1
|
Faustino M, Strobbe S, Sanchez-Muñoz R, Cao D, Mishra RC, Lourenço T, Oliveira MM, Van Der Straeten D. In silico, in vitro, and in vivo characterization of thiamin-binding proteins from plant seeds. Biochem J 2025; 482:BCJ20240429. [PMID: 39831786 DOI: 10.1042/bcj20240429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Thiamin, an essential micronutrient, is a cofactor for enzymes involved in the central carbon metabolism and amino acid pathways. Despite efforts to enhance thiamin content in rice by incorporating thiamin biosynthetic genes, increasing thiamin content in the endosperm remains challenging, possibly due to a lack of thiamin stability and/or a local sink. The introduction of storage proteins has been successful in several biofortification strategies, and similar efforts targeting thiamin have been performed, leading to a 3-4-fold increase in white rice. However, only one thiamin-binding protein (TBP) sequence has been described in plants, more specifically from sesame seeds. Therefore, we aimed to identify and characterize TBPs, as well as to evaluate the effect of their expression on thiamin concentration, using a comprehensive approach integrating in silico, in vitro, and in vivo methods. We identified the sequences of putative TBPs from Oryza sativa (Os, rice), Fagopyrum esculentum (Fe, buckwheat), and Zea mays (Zm, maize) and pinpointed the thiamin-binding pockets through molecular docking. FeTBP and OsTBP contained one pocket with binding affinities similar to the Escherichia coli TBP, a well-characterized TBP, supporting their function as TBPs. In vivo expression studies of TBPs in tobacco leaves and rice callus resulted in increased thiamin levels, with FeTBP and OsTBP showing the most pronounced effects. Additionally, thermal shift assays confirmed the thiamin-binding capabilities of FeTBP and OsTBP, as observed by the significant increases in melting temperatures upon thiamin binding, indicating protein stabilization. These findings offer new insights into the diversity and function of plant TBPs and highlight the potential of FeTBP and OsTBP to modulate thiamin levels in crop plants.
Collapse
Affiliation(s)
- Maria Faustino
- Laboratory of Functional Plant Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
- Laboratory of Plant Functional Genomics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Da Cao
- Laboratory of Functional Plant Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Ratnesh C Mishra
- Laboratory of Functional Plant Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Tiago Lourenço
- Laboratory of Plant Functional Genomics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - M Margarida Oliveira
- Laboratory of Plant Functional Genomics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
2
|
Han S, Wu K, Wang Y, Li F, Chen Y. Auxotrophy-based curation improves the consensus genome-scale metabolic model of yeast. Synth Syst Biotechnol 2024; 9:861-870. [PMID: 39777162 PMCID: PMC11704421 DOI: 10.1016/j.synbio.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 01/11/2025] Open
Abstract
Saccharomyces cerevisiae, a widely utilized model organism, has seen continuous updates to its genome-scale metabolic model (GEM) to enhance the prediction performance for metabolic engineering and systems biology. This study presents an auxotrophy-based curation of the yeast GEM, enabling facile upgrades to yeast GEMs in future endeavors. We illustrated that the curation bolstered the predictive capability of the yeast GEM particularly in predicting auxotrophs without compromising accuracy in other simulations, and thus could be an effective manner for GEM refinement. Last, we leveraged the curated yeast GEM to systematically predict auxotrophs, thereby furnishing a valuable reference for the design of nutrient-dependent cell factories and synthetic yeast consortia.
Collapse
Affiliation(s)
- Siyu Han
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yonghong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feiran Li
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
3
|
Wang L, Wu D, Hong T, Ren Q, Wang S, Bao Y, Yao W, Zhang M, Hu Q. Fusarium sacchari Effector FsMEP1 Contributes to Virulence by Disturbing Localization of Thiamine Thiazole Synthase ScTHI2 from Sugarcane. Int J Mol Sci 2024; 25:12075. [PMID: 39596144 PMCID: PMC11593444 DOI: 10.3390/ijms252212075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Fusarium sacchari is a significant pathogenic fungus that causes sugarcane Pokkah Boeng. Proteins secreted by pathogenic fungi can be delivered into hosts to suppress plant immunity and establish infection. However, there is still much to be discovered regarding F. sacchari's secreted effectors in overcoming plant immunity. In this paper, we characterize a novel effector called FsMEP1, which is essential for the virulence of F. sacchari. FsMEP1 contains a conserved zinc-binding motif sequence, HEXXH, and is highly expressed during host infection. Using the Agrobacterium tumefaciens-mediated transient expression system, it was confirmed that FsMEP1 could suppress Bcl-2-associated X protein (BAX)-triggered cell death, callose deposition, and ROS explosion in Nicotiana benthamiana. Furthermore, the deletion of FsMEP1 demonstrated its requirement for contributing to the pathogenicity of F. sacchari in sugarcane. Further analysis revealed that FsMEP1 could interact with the sugarcane thiamine thiazole synthase ScTHI2 and disrupt its normal localization, thereby inhibiting the synthesis of thiamine and the defense responses mediated by ScTHI2. Based on these findings, we propose that ScTHI2 represents a potential molecular target for improving sugarcane resistance to Pokkah Boeng disease.
Collapse
Affiliation(s)
- Lulu Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Deng Wu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Tianshu Hong
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qianqian Ren
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Shichao Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Yixue Bao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Wei Yao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qin Hu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Xu Y, Zhang S, Zhang M, Jiao S, Guo Y, Jiang T. The role of reactive oxygen species in plant-virus interactions. PLANT CELL REPORTS 2024; 43:197. [PMID: 39014054 DOI: 10.1007/s00299-024-03280-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Reactive oxygen species (ROS) play a complex role in interactions between plant viruses and their host plants. They can both help the plant defend against viral infection and support viral infection and spread. This review explores the various roles of ROS in plant-virus interactions, focusing on their involvement in symptom development and the activation of plant defense mechanisms. The article discusses how ROS can directly inhibit viral infection, as well as how they can regulate antiviral mechanisms through various pathways involving miRNAs, virus-derived small interfering RNAs, viral proteins, and host proteins. Additionally, it examines how ROS can enhance plant resistance by interacting with hormonal pathways and external substances. The review also considers how ROS might promote viral infection and transmission, emphasizing their intricate role in plant-virus dynamics. These insights offer valuable guidance for future research, such as exploring the manipulation of ROS-related gene expression through genetic engineering, developing biopesticides, and adjusting environmental conditions to improve plant resistance to viruses. This framework can advance research in plant disease resistance, agricultural practices, and disease control.
Collapse
Affiliation(s)
- Yao Xu
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Sutong Zhang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mengyuan Zhang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Sibo Jiao
- School of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Yifan Guo
- A School of Pharmaceutical Science, Capital Medical University, Beijing, 100069, China
| | - Tong Jiang
- School of Life Science, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
5
|
Ju JF, Yang L, Shen C, Li JC, Hoffmann AA, Huang YX, Zhu F, Ji R, Luo GH, Fang JC. Defence and nutrition synergistically contribute to the distinct tolerance of rice subspecies to the stem borer, Chilo suppressalis. PLANT, CELL & ENVIRONMENT 2024; 47:2426-2442. [PMID: 38497544 DOI: 10.1111/pce.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Damage caused by the rice striped stem borer (SSB), Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), is much more severe on indica/xian rice than on japonica/geng rice (Oryza sativa) which matches pest outbreak data in cropping regions of China. The mechanistic basis of this difference among rice subspecies remains unclear. Using transcriptomic, metabolomic and genetic analyses in combination with insect bioassay experiments, we showed that japonica and indica rice utilise different defence responses to repel SSB, and that SSB exploited plant nutrition deficiencies in different ways in the subspecies. The more resistant japonica rice induced patterns of accumulation of methyl jasmonate (MeJA-part of a defensive pathway) and vitamin B1 (VB1-a nutrition pathway) distinct from indica cultivars. Using gene-edited rice plants and SSB bioassays, we found that MeJA and VB1 jointly affected the performance of SSB by disrupting juvenile hormone levels. In addition, genetic variants of key biosynthesis genes in the MeJA and VB1 pathways (OsJMT and OsTH1, respectively) differed between japonica and indica rice and contributed to performance differences; in indica rice, SSB avoided the MeJA defence pathway and hijacked the VB1 nutrition-related pathway to promote development. The findings highlight important genetic and mechanistic differences between rice subspecies affecting SSB damage which could be exploited in plant breeding for resistance.
Collapse
Affiliation(s)
- Jia-Fei Ju
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Yang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chen Shen
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian-Cai Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yu-Xuan Huang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Feng Zhu
- Jiangsu Plant Protection and Quarantine Station, Nanjing, China
| | - Rui Ji
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guang-Hua Luo
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ji-Chao Fang
- Jiangsu Key Laboratory for Food and Safety (State Key Laboratory Cultivation Base of Ministry of Science and Technology), Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
6
|
Faustino M, Lourenço T, Strobbe S, Cao D, Fonseca A, Rocha I, Van Der Straeten D, Oliveira MM. OsTH1 is a key player in thiamin biosynthesis in rice. Sci Rep 2024; 14:13591. [PMID: 38866808 PMCID: PMC11169455 DOI: 10.1038/s41598-024-62326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Thiamin is a vital nutrient that acts as a cofactor for several enzymes primarily localized in the mitochondria. These thiamin-dependent enzymes are involved in energy metabolism, nucleic acid biosynthesis, and antioxidant machinery. The enzyme HMP-P kinase/thiamin monophosphate synthase (TH1) holds a key position in thiamin biosynthesis, being responsible for the phosphorylation of HMP-P into HMP-PP and for the condensation of HMP-PP and HET-P to form TMP. Through mathematical kinetic model, we have identified TH1 as a critical player for thiamin biofortification in rice. We further focused on the functional characterization of OsTH1. Sequence and gene expression analysis, along with phylogenetic studies, provided insights into OsTH1 bifunctional features and evolution. The indispensable role of OsTH1 in thiamin biosynthesis was validated by heterologous expression of OsTH1 and successful complementation of yeast knock-out mutants impaired in thiamin production. We also proved that the sole OsTH1 overexpression in rice callus significantly improves B1 concentration, resulting in 50% increase in thiamin accumulation. Our study underscores the critical role of OsTH1 in thiamin biosynthesis, shedding light on its bifunctional nature and evolutionary significance. The significant enhancement of thiamin accumulation in rice callus upon OsTH1 overexpression constitutes evidence of its potential application in biofortification strategies.
Collapse
Affiliation(s)
- Maria Faustino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | - Tiago Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
- University of Geneva, Quai E. Ansermet 30, 1211, Geneva, Switzerland
| | - Da Cao
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium
| | - André Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Isabel Rocha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000, Gent, Belgium.
| | - M Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
7
|
Yang J, Chen L, Zhang J, Liu P, Chen M, Chen Z, Zhong K, Liu J, Chen J, Yang J. TaTHI2 interacts with Ca 2+-dependent protein kinase TaCPK5 to suppress virus infection by regulating ROS accumulation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1335-1351. [PMID: 38100262 PMCID: PMC11022809 DOI: 10.1111/pbi.14270] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/09/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Thiamine (vitamin B1) biosynthesis involves key enzymes known as thiazole moieties (THI1/THI2), which have been shown to participate in plant responses to abiotic stress. However, the role of THI1/THI2 in plant immunity remains unclear. In this study, we cloned TaTHI2 from wheat and investigated its function in Chinese wheat mosaic virus (CWMV) infection. Overexpression of TaTHI2 (TaTHI2-OE) inhibited CWMV infection, while TaTHI2 silencing enhanced viral infection in wheat. Interestingly, the membrane-localized TaTHI2 protein was increased during CWMV infection. TaTHI2 also interacted with the Ca2+-dependent protein kinase 5 (TaCPK5), which is localized in the plasma membrane, and promoted reactive oxygen species (ROS) production by repressing TaCPK5-mediated activity of the catalase protein TaCAT1. CWMV CP disrupted the interaction between TaTHI2 and TaCAT1, reducing ROS accumulation and facilitating viral infection. Additionally, transgenic plants overexpressing TaTHI2 showed increased seed number per ear and 1000-kernel weight compared to control plants. Our findings reveal a novel function of TaTHI2 in plant immunity and suggest its potential as a valuable gene for balancing disease resistance and wheat yield. Furthermore, the disruption of the TaTHI2-mediated plant immune pathway by CWMV CP provides further evidence for the evolutionary arms race between plants and viruses.
Collapse
Affiliation(s)
- Jin Yang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
- College of Plant ProtectionNorthwest Agriculture and Forestry UniversityYanglingChina
| | - Lu Chen
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijingChina
| | - Juan Zhang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Ming Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhihui Chen
- School of Life SciencesUniversity of DundeeDundeeUK
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro‐products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
8
|
Chung YH, Chen TC, Yang WJ, Chen SZ, Chang JM, Hsieh WY, Hsieh MH. Ectopic expression of a bacterial thiamin monophosphate kinase enhances vitamin B1 biosynthesis in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1330-1343. [PMID: 37996996 DOI: 10.1111/tpj.16563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.
Collapse
Affiliation(s)
- Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ting-Chieh Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wen-Ju Yang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Soon-Ziet Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Ming Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
9
|
Hsieh WY, Wang HM, Chung YH, Lee KT, Liao HS, Hsieh MH. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1383-1396. [PMID: 35791282 DOI: 10.1111/tpj.15895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Mei Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
10
|
Nie Y, Yu L, Mao L, Zou W, Zhang X, Zhao J. Vitamin B 1 THIAMIN REQUIRING1 synthase mediates the maintenance of chloroplast function by regulating sugar and fatty acid metabolism in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1575-1595. [PMID: 35603832 DOI: 10.1111/jipb.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Vitamin B1 (VB1), including thiamin, thiamin monophosphate (TMP), and thiamin pyrophosphate (TPP), is an essential micronutrient for all living organisms. Nevertheless, the precise function of VB1 in rice remains unclear. Here, we described a VB1 auxotrophic mutant, chlorotic lethal seedling (cles) from the mutation of OsTH1, which displayed collapsed chloroplast membrane system and decreased pigment content. OsTH1 encoded a phosphomethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase, and was expressed in various tissues, especially in seedlings, leaves, and young panicles. The VB1 content in cles was markedly reduced, despite an increase in the expression of VB1 synthesis genes. The decreased TPP content affected the tricarboxylic acid cycle, pentose phosphate pathway, and de novo fatty acid synthesis, leading to a reduction in fatty acids (C16:0 and C18:0) and sugars (sucrose and glucose) of cles. Additionally, irregular expression of chloroplast membrane synthesis genes led to membrane collapse. We also found that alternative splicing and translation allowed OsTH1 to be localized to both chloroplast and cytosol. Our study revealed that OsTH1 was an essential enzyme in VB1 biosynthesis and played crucial roles in seedling growth and development by participating in fatty acid and sugar metabolism, providing new perspectives on VB1 function in rice.
Collapse
Affiliation(s)
- Yanshen Nie
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lianlian Mao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiufeng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
11
|
Jabeen M, Akram NA, Ashraf M, Tyagi A, El-Sheikh MA, Ahmad P. Thiamin stimulates growth, yield quality and key biochemical processes of cauliflower (Brassica oleracea L. var. Botrytis) under arid conditions. PLoS One 2022; 17:e0266372. [PMID: 35613077 PMCID: PMC9132317 DOI: 10.1371/journal.pone.0266372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/20/2022] [Indexed: 11/18/2022] Open
Abstract
Thiamin is a crucial vitamin with a vast variety of anti-oxidative and physiological roles in plants subjected to abiotic stresses. We examined the efficiency of foliar-applied thiamin (50 and 100 mM) on growth, yield quality and key-biochemical characteristics of two cultivars (FD1 and FD3) of cauliflower (Brassica oleracea L.) under water-deficit stress. Water stress at the rate of 50% field capacity (F.C.) markedly decreased the plant biomass, leaf total phenolics and ascorbic acid (AsA) contents. In contrast, drought-induced increase was noted in the leaf [hydrogen peroxide (H2O2), AsA, proline, malondialdehyde (MDA), glycinebetaine (GB), total soluble proteins and oxidative defense system in terms of high activities of peroxidase (POD), and catalase (CAT) enzymes] and the inflorescence (total phenolics, proline, GB, MDA, H2O2, and activities of SOD and CAT enzymes) characteristics of cauliflower. However, foliar-applied thiamin significantly improved growth and physio-biochemical attributes except leaf and inflorescence MDA and H2O2 contents of both cauliflower cultivars under water stress. Overall, application of thiamin enhanced the plant growth may be associated with suppressed reactive oxygen species (ROS) and upregulated antioxidants defense system of cauliflower.
Collapse
Affiliation(s)
- Munifa Jabeen
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Nudrat Aisha Akram
- Department of Botany, Government College University, Faisalabad, Pakistan
- * E-mail: (NAA); (PA)
| | | | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mohamed A. El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, Govt. Degree College, Pulwama, Srinagar, Jammu and Kashmir, India
- * E-mail: (NAA); (PA)
| |
Collapse
|
12
|
Strobbe S, Verstraete J, Fitzpatrick TB, Faustino M, Lourenço TF, Oliveira MM, Stove C, Van Der Straeten D. A novel panel of yeast assays for the assessment of thiamin and its biosynthetic intermediates in plant tissues. THE NEW PHYTOLOGIST 2022; 234:748-763. [PMID: 35037254 PMCID: PMC9303440 DOI: 10.1111/nph.17974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Thiamin (or thiamine), known as vitamin B1, represents an indispensable component of human diets, being pivotal in energy metabolism. Thiamin research depends on adequate vitamin quantification in plant tissues. A recently developed quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is able to assess the level of thiamin, its phosphorylated entities and its biosynthetic intermediates in the model plant Arabidopsis thaliana, as well as in rice. However, their implementation requires expensive equipment and substantial technical expertise. Microbiological assays can be useful in deter-mining metabolite levels in plant material and provide an affordable alternative to MS-based analysis. Here, we evaluate, by comparison to the LC-MS/MS reference method, the potential of a carefully chosen panel of yeast assays to estimate levels of total vitamin B1, as well as its biosynthetic intermediates pyrimidine and thiazole in Arabidopsis samples. The examined panel of Saccharomyces cerevisiae mutants was, when implemented in microbiological assays, capable of correctly assigning a series of wild-type and thiamin biofortified Arabidopsis plant samples. The assays provide a readily applicable method allowing rapid screening of vitamin B1 (and its biosynthetic intermediates) content in plant material, which is particularly useful in metabolic engineering approaches and in germplasm screening across or within species.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| | - Jana Verstraete
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in PlantsDepartment of Botany and Plant BiologyUniversity of GenevaQuai E. Ansermet 301211GenevaSwitzerland
| | - Maria Faustino
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Tiago F. Lourenço
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Christophe Stove
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| |
Collapse
|
13
|
Strobbe S, Verstraete J, Stove C, Van Der Straeten D. Metabolic engineering provides insight into the regulation of thiamin biosynthesis in plants. PLANT PHYSIOLOGY 2021; 186:1832-1847. [PMID: 33944954 PMCID: PMC8331165 DOI: 10.1093/plphys/kiab198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 05/06/2023]
Abstract
Thiamin (or thiamine) is a water-soluble B-vitamin (B1), which is required, in the form of thiamin pyrophosphate, as an essential cofactor in crucial carbon metabolism reactions in all forms of life. To ensure adequate metabolic functioning, humans rely on a sufficient dietary supply of thiamin. Increasing thiamin levels in plants via metabolic engineering is a powerful strategy to alleviate vitamin B1 malnutrition and thus improve global human health. These engineering strategies rely on comprehensive knowledge of plant thiamin metabolism and its regulation. Here, multiple metabolic engineering strategies were examined in the model plant Arabidopsis thaliana. This was achieved by constitutive overexpression of the three biosynthesis genes responsible for B1 synthesis, HMP-P synthase (THIC), HET-P synthase (THI1), and HMP-P kinase/TMP pyrophosphorylase (TH1), either separate or in combination. By monitoring the levels of thiamin, its phosphorylated entities, and its biosynthetic intermediates, we gained insight into the effect of either strategy on thiamin biosynthesis. Moreover, expression analysis of thiamin biosynthesis genes showed the plant's intriguing ability to respond to alterations in the pathway. Overall, we revealed the necessity to balance the pyrimidine and thiazole branches of thiamin biosynthesis and assessed its biosynthetic intermediates. Furthermore, the accumulation of nonphosphorylated intermediates demonstrated the inefficiency of endogenous thiamin salvage mechanisms. These results serve as guidelines in the development of novel thiamin metabolic engineering strategies.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Jana Verstraete
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, B-9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, B-9000 Ghent, Belgium
- Author for communication:
| |
Collapse
|
14
|
Strobbe S, Verstraete J, Stove C, Van Der Straeten D. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1253-1267. [PMID: 33448624 PMCID: PMC8196658 DOI: 10.1111/pbi.13545] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/01/2020] [Indexed: 05/07/2023]
Abstract
Rice is a major food crop to approximately half of the human population. Unfortunately, the starchy endosperm, which is the remaining portion of the seed after polishing, contains limited amounts of micronutrients. Here, it is shown that this is particularly the case for thiamin (vitamin B1). Therefore, a tissue-specific metabolic engineering approach was conducted, aimed at enhancing the level of thiamin specifically in the endosperm. To achieve this, three major thiamin biosynthesis genes, THIC, THI1 and TH1, controlled by strong endosperm-specific promoters, were employed to obtain engineered rice lines. The metabolic engineering approaches included ectopic expression of THIC alone, in combination with THI1 (bigenic) or combined with both THI1 and TH1 (trigenic). Determination of thiamin and thiamin biosynthesis intermediates reveals the impact of the engineering approaches on endosperm thiamin biosynthesis. The results show an increase of thiamin in polished rice up to threefold compared to WT, and stable upon cooking. These findings confirm the potential of metabolic engineering to enhance de novo thiamin biosynthesis in rice endosperm tissue and aid in steering future biofortification endeavours.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityGentBelgium
| | - Jana Verstraete
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityGentBelgium
| | - Christophe Stove
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityGentBelgium
| | | |
Collapse
|
15
|
Hellmann H, Goyer A, Navarre DA. Antioxidants in Potatoes: A Functional View on One of the Major Food Crops Worldwide. Molecules 2021; 26:2446. [PMID: 33922183 PMCID: PMC8122721 DOI: 10.3390/molecules26092446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
With a growing world population, accelerating climate changes, and limited arable land, it is critical to focus on plant-based resources for sustainable food production. In addition, plants are a cornucopia for secondary metabolites, of which many have robust antioxidative capacities and are beneficial for human health. Potato is one of the major food crops worldwide, and is recognized by the United Nations as an excellent food source for an increasing world population. Potato tubers are rich in a plethora of antioxidants with an array of health-promoting effects. This review article provides a detailed overview about the biosynthesis, chemical and health-promoting properties of the most abundant antioxidants in potato tubers, including several vitamins, carotenoids and phenylpropanoids. The dietary contribution of diverse commercial and primitive cultivars are detailed and document that potato contributes much more than just complex carbohydrates to the diet. Finally, the review provides insights into the current and future potential of potato-based systems as tools and resources for healthy and sustainable food production.
Collapse
Affiliation(s)
- Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Aymeric Goyer
- Hermiston Agricultural Research and Extension Center, Department of Botany and Plant Pathology, Oregon State University, Hermiston, OR 97838, USA;
| | | |
Collapse
|
16
|
Fitzpatrick TB, Noordally Z. Of clocks and coenzymes in plants: intimately connected cycles guiding central metabolism? THE NEW PHYTOLOGIST 2021; 230:416-432. [PMID: 33264424 DOI: 10.1111/nph.17127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Plant fitness is a measure of the capacity of a plant to survive and reproduce in its particular environment. It is inherently dependent on plant health. Molecular timekeepers like the circadian clock enhance fitness due to their ability to coordinate biochemical and physiological processes with the environment on a daily basis. Central metabolism underlies these events and it is well established that diel metabolite adjustments are intimately and reciprocally associated with the genetically encoded clock. Thus, metabolic pathway activities are time-of-day regulated. Metabolite rhythms are driven by enzymes, a major proportion of which rely on organic coenzymes to facilitate catalysis. The B vitamin complex is the key provider of coenzymes in all organisms. Emerging evidence suggests that B vitamin levels themselves undergo daily oscillations in animals but has not been studied in any depth in plants. Moreover, it is rarely considered that daily rhythmicity in coenzyme levels may dictate enzyme activity levels and therefore metabolite levels. Here we put forward the proposal that B-vitamin-derived coenzyme rhythmicity is intertwined with metabolic and clock derived rhythmicity to achieve a tripartite homeostasis integrated into plant fitness.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Zeenat Noordally
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant Biology, University of Geneva, Geneva, 1211, Switzerland
| |
Collapse
|
17
|
Fitzpatrick TB, Chapman LM. The importance of thiamine (vitamin B 1) in plant health: From crop yield to biofortification. J Biol Chem 2020; 295:12002-12013. [PMID: 32554808 PMCID: PMC7443482 DOI: 10.1074/jbc.rev120.010918] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Ensuring that people have access to sufficient and nutritious food is necessary for a healthy life and the core tenet of food security. With the global population set to reach 9.8 billion by 2050, and the compounding effects of climate change, the planet is facing challenges that necessitate significant and rapid changes in agricultural practices. In the effort to provide food in terms of calories, the essential contribution of micronutrients (vitamins and minerals) to nutrition is often overlooked. Here, we focus on the importance of thiamine (vitamin B1) in plant health and discuss its impact on human health. Vitamin B1 is an essential dietary component, and deficiencies in this micronutrient underlie several diseases, notably nervous system disorders. The predominant source of dietary vitamin B1 is plant-based foods. Moreover, vitamin B1 is also vital for plants themselves, and its benefits in plant health have received less attention than in the human health sphere. In general, vitamin B1 is well-characterized for its role as a coenzyme in metabolic pathways, particularly those involved in energy production and central metabolism, including carbon assimilation and respiration. Vitamin B1 is also emerging as an important component of plant stress responses, and several noncoenzyme roles of this vitamin are being characterized. We summarize the importance of vitamin B1 in plants from the perspective of food security, including its roles in plant disease resistance, stress tolerance, and crop yield, and review the potential benefits of biofortification of crops with increased vitamin B1 content to improve human health.
Collapse
Affiliation(s)
- Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.
| | - Lottie M Chapman
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Noordally ZB, Trichtinger C, Dalvit I, Hofmann M, Roux C, Zamboni N, Pourcel L, Gas-Pascual E, Gisler A, Fitzpatrick TB. The coenzyme thiamine diphosphate displays a daily rhythm in the Arabidopsis nucleus. Commun Biol 2020; 3:209. [PMID: 32372067 PMCID: PMC7200797 DOI: 10.1038/s42003-020-0927-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
In plants, metabolic homeostasis—the driving force of growth and development—is achieved through the dynamic behavior of a network of enzymes, many of which depend on coenzymes for activity. The circadian clock is established to influence coordination of supply and demand of metabolites. Metabolic oscillations independent of the circadian clock, particularly at the subcellular level is unexplored. Here, we reveal a metabolic rhythm of the essential coenzyme thiamine diphosphate (TDP) in the Arabidopsis nucleus. We show there is temporal separation of the clock control of cellular biosynthesis and transport of TDP at the transcriptional level. Taking advantage of the sole reported riboswitch metabolite sensor in plants, we show that TDP oscillates in the nucleus. This oscillation is a function of a light-dark cycle and is independent of circadian clock control. The findings are important to understand plant fitness in terms of metabolite rhythms. Noordally et al. show that the essential coenzyme thiamine diphosphate exhibits a daily rhythm in the Arabidopsis nucleus, which is driven by light-dark cycles and not by the circadian clock. This study provides insight into our understanding of the optimization of plant fitness.
Collapse
Affiliation(s)
- Zeenat B Noordally
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Celso Trichtinger
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Ivan Dalvit
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Manuel Hofmann
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Céline Roux
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Lucille Pourcel
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Elisabet Gas-Pascual
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Alexandra Gisler
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
19
|
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. PLANTS 2020; 9:plants9010101. [PMID: 31941157 PMCID: PMC7020166 DOI: 10.3390/plants9010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Cell compartmentalization allows incompatible chemical reactions and localised responses to occur simultaneously, however, it also requires a complex system of communication between compartments in order to maintain the functionality of vital processes. It is clear that multiple such signals must exist, yet little is known about the identity of the key players orchestrating these interactions or about the role in the coordination of other processes. Mitochondria and chloroplasts have a considerable number of metabolites in common and are interdependent at multiple levels. Therefore, metabolites represent strong candidates as communicators between these organelles. In this context, vitamins and similar small molecules emerge as possible linkers to mediate metabolic crosstalk between compartments. This review focuses on two vitamins as potential metabolic signals within the plant cell, vitamin C (L-ascorbate) and vitamin B1 (thiamin). These two vitamins demonstrate the importance of metabolites in shaping cellular processes working as metabolic signals during acclimation processes. Inferences based on the combined studies of environment, genotype, and metabolite, in order to unravel signaling functions, are also highlighted.
Collapse
|
20
|
Yin Y, Tian L, Li X, Huang M, Liu L, Wu P, Li M, Jiang H, Wu G, Chen Y. The role of endogenous thiamine produced via THIC in root nodule symbiosis in Lotus japonicus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:311-320. [PMID: 31128701 DOI: 10.1016/j.plantsci.2019.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Thiamine is a pivotal primary metabolite which is indispensable to all organisms. Although its biosynthetic pathway has been well documented, the mechanism by which thiamine influences the legume-rhizobium symbiosis remains uncertain. Here, we used overexpressing transgenic plants, mutants and grafting experiments to investigate the roles played by thiamine in Lotus japonicus nodulation. ljthic mutants displayed lethal phenotypes and the defect could be overcome by supplementation of thiamine or by overexpression of LjTHIC. Reciprocal grafting between L. japonicus wild-type Gifu B-129 and ljthic showed that the photosynthetic products of the aerial part made a major contribution to overcoming the nodulation defect in ljthic. Overexpression of LjTHIC in Lotus japonicus (OE-LjTHIC) decreased shoot growth and increased the activity of the enzymes 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase. OE-LjTHIC plants exhibited an increase in the number of infection threads and also developed more nodules, which were of smaller size but unchanged nitrogenase activity compared to the wildtype. Taken together, our results suggest that endogenous thiamine produced via LjTHIC acts as an essential nutrient provided by the host plant for rhizobial infection and nodule growth in the Lotus japonicus - rhizobium interaction.
Collapse
Affiliation(s)
- Yehu Yin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lu Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xueliu Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Mingchao Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Leru Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Pingzhi Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Meiru Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Huawu Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Guojiang Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Yaping Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
21
|
Feng X, Yang S, Tang K, Zhang Y, Leng J, Ma J, Wang Q, Feng X. GmPGL1, a Thiamine Thiazole Synthase, Is Required for the Biosynthesis of Thiamine in Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:1546. [PMID: 31824549 PMCID: PMC6883718 DOI: 10.3389/fpls.2019.01546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/05/2019] [Indexed: 05/21/2023]
Abstract
Thiamine is an essential cofactor in several enzymatic reactions for all living organisms. Animals cannot synthesize thiamine and depend on their diet. Enhancing the content of thiamine is one of the most important goals of plant breeding to solve the thiamine deficiency associated with the low-thiamin staple crops. In this study, a Glycine max pale green leaf 1 (Gmpgl1) mutant was isolated from the EMS mutagenized population of soybean cultivar, Williams 82. Map-based cloning of the GmPGL1 locus revealed a single nucleotide deletion at the 292th nucleotide residue of the first exon of Glyma.10g251500 gene in Gmpgl1 mutant plant, encoding a thiamine thiazole synthase. Total thiamine contents decreased in both seedlings and seeds of the Gmpgl1 mutant. Exogenous application of thiazole restored the pale green leaf phenotype of the mutant. The deficiency of thiamine in Gmpgl1 mutant led to reduced activities of the pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC), and decreased contents of six amino acids as compared to that in the wild type plants. These results revealed that GmPGL1 played an essential role in thiamine thiazole biosynthesis.
Collapse
Affiliation(s)
- Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Suxin Yang,
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Quan Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
22
|
Li J, Liu J, Wen W, Zhang P, Wan Y, Xia X, Zhang Y, He Z. Genome-wide association mapping of vitamins B1 and B2 in common wheat. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
24
|
Minhas AP, Tuli R, Puri S. Pathway Editing Targets for Thiamine Biofortification in Rice Grains. FRONTIERS IN PLANT SCIENCE 2018; 9:975. [PMID: 30042775 PMCID: PMC6048418 DOI: 10.3389/fpls.2018.00975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/15/2018] [Indexed: 05/21/2023]
Abstract
Thiamine deficiency is common in populations consuming polished rice as a major source of carbohydrates. Thiamine is required to synthesize thiamine pyrophosphate (TPP), an essential cofactor of enzymes of central metabolism. Its biosynthesis pathway has been partially elucidated and the effect of overexpression of a few genes such as thi1 and thiC, on thiamine accumulation in rice has been reported. Based on current knowledge, this review focuses on the potential of gene editing in metabolic engineering of thiamine biosynthesis pathway to improve thiamine in rice grains. Candidate genes, suitable for modification of the structural part to evolve more efficient versions of enzymes in the pathway, are discussed. For example, adjacent cysteine residues may be introduced in the catalytic domain of thi4 to improve the turn over activity of thiamine thiazole synthase 2. Motif specific editing to modify promoter regulatory regions of genes is discussed to modulate gene expression. Editing cis acting regulatory elements in promoter region can shift the expression of transporters and thiamine binding proteins to endosperm. This can enhance dietary availability of thiamine from rice grains. Differential transcriptomics on rice varieties with contrasting grain thiamine and functional genomic studies will identify more strategic targets for editing in future. Developing functionally enhanced foods by biofortification is a sustainable approach to make diets wholesome.
Collapse
|
25
|
Abstract
Vitamin B1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 µM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium [(1.16 ± 0.18) × 10-6 pmol thiamin cell-1], whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies [(2.22 ± 0.07) × 10-7 or (1.58 ± 0.14) × 10-7 pmol thiamin cell-1, respectively] were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelagomonas calceolata Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure.IMPORTANCE The concept that vitamin B1 (thiamin) availability in seawater controls the productivity and structure of eukaryotic phytoplankton communities has been discussed for half a century. We examined B1 biosynthesis and salvage pathways in diverse phytoplankton species. These comparative genomic analyses as well as experiments show that phytoplankton thought to require exogenous B1 not only utilize intermediate compounds to meet this need but also exhibit stronger growth on these compounds than on thiamin. Furthermore, oceanic phytoplankton have lower cellular thiamin quotas than previously reported, and salvage of intermediate compounds is likely a key mechanism for meeting B1 requirements under environmentally relevant scenarios. Thus, several lines of evidence now suggest that availability of specific precursor molecules could be more important in structuring phytoplankton communities than the vitamin itself. This understanding of preferential compound utilization and thiamin quotas will improve biogeochemical model parameterization and highlights interaction networks among ocean microbes.
Collapse
|
26
|
Hsieh WY, Liao JC, Wang HT, Hung TH, Tseng CC, Chung TY, Hsieh MH. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B 1 biosynthesis pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:145-157. [PMID: 28346710 DOI: 10.1111/tpj.13552] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 05/24/2023]
Abstract
Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
27
|
Mangel N, Fudge JB, Fitzpatrick TB, Gruissem W, Vanderschuren H. Vitamin B1 diversity and characterization of biosynthesis genes in cassava. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3351-3363. [PMID: 28859374 PMCID: PMC5853225 DOI: 10.1093/jxb/erx196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/22/2017] [Indexed: 05/06/2023]
Abstract
Vitamin B1, which consists of the vitamers thiamin and its phosphorylated derivatives, is an essential micronutrient for all living organisms because it is required as a metabolic cofactor in several enzymatic reactions. Genetic diversity of vitamin B1 biosynthesis and accumulation has not been investigated in major crop species other than rice and potato. We analyzed cassava germplasm for accumulation of B1 vitamers. Vitamin B1 content in leaves and roots of 41 cassava accessions showed significant variation between accessions. HPLC analyses of B1 vitamers revealed distinct profiles in cassava leaves and storage roots, with nearly equal relative levels of thiamin pyrophosphate and thiamin monophosphate in leaves, but mostly thiamin pyrophosphate in storage roots. Unusually, the cassava genome has two genes encoding the 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, THIC (MeTHIC1 and MeTHIC2), both of which carry a riboswitch in the 3'-UTR, as well as the adenylated thiazole synthase, THI1 (MeTHI1a and MeTHI1b). The THIC and THI1 genes are expressed at very low levels in storage roots compared with the accumulation of vitamin B1, indicating only limited biosynthesis de novo therein. In leaves, vitamin B1 content is negatively correlated with THIC and THI1 expression levels, suggesting post-transcriptional regulation of THIC by the riboswitch present in the 3'-UTR of the THIC mRNA and regulation of THI1 by promoter activity or alternative post-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Jared B Fudge
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Hervé Vanderschuren
- Department of Biology, ETH Zurich, Zurich, Switzerland
- AgroBioChem Department, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
28
|
Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proc Natl Acad Sci U S A 2017; 114:E1091-E1100. [PMID: 28137884 PMCID: PMC5321015 DOI: 10.1073/pnas.1616142114] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted "S"-shaped conformation when bound to A. thaliana AHAS (AtAHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors.
Collapse
|
29
|
Goyer A. Thiamin biofortification of crops. Curr Opin Biotechnol 2016; 44:1-7. [PMID: 27750185 DOI: 10.1016/j.copbio.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/08/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022]
Abstract
Thiamin is essential for human health. While plants are the ultimate source of thiamin in most human diets, staple foods like white rice have low thiamin content. Therefore, populations whose diets are mainly based on low-thiamin staple crops suffer from thiamin deficiency. Biofortification of rice grain by engineering the thiamin biosynthesis pathway has recently been attempted, with up to 5-fold increase in thiamin content in unpolished seeds. However, polished seeds that retain only the starchy endosperm had similar thiamin content than that of non-engineered plants. Various factors such as limited supply of precursors, limited activity of thiamin biosynthetic enzymes, dependence on maternal tissues to supply thiamin, or lack of thiamin stabilizing proteins may have hindered thiamin increase in the endosperm.
Collapse
Affiliation(s)
- Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, United States; Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR 97838, United States.
| |
Collapse
|
30
|
Martinis J, Gas-Pascual E, Szydlowski N, Crèvecoeur M, Gisler A, Bürkle L, Fitzpatrick TB. Long-Distance Transport of Thiamine (Vitamin B1) Is Concomitant with That of Polyamines. PLANT PHYSIOLOGY 2016; 171:542-53. [PMID: 27006489 PMCID: PMC4854701 DOI: 10.1104/pp.16.00009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/20/2016] [Indexed: 05/03/2023]
Abstract
Thiamine (vitamin B1) is ubiquitous and essential for cell energy supply in all organisms as a vital metabolic cofactor, known for over a century. In plants, it is established that biosynthesis de novo is taking place predominantly in green tissues and is furthermore limited to plastids. Therefore, transport mechanisms are required to mediate the movement of this polar metabolite from source to sink tissue to activate key enzymes in cellular energy generating pathways but are currently unknown. Similar to thiamine, polyamines are an essential set of charged molecules required for diverse aspects of growth and development, the homeostasis of which necessitates long-distance transport processes that have remained elusive. Here, a yeast-based screen allowed us to identify Arabidopsis (Arabidopsis thaliana) PUT3 as a thiamine transporter. A combination of biochemical, physiological, and genetic approaches permitted us to show that PUT3 mediates phloem transport of both thiamine and polyamines. Loss of function of PUT3 demonstrated that the tissue distribution of these metabolites is altered with growth and developmental consequences. The pivotal role of PUT3 mediated thiamine and polyamine homeostasis in plants, and its importance for plant fitness is revealed through these findings.
Collapse
Affiliation(s)
- Jacopo Martinis
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Elisabet Gas-Pascual
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Nicolas Szydlowski
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Michèle Crèvecoeur
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Alexandra Gisler
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Lukas Bürkle
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland (J.M., E.G.-P., N.S., M.C., A.G., T.B.F.); andInstitute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland (L.B.)
| |
Collapse
|
31
|
Wang L, Ye, Liu H, Liu X, Wei C, Huang Y, Liu Y, Tu J. Both overexpression and suppression of an Oryza sativa NB-LRR-like gene OsLSR result in autoactivation of immune response and thiamine accumulation. Sci Rep 2016; 6:24079. [PMID: 27052628 PMCID: PMC4823736 DOI: 10.1038/srep24079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/18/2016] [Indexed: 01/27/2023] Open
Abstract
Tight and accurate regulation of immunity and thiamine biosynthesis is critical for proper defence mechanisms and several primary metabolic cycles in plants. Although thiamine is known to enhance plant defence by priming, the mechanism by which thiamine biosynthesis responds to immune signals remains poorly understood. Here we identified a novel rice (Oryza sativa L.) NB-LRR gene via an insertion mutation, this mutant confesses a low seed setting phenotype and the corresponding genetic locus was named OsLSR (Low seed setting related). Comparing with wildtype plant, both overexpression and suppression of OsLSR lead to the autoactivation of the rice immune system and accumulation of thiamine, which result in a great fitness cost and yield penalty. Moreover, when fused with eGFP at their C terminus, two fragments, OsLSR1-178 and OsLSR464-546, localized to chloroplasts where thiamine is produced. Our result suggests that OsLSR differs from traditional NB-LRR genes. Its expression is closely related to the immune status and thiamine level in plant cells and should be maintained within a narrow range for rice growth.
Collapse
Affiliation(s)
- Liangchao Wang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Ye
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Huachun Liu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Xuejiao Liu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Chuchu Wei
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Yuqing Huang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Yujun Liu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Jumin Tu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| |
Collapse
|
32
|
Li CL, Wang M, Wu XM, Chen DH, Lv HJ, Shen JL, Qiao Z, Zhang W. THI1, a Thiamine Thiazole Synthase, Interacts with Ca2+-Dependent Protein Kinase CPK33 and Modulates the S-Type Anion Channels and Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:1090-104. [PMID: 26662273 PMCID: PMC4734576 DOI: 10.1104/pp.15.01649] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 05/06/2023]
Abstract
Thiamine is required for both plant growth and development. Here, the involvement of a thiamine thiazole synthase, THI1, has been demonstrated in both guard cell abscisic acid (ABA) signaling and the drought response in Arabidopsis (Arabidopsis thaliana). THI1 overexpressors proved to be more sensitive to ABA than the wild type with respect to both the activation of guard cell slow type anion channels and stomatal closure; this effectively reduced the rate of water loss from the plant and thereby enhanced its level of drought tolerance. A yeast two-hybrid strategy was used to screen a cDNA library from epidermal strips of leaves for THI1 regulatory factors, and identified CPK33, a Ca(2+)-dependent protein kinase, as interactor with THI1 in a plasma membrane-delimited manner. Loss-of-function cpk33 mutants were hypersensitive to ABA activation of slow type anion channels and ABA-induced stomatal closure, while the CPK33 overexpression lines showed opposite phenotypes. CPK33 kinase activity was essential for ABA-induced stomatal closure. Consistent with their contrasting regulatory role over stomatal closure, THI1 suppressed CPK33 kinase activity in vitro. Together, our data reveal a novel regulatory role of thiamine thiazole synthase to kinase activity in guard cell signaling.
Collapse
Affiliation(s)
- Chun-Long Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xiao-Meng Wu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Dong-Hua Chen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Hong-Jun Lv
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Jian-Lin Shen
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Zhu Qiao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
33
|
Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis. Biochem J 2016; 473:157-66. [DOI: 10.1042/bj20150805] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/03/2015] [Indexed: 01/17/2023]
Abstract
To make thiamin diphosphate (ThDP), plants and many micro-organisms first dephosphorylate thiamin monophosphate (ThMP). This dephosphorylation has been thought to be mediated by non-specific enzymes. However, comparative genomic, genetic and biochemical evidences implicate specific HAD family phosphatases in bacteria and plants.
Collapse
|
34
|
Dong W, Thomas N, Ronald PC, Goyer A. Overexpression of Thiamin Biosynthesis Genes in Rice Increases Leaf and Unpolished Grain Thiamin Content But Not Resistance to Xanthomonas oryzae pv. oryzae. FRONTIERS IN PLANT SCIENCE 2016; 7:616. [PMID: 27242822 PMCID: PMC4861732 DOI: 10.3389/fpls.2016.00616] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/22/2016] [Indexed: 05/06/2023]
Abstract
Thiamin diphosphate (ThDP), also known as vitamin B1, serves as an enzymatic cofactor in glucose metabolism, the Krebs cycle, and branched-chain amino acid biosynthesis in all living organisms. Unlike plants and microorganisms, humans are not able to synthesize ThDP de novo and must obtain it from their diet. Staple crops such as rice are poor sources of thiamin. Hence, populations that mainly consume rice commonly suffer thiamin deficiency. In addition to thiamin's nutritional function, studies in rice have shown that some thiamin biosynthesis genes are involved in resistance to Xanthomonas oryzae, which causes a serious disease in rice fields. This study shows that overexpression of two thiamin biosynthesis genes, 4-methyl-5-β-hydroxyethylthiazole phosphate synthase and 4-amino-2-methyl-5-hydroxymethylpyrimidine phosphate synthase, involved in the first steps of the thiazole and pyrimidine synthesis branches, respectively, increased thiamin content up to fivefold in unpolished seeds that retain the bran. However, thiamin levels in polished seeds with removed bran were similar to those found in polished control seeds. Plants with higher accumulation of thiamin did not show enhanced resistance to X. oryzae. These results indicate that stacking of two traits can enhance thiamin accumulation in rice unpolished grain. We discuss potential roadblocks that prevent thiamin accumulation in the endosperm.
Collapse
Affiliation(s)
- Wei Dong
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State UniversityHermiston, OR, USA
| | - Nicholas Thomas
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State UniversityHermiston, OR, USA
- *Correspondence: Aymeric Goyer,
| |
Collapse
|
35
|
Fitzpatrick TB, Thore S. Complex behavior: from cannibalism to suicide in the vitamin B1 biosynthesis world. Curr Opin Struct Biol 2014; 29:34-43. [DOI: 10.1016/j.sbi.2014.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
36
|
Bocobza SE, Malitsky S, Araújo WL, Nunes-Nesi A, Meir S, Shapira M, Fernie AR, Aharoni A. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. THE PLANT CELL 2013; 25:288-307. [PMID: 23341335 PMCID: PMC3584542 DOI: 10.1105/tpc.112.106385] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/13/2012] [Accepted: 12/30/2012] [Indexed: 05/18/2023]
Abstract
Riboswitches are natural RNA elements that posttranscriptionally regulate gene expression by binding small molecules and thereby autonomously control intracellular levels of these metabolites. Although riboswitch-based mechanisms have been examined extensively, the integration of their activity with global physiology and metabolism has been largely overlooked. Here, we explored the regulation of thiamin biosynthesis and the consequences of thiamin pyrophosphate riboswitch deficiency on metabolism in Arabidopsis thaliana. Our results show that thiamin biosynthesis is largely regulated by the circadian clock via the activity of the THIAMIN C SYNTHASE (THIC) promoter, while the riboswitch located at the 3' untranslated region of this gene controls overall thiamin biosynthesis. Surprisingly, the results also indicate that the rate of thiamin biosynthesis directs the activity of thiamin-requiring enzymes and consecutively determines the rate of carbohydrate oxidation via the tricarboxylic acid cycle and pentose-phosphate pathway. Our model suggests that in Arabidopsis, the THIC promoter and the thiamin-pyrophosphate riboswitch act simultaneously to tightly regulate thiamin biosynthesis in a circadian manner and consequently sense and control vital points of core cellular metabolism.
Collapse
Affiliation(s)
- Samuel E. Bocobza
- Department of Plant Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Wagner L. Araújo
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben Gurion University at the Negev, 84105 Beer Sheva, Israel
| | - Alisdair R. Fernie
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
- Address correspondence to
| |
Collapse
|
37
|
Frelin O, Agrimi G, Laera VL, Castegna A, Richardson LGL, Mullen RT, Lerma-Ortiz C, Palmieri F, Hanson AD. Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Funct Integr Genomics 2012; 12:317-26. [DOI: 10.1007/s10142-012-0273-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/17/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
38
|
Rapala-Kozik M, Wolak N, Kujda M, Banas AK. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC PLANT BIOLOGY 2012; 12:2. [PMID: 22214485 PMCID: PMC3261115 DOI: 10.1186/1471-2229-12-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 01/03/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Recent reports suggest that vitamin B1 (thiamine) participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds during the early (sensing) and late (adaptation) responses of Arabidopsis seedlings to oxidative, salinity and osmotic stress. The possible roles of plant hormones in the regulation of the thiamine contribution to stress responses were also explored. RESULTS The expression of Arabidopsis genes involved in the thiamine diphosphate biosynthesis pathway, including that of THI1, THIC, TH1 and TPK, was analyzed for 48 h in seedlings subjected to NaCl or sorbitol treatment. These genes were found to be predominantly up-regulated in the early phase (2-6 h) of the stress response. The changes in these gene transcript levels were further found to correlate with increases in thiamine and its diphosphate ester content in seedlings, as well as with the enhancement of gene expression for enzymes which require thiamine diphosphate as a cofactor, mainly α-ketoglutarate dehydrogenase, pyruvate dehydrogenase and transketolase. In the case of the phytohormones including the salicylic, jasmonic and abscisic acids which are known to be involved in plant stress responses, only abscisic acid was found to significantly influence the expression of thiamine biosynthetic genes, the thiamine diphosphate levels, as well as the expression of genes coding for main thiamine diphosphate-dependent enzymes. Using Arabidopsis mutant plants defective in abscisic acid production, we demonstrate that this phytohormone is important in the regulation of THI1 and THIC gene expression during salt stress but that the regulatory mechanisms underlying the osmotic stress response are more complex. CONCLUSIONS On the basis of the obtained results and earlier reported data, a general model is proposed for the involvement of the biosynthesis of thiamine compounds and thiamine diphosphate-dependent enzymes in abiotic stress sensing and adaptation processes in plants. A possible regulatory role of abscisic acid in the stress sensing phase is also suggested by these data.
Collapse
Affiliation(s)
- Maria Rapala-Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, Poland
| | - Natalia Wolak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, Poland
| | - Marta Kujda
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, Poland
| | - Agnieszka K Banas
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, Poland
| |
Collapse
|
39
|
Pribat A, Blaby IK, Lara-Núñez A, Jeanguenin L, Fouquet R, Frelin O, Gregory JF, Philmus B, Begley TP, de Crécy-Lagard V, Hanson AD. A 5-formyltetrahydrofolate cycloligase paralog from all domains of life: comparative genomic and experimental evidence for a cryptic role in thiamin metabolism. Funct Integr Genomics 2011; 11:467-78. [PMID: 21538139 PMCID: PMC6078417 DOI: 10.1007/s10142-011-0224-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/19/2011] [Accepted: 04/03/2011] [Indexed: 12/18/2022]
Abstract
A paralog (here termed COG0212) of the ATP-dependent folate salvage enzyme 5-formyltetrahydrofolate cycloligase (5-FCL) occurs in all domains of life and, although typically annotated as 5-FCL in pro- and eukaryotic genomes, is of unknown function. COG0212 is similar in overall structure to 5-FCL, particularly in the substrate binding region, and has distant similarity to other kinases. The Arabidopsis thaliana COG0212 protein was shown to be targeted to chloroplasts and to be required for embryo viability. Comparative genomic analysis revealed that a high proportion (19%) of archaeal and bacterial COG0212 genes are clustered on the chromosome with various genes implicated in thiamin metabolism or transport but showed no such association between COG0212 and folate metabolism. Consistent with the bioinformatic evidence for a role in thiamin metabolism, ablating COG0212 in the archaeon Haloferax volcanii caused accumulation of thiamin monophosphate. Biochemical and functional complementation tests of several known and hypothetical thiamin-related activities (involving thiamin, its breakdown products, and their phosphates) were, however, negative. Also consistent with the bioinformatic evidence, the COG0212 proteins from A. thaliana and prokaryote sources lacked 5-FCL activity in vitro and did not complement the growth defect or the characteristic 5-formyltetrahydrofolate accumulation of a 5-FCL-deficient (ΔygfA) Escherichia coli strain. We therefore propose (a) that COG0212 has an unrecognized yet sometimes crucial role in thiamin metabolism, most probably in salvage or detoxification, and (b) that is not a 5-FCL and should no longer be so annotated.
Collapse
Affiliation(s)
- Anne Pribat
- Horticultural Sciences Department, University of Florida, Gainesville, 32611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhao W, Cheng X, Huang Z, Fan H, Wu H, Ling HQ. Tomato LeTHIC is an Fe-Requiring HMP-P Synthase Involved in Thiamine Synthesis and Regulated by Multiple Factors. ACTA ACUST UNITED AC 2011; 52:967-82. [DOI: 10.1093/pcp/pcr048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:421-32. [PMID: 19641031 PMCID: PMC2735988 DOI: 10.1104/pp.109.140046] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 07/17/2009] [Indexed: 05/18/2023]
Abstract
Thiamin and thiamin pyrophosphate (TPP) are well known for their important roles in human nutrition and enzyme catalysis. In this work, we present new evidence for an additional role of these compounds in the protection of cells against oxidative damage. Arabidopsis (Arabidopsis thaliana) plants subjected to abiotic stress conditions, such as high light, cold, osmotic, salinity, and oxidative treatments, accumulated thiamin and TPP. Moreover, the accumulation of these compounds in plants subjected to oxidative stress was accompanied by enhanced expression of transcripts encoding thiamin biosynthetic enzymes. When supplemented with exogenous thiamin, wild-type plants displayed enhanced tolerance to oxidative stress induced by paraquat. Thiamin application was also found to protect the reactive oxygen species-sensitive ascorbate peroxidase1 mutant from oxidative stress. Thiamin-induced tolerance to oxidative stress was accompanied by decreased production of reactive oxygen species in plants, as evidenced from decreased protein carbonylation and hydrogen peroxide accumulation. Because thiamin could protect the salicylic acid induction-deficient1 mutant against oxidative stress, thiamin-induced oxidative protection is likely independent of salicylic acid signaling or accumulation. Taken together, our studies suggest that thiamin and TPP function as important stress-response molecules that alleviate oxidative stress during different abiotic stress conditions.
Collapse
Affiliation(s)
- Meral Tunc-Ozdemir
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Thiamine (vitamin B(1)) is an essential compound for organisms. It contains a pyrimidine ring structure and a thiazole ring structure. These two moieties of thiamine are synthesized independently and then coupled together. Here we report the molecular characterization of AtTHIC, which is involved in thiamine biosynthesis in Arabidopsis. AtTHIC is similar to Escherichia coli ThiC, which is involved in pyrimidine biosynthesis in prokaryotes. Heterologous expression of AtTHIC could functionally complement the thiC knock-out mutant of E. coli. Downregulation of AtTHIC expression by T-DNA insertion at its promoter region resulted in a drastic reduction of thiamine content in plants and the knock-down mutant thic1 showed albino (white leaves) and lethal phenotypes under the normal culture conditions. The thic1 mutant could be rescued by supplementation of thiamine and its defect functions could be complemented by expression of AtTHIC cDNA. Transient expression analysis revealed that the AtTHIC protein targets plastids and chloroplasts. AtTHIC was strongly expressed in leaves, flowers and siliques and the transcription of AtTHIC was downregulated by extrinsic thiamine. In conclusion, AtTHIC is a gene involved in pyrimidine synthesis in the thiamine biosynthesis pathway of Arabidopsis, and our results provide some new clues for elucidating the pathway of thiamine biosynthesis in plants.
Collapse
|
43
|
Rapala-Kozik M, Kowalska E, Ostrowska K. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4133-43. [PMID: 18940932 DOI: 10.1093/jxb/ern253] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The responses of plants to abiotic stress involve the up-regulation of numerous metabolic pathways, including several major routes that engage thiamine diphosphate (TDP)-dependent enzymes. This suggests that the metabolism of thiamine (vitamin B1) and its phosphate esters in plants may be modulated under various stress conditions. In the present study, Zea mays seedlings were used as a model system to analyse for any relation between the plant response to abiotic stress and the properties of thiamine biosynthesis and activation. Conditions of drought, high salt, and oxidative stress were induced by polyethylene glycol, sodium chloride, and hydrogen peroxide, respectively. The expected increases in the abscisic acid levels and in the activities of antioxidant enzymes including catalase, ascorbate peroxidase, and glutathione reductase were found under each stress condition. The total thiamine compound content in the maize seedling leaves increased under each stress condition applied, with the strongest effects on these levels observed under the oxidative stress treatment. This increase was also found to be associated with changes in the relative distribution of free thiamine, thiamine monophosphate (TMP), and TDP. Surprisingly, the activity of the thiamine synthesizing enzyme, TMP synthase, responded poorly to abiotic stress, in contrast to the significant enhancement found for the activities of the TDP synthesizing enzyme, thiamine pyrophosphokinase, and a number of the TDP/TMP phosphatases. Finally, a moderate increase in the activity of transketolase, one of the major TDP-dependent enzymes, was detectable under conditions of salt and oxidative stress. These findings suggest a role of thiamine metabolism in the plant response to environmental stress.
Collapse
Affiliation(s)
- Maria Rapala-Kozik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | | | |
Collapse
|
44
|
Ajjawi I, Rodriguez Milla MA, Cushman J, Shintani DK. Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2007; 65:151-62. [PMID: 17611796 DOI: 10.1007/s11103-007-9205-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 06/24/2007] [Indexed: 05/08/2023]
Abstract
Thiamin pyrophosphate (TPP) is an essential enzyme cofactor required for the viability of all organisms. Whether derived from exogenous sources or through de novo synthesis, thiamin must be pyrophosphorylated for cofactor activation. The enzyme thiamin pyrophosphokinase (TPK) catalyzes the conversion of free thiamin to TPP in plants and other eukaryotic organisms and is central to thiamin cofactor activation. While TPK activity has been observed in a number of plant species, the corresponding gene/protein has until now not been identified or characterized for its role in thiamin metabolism. Here we report the functional identification of two Arabidopsis TPK genes, AtTPK1 and AtTPK2 and the enzymatic characterization of the corresponding proteins. AtTPK1 and AtTPK2 are biochemically redundant cytosolic proteins that are similarly expressed throughout different plant tissues. The essential nature of TPKs in plant metabolism is reflected in the observation that while single gene knockouts of either AtTPK1 or AtTPK2 were viable, the double mutant possessed a seedling lethal phenotype. HPLC analysis revealed the double mutant is nearly devoid of TPP and instead accumulates the precursor of the TPK reaction, free thiamin. These results suggest that TPK activity provides the sole mechanism by which exogenous and de novo derived thiamin is converted to the enzyme cofactor TPP.
Collapse
Affiliation(s)
- Imad Ajjawi
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
45
|
Rébeillé F, Ravanel S, Marquet A, Mendel RR, Webb ME, Smith AG, Warren MJ. Roles of vitamins B5, B8, B9, B12 and molybdenum cofactor at cellular and organismal levels. Nat Prod Rep 2007; 24:949-62. [PMID: 17898891 DOI: 10.1039/b703104c] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many efforts have been made in recent decades to understand how coenzymes, including vitamins, are synthesised in organisms. In the present review, we describe the most recent findings about the biological roles of five coenzymes: folate (vitamin B9), pantothenate (vitamin B5), cobalamin (vitamin B12), biotin (vitamin B8) and molybdenum cofactor (Moco). In the first part, we will emphasise their biological functions, including the specific roles found in some organisms. In the second part we will present some nutritional aspects and potential strategies to enhance the cofactor contents in organisms of interest.
Collapse
Affiliation(s)
- Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, UMR5168, Université Joseph Fourier-CNRS-CEA-INRA, Institut de Recherche en Technologies et Sciences du Vivant, CEA-Grenoble, Grenoble, Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Rébeillé F, Alban C, Bourguignon J, Ravanel S, Douce R. The role of plant mitochondria in the biosynthesis of coenzymes. PHOTOSYNTHESIS RESEARCH 2007; 92:149-62. [PMID: 17464574 DOI: 10.1007/s11120-007-9167-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/05/2007] [Indexed: 05/15/2023]
Abstract
This last decade, many efforts were undertaken to understand how coenzymes, including vitamins, are synthesized in plants. Surprisingly, these metabolic pathways were often "quartered" between different compartments of the plant cell. Among these compartments, mitochondria often appear to have a key role, catalyzing one or several steps in these pathways. In the present review we will illustrate these new and important biosynthetic functions found in plant mitochondria by describing the most recent findings about the synthesis of two vitamins (folate and biotin) and one non-vitamin coenzyme (lipoate). The complexity of these metabolic routes raise intriguing questions, such as how the intermediate metabolites and the end-product coenzymes are exchanged between the various cellular territories, or what are the physiological reasons, if any, for such compartmentalization.
Collapse
Affiliation(s)
- Fabrice Rébeillé
- Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5168 CEA/CNRS/INRA/Université Joseph Fourier Grenoble, CEA-Grenoble, 17 rue des Martyrs, Grenoble Cedex 9, 38054, France,
| | | | | | | | | |
Collapse
|
47
|
Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG. Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep 2007; 24:988-1008. [PMID: 17898894 DOI: 10.1039/b703105j] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The elucidation of the pathways to the water-soluble vitamins and cofactors has provided many biochemical and chemical challenges. This is a reflection both of their complex chemical nature, and the fact that they are often made in small amounts, making detection of the enzyme activities and intermediates difficult. Here we present an orthogonal review of how these challenges have been overcome using a combination of methods, which are often ingenious. We make particular reference to some recent developments in the study of biotin, pantothenate, folate, pyridoxol, cobalamin, thiamine, riboflavin and molybdopterin biosynthesis.
Collapse
Affiliation(s)
- Michael E Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | | | | | | | | |
Collapse
|