1
|
A novel sterol glycosyltransferase catalyses steroidal sapogenin 3-O glucosylation from Paris polyphylla var. yunnanensis. Mol Biol Rep 2023; 50:2137-2146. [PMID: 36562935 DOI: 10.1007/s11033-022-08199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Paris polyphylla var. yunnanensis is an important medicinal plant, and the main active ingredient of the plant is polyphyllin, which is a steroid saponin with pharmacological activities. The central enzyme genes participating in the biosynthesis of polyphyllin are increasingly being uncovered; however, UGTs are rarely illustrated. METHODS AND RESULTS In this study, we cloned a new sterol glycosyltransferase from Paris polyphylla var. yunnanensis and identified its catalytic function in vitro. PpUGT6 showed the ability to catalyse the C-3 glycosylation of pennogenin sapogenin of polyphyllin, and PpUGT6 showed catalytic promiscuity towards steroids at the C-17 position of testosterone and methyltestosterone and the triterpene at the C-3 position of glycyrrhetinic acid. Homology modelling of the PpUGT6 protein and virtual molecular docking of PpUGT6 with sugar acceptors and donors were performed, and we predicted the key residues interacting with ligands. CONCLUSIONS Here, PpUGT6, a novel sterol glycosyltransferase related to the biosynthesis of polyphyllin from P. polyphylla, was characterized. PpUGT6 catalysed C-3 glycosylation to pennogenin sapogenin of polyphyllin, which is the first glycosylation step of the biosynthetic pathway of polyphyllins. Interestingly, PpUGT6 demonstrated glycodiversification to testosterone and methyltestosterone at C-17 and triterpene of glycyrrhetinic acid at the C-3 position. The virtual molecular docking of PpUGT6 protein with ligands predicted the key residues interacting with them. This work characterized a novel SGT glycosylating pennogenin sapogenin at C-3 of polyphyllin from P. polyphylla and provided a reference for further elucidation of the phytosterol glycosyltransferases in catalytic promiscuity and key residues interacting with substrates.
Collapse
|
2
|
Singh M, Agrawal S, Afzal O, Altamimi ASA, Redhwan A, Alshammari N, Patel M, Adnan M, Elasbali AM, Khan S. Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.). Metabolites 2022; 12:854. [PMID: 36144259 PMCID: PMC9502510 DOI: 10.3390/metabo12090854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed at optimizing conditions for increased withanolide production in Withania somnifera. The elicitors used for the foliar spray on the aerial parts of the plant were salicylic acid, jasmonic acid, and chitosan for the enhancement of withanolides in Withania somnifera under different environmental regimes. Three different elicitors, i.e., chitosan, jasmonic acid and salicylic acid, were applied on the plants through foliar route every 15th day for 6 months, and later plants were used for sample preparation. Further, the elicitors were used in different concentration, i.e., jasmonic acid (50, 200 and 400 ppm), chitosan (10, 50 and 100 ppm) and salicylic acid (0.5, 1 and 2 ppm). The elicitors were sprayed on the foliar parts of the plant between 10:00-11:00 a.m. on application days. For elicitor spray, a calibrated sprayer was used. The withanolide A/withaferin A was quantified through HPLC. It was found that in an open environment, maximum withaferin A content, i.e., 0.570 mg/g (DW), was recorded with jasmonic acid (50 ppm) treatment in comparison to control (0.067 mg/g DW). Thus, there was an 8.5-fold increase in the withaferin A content. Maximum withanolide A content of 0.352 mg/g (DW) was recorded when chitosan (50 ppm) was sprayed, while in the control, withanolide A content was recorded to be 0.031 mg/g (DW); thus, chitosan application increased the production of withanolide A by 11.3-fold. Under controlled conditions, maximum withaferin A content of 1.659 mg/g (DW) was recorded when plants were sprayed with chitosan (100 ppm), which was 8.1 times greater than the control content of 0.203 mg/g (DW). Maximum withanolide A content of 0.460 mg/g (DW) was recorded when chitosan (100 ppm) was applied, whereas in the control, withanolide A content was found to be 0.061 mg/g (DW). Thus, foliar spraying of elicitors in very low concentrations can serve as a low-cost, eco-friendly, labor-intensive and elegant alternative approach that can be practiced by farmers for the enhancement, consistent production and improved yield of withanolide A/withaferin A. This can be a suitable way to enhance plant productivity, thus increasing the availability of withanolide A and withaferin A for the health and pharma industry.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biochemistry, C.B.S.H., G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India
- Department of Biotechnology, Invertis University, Invertis Village, Bareilly- Lucknow National Highway, NH-24, Bareilly 243123, India
| | - Sanjeev Agrawal
- Department of Biochemistry, C.B.S.H., G.B. Pant University of Agriculture and Technology, Pantnagar 263145, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alya Redhwan
- Department of Health, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parole University, Vadodara 391760, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Science, Qurayyat, Jouf University, Sakaka 72341, Saudi Arabia
| | - Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Saharanpur 247554, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
3
|
Song W, Zhang C, Wu J, Qi J, Hua X, Kang L, Yuan Q, Yuan J, Xue Z. Characterization of Three Paris polyphylla Glycosyltransferases from Different UGT Families for Steroid Functionalization. ACS Synth Biol 2022; 11:1669-1680. [PMID: 35286065 DOI: 10.1021/acssynbio.2c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant steroid glycosides, such as phytosterol glycosides, steroidal saponins, and steroidal glycoalkaloids, are natural products with great pharmaceutical values. In this study, we characterized three UDP-glycosyltransferases (UGTs) involved in the glycosylation of steroidal sapogenin from Paris polyphylla. Substrate specificity analysis revealed that UGT73CR1 could glycosylate steroidal sapogenins and steroidal alkaloids, with the highest affinity for diosgenin. The residues His27 and Asp129 of UGT73CR1 are conserved in corresponding positions of plant glycosyltransferases, which are crucial for activating the C-3 OH of the receptor substrates. In comparison, UGT80A33 and UGT80A34 exhibited a higher affinity for cholesterol than other steroids. UGT80s have a larger active pocket, which allows them to accommodate the side chain of sterols. In summary, we assessed three P. polyphylla glycosyltransferases from two UGT families for the functionalization of steroidal molecules, which will provide a basis for the future biomanufacturing of diverse bioactive steroid glycosides.
Collapse
Affiliation(s)
- Wei Song
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Chunchun Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Jiali Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Jianzhao Qi
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization College of Life Science, Northeast Forestry University, Heilongjiang 150040, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi 712100, China
| | - Xin Hua
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization College of Life Science, Northeast Forestry University, Heilongjiang 150040, China
| | - Liping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang 310053, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361102, China
| | - Zheyong Xue
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization College of Life Science, Northeast Forestry University, Heilongjiang 150040, China
| |
Collapse
|
4
|
Ren J, Tang W, Barton CD, Price OM, Mortensen MW, Phillips A, Wald B, Hulme SE, Stanley LP, Hevel J, Zhan J. A highly versatile fungal glucosyltransferase for specific production of quercetin-7-O-β-D-glucoside and quercetin-3-O-β-D-glucoside in different hosts. Appl Microbiol Biotechnol 2021; 106:227-245. [PMID: 34874472 DOI: 10.1007/s00253-021-11716-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022]
Abstract
Glycosylation is an effective way to improve the water solubility of natural products. In this work, a novel glycosyltransferase gene (BbGT) was discovered from Beauveria bassiana ATCC 7159 and heterologously expressed in Escherichia coli. The purified enzyme was functionally characterized through in vitro enzymatic reactions as a UDP-glucosyltransferase, converting quercetin to five monoglucosylated and one diglucosylated products. The optimal pH and temperature for BbGT are 35 ℃ and 8.0, respectively. The activity of BbGT was stimulated by Ca2+, Mg2+, and Mn2+, but inhibited by Zn2+. BbGT enzyme is flexible and can glycosylate a variety of substrates such as curcumin, resveratrol, and zearalenone. The enzyme was also expressed in other microbial hosts including Saccharomyces cerevisiae, Pseudomonas putida, and Pichia pastoris. Interestingly, the major glycosylation product of quercetin in E. coli, P. putida, and P. pastoris was quercetin-7-O-β-D-glucoside, while the enzyme dominantly produced quercetin-3-O-β-D-glucoside in S. cerevisiae. The BbGT-harboring E. coli and S. cerevisiae strains were used as whole-cell biocatalysts to specifically produce the two valuable quercetin glucosides, respectively. The titer of quercetin-7-O-β-D-glucosides was 0.34 ± 0.02 mM from 0.83 mM quercetin in 24 h by BbGT-harboring E. coli. The yield of quercetin-3-O-β-D-glucoside was 0.22 ± 0.02 mM from 0.41 mM quercetin in 12 h by BbGT-harboring S. cerevisiae. This work thus provides an efficient way to produce two valuable quercetin glucosides through the expression of a versatile glucosyltransferase in different hosts. KEY POINTS: • A highly versatile glucosyltransferase was identified from B. bassiana ATCC 7159. • BbGT converts quercetin to five mono- and one di-glucosylated derivatives in vitro. • Different quercetin glucosides were produced by BbGT in E. coli and S. cerevisiae.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Wenzhu Tang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA.,School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Caleb Don Barton
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Owen M Price
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Mark Wayne Mortensen
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Alexandra Phillips
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Banner Wald
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Simon Elgin Hulme
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Logan Powell Stanley
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
| | - Joan Hevel
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT, 84322-0300, USA
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA.
| |
Collapse
|
5
|
Investigation of PtSGT1 and PtSGT4 Function in Cellulose Biosynthesis in Populus tomentosa Using CRISPR/Cas9 Technology. Int J Mol Sci 2021; 22:ijms222413200. [PMID: 34947996 PMCID: PMC8704405 DOI: 10.3390/ijms222413200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Cellulose synthesis is a complex process in plant cells that is important for wood processing, pulping, and papermaking. Cellulose synthesis begins with the glycosylation of sitosterol by sitosterol glycosyltransferase (SGT) to produce sitosterol-glucoside (SG), which acts as the guiding primer for cellulose production. However, the biological functions of SGTs in Populus tomentosa(P. tomentosa) remain largely unknown. Two full-length PtSGT genes (PtSGT1 and PtSGT4) were previously isolated from P. tomentosa and characterized. In the present study, CRISPR/Cas9 gene-editing technology was used to construct PtSGT1-sgRNA and PtSGT4-sgRNA expression vectors, which were genetically transformed into P. tomentosa using the Agrobacterium-mediated method to obtain transgenic lines. Nucleic acid and amino acid sequencing analysis revealed both base insertions and deletions, in addition to reading frame shifts and early termination of translation in the transgenic lines. Sugar metabolism analysis indicated that sucrose and fructose were significantly downregulated in stems and leaves of mutant PtSGT1-1 and PtSGT4-1. Glucose levels did not change significantly in roots and stems of PtSGT1-1 mutants; however, glucose was significantly upregulated in stems and downregulated in leaves of the PtSGT4-1 mutants. Dissection of the plants revealed disordered and loosely arranged xylem cells in the PtSGT4-1 mutant, which were larger and thinner than those of the wild-type. This work will enhance our understanding of cellulose synthesis in the cell walls of woody plants.
Collapse
|
6
|
Mishra MK, Tiwari S, Misra P. Overexpression of WssgtL3.1 gene from Withania somnifera confers salt stress tolerance in Arabidopsis. PLANT CELL REPORTS 2021; 40:2191-2204. [PMID: 33523260 DOI: 10.1007/s00299-021-02666-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/14/2021] [Indexed: 05/17/2023]
Abstract
Overexpression of Withania somnifera SGT gene (WssgtL3.1) in transgenic Arabidopsis improves various agronomic and physiological traits and alters conjugated sterol levels to mitigate the effect of salt stress. Sterols are essential constituents of cell membranes that are involved in several biological functions, including response to various biotic and abiotic stresses by altering membrane permeability and signaling pathways. Sterol glycosyltransferases (SGTs) are enzymes that are involved in sterol modification by converting sterols into sterol-conjugates to play essential roles in adaptive responses. However, their roles under abiotic stresses are lesser-known. Among abiotic stresses, salinity imposes serious threat to crop yield worldwide, hence the present study intends to investigate the role of WssgtL3.1-overexpressed Arabidopsis plants under salt stress indicating the crosstalk between SGT gene and salinity to develop improved crop varieties with better stress tolerance ability. The findings revealed that overexpression of WssgtL3.1 gene in A. thaliana improved the resistance against salt stress in the overexpressing lines. Transgenic lines showed significantly higher germination rate, increased plant growth with less chlorophyll damage compared to wild-type (WT) control plants. Moreover, better tolerance also correlated with enhanced osmolytes (proline and soluble sugar), better membrane integrity, decreased H2O2 production and lesser MDA accumulation and Na+/K+ ratio with more negative osmotic potential in overexpressed lines. Additionally, in sterol profiling, significant enhancement in stigmasterol was also observed in transgenic lines than WT plants. Furthermore, in expression profiling, salt responsive genes LEA 4-5, sucrose synthase, and transporter of monosaccharide (ERD) significantly upregulated in overexpressing lines as compared to WT. Thus our data strongly support the defensive role of Withania somnifera SGT gene (WssgtL3.1) against salt stress and contribute to improved salinity tolerance in plants through sterol modulation.
Collapse
Affiliation(s)
| | - Shalini Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Pratibha Misra
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| |
Collapse
|
7
|
Tripathi N, Shrivastava D, Ahmad Mir B, Kumar S, Govil S, Vahedi M, Bisen PS. Metabolomic and biotechnological approaches to determine therapeutic potential of Withania somnifera (L.) Dunal: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:127-136. [PMID: 30466971 DOI: 10.1016/j.phymed.2017.08.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/26/2017] [Accepted: 08/20/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Withania somnifera, a high value medicinal plant is a major source of pharmaceutically important active compounds withanolides. Withania somnifera has been used in ayurveda as health restorative and anabolic agent besides having anti-arthritic, antidepressant, anti-microbial, anti-inflammatory, anti-diabetic, anti-stress, neuroprotective and cardio-protective activities. HYPOTHESIS/PURPOSE The mining of the compound(s) of interest offers opportunity to identify desired attributes in the therapeutic area of interest. Metabolomic has become an important tool in the field of pharmacological and functional genomics of medicinal plants. The analysis supports the information regarding differential outline of the gene expression for increasing important withanolides viz. withanolide A and withaferin A in W. somnifera. STUDY DESIGN The bioinformatics and biotechnological approaches viz. tissue culture, genetic transformation, genomic, transcriptomic, proteomic, gene mining and metabolomic studies have opened new windows about engineering of withanolide production. METHODS Target and network analysis for maximum therapeutic potential of Withania somnifera have been determined by employing Genemania software for finding interactions among various human genes that are being affected by active constituents. RESULTS Some of the major bioactive compounds of Withania somnifera have been discussed on protein-protein, protein-DNA and genetic interactions with respect to gene and protein expression data, protein domains, metabolic profiling, root organ culture, genetic transformation and phenotypic screening profiles CONCLUSION: The implementation of latest bioinformatic tools in combination with biotechnological techniques for breeding platforms are important in conservation of medicinal plant species in danger. The current review is based on molecular and in vitro methodologies employed in W. somnifera for accepting their importance in the improvement of this valuable medicinal species.
Collapse
Affiliation(s)
- Niraj Tripathi
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur 482004, India
| | - Divya Shrivastava
- School of Life Sciences, Jaipur National University, Jaipur 302017, India
| | - Bilal Ahmad Mir
- Department of Botany, Satellite Campus Kargil, University of Kashmir, J&K, Srinagar-190006, India
| | - Shailesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
| | - Sumit Govil
- School of Life Sciences, Jaipur National University, Jaipur 302017, India
| | - Maryam Vahedi
- Department of Horticultural Science, Faculty of Agricultural Science & Engineering, University of Tehran 3391653755, Iran
| | - Prakash S Bisen
- School of Life Sciences, Jaipur National University, Jaipur 302017, India; School of Studies in Biotechnology, Jiwaji University, Gwalior 474001, India.
| |
Collapse
|
8
|
Singh G, Dhar YV, Asif MH, Misra P. Exploring the functional significance of sterol glycosyltransferase enzymes. Prog Lipid Res 2018; 69:1-10. [DOI: 10.1016/j.plipres.2017.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
|
9
|
Tripathi S, Sangwan RS, Narnoliya LK, Srivastava Y, Mishra B, Sangwan NS. Transcription factor repertoire in Ashwagandha (Withania somnifera) through analytics of transcriptomic resources: Insights into regulation of development and withanolide metabolism. Sci Rep 2017; 7:16649. [PMID: 29192149 PMCID: PMC5709440 DOI: 10.1038/s41598-017-14657-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022] Open
Abstract
Transcription factors (TFs) are important regulators of cellular and metabolic functions including secondary metabolism. Deep and intensive RNA-seq analysis of Withania somnifera using transcriptomic databases provided 3532 annotated transcripts of transcription factors in leaf and root tissues, belonging to 90 different families with major abundance for WD-repeat (174 and 165 transcripts) and WRKY (93 and 80 transcripts) in root and leaf tissues respectively, followed by that of MYB, BHLH and AP2-ERF. Their detailed comparative analysis with Arabidopsis thaliana, Capsicum annum, Nicotiana tabacum and Solanum lycopersicum counterparts together gave interesting patterns. However, no homologs for WsWDR representatives, LWD1 and WUSCHEL, were observed in other Solanaceae species. The data extracted from the sequence read archives (SRA) in public domain databases were subjected to re-annotation, re-mining, re-analysis and validation for dominant occurrence of WRKY and WD-repeat (WDR) gene families. Expression of recombinant LWD1 and WUSCHEL proteins in homologous system led to enhancements in withanolide content indicating their regulatory role in planta in the biosynthesis. Contrasting expression profiles of WsLWD1 and WsWUSCHEL provided tissue-specific insights for their participation in the regulation of developmental processes. The in-depth analysis provided first full-spectrum and comparative characteristics of TF-transcripts across plant species, in the perspective of integrated tissue-specific regulation of metabolic processes including specialized metabolism.
Collapse
Affiliation(s)
- Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament),, AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Center of Innovative and Applied Bioprocessing (A National Institute under Department of Biotechnology, Govt. of India), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, 140306, Punjab, India
- Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament),, AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Lokesh Kumar Narnoliya
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Bhawana Mishra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament),, AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India
| | - Neelam Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR) (An Institution of National Importance by an Act of Parliament),, AcSIR Campus, CSIR-HRDC, Sector-19, Kamla Nehru Nagar, Ghaziabad, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Ferrer A, Altabella T, Arró M, Boronat A. Emerging roles for conjugated sterols in plants. Prog Lipid Res 2017; 67:27-37. [DOI: 10.1016/j.plipres.2017.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
|
11
|
Pandey V, Ansari WA, Misra P, Atri N. Withania somnifera: Advances and Implementation of Molecular and Tissue Culture Techniques to Enhance Its Application. FRONTIERS IN PLANT SCIENCE 2017; 8:1390. [PMID: 28848589 PMCID: PMC5552756 DOI: 10.3389/fpls.2017.01390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/26/2017] [Indexed: 05/11/2023]
Abstract
Withania somnifera, commonly known as Ashwagandha an important medicinal plant largely used in Ayurvedic and indigenous medicine for over 3,000 years. Being a medicinal plant, dried powder, crude extract as well as purified metabolies of the plant has shown promising therapeutic properties. Withanolides are the principal metabolites, responsible for the medicinal properties of the plant. Availability and amount of particular withanolides differ with tissue type and chemotype and its importance leads to identification characterization of several genes/ enzymes related to withanolide biosynthetic pathway. The modulation in withanolides can be achieved by controlling the environmental conditions like, different tissue culture techniques, altered media compositions, use of elicitors, etc. Among all the in vitro techniques, hairy root culture proved its importance at industrial scale, which also gets benefits due to more accumulation (amount and number) of withanolides in roots tissues of W. somnifera. Use of media compostion and elicitors further enhances the amount of withanolides in hairy roots. Another important modern day technique used for accumulation of desired secondary metabolites is modulating the gene expression by altering environmental conditions (use of different media composition, elicitors, etc.) or through genetic enginnering. Knowing the significance of the gene and the key enzymatic step of the pathway, modulation in withanolide contents can be achieved upto required amount in therapeutic industry. To accomplish maximum productivity through genetic enginnering different means of Withania transformation methods have been developed to obtain maximum transformation efficiency. These standardized transformation procedues have been used to overexpress/silence desired gene in W. somnifera to understand the outcome and succeed with enhanced metabolic production for the ultimate benefit of human race.
Collapse
Affiliation(s)
- Vibha Pandey
- Department of Plant Molecular Biology, University of DelhiNew Delhi, India
| | - Waquar Akhter Ansari
- Department of Botany, Mahila Maha Vidhyalaya (MMV), Banaras Hindu UniversityVaranasi, India
| | - Pratibha Misra
- National Botanical Research Institute, Council of Scientific and Industrial ResearchLucknow, India
- *Correspondence: Pratibha Misra
| | - Neelam Atri
- Department of Botany, Mahila Maha Vidhyalaya (MMV), Banaras Hindu UniversityVaranasi, India
- Neelam Atri
| |
Collapse
|
12
|
Ramirez-Estrada K, Castillo N, Lara JA, Arró M, Boronat A, Ferrer A, Altabella T. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28649260 PMCID: PMC5465953 DOI: 10.3389/fpls.2017.00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate. Stress-induced SlSGT2 expression largely parallels that of SlSGT4. On the contrary, SlSGT1 and SlSGT3 expression remains almost unaltered under the tested stress conditions. Overall, this study contributes to broaden the current knowledge on plant SGTs and provides support to the view that tomato SGTs play overlapping but not completely redundant biological functions involved in mediating developmental and stress responses.
Collapse
Affiliation(s)
- Karla Ramirez-Estrada
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Nídia Castillo
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Juan A. Lara
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Monserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of BarcelonaBarcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| |
Collapse
|
13
|
Singh G, Tiwari M, Singh SP, Singh S, Trivedi PK, Misra P. Silencing of sterol glycosyltransferases modulates the withanolide biosynthesis and leads to compromised basal immunity of Withania somnifera. Sci Rep 2016; 6:25562. [PMID: 27146059 PMCID: PMC4857139 DOI: 10.1038/srep25562] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/22/2016] [Indexed: 11/10/2022] Open
Abstract
Sterol glycosyltransferases (SGTs) catalyse transfer of glycon moiety to sterols and their related compounds to produce diverse glyco-conjugates or steryl glycosides with different biological and pharmacological activities. Functional studies of SGTs from Withania somnifera indicated their role in abiotic stresses but details about role under biotic stress are still unknown. Here, we have elucidated the function of SGTs by silencing SGTL1, SGTL2 and SGTL4 in Withania somnifera. Down-regulation of SGTs by artificial miRNAs led to the enhanced accumulation of withanolide A, withaferin A, sitosterol, stigmasterol and decreased content of withanoside V in Virus Induced Gene Silencing (VIGS) lines. This was further correlated with increased expression of WsHMGR, WsDXR, WsFPPS, WsCYP710A1, WsSTE1 and WsDWF5 genes, involved in withanolide biosynthesis. These variations of withanolide concentrations in silenced lines resulted in pathogen susceptibility as compared to control plants. The infection of Alternaria alternata causes increased salicylic acid, callose deposition, superoxide dismutase and H2O2 in aMIR-VIGS lines. The expression of biotic stress related genes, namely, WsPR1, WsDFS, WsSPI and WsPR10 were also enhanced in aMIR-VIGS lines in time dependent manner. Taken together, our observations revealed that a positive feedback regulation of withanolide biosynthesis occurred by silencing of SGTLs which resulted in reduced biotic tolerance.
Collapse
Affiliation(s)
- Gaurav Singh
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India.,Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Tiwari
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Surendra Pratap Singh
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Surendra Singh
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| | - Pratibha Misra
- Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow-226001, Uttar Pradesh, India
| |
Collapse
|
14
|
Tiwari P, Sangwan RS, Sangwan NS. Plant secondary metabolism linked glycosyltransferases: An update on expanding knowledge and scopes. Biotechnol Adv 2016; 34:714-739. [PMID: 27131396 DOI: 10.1016/j.biotechadv.2016.03.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/06/2016] [Accepted: 03/19/2016] [Indexed: 02/04/2023]
Abstract
The multigene family of enzymes known as glycosyltransferases or popularly known as GTs catalyze the addition of carbohydrate moiety to a variety of synthetic as well as natural compounds. Glycosylation of plant secondary metabolites is an emerging area of research in drug designing and development. The unsurpassing complexity and diversity among natural products arising due to glycosylation type of alterations including glycodiversification and glycorandomization are emerging as the promising approaches in pharmacological studies. While, some GTs with broad spectrum of substrate specificity are promising candidates for glycoengineering while others with stringent specificity pose limitations in accepting molecules and performing catalysis. With the rising trends in diseases and the efficacy/potential of natural products in their treatment, glycosylation of plant secondary metabolites constitutes a key mechanism in biogeneration of their glycoconjugates possessing medicinal properties. The present review highlights the role of glycosyltransferases in plant secondary metabolism with an overview of their identification strategies, catalytic mechanism and structural studies on plant GTs. Furthermore, the article discusses the biotechnological and biomedical application of GTs ranging from detoxification of xenobiotics and hormone homeostasis to the synthesis of glycoconjugates and crop engineering. The future directions in glycosyltransferase research should focus on the synthesis of bioactive glycoconjugates via metabolic engineering and manipulation of enzyme's active site leading to improved/desirable catalytic properties. The multiple advantages of glycosylation in plant secondary metabolomics highlight the increasing significance of the GTs, and in near future, the enzyme superfamily may serve as promising path for progress in expanding drug targets for pharmacophore discovery and development.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India; Center of Innovative and Applied Bioprocessing (CIAB), A National Institute under Department of Biotechnology, Government of India, C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali 160071, Punjab, India
| | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India.
| |
Collapse
|
15
|
Saema S, Rahman LU, Singh R, Niranjan A, Ahmad IZ, Misra P. Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. PLANT CELL REPORTS 2016; 35:195-211. [PMID: 26518426 DOI: 10.1007/s00299-015-1879-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 05/06/2023]
Abstract
Overexpression of sterol glycosyltransferase (SGTL1) gene of Withania somnifera showing its involvement in glycosylation of withanolide that leads to enhanced growth and tolerance to biotic and abiotic stresses. Withania somnifera is widely used in Ayurvedic medicines for over 3000 years due to its therapeutic properties. It contains a variety of glycosylated steroids called withanosides that possess neuroregenerative, adaptogenic, anticonvulsant, immunomodulatory and antioxidant activities. The WsSGTL1 gene specific for 3β-hydroxy position has a catalytic specificity to glycosylate withanolide and sterols. Glycosylation not only stabilizes the products but also alters their physiological activities and governs intracellular distribution. To understand the functional significance and potential of WsSGTL1 gene, transgenics of W. somnifera were generated using Agrobacterium tumefaciens-mediated transformation. Stable integration and overexpression of WsSGTL1 gene were confirmed by Southern blot analysis followed by quantitative real-time PCR. The WsGTL1 transgenic plants displayed number of alterations at phenotypic and metabolic level in comparison to wild-type plants which include: (1) early and enhanced growth with leaf expansion and increase in number of stomata; (2) increased production of glycowithanolide (majorly withanoside V) and campesterol, stigmasterol and sitosterol in glycosylated forms with reduced accumulation of withanolides (withaferin A, withanolide A and withanone); (3) tolerance towards biotic stress (100 % mortality of Spodoptera litura), improved survival capacity under abiotic stress (cold stress) and; (4) enhanced recovery capacity after cold stress, as indicated by better photosynthesis performance, chlorophyll, anthocyanin content and better quenching regulation of PSI and PSII. Our data demonstrate overexpression of WsSGTL1 gene which is responsible for increase in glycosylated withanolide and sterols, and confers better growth and tolerance to both biotic and abiotic stresses.
Collapse
Affiliation(s)
- Syed Saema
- Tissue Culture and Plant Transformation Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
- Department of Bioscience, Integral University, Lucknow, India
| | - Laiq Ur Rahman
- Department of Biotechnology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Ruchi Singh
- Tissue Culture and Plant Transformation Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Abhishek Niranjan
- Tissue Culture and Plant Transformation Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | | | - Pratibha Misra
- Tissue Culture and Plant Transformation Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
16
|
Dhar N, Razdan S, Rana S, Bhat WW, Vishwakarma R, Lattoo SK. A Decade of Molecular Understanding of Withanolide Biosynthesis and In vitro Studies in Withania somnifera (L.) Dunal: Prospects and Perspectives for Pathway Engineering. FRONTIERS IN PLANT SCIENCE 2015; 6:1031. [PMID: 26640469 PMCID: PMC4661287 DOI: 10.3389/fpls.2015.01031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/06/2015] [Indexed: 05/16/2023]
Abstract
Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well-characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomics, and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude toward development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool toward enhanced withanolide production has also been attained by deciphering decisive branch point(s) as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. somnifera for understanding various molecular network interactions in entirety.
Collapse
Affiliation(s)
- Niha Dhar
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Sumeer Razdan
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Satiander Rana
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Wajid W Bhat
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Ram Vishwakarma
- Medicinal Chemistry, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| | - Surrinder K Lattoo
- Plant Biotechnology, CSIR - Indian Institute of Integrative Medicine Jammu Tawi, India
| |
Collapse
|
17
|
Sil B, Mukherjee C, Jha S, Mitra A. Metabolic shift from withasteroid formation to phenylpropanoid accumulation in cryptogein-cotransformed hairy roots of Withania somnifera (L.) Dunal. PROTOPLASMA 2015; 252:1097-110. [PMID: 25534257 DOI: 10.1007/s00709-014-0743-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/02/2014] [Indexed: 05/25/2023]
Abstract
Cotransformed hairy roots containing a gene that encodes a fungal elicitor protein, β-cryptogein, were established in Withania somnifera, a medicinal plant widely used in Indian systems of medicine. To find out whether β-cryptogein protein endogenously elicits the pathway of withasteroid biosynthesis, withaferin A and withanolide A contents along with transcript accumulation of farnesyl pyrophosphate (FPP) synthase, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), and sterol glycosyltransferase (SGT) were analyzed in both cryptogein-cotransformed and normal hairy roots of W. somnifera. It was observed that the withaferin A and withanolide A contents were drastically higher in normal hairy roots than cryptogein-cotransformed ones. Similar trends were also observed on the levels of transcript accumulation. Subsequently, the enzyme activity of phenylalanine ammonia lyase (PAL), one of the key enzymes of phenylpropanoid pathway, was measured in both cryptogein-cotransformed and normal hairy roots of W. somnifera along with the levels of PAL transcript accumulation. Upliftment of PAL activity was observed in cryptogein-cotransformed hairy roots as compared to the normal ones, and the PAL expression also reflected a similar trend, i.e., enhanced expression in the cryptogein-cotransformed lines. Upliftment of wall-bound ferulic acid accumulation was also observed in the cryptogein-cotransformed lines, as compared to normal hairy root lines. Thus, the outcome of the above studies suggests a metabolic shift from withanolide accumulation to phenylpropanoid biosynthesis in cryptogein-cotransformed hairy roots of W. somnifera.
Collapse
Affiliation(s)
- Bipradut Sil
- Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | | | | | | |
Collapse
|
18
|
Pandey V, Dhar YV, Gupta P, Bag SK, Atri N, Asif MH, Trivedi PK, Misra P. Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera. BMC Bioinformatics 2015; 16:120. [PMID: 25888493 PMCID: PMC4407318 DOI: 10.1186/s12859-015-0563-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/31/2015] [Indexed: 12/30/2022] Open
Abstract
Background Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera. Results Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol. Conclusion This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0563-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vibha Pandey
- Council of Scientific and Industrial Research, National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India. .,Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Yogeshwar Vikram Dhar
- Council of Scientific and Industrial Research, National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India.
| | - Parul Gupta
- Council of Scientific and Industrial Research, National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India.
| | - Sumit K Bag
- Council of Scientific and Industrial Research, National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India.
| | - Neelam Atri
- Department of Botany, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Mehar Hasan Asif
- Council of Scientific and Industrial Research, National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India.
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research, National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India.
| | - Pratibha Misra
- Council of Scientific and Industrial Research, National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India.
| |
Collapse
|
19
|
Singh P, Guleri R, Singh V, Kaur G, Kataria H, Singh B, Kaur G, Kaul SC, Wadhwa R, Pati PK. Biotechnological interventions inWithania somnifera(L.) Dunal. Biotechnol Genet Eng Rev 2015; 31:1-20. [DOI: 10.1080/02648725.2015.1020467] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Senthil K, Jayakodi M, Thirugnanasambantham P, Lee SC, Duraisamy P, Purushotham PM, Rajasekaran K, Nancy Charles S, Mariam Roy I, Nagappan AK, Kim GS, Lee YS, Natesan S, Min TS, Yang TJ. Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis. BMC Genomics 2015; 16:14. [PMID: 25608483 PMCID: PMC4310147 DOI: 10.1186/s12864-015-1214-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/02/2015] [Indexed: 12/19/2022] Open
Abstract
Background The production of metabolites via in vitro culture is promoted by the availability of fully defined metabolic pathways. Withanolides, the major bioactive phytochemicals of Withania somnifera, have been well studied for their pharmacological activities. However, only a few attempts have been made to identify key candidate genes involved in withanolide biosynthesis. Understanding the steps involved in withanolide biosynthesis is essential for metabolic engineering of this plant to increase withanolide production. Results Transcriptome sequencing was performed on in vitro adventitious root and leaf tissues using the Illumina platform. We obtained a total of 177,156 assembled transcripts with an average unigene length of 1,033 bp. About 13% of the transcripts were unique to in vitro adventitious roots but no unique transcripts were observed in in vitro-grown leaves. A putative withanolide biosynthetic pathway was deduced by mapping the assembled transcripts to the KEGG database, and the expression of candidate withanolide biosynthesis genes -were validated by qRT PCR. The accumulation pattern of withaferin A and withanolide A varied according to the type of tissue and the culture period. Further, we demonstrated that in vitro leaf extracts exhibit anticancer activity against human gastric adenocarcinoma cell lines at sub G1 phase. Conclusions We report here a validated large-scale transcriptome data set and the potential biological activity of in vitro cultures of W. somnifera. This study provides important information to enhance tissue-specific expression and accumulation of secondary metabolites, paving the way for industrialization of in vitro cultures of W. somnifera. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1214-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kalaiselvi Senthil
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Murukarthick Jayakodi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Pankajavalli Thirugnanasambantham
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Sang Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Pradeepa Duraisamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Preethi M Purushotham
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Kalaiselvi Rajasekaran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Shobana Nancy Charles
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Irene Mariam Roy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, India.
| | - Arul Kumar Nagappan
- Lab of Biochemistry, School of Veterinary Medicine, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea.
| | - Gon Sup Kim
- Lab of Biochemistry, School of Veterinary Medicine, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea.
| | - Yun Sun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| | - Senthil Natesan
- Genomics and Proteomics Laboratory, Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India.
| | - Tae-Sun Min
- National Research Foundation, Seoul, Republic of Korea.
| | - Tae Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.
| |
Collapse
|
21
|
Saema S, Rahman LU, Niranjan A, Ahmad IZ, Misra P. RNAi-mediated gene silencing of WsSGTL1 in W.somnifera affects growth and glycosylation pattern. PLANT SIGNALING & BEHAVIOR 2015; 10:e1078064. [PMID: 26357855 PMCID: PMC4854344 DOI: 10.1080/15592324.2015.1078064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 05/25/2023]
Abstract
Sterol glycosyltransferases (SGTs) belong to family 1 of glycosyltransferases (GTs) and are enzymes responsible for synthesis of sterol-glucosides (SGs) in many organisms. WsSGTL1 is a SGT of Withania somnifera that has been found associated with plasma membranes. However its biological function in W.somnifera is largely unknown. In the present study, we have demonstrated through RNAi silencing of WsSGTL1 gene that it performs glycosylation of withanolides and sterols resulting in glycowithanolides and glycosylated sterols respectively, and affects the growth and development of transgenic W.somnifera. For this, RNAi construct (pFGC1008-WsSGTL1) was made and genetic transformation was done by Agrobacterium tumefaciens. HPLC analysis depicts the reduction of withanoside V (the glycowithanolide of W.somnifera) and a large increase of withanolides (majorly withaferin A) content. Also, a significant decrease in level of glycosylated sterols has been observed. Hence, the obtained data provides an insight into the biological function of WsSGTL1 gene in W.somnifera.
Collapse
Affiliation(s)
- Syed Saema
- Council of Scientific and Industrial Research - National Botanical Research Institute; Lucknow; Uttar Pradesh, India
- Department of Bioscience; Integral University; Lucknow, Uttar Pradesh, India
| | - Laiq ur Rahman
- Council of Scientific and Industrial Research - Central Institute of Medicinal and Aromatic Plants; Lucknow, Uttar Pradesh, India
| | - Abhishek Niranjan
- Council of Scientific and Industrial Research - National Botanical Research Institute; Lucknow; Uttar Pradesh, India
| | - Iffat Zareen Ahmad
- Department of Bioscience; Integral University; Lucknow, Uttar Pradesh, India
| | - Pratibha Misra
- Council of Scientific and Industrial Research - National Botanical Research Institute; Lucknow; Uttar Pradesh, India
| |
Collapse
|
22
|
Singh S, Pal S, Shanker K, Chanotiya CS, Gupta MM, Dwivedi UN, Shasany AK. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis. PHYSIOLOGIA PLANTARUM 2014; 152:617-33. [PMID: 24749735 DOI: 10.1111/ppl.12213] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/11/2014] [Accepted: 03/21/2014] [Indexed: 05/20/2023]
Abstract
Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta.
Collapse
Affiliation(s)
- Shefali Singh
- Biotechnology Division, CSIR - Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, UP, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Molecular cloning and biochemical characterization of a recombinant sterol 3-O-glucosyltransferase from Gymnema sylvestre R.Br. catalyzing biosynthesis of steryl glucosides. BIOMED RESEARCH INTERNATIONAL 2014; 2014:934351. [PMID: 25250339 PMCID: PMC4163426 DOI: 10.1155/2014/934351] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/09/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022]
Abstract
Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants.
Collapse
|
24
|
Pandey V, Niranjan A, Atri N, Chandrashekhar K, Mishra MK, Trivedi PK, Misra P. WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco. PLANTA 2014; 239:1217-31. [PMID: 24610300 DOI: 10.1007/s00425-014-2046-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/07/2014] [Indexed: 05/06/2023]
Abstract
Glycosylation of sterols, catalysed by sterol glycosyltransferases (SGTs), improves the sterol solubility, chemical stability and compartmentalization, and helps plants to adapt to environmental changes. The SGTs in medicinal plants are of particular interest for their role in the biosynthesis of pharmacologically active substances. WsSGTL1, a SGT isolated from Withania somnifera, was expressed and functionally characterized in transgenic tobacco plants. Transgenic WsSGTL1-Nt lines showed an adaptive mechanism through demonstrating late germination, stunted growth, yellowish-green leaves and enhanced antioxidant system. The reduced chlorophyll content and chlorophyll fluorescence with decreased photosynthetic parameters were observed in WsSGTL1-Nt plants. These changes could be due to the enhanced glycosylation by WsSGTL1, as no modulation in chlorophyll biogenesis-related genes was observed in transgenic lines as compared to wildtype (WT) plants. Enhanced accumulation of main sterols like, campesterol, stigmasterol and sitosterol in glycosylated form was observed in WsSGTL1-Nt plants. Apart from these, other secondary metabolites related to plant's antioxidant system along with activities of antioxidant enzymes (SOD, CAT; two to fourfold) were enhanced in WsSGTL1-Nt as compared to WT. WsSGTL1-Nt plants showed significant resistance towards Spodoptera litura (biotic stress) with up to 27 % reduced larval weight as well as salt stress (abiotic stress) with improved survival capacity of leaf discs. The present study demonstrates that higher glycosylation of sterols and enhanced antioxidant system caused by expression of WsSGTL1 gene confers specific functions in plants to adapt under different environmental challenges.
Collapse
Affiliation(s)
- Vibha Pandey
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226 001, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Li X, Xia T, Huang J, Guo K, Liu X, Chen T, Xu W, Wang X, Feng S, Peng L. Distinct biochemical activities and heat shock responses of two UDP-glucose sterol glucosyltransferases in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:1-8. [PMID: 24576758 DOI: 10.1016/j.plantsci.2013.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 05/06/2023]
Abstract
UDP-glucose sterol glucosyltransferase (SGT) are enzymes typically involved in the production of sterol glycosides (SG) in various organisms. However, the biological functions of SGTs in plants remain largely unknown. In the present study, we identified two full-length GhSGT genes in cotton and examined their distinct biochemical properties. Using UDP-[U-(14)C]-glucose and β-sitosterol or total crude membrane sterols as substrates, GhSGT1 and GhSGT2 recombinant proteins were detected with different enzymatic activities for SG production. The addition of Triton (X-100) strongly inhibited the activity of GhSGT1 but caused an eightfold increase in the activity of GhSGT2. The two GhSGTs showed distinct enzyme activities after the addition of NaCl, MgCl2, and ZnCl2, indicating that the two GhSGTs exhibited distinct biochemical properties under various conditions. Furthermore, after heat shock treatment, GhSGT1 showed rapidly enhanced gene expression in vivo and low enzyme activity in vitro, whereas GhSGT2 maintained extremely low gene expression levels and relatively high enzyme activity. Notably, the GhSGT2 gene was highly expressed in cotton fibers, and the biochemical properties of GhSGT2 were similar to those of GhCESA in favor for MgCl2 and non-reduction reaction condition. It suggested that GhSGT2 may have important functions in cellulose biosynthesis in cotton fibers, which must be tested in the transgenic plants in the future. Hence, the obtained data provided insights into the biological functions of two different GhSGTs in cotton and in other plants.
Collapse
Affiliation(s)
- Xianliang Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Tao Xia
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiangfeng Huang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuezhe Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengqiu Feng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Tiwari R, Chakrabort S, Saminathan M, Dhama K, Singh SV. Ashwagandha (Withania somnifera): Role in Safeguarding Health, Immunomodulatory
Effects, Combating Infections and Therapeutic Applications: A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jbs.2014.77.94] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Secondary Metabolites of Traditional Medical Plants: A Case Study of Ashwagandha (Withania somnifera). PLANT CELL MONOGRAPHS 2014. [DOI: 10.1007/978-3-642-41787-0_11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Kushwaha AK, Sangwan NS, Trivedi PK, Negi AS, Misra L, Sangwan RS. Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha): biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns. PLoS One 2013; 8:e74777. [PMID: 24086372 PMCID: PMC3783447 DOI: 10.1371/journal.pone.0074777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023] Open
Abstract
Withania somnifera is one of the most reputed medicinal plants of Indian systems of medicine synthesizing diverse types of secondary metabolites such as withanolides, alkaloids, withanamides etc. Present study comprises cloning and E. coli over-expression of a tropinone reductase gene (WsTR-I) from W. somnifera, and elucidation of biochemical characteristics and physiological role of tropinone reductase enzyme in tropane alkaloid biosynthesis in aerial tissues of the plant. The recombinant enzyme was demonstrated to catalyze NADPH-dependent tropinone to tropine conversion step in tropane metabolism, through TLC, GC and GC-MS-MS analyses of the reaction product. The functionally active homodimeric ∼60 kDa enzyme catalyzed the reaction in reversible manner at optimum pH 6.7. Catalytic kinetics of the enzyme favoured its forward reaction (tropine formation). Comparative 3-D models of landscape of the enzyme active site contours and tropinone binding site were also developed. Tissue-wide and ontogenic stage-wise assessment of WsTR-I transcript levels revealed constitutive expression of the gene with relatively lower abundance in berries and young leaves. The tissue profiles of WsTR-I expression matched those of tropine levels. The data suggest that, in W. somnifera, aerial tissues as well possess tropane alkaloid biosynthetic competence. In vivo feeding of U-[14C]-sucrose to orphan shoot (twigs) and [14C]-chasing revealed substantial radiolabel incorporation in tropinone and tropine, confirming the de novo synthesizing ability of the aerial tissues. This inherent independent ability heralds a conceptual novelty in the backdrop of classical view that these tissues acquire the alkaloids through transportation from roots rather than synthesis. The TR-I gene expression was found to be up-regulated on exposure to signal molecules (methyl jasmonate and salicylic acid) and on mechanical injury. The enzyme's catalytic and structural properties as well as gene expression profiles are discussed with respect to their physiological overtones.
Collapse
Affiliation(s)
- Amit Kumar Kushwaha
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Neelam Singh Sangwan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Laxminarain Misra
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Rajender Singh Sangwan
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
- Bio-Processing Unit (An Autonomous Institute under Department of Biotechnology, Govt. of India), Interim Facility, C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali, Punjab, India
- * E-mail:
| |
Collapse
|
29
|
De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One 2013; 8:e62714. [PMID: 23667511 PMCID: PMC3648579 DOI: 10.1371/journal.pone.0062714] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/25/2013] [Indexed: 11/23/2022] Open
Abstract
Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L) and root (101R) which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L) and 54,123 (101R) could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs) in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches.
Collapse
|
30
|
Mishra MK, Chaturvedi P, Singh R, Singh G, Sharma LK, Pandey V, Kumari N, Misra P. Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants. PLoS One 2013; 8:e63064. [PMID: 23646175 PMCID: PMC3639950 DOI: 10.1371/journal.pone.0063064] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 03/28/2013] [Indexed: 01/07/2023] Open
Abstract
Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases.
Collapse
Affiliation(s)
- Manoj K. Mishra
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Pankaj Chaturvedi
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ruchi Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Gaurav Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Lokendra K. Sharma
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Vibha Pandey
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Nishi Kumari
- Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pratibha Misra
- Council of Scientific and Industrial Research - National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
31
|
Akhtar N, Gupta P, Sangwan NS, Sangwan RS, Trivedi PK. Cloning and functional characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Withania somnifera: an important medicinal plant. PROTOPLASMA 2013; 250:613-22. [PMID: 22936023 DOI: 10.1007/s00709-012-0450-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/17/2012] [Indexed: 05/25/2023]
Abstract
Withania somnifera (L.) Dunal is one of the most valuable medicinal plants synthesizing a large number of pharmacologically active secondary metabolites known as withanolides, the C28-steroidal lactones derived from triterpenoids. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, not much is known about the biosynthetic pathway and genes responsible for biosynthesis of these compounds. In this study, we have characterized the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34) catalyzing the key regulatory step of the isoprenoid biosynthesis. The 1,728-bp full-length cDNA of Withania HMGR (WsHMGR) encodes a polypeptide of 575 amino acids. The amino acid sequence homology and phylogenetic analysis suggest that WsHMGR has typical structural features of other known plant HMGRs. The relative expression analysis suggests that WsHMGR expression varies in different tissues as well as chemotypes and is significantly elevated in response to exposure to salicylic acid, methyl jasmonate, and mechanical injury. The functional color assay in Escherichia coli showed that WsHMGR could accelerate the biosynthesis of carotenoids, establishing that WsHMGR encoded a functional protein and may play a catalytic role by its positive influence in isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Nehal Akhtar
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226 001, India
| | | | | | | | | |
Collapse
|
32
|
Gupta P, Agarwal AV, Akhtar N, Sangwan RS, Singh SP, Trivedi PK. Cloning and characterization of 2-C-methyl-D-erythritol-4-phosphate pathway genes for isoprenoid biosynthesis from Indian ginseng, Withania somnifera. PROTOPLASMA 2013; 250:285-95. [PMID: 22526204 DOI: 10.1007/s00709-012-0410-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/29/2012] [Indexed: 05/16/2023]
Abstract
Withania somnifera (L.) is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicines. Pharmaceutical activities of this herb are associated with presence of secondary metabolites known as withanolides, a class of phytosteroids synthesized via mevalonate (MVA) and 2-C-methyl-D-erythritol-4-phosphate pathways. Though the plant has been well characterized in terms of phytochemical profiles as well as pharmaceutical activities, not much is known about the genes responsible for biosynthesis of these compounds. In this study, we have characterized two genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS; EC 2.2.1.7) and 1-deoxy-D-xylulose-5-phosphate reductase (DXR; EC 1.1.1.267) enzymes involved in the biosynthesis of isoprenoids. The full-length cDNAs of W. somnifera DXS (WsDXS) and DXR (WsDXR) of 2,154 and 1,428 bps encode polypeptides of 717 and 475 amino acids residues, respectively. The expression analysis suggests that WsDXS and WsDXR are differentially expressed in different tissues (with maximal expression in flower and young leaf), chemotypes of Withania, and in response to salicylic acid, methyl jasmonate, as well as in mechanical injury. Analysis of genomic organization of WsDXS shows close similarity with tomato DXS in terms of exon-intron arrangements. This is the first report on characterization of isoprenoid biosynthesis pathway genes from Withania.
Collapse
Affiliation(s)
- Parul Gupta
- National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
33
|
Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf. Gene 2012; 516:238-47. [PMID: 23266822 DOI: 10.1016/j.gene.2012.11.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/27/2012] [Accepted: 11/29/2012] [Indexed: 11/23/2022]
Abstract
Tropinone reductases (TRs) are small proteins belonging to the SDR (short chain dehydrogenase/reductase) family of enzymes. TR-I and TR-II catalyze the conversion of tropinone into tropane alcohols (tropine and pseudotropine, respectively). The steps are intermediary enroute to biosynthesis of tropane esters of medicinal importance, hyoscyamine/scopolamine, and calystegins, respectively. Biosynthesis of tropane alkaloids has been proposed to occur in roots. However, in the present report, a tropine forming tropinone reductase (TR-I) cDNA was isolated from the aerial tissue (leaf) of a medicinal plant, Withania coagulans. The ORF was deduced to encode a polypeptide of 29.34 kDa. The complete cDNA (WcTRI) was expressed in E. coli and the recombinant His-tagged protein was purified for functional characterization. The enzyme had a narrow pH range of substantial activity with maxima at 6.6. Relatively superior thermostability of the enzyme (30% retention of activity at 60 °C) was catalytic novelty in consonance with the desert area restricted habitat of the plant. The in vitro reaction kinetics predominantly favoured the forward reaction. The enzyme had wide substrate specificity but did not cover the substrates of other well-known plant SDR related to menthol metabolism. To our knowledge, this pertains to be the first report on any gene and enzyme of secondary metabolism from the commercially and medicinally important vegetable rennet species.
Collapse
|
34
|
Chaurasiya ND, Sangwan NS, Sabir F, Misra L, Sangwan RS. Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). PLANT CELL REPORTS 2012; 31:1889-97. [PMID: 22733207 DOI: 10.1007/s00299-012-1302-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 05/25/2023]
Abstract
Withanolides are pharmaceutically important C(28)-phytochemicals produced in most prodigal amounts and diversified forms by Withania somnifera. Metabolic origin of withanolides from triterpenoid pathway intermediates implies that isoprenogenesis could significantly govern withanolide production. In plants, isoprenogenesis occurs via two routes: mevalonate (MVA) pathway in cytosol and non-mevalonate or DOXP/MEP pathway in plastids. We have investigated relative carbon contribution of MVA and DOXP pathways to withanolide biosynthesis in W. somnifera. The quantitative NMR-based biosynthetic study involved tracing of (13)C label from (13)C(1)-D-glucose to withaferin A in withanolide producing in vitro microshoot cultures of the plant. Enrichment of (13)C abundance at each carbon of withaferin A from (13)C(1)-glucose-fed cultures was monitored by normalization and integration of NMR signal intensities. The pattern of carbon position-specific (13)C enrichment of withaferin A was analyzed by a retro-biosynthetic approach using a squalene-intermediated metabolic model of withanolide (withaferin A) biosynthesis. The pattern suggested that both DOXP and MVA pathways of isoprenogenesis were significantly involved in withanolide biosynthesis with their relative contribution on the ratio of 25:75, respectively. The results have been discussed in a new conceptual line of biosynthetic load-driven model of relative recruitment of DOXP and MVA pathways for biosynthesis of isoprenoids. Key message The study elucidates significant contribution of DOXP pathway to withanolide biosynthesis. A new connotation of biosynthetic load-based role of DOXP/MVA recruitment in isoprenoid biosynthesis has been proposed.
Collapse
Affiliation(s)
- Narayan D Chaurasiya
- Central Institute of Medicinal and Aromatic Plants (Council of Scientific and Industrial Research), P.O. CIMAP, Lucknow, 226015, India
| | | | | | | | | |
Collapse
|
35
|
Chaturvedi P, Mishra M, Akhtar N, Gupta P, Mishra P, Tuli R. Sterol glycosyltransferases-identification of members of gene family and their role in stress in Withania somnifera. Mol Biol Rep 2012; 39:9755-64. [PMID: 22744427 DOI: 10.1007/s11033-012-1841-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Sterol glycosyltransferases (SGTs) catalyze the transfer of sugar molecules to diverse sterol molecules, leading to a change in their participation in cellular metabolism. Withania somnifera is a medicinal plant rich in sterols, sterol glycosides and steroidal lactones. Sterols and their modified counterparts are medicinally important and play a role in adaptation of the plant to stress conditions. We have identified 3 members of SGT gene family through RACE (Rapid Amplification of cDNA Ends) in addition to sgtl1 reported earlier. The amino acid sequence deduced from the ORF's showed homology (45-67 %) to the reported plant SGTs. The expression of the genes was differentially modulated in different organs in W. somnifera and in response to external stimuli. Salicylic acid and methyl jasmonate treatments showed up to 10 fold increase in the expression of sgt genes suggesting their role in defense. The level of expression increased in heat and cold stress indicating the role of sterol modifications in abiotic stress. One of the members, was expressed in E. coli and the enzyme assay showed that the crude enzyme glycosylated stigmasterol. W. somnifera expresses a family of sgt genes and there is a functional recruitment of these genes under stress conditions. The genes which are involved in sterol modification are important in view of medicinal value and understanding stress.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, UP, India
| | | | | | | | | | | |
Collapse
|
36
|
Chung HY, Hwang-Bo J, Kim SK, Baek NI, Lee YH, Chung IS, Park JH. Functional expression of Arabidopsis thaliana sterol glycosyltransferase from stably transformed Drosophila melanogaster S2 cells. BIOTECHNOL BIOPROC E 2011. [DOI: 10.1007/s12257-010-0445-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Chaturvedi P, Misra P, Tuli R. Sterol glycosyltransferases--the enzymes that modify sterols. Appl Biochem Biotechnol 2011; 165:47-68. [PMID: 21468635 DOI: 10.1007/s12010-011-9232-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/22/2011] [Indexed: 01/12/2023]
Abstract
Sterols are important components of cell membranes, hormones, signalling molecules and defense-related biotic and abiotic chemicals. Sterol glycosyltransferases (SGTs) are enzymes involved in sterol modifications and play an important role in metabolic plasticity during adaptive responses. The enzymes are classified as a subset of family 1 glycosyltransferases due to the presence of a signature motif in their primary sequence. These enzymes follow a compulsory order sequential mechanism forming a ternary complex. The diverse applications of sterol glycosides, like cytotoxic and apoptotic activity, anticancer activity, medicinal values, anti-stress roles and anti-insect and antibacterial properties, draws attention towards their synthesis mechanisms. Many secondary metabolites are derived from sterol pathways, which are important in defense mechanisms against pathogens. SGTs in plants are involved in changed sensitivity to stress hormones and their agrochemical analogs and changed tolerance to biotic and abiotic stresses. SGTs that glycosylate steroidal hormones, such as brassinosteroids, function as growth and development regulators in plants. In terms of metabolic roles, it can be said that SGTs occupy important position in plant metabolism and may offer future tools for crop improvement.
Collapse
Affiliation(s)
- Pankaj Chaturvedi
- National Botanical Research Institute (Council of Scientific & Industrial Research), Rana Pratap Marg, Lucknow, 226001, Uttar Pradesh, India
| | | | | |
Collapse
|
38
|
Akiyama H, Sasaki N, Hanazawa S, Gotoh M, Kobayashi S, Hirabayashi Y, Murakami-Murofushi K. Novel sterol glucosyltransferase in the animal tissue and cultured cells: evidence that glucosylceramide as glucose donor. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:314-22. [PMID: 21397038 DOI: 10.1016/j.bbalip.2011.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 02/09/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Cholesteryl glucoside (CG), a membrane glycolipid, regulates heat shock response. CG is rapidly induced by heat shock before the activation of heat shock transcription factor 1 (HSF1) and production of heat shock protein 70 (HSP70), and the addition of CG in turn induces HSF1 activation and HSP70 production in human fibroblasts; thus, a reasonable correlation is that CG functions as a crucial lipid mediator in stress responses in the animal. In this study, we focused on a CG-synthesizing enzyme, animal sterol glucosyltransferase, which has not yet been identified. In this study, we describe a novel type of animal sterol glucosyltransferase in hog stomach and human fibroblasts (TIG-3) detected by a sensitive assay with a fluorescence-labeled substrate. The cationic requirement, inhibitor resistance, and substrate specificity of animal sterol glucosyltransferase were studied. Interestingly, animal sterol glucosyltransferase did not use uridine diphosphate glucose (UDP-glucose) as an immediate glucose donor, as has been shown in plants and fungi. Among the glycolipids tested in vitro, glucosylceramide (GlcCer) was the most effective substrate for CG formation in animal tissues and cultured cells. Using chemically synthesized [U-((13))C]Glc-β-Cer as a glucose donor, we confirmed by mass spectrometry that [U-((13))C]CG was synthesized in hog stomach homogenate. These results suggest that animal sterol glucosyltransferase transfers glucose moiety from GlcCer to cholesterol. Additionally, using GM-95, a mutant B16 melanoma cell line that does not express ceramide glucosyltransferase, we showed that GlcCer is an essential substrate for animal sterol glucosyltransferase in the cell.
Collapse
Affiliation(s)
- Hisako Akiyama
- Graduate School of Humanities and Sciences, Department of Life Science, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Warnecke D, Heinz E. Glycolipid headgroup replacement: a new approach for the analysis of specific functions of glycolipids in vivo. Eur J Cell Biol 2009; 89:53-61. [PMID: 19939496 DOI: 10.1016/j.ejcb.2009.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glycolipids with one or two sugar residues attached to different lipid backbones are found in biomembranes of bacteria, fungi, plants and animals in the form of steryl glycosides, glycosylceramides and diacylglycerol glycosides. They contain different sugar residues, mainly glucose and galactose, in either alpha- or beta-configuration. Many of the isolated compounds have been studied in great detail with regard to their biophysical behavior in artificial membrane systems. With the availability of cloned genes, the methods of reverse genetics were used to study glycolipid functions in living cells. The deletion of a lipid glycosyltransferase gene leads to the loss of the corresponding glycolipid in the transformed pro- and eukaryotic organisms. Often, these glycosyltransferase deletion mutants showed many differences to the wild-type organisms and thus demonstrated the biological importance of the glycolipid. When extensive deletion-induced glycolipid losses were not complemented by higher proportions of other membrane lipids, the mutants could display severe phenotypes due to a serious dysfunction or even collapse of an entire membrane system. On the other hand, by this approach the specific contribution of characteristic head group details cannot be recognized and separated from more general glycolipid functions. Many of these difficulties can be circumvented by a glycolipid headgroup replacement approach. This new approach requires the exchange of a lipid glycosyltransferase in an organism by a heterologous glycosyltransferase having a different headgroup specificity, e.g. the substitution of a galactosyltransferase by a glucosyltransferase. The resulting transgenic organism produces a novel glycolipid which differs from that of the native organism not in proportion, but only in structural details of its headgroup. Therefore, such rescued mutants are comparable to suppressor mutants and show less severe phenotypes than the intermediate deletion mutants. A comparison between the wild type, the simple deletion mutant and the mutant rescued by glycolipid replacement will not only disclose general functions of glycolipids, but also additional roles of headgroup details.
Collapse
Affiliation(s)
- Dirk Warnecke
- Biocenter Klein Flottbek and Botanical Garden, University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany.
| | | |
Collapse
|
40
|
Generation and analysis of expressed sequence tags from leaf and root of Withania somnifera (Ashwgandha). Mol Biol Rep 2009; 37:893-902. [PMID: 19669665 DOI: 10.1007/s11033-009-9696-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
The first transcriptomes, expressed sequence tags (ESTs) in a leaf and root from Withania somnifera plant referenced in this report are the first of its kind. A cDNA library was constructed from samples of the 2-months-old, in vitro cultured leaves and roots, which generated 1,047 leaf cDNA and 1,034 root cDNA clones representing 48.5% and 61.5% unique sequences. The ESTs from leaf and root grouped into 239 and 230 clusters representing 22.8% and 22.2% of total sequences. Of these, about 70% encoded proteins found similar (E-value > or =10(-14)) to characterized or annotated proteins from the NCBI non-redundant database and diverse molecular functions and biological processes based on gene ontology (GO) classification. We identified genes with potential role in photosynthesis (cytochrome p-450), pathogenesis (arginine decarboxylase, chitinase) and withanolide biosynthesis (squalene epoxidase, CDP-ME kinase). Highly expressed transcripts, with a particularly high abundance of cytochrome p-450 (0.85% in leaf) were noticed. Pfam analysis revealed the presence of functional domains in selected sequences. W. somnifera is a source of multifarious and beneficial alkaloids referred as withanolides. High levels of withanolides accumulate in mature leaves and roots. Since, the knowledge for synthesis and presence of some of these important biochemical constituent is limited, identification of the genes involved in two different pathways of secondary metabolite synthesis (MVA and MEP), in different tissue will be requisite for articulation of withanolide biosynthesis. This investigation aimed at elucidating the differential gene expression in two vital sites where withanolides essentially found and leaf and root transcriptomes were comparatively analyzed. The comparative analysis of the sequences provides a framework for future research in proteomics and evolutionary genomics in the withanolide biosynthesis.
Collapse
|
41
|
Mirjalili HM, Fakhr-Tabatabaei SM, Bonfill M, Alizadeh H, Cusido RM, Ghassempour A, Palazon J. Morphology and withanolide production ofWithania coagulanshairy root cultures. Eng Life Sci 2009. [DOI: 10.1002/elsc.200800081] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Sangwan RS, Das Chaurasiya N, Lal P, Misra L, Tuli R, Sangwan NS. Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). PHYSIOLOGIA PLANTARUM 2008; 133:278-87. [PMID: 18312497 DOI: 10.1111/j.1399-3054.2008.01076.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ashwagandha (Withania somnifera Dunal., Solanaceae) is one of the most reputed medicinal plants of Ayurveda, the traditional medical system. Several of its traditionally proclaimed medicinal properties have been corroborated by recent molecular pharmacological investigations and have been shown to be associated with its specific secondary metabolites known as withanolides, the novel group of ergostane skeletal phytosteroids named after the plant. Withanolides are structurally distinct from tropane/nortropane alkaloids (usually found in Solanaceae plants) and are produced only by a few genera within Solanaceae. W. somnifera contains many structurally diverse withanolides in its leaves as well as roots. To date, there has been little biosynthetic or metabolism-related research on withanolides. It is thought that withanolides are synthesized in leaves and transported to roots like the tropane alkaloids, a group of bioactive secondary metabolites in Solanaceae members known to be synthesized in roots and transported to leaves for storage. To examine this, we have studied incorporation of (14)C from [2-(14)C]-acetate and [U-(14)C]-glucose into withanolide A in the in vitro cultured normal roots as well as native/orphan roots of W. somnifera. Analysis of products by thin layer chromatography revealed that these primary metabolites were incorporated into withanolide A, demonstrating that root-contained withanolide A is de novo synthesized within roots from primary isoprenogenic precursors. Therefore, withanolides are synthesized in different parts of the plant (through operation of the complete metabolic pathway) rather than imported.
Collapse
Affiliation(s)
- Rajender Singh Sangwan
- Central Institute of Medicinal and Aromatic Plants (CSIR), PO CIMAP, Lucknow 226015, India.
| | | | | | | | | | | |
Collapse
|
43
|
Whitaker BD, Gapper NE. Ripening-Specific Stigmasterol Increase in Tomato Fruit Is Associated with Increased Sterol C-22 Desaturase ( CYP710A11) Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3828-35. [PMID: 0 DOI: 10.1021/jf7037983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Bruce D. Whitaker
- Produce Quality and Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, and Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853
| | - Nigel E. Gapper
- Produce Quality and Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705, and Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, New York 14853
| |
Collapse
|
44
|
Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R. Purification and characterization of a novel glucosyltransferase specific to 27β-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1199-207. [PMID: 17704015 DOI: 10.1016/j.bbapap.2007.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/04/2007] [Accepted: 06/18/2007] [Indexed: 01/09/2023]
Abstract
Sterol glycosyltransferases catalyze the synthesis of diverse glycosterols in plants. Withania somnifera is a medically important plant, known for a variety of pharmacologically important withanolides and their glycosides. In this study, a novel 27beta-hydroxy glucosyltransferase was purified to near homogeneity from cytosolic fraction of W. somnifera leaves and studied for its biochemical and kinetic properties. The purified enzyme showed activity with UDP-glucose but not with UDP-galactose as sugar donor. It exhibited broad sterol specificity by glucosylating a variety of sterols/withanolides with beta-OH group at C-17, C-21 and C-27 positions. It transferred glucose to the alkanol at C-25 position of the lactone ring, provided an alpha-OH was present at C-17 in the sterol skeleton. A comparable enzyme has not been reported earlier from plants. The enzyme is distinct from the previously purified W. somnifera 3beta-hydroxy specific sterol glucosyltransferase and does not glucosylate the sterols at C-3 position; though it also follows an ordered sequential bisubstrate reaction mechanism, in which UDP-glucose and sterol are the first and second binding substrates. The enzyme activity with withanolides suggests its role in secondary metabolism in W. somnifera. Results on peptide mass fingerprinting showed its resemblance with glycuronosyltransferase like protein. The enzyme activity in the leaves of W. somnifera was enhanced following the application of salicylic acid. In contrast, it decreased rapidly on exposure of the plants to heat shock, suggesting functional role of the enzyme in biotic and abiotic stresses.
Collapse
|