomavirus (HPV) types that cause cervical cancer in women, i.e. HPV 16 and HPV 18, directly in crude lysates without a need for DNA extraction step. We show that in crude lysates, the LAMP reaction was superior to PCR, with very good selectivity on a panel of cancer cell lines and with high sensitivity, enabling detection of HPV DNA from as few as 10 cells. As a proof of principle, we applied the assay to nineteen clinical samples both from uninfected women and from women suffering from cervical precancerous lesions caused by HPV 16 or HPV 18 genotypes. Clinical samples were simply boiled for 5 min in homogenization buffer without DNA extraction step, and amplified with LAMP. We obtained excellent concordance of our assay with PCR, reaching 100% sensitivity for both genotypes, 81.82% specificity for HPV 16 and 94.12% specificity for HPV 18. Proposed assay could be a straightforward, simple, rapid and sensitive alternative for early diagnostics of precancerous cervical lesions.
Collapse
|
45
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
46
|
Ranjan P, Yadav S, Sadique MA, Khan R, Chaurasia JP, Srivastava AK. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors. BIOSENSORS 2021; 11:414. [PMID: 34821629 PMCID: PMC8615372 DOI: 10.3390/bios11110414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications. Since they have a large surface area, high conductivity, stability, and functionality, they are promising in biosensor applications. Nevertheless, the combination of ionic liquids (ILs) and carbon nanomaterials (CNMs) results in the functional ILs-CNMs hybrid nanocomposites with considerably improved surface chemistry and electrochemical properties. Moreover, the high functionality and biocompatibility of ILs favor the high loading of biomolecules on the electrode surface. They extremely enhance the sensitivity of the biosensor that reaches the ability of ultra-low detection limit. This review aims to provide the studies of the synthesis, properties, and bonding of functional ILs-CNMs. Further, their electrochemical sensors and biosensor applications for the detection of numerous analytes are also discussed.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
| | - Raju Khan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamana Prasad Chaurasia
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish Kumar Srivastava
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
47
|
Abrantes-Coutinho VE, Santos AO, Moura RB, Pereira-Junior FN, Mascaro LH, Morais S, Oliveira TMBF. Systematic review on lectin-based electrochemical biosensors for clinically relevant carbohydrates and glycoconjugates. Colloids Surf B Biointerfaces 2021; 208:112148. [PMID: 34624598 DOI: 10.1016/j.colsurfb.2021.112148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Carbohydrates and glycoconjugates are involved in numerous natural and pathological metabolic processes, and the precise elucidation of their biochemical functions has been supported by smart technologies assembled with lectins, i.e., ubiquitous proteins of nonimmune origin with carbohydrate-specific domains. When lectins are anchored on suitable electrochemical transducers, sensitive and innovative bioanalytical tools (lectin-based biosensors) are produced, with the ability to screen target sugars at molecular levels. In addition to the remarkable electroanalytical sensitivity, these devices associate specificity, precision, stability, besides the possibility of miniaturization and portability, which are special features required for real-time and point-of-care measurements. The mentioned attributes can be improved by combining lectins with biocompatible 0-3D semiconductors derived from carbon, metal nanoparticles, polymers and their nanocomposites, or employing labeled biomolecules. This systematic review aims to substantiate and update information on the progress made with lectin-based biosensors designed for electroanalysis of clinically relevant carbohydrates and glycoconjugates (glycoproteins, pathogens and cancer biomarkers), highlighting their main detection principles and performance in highly complex biological milieus. Moreover, particular emphasis is given to the main advantages and limitations of the reported devices, as well as the new trends for the current demands. We believe that this review will support and encourage more cutting-edge research involving lectin-based electrochemical biosensors.
Collapse
Affiliation(s)
| | - André O Santos
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil
| | - Rafael B Moura
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Francisco N Pereira-Junior
- Centro de Ciências Agrágrias e da Biodiversidade, Universidade Federal do Cariri, 63130-025 Crato, CE, Brazil
| | - Lucia H Mascaro
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luis, 13565-905 São Carlos, SP, Brazil
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Thiago M B F Oliveira
- Centro de Ciência e Tecnologia, Universidade Federal do Cariri, 63048-080 Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
48
|
Joshi A, Vishnu G K A, Sakorikar T, Kamal AM, Vaidya JS, Pandya HJ. Recent advances in biosensing approaches for point-of-care breast cancer diagnostics: challenges and future prospects. NANOSCALE ADVANCES 2021; 3:5542-5564. [PMID: 36133274 PMCID: PMC9417675 DOI: 10.1039/d1na00453k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/12/2021] [Indexed: 05/12/2023]
Abstract
Timely and accurate diagnosis of breast cancer is essential for efficient treatment and the best possible survival rates. Biosensors have emerged as a smart diagnostic platform for the detection of biomarkers specific to the onset, recurrence, and therapeutic drug monitoring of breast cancer. There have been exciting recent developments, including significant improvements in the validation, sensitivity, specificity, and integration of sample processing steps to develop point-of-care (POC) integrated micro-total analysis systems for clinical settings. The present review highlights various biosensing modalities (electrical, optical, piezoelectric, mass, and acoustic sensing). It provides deep insights into their design principles, signal amplification strategies, and comparative performance analysis. Finally, this review emphasizes the status of existing integrated micro-total analysis systems (μ-TAS) for personalized breast cancer therapeutics and associated challenges and outlines the approach required to realize their successful translation into clinical settings.
Collapse
Affiliation(s)
- Anju Joshi
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Anil Vishnu G K
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
| | - Tushar Sakorikar
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Arif M Kamal
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| | - Jayant S Vaidya
- Division of Surgery and Interventional Science, University College London 4919 London UK
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Division of EECS, Indian Institute of Science Bangalore India
| |
Collapse
|
49
|
Characteristics of P-Type and N-Type Photoelectrochemical Biosensors: A Case Study for Esophageal Cancer Detection. NANOMATERIALS 2021; 11:nano11051065. [PMID: 33919216 PMCID: PMC8143162 DOI: 10.3390/nano11051065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 02/08/2023]
Abstract
P-type and N-type photoelectrochemical (PEC) biosensors were established in the laboratory to discuss the correlation between characteristic substances and photoactive material properties through the photogenerated charge carrier transport mechanism. Four types of human esophageal cancer cells (ECCs) were analyzed without requiring additional bias voltage. Photoelectrical characteristics were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–vis reflectance spectroscopy, and photocurrent response analyses. Results showed that smaller photocurrent was measured in cases with advanced cancer stages. Glutathione (L-glutathione reduced, GSH) and Glutathione disulfide (GSSG) in cancer cells carry out redox reactions during carrier separation, which changes the photocurrent. The sensor can identify ECC stages with a certain level of photoelectrochemical response. The detection error can be optimized by adjusting the number of cells, and the detection time of about 5 min allowed repeated measurement.
Collapse
|
50
|
Yadav S, Sadique MA, Ranjan P, Kumar N, Singhal A, Srivastava AK, Khan R. SERS Based Lateral Flow Immunoassay for Point-of-Care Detection of SARS-CoV-2 in Clinical Samples. ACS APPLIED BIO MATERIALS 2021; 4:2974-2995. [PMID: 35014387 PMCID: PMC7986978 DOI: 10.1021/acsabm.1c00102] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role in combating the outbreak. Although conventional methods such as PCR, RT-PCR, and ELISA, etc., offer a gold-standard solution to manage the pandemic, they cannot be implemented as a point-of-care (POC) testing arrangement. Moreover, surface-enhanced Raman spectroscopy (SERS) having a high enhancement factor provides quantitative results with high specificity, sensitivity, and multiplex detection ability but lacks in POC setup. In contrast, POC devices such as lateral flow immunoassay (LFIA) offer rapid, simple-to-use, cost-effective, reliable platform. However, LFIA has limitations in quantitative and sensitive analyses of SARS-CoV-2 detection. To resolve these concerns, herein we discuss a unique modality that is an integration of SERS with LFIA for quantitative analyses of SARS-CoV-2. The miniaturization ability of SERS-based devices makes them promising in biosensor application and has the potential to make a better alternative of conventional diagnostic methods. This review also demonstrates the commercially available and FDA/ICMR approved LFIA kits for on-site diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Shalu Yadav
- Microfluidics & MEMS Centre,
CSIR−Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research
(AcSIR), Ghaziabad 201002, India
| | - Mohd. Abubakar Sadique
- Microfluidics & MEMS Centre,
CSIR−Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal 462026, India
| | - Pushpesh Ranjan
- Microfluidics & MEMS Centre,
CSIR−Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research
(AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Microfluidics & MEMS Centre,
CSIR−Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research
(AcSIR), Ghaziabad 201002, India
| | - Ayushi Singhal
- Microfluidics & MEMS Centre,
CSIR−Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research
(AcSIR), Ghaziabad 201002, India
| | - Avanish K. Srivastava
- Microfluidics & MEMS Centre,
CSIR−Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal 462026, India
| | - Raju Khan
- Microfluidics & MEMS Centre,
CSIR−Advanced Materials and Processes Research Institute
(AMPRI), Hoshangabad Road, Bhopal 462026, India
- Academy of Scientific and Innovative Research
(AcSIR), Ghaziabad 201002, India
| |
Collapse
|