1
|
Duan XL, Guo Z, He YT, Li YX, Liu YN, Bai HH, Li HL, Hu XD, Suo ZW. SNAP25/syntaxin4/VAMP2/Munc18-1 Complexes in Spinal Dorsal Horn Contributed to Inflammatory Pain. Neuroscience 2020; 429:203-212. [PMID: 31962145 DOI: 10.1016/j.neuroscience.2020.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) have been implicated in the trafficking of postsynaptic glutamate receptors, including N-methyl-d-aspartate (NMDA)-subtype glutamate receptors (NMDARs) that are critical for nociceptive plasticity and behavioral sensitization. However, the components of SNAREs complex involved in spinal nociceptive processing remain largely unknown. Here we found that SNAP25, syntaxin4, VAMP2 and Munc18-1 were localized at postsynaptic sites and formed the complex in the superficial lamina of spinal cord dorsal horn of rats. The complex formation between these SNAREs components were accelerated after intraplantar injection of complete Freund's adjuvant (CFA), pharmacological removal of GABAergic inhibition or activation of NMDAR in intact rats. The increased SNAP25/syntaxin4/VAMP2/Munc18-1 interaction facilitated the surface delivery and synaptic accumulation of NMDAR during inflammatory pain. Disruption of the molecular interaction between SNAP25 with its SNARE partners by using a blocking peptide derived from the C-terminus of SNAP25 effectively repressed the surface and synaptic accumulation of GluN2B-containing NMDARs in CFA-injected rats. This peptide also alleviated inflammatory mechanical allodynia and thermal hypersensitivity. These data suggested that SNAREs complex assembly in spinal cord dorsal horn was involved in the inflammatory pain hypersensitivity through promoting NMDAR synaptic trafficking.
Collapse
Affiliation(s)
- Xing-Lian Duan
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhen Guo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yong-Tao He
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yin-Xia Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yan-Ni Liu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Hu-Hu Bai
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Hu-Ling Li
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
2
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Contribution of HIV Infection, AIDS, and Antiretroviral Therapy to Exocrine Pathogenesis in Salivary and Lacrimal Glands. Int J Mol Sci 2018; 19:ijms19092747. [PMID: 30217034 PMCID: PMC6164028 DOI: 10.3390/ijms19092747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 02/07/2023] Open
Abstract
The structure and function of exocrine glands are negatively affected by human immunodeficiency virus (HIV) infection and its co-morbidities, including innate and adaptive immune responses. At the same time, exocrine function may also be influenced by pharmacotherapies directed at the infectious agents. Here, we briefly review the role of the salivary glands and lacrimal glands in normal physiology and exocrine pathogenesis within the context of HIV infection and acquired immune deficiency syndrome (AIDS), including the contribution of antiretroviral therapies on both. Subsequently, we discuss the impact of HIV infection and the types of antiretroviral therapy on disease management and therapy development efforts.
Collapse
|
4
|
Gutierrez BA, Chavez MA, Rodarte AI, Ramos MA, Dominguez A, Petrova Y, Davalos AJ, Costa RM, Elizondo R, Tuvim MJ, Dickey BF, Burns AR, Heidelberger R, Adachi R. Munc18-2, but not Munc18-1 or Munc18-3, controls compound and single-vesicle-regulated exocytosis in mast cells. J Biol Chem 2018; 293:7148-7159. [PMID: 29599294 DOI: 10.1074/jbc.ra118.002455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/20/2018] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) play pivotal roles in many inflammatory conditions including infections, anaphylaxis, and asthma. MCs store immunoregulatory compounds in their large cytoplasmic granules and, upon stimulation, secrete them via regulated exocytosis. Exocytosis in many cells requires the participation of Munc18 proteins (also known as syntaxin-binding proteins), and we found that mature MCs express all three mammalian isoforms: Munc18-1, -2, and -3. To study their functions in MC effector responses and test the role of MC degranulation in anaphylaxis, we used conditional knockout (cKO) mice in which each Munc18 protein was deleted exclusively in MCs. Using recordings of plasma membrane capacitance for high-resolution analysis of exocytosis in individual MCs, we observed an almost complete absence of exocytosis in Munc18-2-deficient MCs but intact exocytosis in MCs lacking Munc18-1 or Munc18-3. Stereological analysis of EM images of stimulated MCs revealed that the deletion of Munc18-2 also abolishes the homotypic membrane fusion required for compound exocytosis. We confirmed the severe defect in regulated exocytosis in the absence of Munc18-2 by measuring the secretion of mediators stored in MC granules. Munc18-2 cKO mice had normal morphology, development, and distribution of their MCs, indicating that Munc18-2 is not essential for the migration, retention, and maturation of MC-committed progenitors. Despite that, we found that Munc18-2 cKO mice were significantly protected from anaphylaxis. In conclusion, MC-regulated exocytosis is required for the anaphylactic response, and Munc18-2 is the sole Munc18 isoform that mediates membrane fusion during MC degranulation.
Collapse
Affiliation(s)
- Berenice A Gutierrez
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey NL 64849 México
| | - Miguel A Chavez
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey NL 64710 México
| | - Alejandro I Rodarte
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey NL 64710 México
| | - Marco A Ramos
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Andrea Dominguez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey NL 64710 México
| | - Youlia Petrova
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Alfredo J Davalos
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Renan M Costa
- Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Ramon Elizondo
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey NL 64710 México
| | - Michael J Tuvim
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Burton F Dickey
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, Texas 77204
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030.
| |
Collapse
|
5
|
Diverse exocytic pathways for mast cell mediators. Biochem Soc Trans 2018; 46:235-247. [PMID: 29472369 DOI: 10.1042/bst20170450] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/23/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases.
Collapse
|
6
|
Characterization of Long-Term Cultured Murine Submandibular Gland Epithelial Cells. PLoS One 2016; 11:e0147407. [PMID: 26800086 PMCID: PMC4723076 DOI: 10.1371/journal.pone.0147407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Human and rat salivary gland cell lines derived from tumors or genetic modification are currently available for research. Here, we attempted to culture and characterize long-term cultured cells spontaneously derived from wild type murine submandibular glands (SGs). METHODS SGs were removed from 3-week-old C57B/6J female mice and dissociated by collagenase type 1 and hyaluronidase digestion. Isolated SG epithelial cells were cultured in low calcium, serum-free growth media in the presence of cholera toxin (CT) during early passages. Single-cell colonies were isolated by limiting dilution culture after 25 passages. Early- and late-stage cell cultures were characterized for keratin 14, keratin 18, α-smooth muscle actin, and p63 by immunostaining and quantitative real-time PCR analysis. RESULTS SG epithelial cells cultured in optimized media maintained their proliferative ability and morphology for over 80 passages. Long-term cultured cells expressed keratin 14, keratin 18, and p63, indicative of an epithelial phenotype. CONCLUSIONS Epithelial cells originating from wild type murine SGs could be cultured for longer periods of time and remain phenotypically similar to ductal basal epithelium.
Collapse
|
7
|
Yamaoka M, Ishizaki T, Kimura T. Interplay between Rab27a effectors in pancreatic β-cells. World J Diabetes 2015; 6:508-516. [PMID: 25897360 PMCID: PMC4398906 DOI: 10.4239/wjd.v6.i3.508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
The small GTPase Rab27a is a member of the Rab family that is involved in membrane trafficking in various kinds of cells. Rab27a has GTP- and GDP-bound forms, and their interconversion regulates intracellular signaling pathways. Typically, only a GTP-bound GTPase binds its specific effectors with the resulting downstream signals controlling specific cellular functions. We previously identified novel Rab27a-interacting proteins. Surprisingly, some of these proteins interacted with GDP-bound Rab27a. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in the secretory process. In pancreatic β-cells, GTP-bound Rab27a regulates insulin secretion at the pre-exocytotic stages via its GTP-specific effectors such as Exophilin8/Slac2-c/MyRIP and Slp4/Granuphilin. Glucose stimulation causes insulin exocytosis. Glucose stimulation also converts Rab27a from its GTP- to its GDP-bound form. GDP-bound Rab27a interacts with GDP-specific effectors and controls endocytosis of the secretory membrane. Thus, Rab27a cycling between GTP- and GDP-bound forms synchronizes with the recycling of secretory membrane to re-use the membrane and keep the β-cell volume constant.
Collapse
|
8
|
Imai A, Tsujimura M, Yoshie S, Fukuda M. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells. Biochem Biophys Res Commun 2015; 461:469-74. [PMID: 25871792 DOI: 10.1016/j.bbrc.2015.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/20/2023]
Abstract
Amylase is released from exocrine parotid acinar cells via typical exocytosis. Exocytosis of amylase-containing granules occurs through several steps, including formation, maturation, and transport of granules. These steps are thought to be regulated by members of the small GTPase Rab family. We previously demonstrated that Rab27 and its effectors mediate amylase release from parotid acinar cells, but the functional involvement of other Rab proteins in exocrine granule exocytosis remains largely unknown. Here, we studied isoproterenol (IPR)-induced amylase release from parotid acinar cells to investigate the possible involvement of Rab33A, which was recently suggested to regulate exocytosis in hippocampal neurons and PC12 cells. Rab33A was endogenously expressed in parotid acinar cells and present in secretory granules and the Golgi body. Functional ablation of Rab33A with anti-Rab33A antibody or a dominant-negative Rab33A-T50N mutant significantly reduced IPR-induced amylase release. Our results indicated that Rab33A is a novel component of IPR-stimulated amylase secretion from parotid acinar cells.
Collapse
Affiliation(s)
- Akane Imai
- Department of Dental Hygiene, College at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan; Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | - Maiko Tsujimura
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan; Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| | - Sumio Yoshie
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
9
|
Messenger SW, Falkowski MA, Groblewski GE. Ca²⁺-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 2014; 55:369-75. [PMID: 24742357 DOI: 10.1016/j.ceca.2014.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/09/2023]
Abstract
Protein secretion from acinar cells of the pancreas and parotid glands is controlled by G-protein coupled receptor activation and generation of the cellular messengers Ca(2+), diacylglycerol and cAMP. Secretory granule (SG) exocytosis shares some common characteristics with nerve, neuroendocrine and endocrine cells which are regulated mainly by elevated cell Ca(2+). However, in addition to diverse signaling pathways, acinar cells have large ∼1 μm diameter SGs (∼30 fold larger diameter than synaptic vesicles), respond to stimulation at slower rates (seconds versus milliseconds), demonstrate significant constitutive secretion, and in isolated acini, undergo sequential compound SG-SG exocytosis at the apical membrane. Exocytosis proceeds as an initial rapid phase that peaks and declines over 3 min followed by a prolonged phase that decays to near basal levels over 20-30 min. Studies indicate the early phase is triggered by Ca(2+) and involves the SG proteins VAMP2 (vesicle associated membrane protein2), Ca(2+)-sensing protein synatotagmin 1 (syt1) and the accessory protein complexin 2. The molecular details for regulation of VAMP8-mediated SG exocytosis and the prolonged phase of secretion are still emerging. Here we review the known regulatory molecules that impact the sequential exocytic process of SG tethering, docking, priming and fusion in acinar cells.
Collapse
Affiliation(s)
- Scott W Messenger
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Michelle A Falkowski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Guy E Groblewski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
10
|
Truchet S, Chat S, Ollivier-Bousquet M. Milk secretion: The role of SNARE proteins. J Mammary Gland Biol Neoplasia 2014; 19:119-30. [PMID: 24264376 DOI: 10.1007/s10911-013-9311-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022] Open
Abstract
During lactation, polarized mammary epithelial secretory cells (MESCs) secrete huge quantities of the nutrient molecules that make up milk, i.e. proteins, fat globules and soluble components such as lactose and minerals. Some of these nutrients are only produced by the MESCs themselves, while others are to a great extent transferred from the blood. MESCs can thus be seen as a crossroads for both the uptake and the secretion with cross-talks between intracellular compartments that enable spatial and temporal coordination of the secretion of the milk constituents. Although the physiology of lactation is well understood, the molecular mechanisms underlying the secretion of milk components remain incompletely characterized. Major milk proteins, namely caseins, are secreted by exocytosis, while the milk fat globules are released by budding, being enwrapped by the apical plasma membrane. Prolactin, which stimulates the transcription of casein genes, also induces the production of arachidonic acid, leading to accelerated casein transport and/or secretion. Because of their ability to form complexes that bridge two membranes and promote their fusion, SNARE (Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor) proteins are involved in almost all intracellular trafficking steps and exocytosis. As SNAREs can bind arachidonic acid, they could be the effectors of the secretagogue effect of prolactin in MESCs. Indeed, some SNAREs have been observed between secretory vesicles and lipid droplets suggesting that these proteins could not only orchestrate the intracellular trafficking of milk components but also act as key regulators for both the coupling and coordination of milk product secretion in response to hormones.
Collapse
Affiliation(s)
- Sandrine Truchet
- INRA, UR1196 Génomique et Physiologie de la Lactation, 78352, Jouy-en-Josas Cedex, France,
| | | | | |
Collapse
|
11
|
Characterization of cysteine string protein in rat parotid acinar cells. Arch Biochem Biophys 2013; 538:1-5. [DOI: 10.1016/j.abb.2013.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/28/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022]
|
12
|
Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 2013; 110:E3271-80. [PMID: 23918365 DOI: 10.1073/pnas.1311232110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sec1/Munc18 (SM) family proteins are essential for every vesicle fusion pathway. The best-characterized SM protein is the synaptic factor Munc18-1, but it remains unclear whether its functions represent conserved mechanisms of SM proteins or specialized activities in neurotransmitter release. To address this question, we dissected Munc18c, a functionally distinct SM protein involved in nonsynaptic exocytic pathways. We discovered that Munc18c binds to the trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex and strongly accelerates the fusion rate. Further analysis suggests that Munc18c recognizes both vesicle-rooted SNARE and target membrane-associated SNAREs, and promotes trans-SNARE zippering at the postdocking stage of the fusion reaction. The stimulation of fusion by Munc18c is specific to its cognate SNARE isoforms. Because Munc18-1 regulates fusion in a similar manner, we conclude that one conserved function of SM proteins is to bind their cognate trans-SNARE complexes and accelerate fusion kinetics. Munc18c also binds syntaxin-4 monomer but does not block target membrane-associated SNARE assembly, in agreement with our observation that six- to eightfold increases in Munc18c expression do not inhibit insulin-stimulated glucose uptake in adipocytes. Thus, the inhibitory "closed" syntaxin binding mode demonstrated for Munc18-1 is not conserved in Munc18c. Unexpectedly, we found that Munc18c recognizes the N-terminal region of the vesicle-rooted SNARE, whereas Munc18-1 requires the C-terminal sequences, suggesting that the architecture of the SNARE/SM complex likely differs across fusion pathways. Together, these comparative studies of two distinct SM proteins reveal conserved as well as divergent mechanisms of SM family proteins in intracellular vesicle fusion.
Collapse
|
13
|
Imai A, Ishida M, Fukuda M, Nashida T, Shimomura H. MADD/DENN/Rab3GEP functions as a guanine nucleotide exchange factor for Rab27 during granule exocytosis of rat parotid acinar cells. Arch Biochem Biophys 2013; 536:31-7. [PMID: 23702376 DOI: 10.1016/j.abb.2013.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 05/07/2013] [Indexed: 11/29/2022]
Abstract
We previously reported that the small GTPase Rab27 and its effectors regulate isoproterenol (IPR)-stimulated amylase release from rat parotid acinar cells. Although activation of Rab27 by a specific guanine nucleotide exchange factor (GEF) is thought to be required for amylase release, its activation mechanism is poorly understood, because GEF for Rab27 has not been reported in parotid acinar cells. In the present study, we investigated the possible involvement of MADD/DENN/Rab3GEP, which was recently described as a Rab27-GEF in melanocytes, in amylase release from rat parotid acinar cells. Reverse transcription-PCR analyses indicated that mRNA of DENND family members, including MADD, was expressed in parotid acinar cells. MADD protein was also expressed in the cytosolic fraction of parotid acinar cells. Incubation of an antibody against the C-terminal 150 amino acids of MADD (anti-MADD-C antibody) with streptolysin O-permeabilized parotid acinar cells caused not only inhibition of IPR-induced amylase release but also reduction in the amount of GTP-Rab27. Our findings indicated that MADD functions as a GEF for Rab27 in parotid acinar cells and that its GEF activity for Rab27, i.e., GDP/GTP cycling, is required for IPR-induced amylase release.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951 8580, Japan.
| | | | | | | | | |
Collapse
|
14
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
15
|
Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 2012; 70:2099-121. [PMID: 22986507 DOI: 10.1007/s00018-012-1156-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 01/01/2023]
Abstract
Regulated exocytosis is the main mechanism utilized by specialized secretory cells to deliver molecules to the cell surface by virtue of membranous containers (i.e., secretory vesicles). The process involves a series of highly coordinated and sequential steps, which include the biogenesis of the vesicles, their delivery to the cell periphery, their fusion with the plasma membrane, and the release of their content into the extracellular space. Each of these steps is regulated by the actin cytoskeleton. In this review, we summarize the current knowledge regarding the involvement of actin and its associated molecules during each of the exocytic steps in vertebrates, and suggest that the overall role of the actin cytoskeleton during regulated exocytosis is linked to the architecture and the physiology of the secretory cells under examination. Specifically, in neurons, neuroendocrine, endocrine, and hematopoietic cells, which contain small secretory vesicles that undergo rapid exocytosis (on the order of milliseconds), the actin cytoskeleton plays a role in pre-fusion events, where it acts primarily as a functional barrier and facilitates docking. In exocrine and other secretory cells, which contain large secretory vesicles that undergo slow exocytosis (seconds to minutes), the actin cytoskeleton plays a role in post-fusion events, where it regulates the dynamics of the fusion pore, facilitates the integration of the vesicles into the plasma membrane, provides structural support, and promotes the expulsion of large cargo molecules.
Collapse
|
16
|
Imai A, Yoshie S, Haga-Tsujimura M, Nashida T, Shimomura H. Exocyst subunits are involved in isoproterenol-induced amylase release from rat parotid acinar cells. Eur J Oral Sci 2012; 120:123-31. [PMID: 22409218 DOI: 10.1111/j.1600-0722.2012.00952.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Exocytosis of secretory granules in parotid acinar cells requires multiple events: tethering, docking, priming, and fusion with a luminal plasma membrane. The exocyst complex, which is composed of eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) that are conserved in yeast and mammalian cells, is thought to participate in the exocytotic pathway. However, to date, no exocyst subunit has been identified in salivary glands. In the present study, we investigated the expression and function of exocyst subunits in rat parotid acinar cells. The expression of mRNA for all eight exocyst subunits was detected in parotid acinar cells by RT-PCR, and Sec6 and Sec8 proteins were localized on the luminal plasma membrane. Sec6 interacted with Sec8 after 5 min of stimulation with isoproterenol. In addition, antibodies to-Sec6 and Sec8 inhibited isoproterenol-induced amylase release from streptolysin O-permeabilized parotid acinar cells. These results suggest that an exocyst complex of eight subunits is required for amylase release from parotid acinar cells.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Chuo-ku, Niigata, Japan.
| | | | | | | | | |
Collapse
|
17
|
Nelson J, Manzella K, Baker OJ. Current cell models for bioengineering a salivary gland: a mini-review of emerging technologies. Oral Dis 2012; 19:236-44. [PMID: 22805753 PMCID: PMC3477256 DOI: 10.1111/j.1601-0825.2012.01958.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Saliva plays a major role in maintaining oral health. Patients afflicted with a decrease in saliva secretion (symptomatically, xerostomia) exhibit difficulty in chewing and swallowing foods, tooth decay, periodontal disease, and microbial infections. Despite recent improvements in treating xerostomia (e.g., saliva stimulants, saliva substitutes, and gene therapy), there is a need of more scientific advancements that can be clinically applied toward restoration of compromised salivary gland function. Here we provide a summary of the current salivary cell models that have been used to advance restorative treatments via development of an artificial salivary gland. These models represent initial steps toward clinical and translational research, to facilitate creation of clinically safe salivary glands. Further studies in salivary cell lines and primary cells are necessary to improve survival rates, cell differentiation, and secretory function. Additionally, the characterization of salivary progenitor and stem cell markers are necessary. Although these models are not fully characterized, their improvement may lead to the construction of an artificial salivary gland that is in high demand for improving the quality of life of many patients suffering from salivary secretory dysfunction.
Collapse
Affiliation(s)
- J Nelson
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | | | | |
Collapse
|
18
|
Imai A, Yoshie S, Ishibashi K, Haga-Tsujimura M, Nashida T, Shimomura H, Fukuda M. EPI64 protein functions as a physiological GTPase-activating protein for Rab27 protein and regulates amylase release in rat parotid acinar cells. J Biol Chem 2011; 286:33854-62. [PMID: 21832089 DOI: 10.1074/jbc.m111.281394] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rab27, a small GTPase, is generally recognized as an important regulator of secretion that interacts with Rab27-specific effectors to regulate events in a wide variety of cells, including endocrine and exocrine cells. However, the mechanisms governing the spatio-temporal regulation of GTPase activity of Rab27 are not firmly established, and no GTPase-activating protein (GAP) specific for Rab27 has been identified in secretory cells. We previously showed that expression of EPI64, a Tre-2/Bub2/Cdc16 (TBC)-domain-containing protein, in melanocytes inactivates endogenous Rab27A on melanosomes (Itoh, T., and Fukuda, M. (2006) J. Biol. Chem. 281, 31823-31831), but the EPI64 role in secretory cells has never been investigated. In this study, we investigated the effect of EPI64 on Rab27 in isoproterenol (IPR)-stimulated amylase release from rat parotid acinar cells. Subcellular fractionation and immunohistochemical analyses indicated that EPI64 was enriched on the apical plasma membrane of parotid acinar cells. We found that an antibody against the TBC/Rab-GAP domain of EPI64 inhibited the reduction in levels of the endogenous GTP-Rab27 in streptolysin-O-permeabilized parotid acinar cells and suppressed amylase release in a dose-dependent manner. We also found that the levels of EPI64 mRNA and EPI64 protein increased after IPR stimulation, and that treatment with actinomycin D or antisense-EPI64 oligonucleotides suppressed the increase of EPI64 mRNA/EPI64 protein and the amount of amylase released. Our findings indicated that EPI64 acted as a physiological Rab27-GAP that enhanced GTPase activity of Rab27 in response to IPR stimulation, and that this activity is required for IPR-induced amylase release.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Mandic SA, Skelin M, Johansson JU, Rupnik MS, Berggren PO, Bark C. Munc18-1 and Munc18-2 proteins modulate beta-cell Ca2+ sensitivity and kinetics of insulin exocytosis differently. J Biol Chem 2011; 286:28026-40. [PMID: 21690086 DOI: 10.1074/jbc.m111.235366] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast neurotransmission and slower hormone release share the same core fusion machinery consisting of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. In evoked neurotransmission, interactions between SNAREs and the Munc18-1 protein, a member of the Sec1/Munc18 (SM) protein family, are essential for exocytosis, whereas other SM proteins are dispensable. To address if the exclusivity of Munc18-1 demonstrated in neuroexocytosis also applied to fast insulin secretion, we characterized the presence and function of Munc18-1 and its closest homologue Munc18-2 in β-cell stimulus-secretion coupling. We show that pancreatic β-cells express both Munc18-1 and Munc18-2. The two Munc18 homologues exhibit different subcellular localization, and only Munc18-1 redistributes in response to glucose stimulation. However, both Munc18-1 and Munc18-2 augment glucose-stimulated hormone release. Ramp-like photorelease of caged Ca(2+) and high resolution whole-cell patch clamp recordings show that Munc18-1 and Munc18-2 overexpression shift the Ca(2+) sensitivity of the fastest phase of insulin exocytosis differently. In addition, we reveal that Ca(2+) sensitivity of exocytosis in β-cells depends on the phosphorylation status of the Munc18 proteins. Even though Munc18-1 emerges as the key SM-protein determining the Ca(2+) threshold for triggering secretory activity in a stimulated β-cell, Munc18-2 has the ability to increase Ca(2+) sensitivity and thus mediates the release of fusion-competent granules requiring a lower cytoplasmic-free Ca(2+) concentration, [Ca(2+)](i)(.) Hence, Munc18-1 and Munc18-2 display distinct subcellular compartmentalization and can coordinate the insulin exocytotic process differently as a consequence of the actual [Ca(2+)](i).
Collapse
Affiliation(s)
- Slavena A Mandic
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 17176 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Shimomura H, Imai A, Nashida T. Evidence for amylase release by cyclin-dependent kinase 5 in the rat parotid. Arch Biochem Biophys 2011; 507:310-4. [DOI: 10.1016/j.abb.2010.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 12/13/2010] [Accepted: 12/18/2010] [Indexed: 11/25/2022]
|
21
|
Abstract
Docking, the stable association of secretory vesicles with the plasma membrane, is considered to be the necessary first step before vesicles gain fusion-competence, but it is unclear how vesicles dock. In adrenal medullary chromaffin cells, access of secretory vesicles to docking sites is controlled by dense F-actin (filamentous actin) beneath the plasma membrane. Recently, we found that, in the absence of Munc18-1, the number of docked vesicles and the thickness of cortical F-actin are affected. In the present paper, I discuss the possible mechanism by which Munc18-1 modulates cortical F-actin and how it orchestrates the docking machinery via an interaction with syntaxin-1. Finally, a comparison of Munc18's role in embryonic mouse and adult bovine chromaffin cell model systems will be made to clarify observed differences in cortical F-actin as well as docking phenotypes.
Collapse
|
22
|
Imai A, Yoshie S, Nashida T, Fukuda M, Shimomura H. Redistribution of small GTP-binding protein, Rab27B, in rat parotid acinar cells after stimulation with isoproterenol. Eur J Oral Sci 2009; 117:224-30. [PMID: 19583748 DOI: 10.1111/j.1600-0722.2009.00618.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small GTP-binding protein, Rab27, has been implicated in the regulation of different types of membrane trafficking, including melanosome transport in melanocytes and regulated secretion events in a wide variety of secretory cells. We have previously shown that Rab27 is involved in the control of isoproterenol (IPR)-induced amylase release from rat parotid acinar cells. Although Rab27 is predominantly localized on secretory granules under resting conditions, changes to its intracellular localization after beta-stimulation have never been elucidated. The present study investigated IPR-induced redistribution of Rab27B in the parotid acinar cells, revealing translocation from secretory granules to the subapical region after 5 min of IPR treatment and then diffusion into the cytosol after 30 min of IPR treatment. Dissociation of Rab27B from the apical plasma membrane is probably mediated through the Rab GDP dissociation inhibitor (GDI) in the cytosol extracting GDP-bound Rab protein from membranes, as a dramatic increase in the amount of the Rab27B-GDI complex in the cytosol was observed 30 min after stimulation with IPR. These results indicate that, in parotid acinar cells, Rab27B is translocated, in a time-dependent manner, from secretory granules into the apical plasma membrane as a result of exposure to IPR, and then into the cytosol through binding with the GDI.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Hamaura-cho, Niigata, Japan.
| | | | | | | | | |
Collapse
|
23
|
Nolasco LH, Gushiken FC, Turner NA, Khatlani TS, Pradhan S, Dong JF, Moake JL, Vijayan KV. Protein phosphatase 2B inhibition promotes the secretion of von Willebrand factor from endothelial cells. J Thromb Haemost 2009; 7:1009-18. [PMID: 19344364 PMCID: PMC5467527 DOI: 10.1111/j.1538-7836.2009.03355.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Secretion of Weibel-Palade body (WPB) contents is regulated, in part, by the phosphorylation of proteins that constitute the endothelial exocytotic machinery. In comparison to protein kinases, a role for protein phosphatases in regulating endothelial exocytosis is undefined. OBJECTIVE AND METHOD In this study, we investigated the role of protein phosphatase 2B (PP2B) in the process of endothelial exocytosis using pharmacological and gene knockdown approaches. RESULTS We show that inhibition of protein phosphatase 2B (PP2B) activity by cyclosporine A (CsA), tacrolimus or a cell-permeable PP2B autoinhibitory peptide promotes the secretion of ultralarge von Willebrand factor (ULVWF) from human umbilical vein endothelial cells (HUVECs) in the absence of any other endothelial cell-stimulating agent. PP2B inhibitor-induced secretion and anchorage of ULVWF strings from HUVECs mediate platelet tethering. In support of a role for PP2B in von Willebrand factor (VWF) secretion, the catalytic subunit of PP2B interacts with the vesicle trafficking protein, Munc18c. Serine phosphorylation of Munc18c, which promotes granule exocytosis in other secretory cells, is increased in CsA-treated HUVECs, suggesting that this process may be involved in CsA-mediated WPB exocytosis. Furthermore, the plasma VWF antigen level is also enhanced in CsA-treated mice, and small interfering RNA-mediated knockdown of the alpha and beta isoforms of the PP2B-A subunit in HUVECs enhanced VWF secretion. CONCLUSIONS These observations suggest that CsA promotes VWF release, in part by inhibition of PP2B activity, and are compatible with the clinically observed association of CsA treatment and increased plasma VWF levels in humans.
Collapse
Affiliation(s)
| | | | - Nancy A. Turner
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Tanvir S. Khatlani
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Subhashree Pradhan
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jing-Fei Dong
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel L. Moake
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - K. Vinod Vijayan
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Paco S, Margelí MA, Olkkonen VM, Imai A, Blasi J, Fischer-Colbrie R, Aguado F. Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in astrocytes. J Neurochem 2009; 110:143-56. [PMID: 19594665 DOI: 10.1111/j.1471-4159.2009.06116.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vesicular transmitter release from astrocytes influences neuronal development, function and plasticity. However, secretory pathways and the involved molecular mechanisms in astroglial cells are poorly known. In this study, we show that a variety of SNARE and Munc18 isoforms are expressed by cultured astrocytes, with syntaxin-4, Munc18c, SNAP-23 and VAMP-3 being the most abundant variants. Exocytotic protein expression was differentially regulated by activating and differentiating agents. Specifically, proteins controlling Ca(2+)-dependent secretion in neuroendocrine cells were up-regulated after long-term 8Br-cAMP administration in astrocytes, but not by proinflammatory cytokines. Moreover, 8Br-cAMP treatment greatly increased the cellular content of the peptidic vesicle marker secretogranin-2. Release assays performed on cAMP-treated astrocytes showed that basal and stimulated secretogranin-2 secretion are dependent on [Ca(2+)](i). As shown release of the chimeric hormone ANP.emd from transfected cells, cAMP-induced differentiation in astrocytes enhances Ca(2+)-regulated peptide secretion. We conclude that astroglial cells display distinctive molecular components for exocytosis. Moreover, the regulation of both exocytotic protein expression and Ca(2+)-dependent peptide secretion in astrocytes by differentiating and activating agents suggest that glial secretory pathways are adjusted in different physiological states.
Collapse
Affiliation(s)
- Sonia Paco
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Imai A, Fukuda M, Yoshie S, Nashida T, Shimomura H. Redistribution of Rab27-specific effector Slac2-c, but not Slp4-a, after isoproterenol-stimulation in rat parotid acinar cells. Arch Oral Biol 2009; 54:361-8. [PMID: 19185850 DOI: 10.1016/j.archoralbio.2008.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/02/2008] [Accepted: 12/31/2008] [Indexed: 12/16/2022]
Abstract
Small GTPase Rab27 has been implicated in the regulation of different types of membrane trafficking, including melanosome transport and various regulated secretion events. We have previously shown that Rab27 and its effectors, Slac2-c/MyRIP and Slp4-a/granuphilin-a, are involved in the control of isoproterenol (IPR)-induced amylase release from rat parotid acinar cells. The ability of Rab to interact with the specific effectors is important. However, little is known about the fate of these effectors after beta-adrenergic stimulation in parotid acinar cells. The present study investigated changes in intracellular redistribution of Slac2-c and Slp4-a in parotid acinar cells after IPR treatment. Subcellular fractionation studies detected Slac2-c and Slp4-a in the apical plasma membrane (APM) and secretory granules under resting conditions. After 5min of IPR treatment, Slac2-c was rapidly recruited to the luminal site, but after 30 min, the amount of Slac2-c in the APM fraction was reduced by approximately 80% compared to the increased level after 5 min of IPR treatment. Such reductions in Slac2-c are likely caused by the translocation of Slac2-c from the APM to the cytosol. In addition, we found that Slac2-c in the cytosolic fraction, but not other fractions, disappeared in the presence of Ca(2+). Since Slac2-c contains multiple PEST-like sequences (i.e., potential signals for rapid protein degradation), we suggest that Slac2-c is Ca(2+)-dependently proteolyzed in the cytosol after exocytosis. In contrast, intracellular localization and expression levels of Slp4-a in parotid acinar cells were unaltered even after beta-stimulation, indicating completely different fates for the two Rab27 effectors after beta-stimulation.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8, Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | | | | | | | | |
Collapse
|
26
|
Cosen-Binker LI, Morris GP, Vanner S, Gaisano HY. Munc18/SNARE proteins’ regulation of exocytosis in guinea pig duodenal Brunner’s gland acini. World J Gastroenterol 2008; 14:2314-22. [PMID: 18416456 PMCID: PMC2705084 DOI: 10.3748/wjg.14.2314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the molecular mechanism of exocytosis in the Brunner’s gland acinar cell.
METHODS: We used a submucosal preparation of guinea pig duodenal Brunner’s gland acini to visualize the dilation of the ductal lumen in response to cholinergic stimulus. We correlated this to electron microscopy to determine the extent of exocytosis of the mucin-filled vesicles. We then examined the behavior of SNARE and interacting Munc18 proteins by confocal microscopy.
RESULTS: One and 6 &mgr;mol/L carbachol evoked a dose-dependent dilation of Brunner’s gland acini lumen, which correlated to the massive exocytosis of mucin. Munc18c and its cognate SNARE proteins Syntaxin-4 and SNAP-23 were localized to the apical plasma membrane, and upon cholinergic stimulation, Munc18c was displaced into the cytosol leaving Syntaxin-4 and SNAP-23 intact.
CONCLUSION: Physiologic cholinergic stimulation induces Munc18c displacement from the Brunner’s gland acinar apical plasma membrane, which enables apical membrane Syntaxin-4 and SNAP-23 to form a SNARE complex with mucin-filled vesicle SNARE proteins to affect exocytosis.
Collapse
|
27
|
Teymoortash A, Sommer F, Mandic R, Schulz S, Bette M, Aumüller G, Werner JA. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. Br J Pharmacol 2007; 152:161-7. [PMID: 17618309 PMCID: PMC1978275 DOI: 10.1038/sj.bjp.0707375] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Intraglandular injection of botulinum toxin (BoNT) leads to a transient denervation of the submandibular gland and this is associated with reduced salivary secretion. The purpose of the present study was to verify whether temporary acinar atrophy occurs simultaneously with chemical denervation of the glands. EXPERIMENTAL APPROACH Tissue specimens of the right submandibular gland taken from 18 Wistar rats after intraglandular injection of BoNT A, BoNT B, or a combination of both were examined. As a sham control, an equivalent volume of saline was injected into the left submandibular gland. Morphometric measurements, immunohistochemistry, electron microscopy and western blot analysis were used to analyse the morphological and functional changes of the denervated glands. KEY RESULTS Morphological and ultrastructural analyses of the cell organelles and secretory granula showed a clear atrophy of the acini, which was more prominent in glands injected with the combination of BoNT/A and B. Morphometric measurements of the glandular acini revealed a significant reduction of the area of the acinar cells after injection of BoNT (P=0.031). The expression of amylase was significantly reduced in BoNT treated glands. CONCLUSIONS AND IMPLICATIONS Intraglandular application of BoNT induces structural and functional changes of the salivary glands indicated by glandular atrophy. These effects may be due to glandular denervation induced by the inhibition of the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) involved in acetylcholine release at the neuroglandular junction and also specially inhibition of those involved in exocytosis of the granula of the acinar cells.
Collapse
Affiliation(s)
- A Teymoortash
- Department of Otolaryngology-Head and Neck Surgery, Philipp University, Deutschhausstrasse 4, Marburg 35037, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Imai A, Yoshie S, Nashida T, Shimomura H, Fukuda M. Functional involvement of Noc2, a Rab27 effector, in rat parotid acinar cells. Arch Biochem Biophys 2006; 455:127-35. [PMID: 17067543 DOI: 10.1016/j.abb.2006.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 09/17/2006] [Accepted: 09/18/2006] [Indexed: 11/23/2022]
Abstract
Noc2 has recently been proposed to regulate exocytosis in both endocrine and exocrine cells; however, protein expression, subcellular localization and function of Noc2 in exocrine cells have never been elucidated. In this study, we investigated whether Noc2, a Rab27 effector, is involved in isoproterenol (IPR)-stimulated amylase release from acinar cells. Rab27 was detected in the apical plasma membrane (APM) and secretory granule membrane (SGM) fractions, and was translocated to the APM after IPR stimulation for 5 min, but was detected at lower levels in the APM after 30 min. In contrast, although Noc2 was expressed in SGM bound to Rab27, Noc2 was not translocated to APM and the Noc2/Rab27 complex was disrupted after stimulation with IPR for short time. In addition, the anti-Noc2-Rab-binding-domain antibody inhibited IPR-stimulated amylase release from streptolysin O-permeabilized parotid acinar cells. Our results suggest that the Noc2/Rab27 complex is an important constituent of the early stages of IPR-stimulated amylase release.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | | | | | |
Collapse
|
29
|
Oh E, Thurmond DC. The stimulus-induced tyrosine phosphorylation of Munc18c facilitates vesicle exocytosis. J Biol Chem 2006; 281:17624-34. [PMID: 16638745 PMCID: PMC2396333 DOI: 10.1074/jbc.m601581200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Stimulus-induced tyrosine phosphorylation of Munc18c was investigated as a potential regulatory mechanism by which the Munc18c-Syntaxin 4 complex can be dissociated in response to divergent stimuli in multiple cell types. Use of [(32)P]orthophosphate incorporation, pervanadate treatment, and phosphotyrosine-specific antibodies demonstrated that Munc18c underwent tyrosine phosphorylation. Phosphorylation was apparent under basal conditions, but levels were significantly increased within 5 min of glucose stimulation in MIN6 beta cells. Tyrosine phosphorylation of Munc18c was also detected in 3T3L1 adipocytes and increased with insulin stimulation, suggesting that this may be a conserved mechanism. Syntaxin 4 binding to Munc18c decreased as Munc18c phosphorylation levels increased in pervanadate-treated cells, suggesting that phosphorylation dissociates the Munc18c-Syntaxin 4 complex. Munc18c phosphorylation was localized to the N-terminal 255 residues. Mutagenesis of one residue in this region, Y219F, significantly increased the affinity of Munc18c for Syntaxin 4, whereas mutation of three other candidate sites was without effect. Moreover, Munc18c-Y219F expression in MIN6 cells functionally inhibited glucose-stimulated SNARE complex formation and insulin granule exocytosis. These data support a novel and conserved mechanism for the dissociation of Munc18c-Syntaxin 4 complexes in a stimulus-dependent manner to facilitate the increase in Syntaxin 4-VAMP2 association and to promote vesicle/granule fusion.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, 635 Barnhill Dr., MS 4053, Indianapolis, IN 46202. Tel.: 317−274−1551; Fax: 317−274−4686; E-mail:
| |
Collapse
|
30
|
Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res 2006; 83:84-96. [PMID: 16530759 DOI: 10.1016/j.exer.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/12/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
The acinar epithelial cells of the lacrimal gland are responsible for the production, packaging and regulated exocytosis of tear proteins into ocular surface fluid. This review summarizes new findings on the mechanisms of exocytosis in these cells. Participating proteins are discussed within the context of different categories of trafficking effectors including targeting and specificity factors (rabs, SNAREs) and transport factors (microtubules, actin filaments and motor proteins). Recent information describing fundamental changes in basic exocytotic mechanisms in the NOD mouse, an animal model of Sjögren's syndrome, is presented.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Avenue, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Compound exocytosis occurs in many cell types. It represents a specialized form of secretion in which vesicles undergo fusion with each other as well as with the plasma membrane. In most cases, compound exocytosis occurs sequentially, with deeper-lying vesicles fusing, after a delay, with vesicles that have already fused with the plasma membrane. However, in some cells, vesicles can also apparently fuse with each other intracellularly before any interaction with the plasma membrane. In this review, we discuss the general features of compound exocytosis, and the features that are specific to particular cells. We consider mechanisms that might impose the requirement for vesicles to fuse with the plasma membrane before they become able to fuse with each other, the possibility that there are biochemical differences between vesicle-plasma membrane fusion events and subsequent secondary homotypic vesicle fusion events, and the role that cytoskeletal elements might play in the stabilization of fused vesicles, in order to permit secondary fusion events. Finally, we discuss the likely physiological significance of compound exocytosis in the various cell types in which it exists.
Collapse
Affiliation(s)
- James A Pickett
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | |
Collapse
|
32
|
Oishi Y, Arakawa T, Tanimura A, Itakura M, Takahashi M, Tajima Y, Mizoguchi I, Takuma T. Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells. Histochem Cell Biol 2005; 125:273-81. [PMID: 16195891 DOI: 10.1007/s00418-005-0068-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2005] [Indexed: 11/25/2022]
Abstract
We evaluated the role of VAMP-2/synaptobrevin, VAMP-7/TI-VAMP, and VAMP-8/endobrevin in exocytic pathways of HSY cells, a human parotid epithelial cell line, by coexpressing these VAMP proteins tagged with green fluorescent protein (GFP) and human growth hormone (hGH) as a secretory cargo. Exocytosis of hGH was constitutive and the fluorescent signal of hGH-GFP was observed in the Golgi area and small vesicles quickly moving throughout the cytoplasm. The cytoplasmic vesicles containing hGH overlapped well with VAMP-7-GFP, but did so scarcely with VAMP-2-GFP or VAMP-8-GFP. However, when the vesicle transport from the trans-Golgi network to the plasma membrane was arrested by incubation at 20 degrees C for 2 h and then released by warming up to 37 degrees C; VAMP-2-GFP and hGH were clearly colocalized together in small cytoplasmic vesicles. Neither VAMP-7-GFP nor hGH-GFP was colocalized with LAMP-1, a marker for lysosomes and late endosomes. These results suggest that (1) VAMP-2 can be one of the v-SNAREs for constitutive exocytosis; (2) VAMP-7 is involved in the constitutive exocytosis as a slow, minor v-SNARE, but not in the lysosomal transport; and (3) VAMP-8 is unlikely to be a v-SNARE for constitutive exocytosis in HSY cells.
Collapse
Affiliation(s)
- Yohei Oishi
- Department of Oral Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293 Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fukuda M, Imai A, Nashida T, Shimomura H. Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc18-2-dependent manner. J Biol Chem 2005; 280:39175-84. [PMID: 16186111 DOI: 10.1074/jbc.m505759200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Slp4-a/granuphilin-a was originally described as a protein specifically associated with insulin-containing granules in pancreatic beta-cells, but it was subsequently found to be present on amylase-containing granules in parotid acinar cells. Although Slp4-a has been suggested to control insulin secretion through interaction with syntaxin-1a and/or Munc18-1, nothing is known about the binding partner(s) of Slp4-a during amylase release from parotid acinar cells, which do not endogenously express either syntaxin-1a or Munc18-1. In this study we systematically investigated the interaction between syntaxin-1-5 and Munc18-1-3 by co-immunoprecipitation assay using COS-7 cells and discovered that Slp4-a interacts with a closed conformation of syntaxin-2/3 in a Munc18-2-dependent manner, whereas Munc18-2 itself hardly interacts with Slp4-a at all. By contrast, Slp4-a was found to strongly interact with Munc18-1 regardless of the presence of syntaxin-2/3, and syntaxin-2/3 co-immunoprecipitated with Slp4-a only in the presence of Munc18-1/2. Deletion analysis showed that the syntaxin-2/3 (or Munc18-1/2)-binding site is a linker domain of Slp4-a (amino acid residues 144-354), a previously uncharacterized region located between the N-terminal Rab27A binding domain and the C2A domain. We also found that the Slp4-a.syntaxin-2 complex is actually present in rat parotid glands and that introduction of the antibody against Slp4-a linker domain into streptolysin O-permeabilized parotid acinar cells severely attenuates isoproterenol-stimulated amylase release, possibly by disrupting the interaction between Slp4-a and syntaxin-2/3 (or Munc18-2). These results suggest that Slp4-a modulates amylase release from parotid acinar cells through interaction with syntaxin-2/3 on the apical plasma membrane.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
34
|
Hodgkinson CP, Mander A, Sale GJ. Protein kinase-zeta interacts with munc18c: role in GLUT4 trafficking. Diabetologia 2005; 48:1627-36. [PMID: 15986239 DOI: 10.1007/s00125-005-1819-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 03/09/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Insulin-stimulated glucose transport requires a signalling cascade through kinases protein kinase (PK) Czeta/lambda and PKB that leads to movement of GLUT4 vesicles to the plasma membrane. The aim of this study was to identify missing links between the upstream insulin-regulated kinases and the GLUT4 vesicle trafficking system. MATERIALS AND METHODS A yeast two-hybrid screen was conducted, using as bait full-length mouse munc18c, a protein known to be part of the GLUT4 vesicle trafficking machinery. RESULTS The yeast two-hybrid screen identified PKCzeta as a novel interactor with munc18c. Glutathione S transferase (GST) pull-downs with GST-tagged munc18c constructs confirmed the interaction, mapped a key region of munc18c that binds PKCzeta to residues 295-338 and showed that the N-terminal region of PKCzeta was required for the interaction. Endogenous munc18c was shown to associate with endogenous PKCzeta in vivo in various cell types. Importantly, insulin stimulation increased the association by approximately three-fold. Moreover, disruption of PKCzeta binding to munc18c by deletion of residues 295-338 of munc18c or deletion of the N-terminal region of PKCzeta markedly inhibited the ability of insulin to stimulate glucose uptake or GLUT4 translocation. CONCLUSIONS/INTERPRETATION We have identified a physiological interaction between munc18c and PKCzeta that is insulin-regulated. This establishes a link between a kinase (PKCzeta) involved in the insulin signalling cascade and a known component of the GLUT4 vesicle trafficking pathway (munc18c). The results indicate that PKCzeta regulates munc18c and suggest a model whereby insulin triggers the docking of PKCzeta to munc18c, resulting in enhanced GLUT4 translocation to the plasma membrane.
Collapse
Affiliation(s)
- C P Hodgkinson
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|