1
|
Ellepola ANB, Khan ZU. Impact of Brief Exposure to Lysozyme and Lactoferrin on Pathogenic Attributes of Oral Candida. Int Dent J 2024; 74:1161-1167. [PMID: 38749888 PMCID: PMC11561498 DOI: 10.1016/j.identj.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 09/20/2024] Open
Abstract
INTRODUCTION AND AIMS Adhesion to buccal epithelial cells (BEC) and denture acrylic surfaces (DAS), germ tube (GT) formation, cell surface hydrophobicity (CSH), and haemolysin production are attributes associated with pathogenicity of Candida. Candida albicans and Candida dubliniensis are allied in causing oral candidosis. Lysozyme and lactoferrin exert antimicrobial activity on a range of oral microorganisms, including Candida. There is no information on the impact of brief exposure to lysozyme and lactoferrin on adhesion-related attributes and haemolysin production of aforementioned oral Candida isolates. Thus, we investigated the impact of lysozyme and lactoferrin on adhesion to BEC and DAS, GT formation, CSH, and haemolysin production of these isolates. METHODS After exposure to lysozyme and lactoferrin for 1 hour, susceptibility to lysozyme and lactoferrin of 20 isolates each of C albicans and C dubliniensis isolates was determined following a 48-hour period of incubation. Candida cell suspensions, obtained from colony-forming units after this period, were assessed for adhesion to BEC and DAS, GT formation, CSH, and haemolysin production using in vitro assays. RESULTS Exposure to lysozyme and lactoferrin significantly suppressed the ability of C albicans and C dubliniensis isolates to adhere to BEC and DAS, GT formation, CSH, and haemolysin production (P < 0.01 for all virulent attributes tested). CONCLUSIONS These data provide a tantalising glimpse into the possibility that exposure to either lysozyme or lactoferrin, even for a brief period, would induce a sustainable antifungal effect by suppressing adhesion-related attributes and haemolysin production of these oral Candida species in vitro. Resistance to conventional antifungal agents has been reported in clinical isolates of Candida. The presence of such resistance indicates the need for possible alternative therapies to facilitate the management of oral candidosis. Further research on the pharmacodynamics of lysozyme and lactoferrin and their effects on candidal pathogenic attributes should be fostered, with the vision of developing novel topical antifungal drugs.
Collapse
Affiliation(s)
| | - Zia Uddin Khan
- Department of Microbiology, College of Medicine, Health Sciences Center, Kuwait University, Kuwait
| |
Collapse
|
2
|
Freitas CG, Felipe MS. Candida albicans and Antifungal Peptides. Infect Dis Ther 2023; 12:2631-2648. [PMID: 37940816 PMCID: PMC10746669 DOI: 10.1007/s40121-023-00889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Candida albicans, a ubiquitous opportunistic fungal pathogen, plays a pivotal role in human health and disease. As a commensal organism, it normally resides harmlessly within the human microbiota. However, under certain conditions, C. albicans can transition into a pathogenic state, leading to various infections collectively known as candidiasis. With the increasing prevalence of immunocompromised individuals and the widespread use of invasive medical procedures, candidiasis has become a significant public health concern. The emergence of drug-resistant strains further complicates treatment options, highlighting the urgent need for alternative therapeutic strategies. Antifungal peptides (AFPs) have gained considerable attention as potential candidates for combating Candida spp. infections. These naturally occurring peptides possess broad-spectrum antimicrobial activity, including specific efficacy against C. albicans. AFPs exhibit several advantageous properties, such as rapid killing kinetics, low propensity for resistance development, and diverse mechanisms of action, making them promising alternatives to conventional antifungal agents. In recent years, extensive research has focused on discovering and developing novel AFPs with improved efficacy and selectivity against Candida species. Advances in biotechnology and synthetic peptide design have enabled the modification and optimization of natural peptides, enhancing their stability, bioavailability, and therapeutic potential. Nevertheless, several challenges must be addressed before AFPs can be widely implemented in clinical practice. These include optimizing peptide stability, enhancing delivery methods, overcoming potential toxicity concerns, and conducting comprehensive preclinical and clinical studies. This commentary presents a short overview of candidemia and AFP; articles and reviews published in the last 10 years were searched on The National Library of Medicine (National Center for Biotechnology Information-NIH-PubMed). The terms used were C. albicans infections, antimicrobial peptides, antifungal peptides, antifungal peptides mechanisms of action, candidemia treatments and guidelines, synthetic peptides and their challenges, and antimicrobial peptides in clinical trials as the main ones. Older publications were cited if they brought some relevant concept or helped to bring a perspective into our narrative. Articles older than 20 years and those that appeared in PubMed but did not match our goal to bring updated information about using antifungal peptides as an alternative to C. albicans infections were not considered.
Collapse
Affiliation(s)
- Camila G Freitas
- Higher Education Course in Food Technology, Instituto Federal de Brasília (IFB), Brasília, DF, Brazil
- Genomic Sciences and Biotechnology Graduate Program, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil
| | - Maria Sueli Felipe
- Genomic Sciences and Biotechnology Graduate Program, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
- Universidade de Brasília (UNB), Brasília, DF, Brazil.
| |
Collapse
|
3
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
4
|
Hemoglobin Induces Early and Robust Biofilm Development in Streptococcus pneumoniae by a Pathway That Involves comC but Not the Cognate comDE Two-Component System. Infect Immun 2021; 89:IAI.00779-20. [PMID: 33397818 DOI: 10.1128/iai.00779-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae grows in biofilms during both asymptomatic colonization and infection. Pneumococcal biofilms on abiotic surfaces exhibit delayed growth and lower biomass and lack the structures seen on epithelial cells or during nasopharyngeal carriage. We show here that adding hemoglobin to the medium activated unusually early and vigorous biofilm growth in multiple S. pneumoniae serotypes grown in batch cultures on abiotic surfaces. Human blood (but not serum, heme, or iron) also stimulated biofilms, and the pore-forming pneumolysin, ply, was required for this induction. S. pneumoniae transitioning from planktonic into sessile growth in the presence of hemoglobin displayed an extensive transcriptome remodeling within 1 and 2 h. Differentially expressed genes included those involved in the metabolism of carbohydrates, nucleotides, amino acid, and lipids. The switch into adherent states also influenced the expression of several regulatory systems, including the comCDE genes. Inactivation of comC resulted in 67% reduction in biofilm formation, while the deletion of comD or comE had limited or no effect, respectively. These observations suggest a novel route for CSP-1 signaling independent of the cognate ComDE two-component system. Biofilm induction and the associated transcriptome remodeling suggest hemoglobin serves as a signal for host colonization in pneumococcus.
Collapse
|
5
|
Ceruloplasmin as a source of Cu for a fungal pathogen. J Inorg Biochem 2021; 219:111424. [PMID: 33765639 DOI: 10.1016/j.jinorgbio.2021.111424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/28/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Copper is an essential metal for virtually all organisms, yet little is known about the extracellular sources of this micronutrient. In serum, the most abundant extracellular Cu-binding molecule is the multi‑copper oxidase ceruloplasmin (Cp). Cp levels increase during infection and inflammation, and pathogens can be exposed to high Cp at sites of infection. It is not known whether Cp might serve as a Cu source for microbial pathogens and we tested this using the opportunistic fungal pathogen Candida albicans. We find that C. albicans can use whole serum as a Cu source and that this Cu is sensed by the transcription factor protein Mac1. Mac1 activates expression of Mn-SOD3 superoxide dismutase and represses Cu/Zn-SOD1 during Cu starvation and both responses are regulated by serum Cu. We also show that purified human Cp can act as a sole source of Cu for the fungus and likewise modulates the Mac1 Cu stress response. To investigate whether Cp is a Cu source in serum, we compared the ability of C. albicans to use serum from wild type versus Cp-/- mutant mice. We find that serum lacking Cp is deficient in its ability to trigger the Mac1 Cu response. C. albicans did accumulate Cu from Cp-/- serum, but this Cu was not efficiently sensed by Mac1. We conclude that Cp and non-Cp Cu sources are not equivalent and are handled differently by the fungal cell. Overall, these studies are the first to show that Cp is a preferred source of Cu for a pathogen.
Collapse
|
6
|
Fernández-Fierro A, Funes SC, Rios M, Covián C, González J, Kalergis AM. Immune Modulation by Inhibitors of the HO System. Int J Mol Sci 2020; 22:ijms22010294. [PMID: 33396647 PMCID: PMC7794909 DOI: 10.3390/ijms22010294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
The heme oxygenase (HO) system involves three isoforms of this enzyme, HO-1, HO-2, and HO-3. The three of them display the same catalytic activity, oxidating the heme group to produce biliverdin, ferrous iron, and carbon monoxide (CO). HO-1 is the isoform most widely studied in proinflammatory diseases because treatments that overexpress this enzyme promote the generation of anti-inflammatory products. However, neonatal jaundice (hyperbilirubinemia) derived from HO overexpression led to the development of inhibitors, such as those based on metaloproto- and meso-porphyrins inhibitors with competitive activity. Further, non-competitive inhibitors have also been identified, such as synthetic and natural imidazole-dioxolane-based, small synthetic molecules, inhibitors of the enzyme regulation pathway, and genetic engineering using iRNA or CRISPR cas9. Despite most of the applications of the HO inhibitors being related to metabolic diseases, the beneficial effects of these molecules in immune-mediated diseases have also emerged. Different medical implications, including cancer, Alzheimer´s disease, and infections, are discussed in this article and as to how the selective inhibition of HO isoforms may contribute to the treatment of these ailments.
Collapse
Affiliation(s)
- Ayleen Fernández-Fierro
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
| | - Samanta C. Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Nacional de San Luis, 5700 San Luis, Argentina;
| | - Mariana Rios
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
| | - Camila Covián
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
| | - Jorge González
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile; (A.F.-F.); (M.R.); (C.C.); (J.G.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Correspondence: ; Tel.: +56-22-686-2842
| |
Collapse
|
7
|
Jung P, Mischo CE, Gunaratnam G, Spengler C, Becker SL, Hube B, Jacobs K, Bischoff M. Candida albicans adhesion to central venous catheters: Impact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence 2020; 11:1453-1465. [PMID: 33108253 PMCID: PMC7595616 DOI: 10.1080/21505594.2020.1836902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Candida albicans-related bloodstream infections are often associated with infected central venous catheters (CVC) triggered by microbial adhesion and biofilm formation. We utilized single-cell force spectroscopy (SCFS) and flow chamber models to investigate the adhesion behavior of C. albicans yeast cells and germinated cells to naïve and human blood plasma (HBP)-coated CVC tubing. Germinated cells demonstrated up to 56.8-fold increased adhesion forces to CVC surfaces when compared to yeast cells. Coating of CVCs with HBP significantly increased the adhesion of 60-min germinated cells but not of yeast cells and 30-min germinated cells. Under flow conditions comparable to those in major human veins, germinated cells displayed a flow directional-orientated adhesion pattern to HBP-coated CVC material, suggesting the germ tip to serve as the major adhesive region. None of the above-reported phenotypes were observed with germinated cells of an als3Δ deletion mutant, which displayed similar adhesion forces to CVC surfaces as the isogenic yeast cells. Germinated cells of the als3Δ mutant also lacked a clear flow directional-orientated adhesion pattern on HBP-coated CVC material, indicating a central role for Als3 in the adhesion of germinated C. albicans cells to blood exposed CVC surfaces. In the common model of C. albicans, biofilm formation is thought to be mediated primarily by yeast cells, followed by surface-triggered the formation of hyphae. We suggest an extension of this model in which C. albicans germ tubes promote the initial adhesion to blood-exposed implanted medical devices via the germ tube-associated adhesion protein Als3.
Collapse
Affiliation(s)
- Philipp Jung
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Clara E Mischo
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Gubesh Gunaratnam
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | | | - Sören L Becker
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI) , Jena, Germany.,Institute of Microbiology, Friedrich Schiller University , Jena, Germany
| | - Karin Jacobs
- Experimental Physics, Saarland University , Saarbrücken, Germany.,Max Planck School Matter to Life , Heidelberg, Jahnstr. 29, D-69120, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University , Homburg, Germany
| |
Collapse
|
8
|
Perry AM, Hernday AD, Nobile CJ. Unraveling How Candida albicans Forms Sexual Biofilms. J Fungi (Basel) 2020; 6:jof6010014. [PMID: 31952361 PMCID: PMC7151012 DOI: 10.3390/jof6010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans.
Collapse
Affiliation(s)
- Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
9
|
Impact of Cigarette Smoke Condensate on Adhesion-Related Traits and Hemolysin Production of Oral Candida dubliniensis Isolates. Mycopathologia 2019; 185:289-297. [PMID: 31792662 DOI: 10.1007/s11046-019-00411-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cigarette smoke is associated with higher oral Candida carriage and possible predisposition and increased susceptibility to oral candidal infection. Candida dubliniensis is associated with oral candidosis. Candidal adherence to buccal epithelial cells (BEC) and denture acrylic surfaces (DAS), germ tube (GT) formation, cell surface hydrophobicity (CSH) and hemolysin production are pathogenic traits of Candida. OBJECTIVES The impact of exposure to cigarette smoke on the aforementioned pathogenic attributes of oral C. dubliniensis has not been studied. Hence, the impact of cigarette smoke condensate (CSC) on adhesion to BEC and DAS, GT formation, CSH and hemolysin production of 20 oral C. dubliniensis isolates after exposure to CSC for 24, 48 and 72 h was ascertained. METHODS After preparation of the CSC, using an in-house smoking device, the Candida isolates were exposed to the CSC for 24, 48 and 72 h, by a previously described in vitro method. Thereafter, the adhesion to BEC and DAS, GT formation, CSH and hemolysin production of C. dubliniensis isolates was investigated by hitherto described in vitro assays. RESULTS Exposure to CSC significantly increased the ability of C. dubliniensis oral isolates to adhere to BEC, DAS, GT formation, CSH and produce hemolysin following 24-h, 48-h and 72-h exposure periods to CSC (P < 0.001 for all attributes tested). CONCLUSIONS Exposure of oral C. dubliniensis isolates to CSC may significantly promote in vitro adhesion traits and hemolysin production of these isolates, thereby augmenting its pathogenicity in vitro in the presence of cigarette smoke.
Collapse
|
10
|
Ellepola ANB, Dassanayake RS, Khan Z. In vitro Post-Antifungal Effect of Posaconazole and Its Impact on Adhesion-Related Traits and Hemolysin Production of Oral Candida dubliniensis Isolates. Med Princ Pract 2019; 28:552-558. [PMID: 31247626 PMCID: PMC6944866 DOI: 10.1159/000501764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/27/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Candidal adherence to denture acrylic surfaces (DAS) and oral buccal epithelial cells (BEC), formation of candidal germ tubes (GT), candidal cell surface hydrophobicity (CSH), and hemolysin production are important pathogenic traits of Candida. The antifungal drug-induced post-antifungal effect (PAFE) also impacts the virulence of Candida. Candida dubliniensis isolates are associated with the causation of oral candidiasis which could be managed with posaconazole. Thus far there is no evidence on posaconazole-induced PAFE and its impact on adhesion-related attributes and production of hemolysin by C. dubliniensis isolates. Hence, the PAFE, adhesion to DAS and BEC, formation of GT, CSH, and hemolysin production of 20 oral C. dubliniensis isolates after brief exposure to posaconazole was ascertained. MATERIALS AND METHODS The PAFE, adherence to DAS and BEC, formation of GT, candidal CSH, and hemolysin production were investigated by hitherto described in vitro assays. RESULTS The mean PAFE (h) induced by posaconazole on C. dubliniensis isolates was 1.66. Exposure to posaconazole suppressed the ability of C. dubliniensis to adhere to DAS, BEC, formation of candidal GT, candidal CSH and to produce hemolysin by a reduction of 44, 33, 34, 36, and 15% (p < 0.005 to p < 0.001), respectively. CONCLUSION Exposure of C. dubliniensis isolates to posaconazole for a brief period induced an antimycotic impact by subduing its growth in addition to suppressing pathogenic adherence-associated attributes, as well as production of hemolysin.
Collapse
Affiliation(s)
| | | | - Ziauddin Khan
- Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
11
|
Furlaneto MC, Góes HP, Perini HF, Dos Santos RC, Furlaneto-Maia L. How much do we know about hemolytic capability of pathogenic Candida species? Folia Microbiol (Praha) 2018; 63:405-412. [PMID: 29335820 DOI: 10.1007/s12223-018-0584-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Hemolytic factor production by pathogenic Candida species is considered an important attribute in promoting survival within the mammal host through the ability to assimilate iron from the hemoglobin-heme group. Hemolytic capability has been evaluated for Candida species based on hemolysis zones on plate assay, analysis of hemolytic activity in liquid culture medium, and hemolysis from cell-free culture broth. The production of hemolytic factor is variable among Candida species, where C. parapsilosis is the less hemolytic species. In general, no intraspecies differences in beta-hemolytic activities are found among isolates belonging to C. albicans, C. glabrata, C. krusei, C. tropicalis, and C. parapsilosis. The production of hemolytic factor by Candida species is affected by several factors such as glucose supplementation in the culture medium, blood source, presence of erythrocytes and hemoglobin, and presence of electrolytes. On the basis of existing achievements, more researches are still needed in order to extend our knowledge about the biochemical nature of hemolytic molecules produced by distinct Candida species, the mechanism of hemolysis, and the molecular basis of the hemolytic factor expression.
Collapse
Affiliation(s)
- Márcia C Furlaneto
- Department of Microbiology, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/n. Campus Universitário, Londrina, PR, 86057-970, Brazil.
| | - Helena P Góes
- Department of Microbiology, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/n. Campus Universitário, Londrina, PR, 86057-970, Brazil
| | - Hugo F Perini
- Department of Microbiology, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/n. Campus Universitário, Londrina, PR, 86057-970, Brazil
| | - Renan C Dos Santos
- Department of Microbiology, Paraná State University of Londrina, Rodovia Celso Garcia Cid, Km 380, s/n. Campus Universitário, Londrina, PR, 86057-970, Brazil
| | | |
Collapse
|
12
|
Saraiva JP, Oswald M, Biering A, Röll D, Assmann C, Klassert T, Blaess M, Czakai K, Claus R, Löffler J, Slevogt H, König R. Fungal biomarker discovery by integration of classifiers. BMC Genomics 2017; 18:601. [PMID: 28797245 PMCID: PMC5553868 DOI: 10.1186/s12864-017-4006-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 08/02/2017] [Indexed: 02/01/2023] Open
Abstract
Background The human immune system is responsible for protecting the host from infection. However, in immunocompromised individuals the risk of infection increases substantially with possible drastic consequences. In extreme, systemic infection can lead to sepsis which is responsible for innumerous deaths worldwide. Amongst its causes are infections by bacteria and fungi. To increase survival, it is mandatory to identify the type of infection rapidly. Discriminating between fungal and bacterial pathogens is key to determine if antifungals or antibiotics should be administered, respectively. For this, in situ experiments have been performed to determine regulation mechanisms of the human immune system to identify biomarkers. However, these studies led to heterogeneous results either due different laboratory settings, pathogen strains, cell types and tissues, as well as the time of sample extraction, to name a few. Methods To generate a gene signature capable of discriminating between fungal and bacterial infected samples, we employed Mixed Integer Linear Programming (MILP) based classifiers on several datasets comprised of the above mentioned pathogens. Results When combining the classifiers by a joint optimization we could increase the consistency of the biomarker gene list independently of the experimental setup. An increase in pairwise overlap (the number of genes that overlap in each cross-validation) of 43% was obtained by this approach when compared to that of single classifiers. The refined gene list was composed of 19 genes and ranked according to consistency in expression (up- or down-regulated) and most of them were linked either directly or indirectly to the ERK-MAPK signalling pathway, which has been shown to play a key role in the immune response to infection. Testing of the identified 12 genes on an unseen dataset yielded an average accuracy of 83%. Conclusions In conclusion, our method allowed the combination of independent classifiers and increased consistency and reliability of the generated gene signatures. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4006-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- João Pedro Saraiva
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Marcus Oswald
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Antje Biering
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Daniela Röll
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Cora Assmann
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Tilman Klassert
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Markus Blaess
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | | | - Ralf Claus
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | | | - Hortense Slevogt
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Rainer König
- Network Modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, Germany. .,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.
| |
Collapse
|
13
|
Ellepola ANB, Jayathilake JAMS, Sharma PN, Khan ZU. Impact of short-term exposure of antifungal agents on hemolysin activity of oral Candida dubliniensis isolates from Kuwait and Sri Lanka. JOURNAL OF INVESTIGATIVE AND CLINICAL DENTISTRY 2016; 7:424-430. [PMID: 26059506 DOI: 10.1111/jicd.12167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Ability to produce hemolysin by Candida species is an important determinant of its pathogenicity. Candida dubliniensis is implicated in the causation of oral candidosis, which can be treated with polyene, echinocandin, and azole groups of antifungal agents as well as chlorhexidine. After oral application, however, the concentrations of these agents tend to decrease quickly to subtherapeutic levels due to the peculiarity of the oral environment. In this study, we have evaluated the effect of short-term exposure of sublethal concentrations of these drugs on hemolysin production by oral C. dubliniensis isolates obtained from two different geographical locale. MATERIALS AND METHODS Twenty C. dubliniensis oral isolates obtained from Kuwait and Sri Lanka were exposed to sublethal concentrations of nystatin, amphotericin B, caspofungin, ketoconazole, fluconazole, and chlorhexidine for 1 h. Thereafter, the drugs were removed by dilution and the hemolysin production determined by a previously described plate assay. RESULTS Hemolysin production of these isolates was significantly suppressed with a percentage reduction of 17.09, 16.45, 17.09, 11.39, 8.23 and 12.03 following exposure to nystatin, amphotericin B, caspofungin, ketoconazole, fluconazole, and chlorhexidine, respectively. CONCLUSION Brief exposure to sublethal concentrations of drugs with antifungal properties appears to reduce the pathogenic potential of C. dubliniensis isolates by suppressing hemolysin production.
Collapse
Affiliation(s)
- Arjuna N B Ellepola
- Faculty of Dentistry, Health Sciences Center, Kuwait University, Jabriya, Kuwait.
| | | | - Prem N Sharma
- Faculty of Medicine, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Zia U Khan
- Faculty of Medicine, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
14
|
Braunsdorf C, Mailänder-Sánchez D, Schaller M. Fungal sensing of host environment. Cell Microbiol 2016; 18:1188-200. [DOI: 10.1111/cmi.12610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/13/2022]
Affiliation(s)
- C. Braunsdorf
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| | - D. Mailänder-Sánchez
- Department of Internal Medicine I; University Hospital Tübingen; Otfried-Müller-Straße 10 72076 Tübingen
| | - M. Schaller
- Department of Dermatology; University Hospital Tübingen; Liebermeisterstr. 25 Tübingen Germany
| |
Collapse
|
15
|
Ellepola AN, Khajah R, Jayatilake S, Samaranayake L, Sharma P, Khan Z. Impact of brief exposure to antifungal agents on the post-antifungal effect and hemolysin activity of oral Candida albicans. J Appl Oral Sci 2016; 23:412-8. [PMID: 26398514 PMCID: PMC4560502 DOI: 10.1590/1678-775720150100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Post-antifungal effect (PAFE) of Candida and its production of hemolysin are determinants of candidal pathogenicity. Candida albicans is the foremost aetiological agent of oral candidosis, which can be treated with polyene, azole, and echinocandin antifungals. However, once administered, the intraoral concentrations of these drugs tend to be subtherapeutic and transient due to the diluent effect of saliva and cleansing effect of the oral musculature. Hence, intra-orally, Candida may undergo a brief exposure to antifungal drugs.
Collapse
Affiliation(s)
| | - Rana Khajah
- Health Sciences Center, Faculty of Dentistry, Kuwait University, KW
| | | | | | - Prem Sharma
- Health Sciences Center, Faculty of Medicine, Kuwait University, KW
| | - Zia Khan
- Health Sciences Center, Faculty of Medicine, Kuwait University, KW
| |
Collapse
|
16
|
Ellepola ANB, Chandy R, Khan ZU. In vitro postantifungal effect, adhesion traits and haemolysin production of Candida dubliniensis isolates following exposure to 5-fluorocytosine. Mycoses 2015. [PMID: 26201447 DOI: 10.1111/myc.12353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phenomenon of postantifungal effect (PAFE), which is the suppression of candidal growth following brief exposure to antifungal agents, is linked with candidal pathogenicity. Adhesion to buccal epithelial cells (BEC), germ tube (GT) formation and relative cell surface hydrophobicity (CSH) are all adhesion traits of candidal pathogenicity. Ability to produce haemolysin by Candida species is also a determinant of its pathogenicity. There is no information on either the PAFE or its impact on adhesion traits and haemolysin production of oral Candida dubliniensis isolates following exposure to 5-fluorocytosine (5-FC). Hence, the focus of this investigation was to research the in vitro PAFE, adhesion to BEC, GT formation, relative CSH and haemolysin production on 20 C. dubliniensis isolates following exposure to 5-FC. Following obtaining the minimum inhibitory concentration (MIC) of 5-FC, isolates of C. dubliniensis were exposed to sub-lethal concentrations (×3 MIC) of 5-FC for 1 h. After this brief exposure, the antimycotic was removed and PAFE, adhesion to BEC, GT formation, relative CSH and haemolysin production was determined by formerly described in vitro methods. MIC (μg/ml) of C. dubliniensis isolates to 5-FC ranged from 0.002 to 0.125. The mean PAFE (hours) elicited by 5-FC on C. dubliniensis isolates was approximately 1 h. Exposure to 5-FC suppressed the ability of C. dubliniensis isolates to adhere BEC, GT formation, relative CSH and haemolysin activity by a mean percentage reduction in 50.98%, 29.51%, 36.79% and 12.75% (P < 0.001 for all) respectively. Therefore, brief exposure of C. dubliniensis isolates to 5-FC appears to exert an antifungal effect by subduing its growth, adhesion traits as well as haemolysin production.
Collapse
Affiliation(s)
- Arjuna N B Ellepola
- Faculty of Dentistry, Department of Bioclinical Sciences, Health Sciences Center, Kuwait University, Safat, Kuwait
| | - Rachel Chandy
- Faculty of Medicine, Department of Microbiology, Health Sciences Center, Kuwait University, Safat, Kuwait
| | - Zia U Khan
- Faculty of Medicine, Department of Microbiology, Health Sciences Center, Kuwait University, Safat, Kuwait
| |
Collapse
|
17
|
Effects of human blood red cells on the haemolytic capability of clinical isolates of Candida tropicalis. J Biomed Sci 2015; 22:13. [PMID: 25881328 PMCID: PMC4329199 DOI: 10.1186/s12929-015-0120-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/28/2015] [Indexed: 02/08/2023] Open
Abstract
Background Candida tropicalis is an increasingly important human pathogen associated with high mortality rates; however, little is known regarding the virulence properties of C. tropicalis, particularly the production of haemolytic factor. Although Candida spp may acquire iron from human blood red cells (RBCs) by producing a haemolytic factor that promotes cell lyses, at present there are no data regarding the effect of RBCs on the production of haemolytic molecules. The present study was undertaken to evaluate the role of human red blood cells on the production haemolytic factor by C. tropicalis; in addition, the transcription levels of a putative haemolysin-like protein gene (HLPt) were also analysed. Results C. tropicalis isolates produced a haemolytic factor following growth in either the absence or presence of RBCs; however, distinct levels of haemolysis were observed, with 60% of the isolates exhibiting a significant increase in the production of haemolytic factor when grown in the presence of human RBCs. All isolates in which the putative HLPt gene was up-regulated in presence of human RBCs, ranging from 1.044 to 6.965-fold, also exhibited higher haemolytic activity following growth in the presence of RBCs compared to that observed in the absence of RBCs. Conclusions We propose that human RBCs may induce changes in the phenotypic expression of haemolytic factor and in transcriptional levels of the putative C. tropicalis HLPt gene in an isolate-dependent fashion.
Collapse
|
18
|
Favero D, Furlaneto-Maia L, França EJG, Góes HP, Furlaneto MC. Hemolytic factor production by clinical isolates of Candida species. Curr Microbiol 2013; 68:161-6. [PMID: 24048697 DOI: 10.1007/s00284-013-0459-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Abstract
Most cases of fungal bloodstream infections (BIs) are attributed to Candida albicans; however, non-Candida albicans Candida species have recently been identified as common pathogens. Although hemolytic factor is known to be putative virulence factor contributing to pathogenicity in Candida species, its production is poorly evaluated. The present study was undertaken to analyze the production of hemolytic factor by C. albicans (10), C. tropicalis (13), and C. parapsilosis (8) isolates associated with BIs. Data of hemolysis zones on plate assay revealed that the majority of C. albicans isolates produced mild hemolytic activity whereas the majority of C. tropicalis produced strong activity. None of the tested C. parapsilosis isolates exhibited hemolysis on plate assay. We also evaluated the hemolytic activity in the cell-free broth. There were no significant differences (P > 0.05) in the secreted hemolytic activity among intra-species isolates. Different levels of secreted hemolytic factor were observed for Candida species, where C. tropicalis exhibited the highest production of hemolytic factor (P < 0.05) followed by C. albicans and C. parapsilosis. Inhibition of hemolysis (up to 89.12 %) from culture supernatant, following incubation with the lectin Concanavalin A (Con A), was observed for all three Candida species. This finding suggests that the secreted hemolytic factor of C. tropicalis and C. parapsilosis may be a mannoprotein, similar to that described for C. albicans.
Collapse
Affiliation(s)
- Daniel Favero
- Department of Microbiology, Centre of Biological Sciences, Paraná State University at Londrina, C. P. 6001, Londrina, PR, CEP: 86051990, Brazil
| | | | | | | | | |
Collapse
|
19
|
Cryptococcus neoformans requires the ESCRT protein Vps23 for iron acquisition from heme, for capsule formation, and for virulence. Infect Immun 2012; 81:292-302. [PMID: 23132495 DOI: 10.1128/iai.01037-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron availability is a key regulator of virulence factor elaboration in Cryptococcus neoformans, the causative agent of fungal meningoencephalitis in HIV/AIDS patients. In addition, iron is an essential nutrient for pathogen proliferation in mammalian hosts but little is known about the mechanisms of iron sensing and uptake in fungal pathogens that attack humans. In this study, we mutagenized C. neoformans by Agrobacterium-mediated T-DNA insertion and screened for mutants with reduced growth on heme as the sole iron source. Among 34 mutants, we identified a subset with insertions in the gene for the ESCRT-I (endosomal sorting complex required for transport) protein Vps23 that resulted in a growth defect on heme, presumably due to a defect in uptake via endocytosis or misregulation of iron acquisition from heme. Remarkably, vps23 mutants were also defective in the elaboration of the cell-associated capsular polysaccharide that is a major virulence factor, while overexpression of Vps23 resulted in cells with a slightly enlarged capsule. These phenotypes were mirrored by a virulence defect in the vps23 mutant in a mouse model of cryptococcosis and by hypervirulence of the overexpression strain. Overall, these results reveal an important role for trafficking via ESCRT functions in both heme uptake and capsule formation, and they further reinforce the connection between iron and virulence factor deployment in C. neoformans.
Collapse
|
20
|
Pendrak ML, Roberts DD. Ribosomal RNA processing in Candida albicans. RNA (NEW YORK, N.Y.) 2011; 17:2235-48. [PMID: 22028364 PMCID: PMC3222135 DOI: 10.1261/rna.028050.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/16/2011] [Indexed: 05/25/2023]
Abstract
Ribosome assembly begins with conversion of a polycistronic precursor into 18S, 5.8S, and 25S rRNAs. In the ascomycete fungus Candida albicans, rRNA transcription starts 604 nt upstream of the 18S rRNA junction (site A1). One major internal processing site in the 5' external transcribed spacer (A0) occurs 108 nt from site A1. The A0-A1 fragment persists as a stable species during log phase growth and can be used to assess proliferation rates. Separation of the small and large subunit pre-rRNAs occurs at sites A2 and A3 in internal transcribed spacer-1 Saccharomyces cerevisiae pre-rRNA. However, the 5' end of the 5.8S rRNA is represented by only a 5.8S (S) form, and a 7S rRNA precursor of the 5.8S rRNA extends into internal transcribed spacer 1 to site A2, which differs from S. cerevisiae. External transcribed spacer 1 and internal transcribed spacers 1 and 2 show remarkable structural similarity with S. cerevisiae despite low sequence identity. Maturation of C. albicans rRNA resembles other eukaryotes in that processing can occur cotranscriptionally or post-transcriptionally. During rapid proliferation, U3 snoRNA-dependent processing occurs before large and small subunit rRNA separation, consistent with cotranscriptional processing. As cells pass the diauxic transition, the 18S pre-rRNA accumulates into stationary phase as a 23S species, possessing an intact 5' external transcribed spacer extending to site A3. Nutrient addition to starved cells results in the disappearance of the 23S rRNA, indicating a potential role in normal physiology. Therefore, C. albicans reveals new mechanisms that regulate post- versus cotranscriptional rRNA processing.
Collapse
MESH Headings
- Base Sequence
- Candida albicans/genetics
- Candida albicans/metabolism
- DNA Polymerase I/metabolism
- DNA, Ribosomal Spacer/genetics
- Gene Expression Regulation, Fungal
- Gene Order
- Molecular Sequence Data
- Molecular Weight
- Nucleic Acid Conformation
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5.8S/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
21
|
Favero D, França EJG, Furlaneto-Maia L, Quesada RMB, Furlaneto MC. Production of haemolytic factor by clinical isolates of Candida tropicalis. Mycoses 2011; 54:e816-20. [PMID: 21672047 DOI: 10.1111/j.1439-0507.2011.02035.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although haemolytic factor is known to be a putative virulence factor contributing to pathogenicity in Candida species, its production by Candida tropicalis is poorly understood. In this study, we analysed the culture conditions under which C. tropicalis can display haemolytic factor on plate assay and the secretion of haemolytic factor in liquid medium by clinical isolates obtained from different specimens. All the tested isolates exhibited an internal translucent ring, resembling beta-haemolysis, surrounding by a peripheral greenish-grey halo on sheep blood agar medium. Similar haemolytic pattern was observed on human blood enriched medium. Furthermore, incubation either under normal atmosphere or under increased CO(2) had no effect on haemolysis. Overall, no differences were observed on beta-haemolytic activities (P > 0.05) among tested isolates of C. tropicalis. In glucose-limited medium (RPMI 1640 with 0.2% glucose), none of the isolates induced haemolysis on red blood cells. Similarly to found on plate assays, there were no significant differences (P > 0.05) in the activity of secreted haemolytic factor in liquid medium among C. tropicalis isolates. However, after growth, the number of yeast cells varied among isolates revealing different efficiencies of haemolytic factor production. Haemolytic activity was neither inhibited by heat treatment (100 °C) nor by the addition of pepstatin A. The obtained results extend our knowledge about haemolytic factor production by Candida species.
Collapse
Affiliation(s)
- D Favero
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina-PR, Brazil
| | | | | | | | | |
Collapse
|
22
|
Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis 2011; 31:21-31. [PMID: 21544694 DOI: 10.1007/s10096-011-1273-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
The ubiquitous Candida spp. is an opportunistic fungal pathogen which, despite treatment with antifungal drugs, can cause fatal bloodstream infections (BSIs) in immunocompromised and immunodeficient persons. Thus far, several major C. albicans virulence factors have been relatively well studied, including morphology switching and secreted degradative enzymes. However, the exact mechanism of Candida pathogenesis and the host response to invasion are still not well elucidated. The relatively recent discovery of the quorum-sensing molecule farnesol and the existence of quorum sensing as a basic regulatory phenomenon of the C. albicans population behavior has revolutionized Candida research. Through population density regulation, the quorum-sensing mechanism also controls the cellular morphology of a C. albicans population in response to environmental factors, thereby, effectively placing morphology switching downstream of quorum sensing. Thus, the quorum-sensing phenomenon has been hailed as the 'missing piece' of the pathogenicity puzzle. Here, we review what is known about Candida spp. as the etiological agents of invasive candidiasis and address our current understanding of the quorum-sensing phenomenon in relation to virulence in the host.
Collapse
|
23
|
Navarathna DHMLP, Das A, Morschhäuser J, Nickerson KW, Roberts DD. Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur1,2. MICROBIOLOGY (READING, ENGLAND) 2011; 157:270-279. [PMID: 20884691 PMCID: PMC3069533 DOI: 10.1099/mic.0.045005-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 01/02/2023]
Abstract
Hemiascomycetes, including the pathogen Candida albicans, acquire nitrogen from urea using the urea amidolyase Dur1,2, whereas all other higher fungi use primarily the nickel-containing urease. Urea metabolism via Dur1,2 is important for resistance to innate host immunity in C. albicans infections. To further characterize urea metabolism in C. albicans we examined the function of seven putative urea transporters. Gene disruption established that Dur3, encoded by orf 19.781, is the predominant transporter. [(14)C]Urea uptake was energy-dependent and decreased approximately sevenfold in a dur3Δ mutant. DUR1,2 and DUR3 expression was strongly induced by urea, whereas the other putative transporter genes were induced less than twofold. Immediate induction of DUR3 by urea was independent of its metabolism via Dur1,2, but further slow induction of DUR3 required the Dur1,2 pathway. We investigated the role of the GATA transcription factors Gat1 and Gln3 in DUR1,2 and DUR3 expression. Urea induction of DUR1,2 was reduced in a gat1Δ mutant, strongly reduced in a gln3Δ mutant, and abolished in a gat1Δ gln3Δ double mutant. In contrast, DUR3 induction by urea was preserved in both single mutants but reduced in the double mutant, suggesting that additional signalling mechanisms regulate DUR3 expression. These results establish Dur3 as the major urea transporter in C. albicans and provide additional insights into the control of urea utilization by this pathogen.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA
| | - Aditi Das
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA
| |
Collapse
|
24
|
Navarathna DH, Roberts DD. Candida albicans heme oxygenase and its product CO contribute to pathogenesis of candidemia and alter systemic chemokine and cytokine expression. Free Radic Biol Med 2010; 49:1561-73. [PMID: 20800092 PMCID: PMC2952735 DOI: 10.1016/j.freeradbiomed.2010.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/11/2010] [Accepted: 08/18/2010] [Indexed: 01/08/2023]
Abstract
Mammalian heme oxygenases play important roles in immune regulation by producing immunosuppressive CO. The pathogenic yeast Candida albicans encodes a heme oxygenase, Hmx1, that is specifically induced by the host protein hemoglobin, suggesting a role in the pathogenesis of disseminated bloodstream infections. We show that exposing mice to therapeutic levels of CO increases C. albicans virulence, whereas an HMX1 null strain has decreased virulence in murine disseminated candidiasis. Levels of several regulatory cytokines and chemokines are decreased in mice infected with the null strain, and initial lesions in the kidney are more rapidly cleared after polymorphonuclear leukocyte infiltration. Reconstitution of one or both alleles restores virulence to the level of wild type. Growth in vitro and initial organ burdens in infected mice are not decreased and host iron overload does not restore virulence for the null strain, suggesting that early growth in the host is not limited by Hmx1-mediated iron scavenging. In contrast, inhaled CO partially reverses the virulence defect of the null strain and restores several host cytokine responses to wild-type levels. Collectively, these results show that C. albicans Hmx1 expression and CO production limit the host immune response and contribute to the pathogenesis of candidemia.
Collapse
Affiliation(s)
| | - David D. Roberts
- Correspondence: NIH, Building 10 Room 2A33, 10 Center Drive, Bethesda, MD 20892-1500, Tel: 301-496-6264, Fax: 301-402-0043,
| |
Collapse
|
25
|
Richards D, Davies JK, Figdor D. Starvation survival and recovery in serum of Candida albicans compared with Enterococcus faecalis. ACTA ACUST UNITED AC 2010; 110:125-30. [DOI: 10.1016/j.tripleo.2010.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/06/2010] [Accepted: 03/09/2010] [Indexed: 11/16/2022]
|
26
|
Mochon AB, Ye J, Kayala MA, Wingard JR, Clancy CJ, Nguyen MH, Felgner P, Baldi P, Liu H. Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog 2010; 6:e1000827. [PMID: 20361054 PMCID: PMC2845659 DOI: 10.1371/journal.ppat.1000827] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 02/18/2010] [Indexed: 01/04/2023] Open
Abstract
Candida albicans in the immunocompetent host is a benign member of the human microbiota. Though, when host physiology is disrupted, this commensal-host interaction can degenerate and lead to an opportunistic infection. Relatively little is known regarding the dynamics of C. albicans colonization and pathogenesis. We developed a C. albicans cell surface protein microarray to profile the immunoglobulin G response during commensal colonization and candidemia. The antibody response from the sera of patients with candidemia and our negative control groups indicate that the immunocompetent host exists in permanent host-pathogen interplay with commensal C. albicans. This report also identifies cell surface antigens that are specific to different phases (i.e. acute, early and mid convalescence) of candidemia. We identified a set of thirteen cell surface antigens capable of distinguishing acute candidemia from healthy individuals and uninfected hospital patients with commensal colonization. Interestingly, a large proportion of these cell surface antigens are involved in either oxidative stress or drug resistance. In addition, we identified 33 antigenic proteins that are enriched in convalescent sera of the candidemia patients. Intriguingly, we found within this subset an increase in antigens associated with heme-associated iron acquisition. These findings have important implications for the mechanisms of C. albicans colonization as well as the development of systemic infection. Candida albicans has both a benign and pathogenic association with the human host. Previous to this study, little was known in regard to how the host humoral system responds to the commensal colonization of C. albicans, as well as the development of hematogenously disseminated candidiasis. We show using a C. albicans cell surface protein microarray that the immunocompetent host exists in permanent host-pathogen interplay with commensal C. albicans, and undergoes stage-specific antibody responses as the yeast transitions from a benign microbe to an opportunistic fungal pathogen. Also identified were serological signatures specific for acute and convalescent stages of candidemia. Our findings provide new insight in the characterization of potential serodiagnostic antigens and vaccine candidates to the opportunistic pathogen C. albicans.
Collapse
Affiliation(s)
- A. Brian Mochon
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Jin Ye
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Matthew A. Kayala
- Department of Computer Science, University of California Irvine, Irvine, California, United States of America
- Institute of Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - John R. Wingard
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Cornelius J. Clancy
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - M. Hong Nguyen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Philip Felgner
- Department of Medicine, University of California Irvine, Irvine, California, United States of America
- Pacific Southwest Center for Research on Emerging Infections, University of California Irvine, Irvine, California, United States of America
| | - Pierre Baldi
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- Department of Computer Science, University of California Irvine, Irvine, California, United States of America
- Institute of Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Haoping Liu
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Carbon monoxide in biology and microbiology: surprising roles for the "Detroit perfume". Adv Microb Physiol 2009; 56:85-167. [PMID: 20943125 DOI: 10.1016/s0065-2911(09)05603-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a colorless, odorless gas with a reputation for being an anthropogenic poison; there is extensive documentation of the modes of human exposure, toxicokinetics, and health effects. However, CO is also generated endogenously by heme oxygenases (HOs) in mammals and microbes, and its extraordinary biological activities are now recognized and increasingly utilized in medicine and physiology. This review introduces recent advances in CO biology and chemistry and illustrates the exciting possibilities that exist for a deeper understanding of its biological consequences. However, the microbiological literature is scant and is currently restricted to: 1) CO-metabolizing bacteria, CO oxidation by CO dehydrogenase (CODH) and the CO-sensing mechanisms that enable CO oxidation; 2) the use of CO as a heme ligand in microbial biochemistry; and 3) very limited information on how microbes respond to CO toxicity. We demonstrate how our horizons in CO biology have been extended by intense research activity in recent years in mammalian and human physiology and biochemistry. CO is one of several "new" small gas molecules that are increasingly recognized for their profound and often beneficial biological activities, the others being nitric oxide (NO) and hydrogen sulfide (H2S). The chemistry of CO and other heme ligands (oxygen, NO, H2S and cyanide) and the implications for biological interactions are briefly presented. An important advance in recent years has been the development of CO-releasing molecules (CO-RMs) for aiding experimental administration of CO as an alternative to the use of CO gas. The chemical principles of CO-RM design and mechanisms of CO release from CO-RMs (dissociation, association, reduction and oxidation, photolysis, and acidification) are reviewed and we present a survey of the most commonly used CO-RMs. Amongst the most important new applications of CO in mammalian physiology and medicine are its vasoactive properties and the therapeutic potentials of CO-RMs in vascular disease, anti-inflammatory effects, CO-mediated cell signaling in apoptosis, applications in organ preservation, and the effects of CO on mitochondrial function. The very limited literature on microbial growth responses to CO and CO-RMs in vitro, and the transcriptomic and physiological consequences of microbial exposure to CO and CO-RMs are reviewed. There is current interest in CO and CO-RMs as antimicrobial agents, particularly in the control of bacterial infections. Future prospects are suggested and unanswered questions posed.
Collapse
|
28
|
|
29
|
Abstract
Haem oxygenase (HO)-1 is a cytoprotective enzyme that plays a critical role in defending the body against oxidant-induced injury during inflammatory processes. HO catalydes the degradation of haem to carbon monoxide (CO), biliverdin and ferrous iron. Biliverdin is converted to bilirubin, a potent endogenous antioxidant. CO has a number of biological functions, including anti-inflammatory properties. In various models of disease, HO-1 is known to play a critical role by ameliorating the pathological consequences of injury. In many of these models, the beneficial effects of HO-1 and its products of haem catabolism are by suppressing an inflammatory response. However, when investigating diseases due to microbial infections, inhibition of the inflammatory response could disrupt the ability of the immune system to eradicate an invading pathogen. Thus, questions remain regarding the role of HO-1 in microbial host defence. This microreview will address our present understanding of HO-1 and its functional significance in a variety of microbial infections.
Collapse
Affiliation(s)
- Su Wol Chung
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, Korea.
| | | | | |
Collapse
|
30
|
Abstract
The Candida albicans cell wall maintains the structural integrity of the organism in addition to providing a physical contact interface with the environment. The major components of the cell wall are fibrillar polysaccharides and proteins. The proteins of the cell wall are the focus of this review. Three classes of proteins are present in the candidal cell wall. One group of proteins attach to the cell wall via a glycophosphatidylinositol remnant or by an alkali-labile linkage. A second group of proteins with N-terminal signal sequences but no covalent attachment sequences are secreted by the classical secretory pathway. These proteins may end up in the cell wall or in the extracellular space. The third group of proteins lack a secretory signal, and the pathway(s) by which they become associated with the surface is unknown. Potential constituents of the first two classes have been predicted from analysis of genome sequences. Experimental analyses have identified members of all three classes. Some members of each class selected for consideration of confirmed or proposed function, phenotypic analysis of a mutant, and regulation by growth conditions and transcription factors are discussed in more detail.
Collapse
|
31
|
Pendrak ML, Roberts DD. Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans. Med Mycol 2007; 45:61-71. [PMID: 17325946 DOI: 10.1080/13693780601028691] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Hemoglobin is an abundant protein in the host vascular compartment and a source of iron, heme, and amino acids for many pathogens. The human fungal pathogen Candida albicans uses hemoglobin as an iron source as well as a signaling molecule to alter gene expression and induce adhesion to several extracellular matrix proteins. We now report that hemoglobin can promote true hyphal morphogenesis. Hemoglobin added to yeast cells at 37 degrees C rapidly induced expression of the hypha-specific genes HWP1 and ECE1 coincident with the pattern of hyphal development. A synthetic medium buffered with phosphate at pH 7.2 and containing physiological glucose (5 mM) and low ammonium ion (0.1 mM) was optimal for the response to hemoglobin. High glucose (110 mM), high ammonium ion (20 mM), and 0.1 mM glutamine were all inhibitory. Heme, free globin, or immobilized hemoglobin could not replicate the activity of hemoglobin to induce germ tubes or hypha-specific gene expression at 37 degrees C under optimized conditions. This implicates the previously described Hb-signaling receptor in hyphal formation. This response was also dependent upon the presence of the morphogenesis regulator Efg1p, but the MAP-kinase specific transcription factor Cph1p was not required. These data define a role for the host-factor hemoglobin in Efg1p-dependent hyphal development.
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| | | |
Collapse
|
32
|
Patel M, Shackleton JT, Coogan MM. Effect of antifungal treatment on the prevalence of yeasts in HIV-infected subjects. J Med Microbiol 2006; 55:1279-1284. [PMID: 16914661 DOI: 10.1099/jmm.0.46588-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oral candidiasis, the most common opportunistic infection in patients with HIV infection, is usually associated with Candida albicans. Several factors may influence the carriage of Candida, including immunocompromised conditions and HIV infection, colonization by yeasts from different geographical areas and antimycotic treatment. This study investigated the Candida carrier rate, level and types of yeast in HIV-positive and -negative subjects, and the effect of previous exposure to antifungal drugs on the level of yeasts in HIV-positive patients in Gauteng, South Africa. Unstimulated saliva was collected from 332 HIV-positive patients and 100 HIV-negative subjects and cultured for yeasts. The number and species of yeast were determined. HIV-positive patients who carried yeasts were divided into two groups depending upon their previous antifungal drug exposure, and the level of Candida carriage in each group was compared. The Candida carrier rate in the HIV-positive patients (81.3%) was slightly higher than previously reported and significantly higher (P<0.001) than in the HIV-negative group (63%). The carrier rate in the HIV-negative group was also higher than in earlier studies. Fourteen per cent of the HIV-positive patients carried more than 10,000 c.f.u. ml-1 whereas none of the HIV-negative subjects carried this large a number of yeasts (P<0.001). Seventy per cent of the yeasts were identified as C. albicans and approximately 30% as non-albicans species. In conclusion, the Candida carrier rate is higher in the South African population than elsewhere. HIV-positive patients carry more and a greater variety of yeasts than HIV-negative subjects. Exposure to antifungal drugs has no effect on the level of yeast carriage in HIV-positive patients.
Collapse
Affiliation(s)
- Mrudula Patel
- Division of Oral Microbiology, Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences and University of the Witwatersrand, Johannesburg, South Africa
| | - Joanne T Shackleton
- Division of Oral Microbiology, Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences and University of the Witwatersrand, Johannesburg, South Africa
| | - Maeve M Coogan
- Division of Oral Microbiology, Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences and University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
33
|
Protchenko O, Rodriguez-Suarez R, Androphy R, Bussey H, Philpott CC. A screen for genes of heme uptake identifies the FLC family required for import of FAD into the endoplasmic reticulum. J Biol Chem 2006; 281:21445-21457. [PMID: 16717099 DOI: 10.1074/jbc.m512812200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although Candida albicans and Saccharomyces cerevisiae express very similar systems of iron uptake, these species differ in their capacity to use heme as a nutritional iron source. Whereas C. albicans efficiently takes up heme, S. cerevisiae grows poorly on media containing heme as the sole source of iron. We identified a gene from C. albicans that would enhance heme uptake when expressed in S. cerevisiae. Overexpression of CaFLC1 (for flavin carrier 1) stimulated the growth of S. cerevisiae on media containing heme iron. In C. albicans, deletion of both alleles of CaFLC1 resulted in a decrease in heme uptake activity, whereas overexpression of CaFLC1 resulted in an increase in heme uptake. The S. cerevisiae genome contains three genes with homology to CaFLC1, and two of these, termed FLC1 and FLC2, also stimulated growth on heme when overexpressed in S. cerevisiae. The S. cerevisiae Flc proteins were detected in the endoplasmic reticulum and the FLC genes encoded an essential function, as strains deleted for either FLC1 or FLC2 were viable, but deletion of both FLC1 and FLC2 was synthetically lethal. FLC gene deletion resulted in pleiotropic phenotypes related to defects in cell wall integrity. High copy suppressors of this synthetic lethality included three mannosyltransferases, VAN1, KTR4, and HOC1. FLC deletion strains exhibited loss of cell wall mannose phosphates, defects in cell wall assembly, and delayed maturation of carboxypeptidase Y. Permeabilized cells lacking FLC proteins exhibited dramatic loss of FAD import activity. We propose that the FLC genes are required for import of FAD into the lumen of the endoplasmic reticulum, where it is required for disulfide bond formation.
Collapse
Affiliation(s)
- Olga Protchenko
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Rachel Androphy
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Howard Bussey
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Caroline C Philpott
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
34
|
Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006; 86:583-650. [PMID: 16601269 DOI: 10.1152/physrev.00011.2005] [Citation(s) in RCA: 1794] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The heme oxygenases, which consist of constitutive and inducible isozymes (HO-1, HO-2), catalyze the rate-limiting step in the metabolic conversion of heme to the bile pigments (i.e., biliverdin and bilirubin) and thus constitute a major intracellular source of iron and carbon monoxide (CO). In recent years, endogenously produced CO has been shown to possess intriguing signaling properties affecting numerous critical cellular functions including but not limited to inflammation, cellular proliferation, and apoptotic cell death. The era of gaseous molecules in biomedical research and human diseases initiated with the discovery that the endothelial cell-derived relaxing factor was identical to the gaseous molecule nitric oxide (NO). The discovery that endogenously produced gaseous molecules such as NO and now CO can impart potent physiological and biological effector functions truly represented a paradigm shift and unraveled new avenues of intense investigations. This review covers the molecular and biochemical characterization of HOs, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress. Furthermore, the current understanding of the functional significance of HO shall be discussed from the perspective of each of the metabolic by-products, with a special emphasis on CO. Finally, this presentation aspires to lay a foundation for potential future clinical applications of these systems.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
35
|
Abstract
Candida albicans is a normal part of the human microflora, but it is also an opportunistic fungal pathogen that causes both mucosal infections and life-threatening systemic infections. Until recently, C. albicans was thought to be asexual, existing only as an obligate diploid. However, a mating locus was identified that was homologous to those in sexually reproducing fungi, and mating of C. albicans strains was subsequently demonstrated in the laboratory. In this review, we compare and contrast the mating process in C. albicans with that of other fungi, particularly Saccharomyces cerevisiae, whose mating has been most intensively studied. Several features of the mating pathway appear unique to C. albicans, including aspects of gene regulation and cell biology, as well as the involvement of "white-opaque" switching, an alteration between two quasi-stable inheritable states. These specializations of the mating process may have evolved to promote the survival of C. albicans in the hostile environment of a mammalian host.
Collapse
Affiliation(s)
- R J Bennett
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
36
|
Knight SAB, Vilaire G, Lesuisse E, Dancis A. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 2005; 73:5482-92. [PMID: 16113264 PMCID: PMC1231083 DOI: 10.1128/iai.73.9.5482-5492.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Host-pathogen interactions that alter virulence are influenced by critical nutrients such as iron. In humans, free iron is unavailable, being present only in high-affinity iron binding proteins such as transferrin. The fungal pathogen Candida albicans grows as a saprophyte on mucosal surfaces. Occasionally it invades systemically, and in this circumstance it will encounter transferrin iron. Here we report that C. albicans is able to acquire iron from transferrin. Iron-loaded transferrin restored growth to cultures arrested by iron deprivation, whereas apotransferrin was unable to promote growth. By using congenic strains, we have been able to show that iron uptake by C. albicans from transferrin was mediated by the reductive pathway (via FTR1). The genetically separate siderophore and heme uptake systems were not involved. FRE10 was required for a surface reductase activity and for efficient transferrin iron uptake activity in unbuffered medium. Other reductase genes were apparently up-regulated in medium buffered at pH 6.3 to 6.4, and the fre10(-/-) mutant had no effect under these conditions. Experiments in which transferrin was sequestered in a dialysis bag demonstrated that cell contact with the substrate was required for iron reduction and release. The requirement of FTR1 for virulence in a systemic infection model and its role in transferrin iron uptake raise the possibility that transferrin is a source of iron during systemic C. albicans infections.
Collapse
Affiliation(s)
- Simon A B Knight
- University of Pennsylvania, Department of Medicine, Division of Hematology/Oncology, 731 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104-6160, USA.
| | | | | | | |
Collapse
|
37
|
Rao AU, Carta LK, Lesuisse E, Hamza I. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci U S A 2005; 102:4270-5. [PMID: 15767563 PMCID: PMC555530 DOI: 10.1073/pnas.0500877102] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Indexed: 11/18/2022] Open
Abstract
In most free-living eukaryotes studied thus far, heme is synthesized from a series of intermediates through a well defined evolutionarily conserved pathway. We found that free-living worms, including the model genetic organism Caenorhabditis elegans, and parasitic helminths are unable to synthesize heme de novo, even though these animals contain hemoproteins that function in key biological processes. Radioisotope, fluorescence labeling, and heme analog studies suggest that C. elegans acquires heme from exogenous sources. Iron-deprived worms were unable to grow in the presence of adequate heme unless rescued by increasing heme levels in the growth medium. These data indicate that although worms use dietary heme for incorporation into hemoproteins, ingested heme is also used as an iron source when iron is limiting. Our results provide a biochemical basis for the dependence of worm growth and development on heme, and they suggest that pharmacologic targeting of heme transport pathways in worms could be an important control measure for helminthic infections.
Collapse
Affiliation(s)
- Anita U Rao
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
38
|
Current awareness on yeast. Yeast 2004; 21:1317-24. [PMID: 15586969 DOI: 10.1002/yea.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Pendrak ML, Yan SS, Roberts DD. Hemoglobin regulates expression of an activator of mating-type locus alpha genes in Candida albicans. EUKARYOTIC CELL 2004; 3:764-75. [PMID: 15189997 PMCID: PMC420132 DOI: 10.1128/ec.3.3.764-775.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 03/24/2004] [Indexed: 11/20/2022]
Abstract
Phenotypic switching from the white to the opaque phase is a necessary step for mating in the pathogenic fungus Candida albicans. Suppressing switching during vascular dissemination of the organism may be advantageous, because opaque cells are more susceptible to host defenses. A repressor of white-opaque switching, HBR1 (hemoglobin response gene 1), was identified based on its specific induction following growth in the presence of exogenous hemoglobin. Deletion of a single HBR1 allele allowed opaque phase switching and mating competence, accompanied by a lack of detectable MTL alpha1 and alpha2 gene expression and enhanced MTLa1 gene expression. Conversely, overexpression of Hbr1p or exposure to hemoglobin increased MTLalpha gene expression. The a1/alpha2 repressed target gene CAG1 was derepressed in the same mutant in a hemoglobin-sensitive manner. Regulation of CAG1 by hemoglobin required an intact MTLa1 gene. Several additional Mtlp targets were perturbed in HBR1 mutants in a manner consistent with commitment to an a mating phenotype, including YEL007w, MFalpha, HST6, and RAM2. Therefore, Hbr1 is part of a host factor-regulated signaling pathway that controls white-opaque switching and mating in the absence of allelic deletion at the MTL locus.
Collapse
Affiliation(s)
- Michael L Pendrak
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| | | | | |
Collapse
|