1
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
2
|
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells 2019; 8:cells8040376. [PMID: 31027278 PMCID: PMC6523734 DOI: 10.3390/cells8040376] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C (HCV) is a major cause of liver disease, in which a third of individuals with chronic HCV infections may develop liver cirrhosis. In a chronic HCV infection, host immune factors along with the actions of HCV proteins that promote viral persistence and dysregulation of the immune system have an impact on immunopathogenesis of HCV-induced hepatitis. The genome of HCV encodes a single polyprotein, which is translated and processed into structural and nonstructural proteins. These HCV proteins are the target of the innate and adaptive immune system of the host. Retinoic acid-inducible gene-I (RIG-I)-like receptors and Toll-like receptors are the main pattern recognition receptors that recognize HCV pathogen-associated molecular patterns. This interaction results in a downstream cascade that generates antiviral cytokines including interferons. The cytolysis of HCV-infected hepatocytes is mediated by perforin and granzyme B secreted by cytotoxic T lymphocyte (CTL) and natural killer (NK) cells, whereas noncytolytic HCV clearance is mediated by interferon gamma (IFN-γ) secreted by CTL and NK cells. A host-HCV interaction determines whether the acute phase of an HCV infection will undergo complete resolution or progress to the development of viral persistence with a consequential progression to chronic HCV infection. Furthermore, these host-HCV interactions could pose a challenge to developing an HCV vaccine. This review will focus on the role of the innate and adaptive immunity in HCV infection, the failure of the immune response to clear an HCV infection, and the factors that promote viral persistence.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
- Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA.
| | - Ronak Loonawat
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Mohit Sehgal
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Dip Patel
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
3
|
Araújo RC, Dias FC, Bertol BC, Silva DM, Almeida PH, Teixeira AC, Souza FF, Villanova MG, Ramalho LNZ, Donadi EA, Martinelli ALC. Liver HLA-E Expression Is Associated with Severity of Liver Disease in Chronic Hepatitis C. J Immunol Res 2018; 2018:2563563. [PMID: 29951556 PMCID: PMC5987287 DOI: 10.1155/2018/2563563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) can escape from innate and adaptive immunity, making the immune response ineffective. Human leukocyte antigen E (HLA-E) might regulate the antiviral function of immune response and contribute to the persistence of HCV and the severity of liver disease. This study aimed to evaluate the expression of HLA-E in the liver and its association with the severity of liver disease in HCV patients. We performed a retrospective analysis of liver biopsies from 125 HCV patients and from 20 control subjects without liver disease. Liver biopsies were reviewed and classified according to severity of fibrosis and inflammatory activity. The pathologist assessed the magnitude of HLA-E expression in a semiquantitative way, attributing scores from 0 to 3. Immunohistochemistry showed positive for HLA-E in hepatocyte and Kupffer cells. The rate of HLA-E positivity in hepatocytes and Kupffer cells was significantly higher in HCV patients compared to controls. The liver samples classified as severe fibrosis and necroinflammatory activity presented greater expression of HLA-E on Kupffer cells and hepatocytes, with a significant linear association. It indicates that HLA-E expression may have an immunomodulatory effect and a possible role in the severity of liver disease in chronic hepatitis C.
Collapse
Affiliation(s)
- Roberta C. Araújo
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Fabricio C. Dias
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Bruna C. Bertol
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Deisy M. Silva
- Pathology Department, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Patrícia H. Almeida
- Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Andreza C. Teixeira
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Fernanda F. Souza
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Marcia G. Villanova
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Leandra N. Z. Ramalho
- Pathology Department, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Eduardo A. Donadi
- Immunology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| | - Ana L. C. Martinelli
- Gastroenterology Division, Ribeirão Preto Medical School, University of São Paulo, 14048-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Nick JA, Caceres SM, Kret JE, Poch KR, Strand M, Faino AV, Nichols DP, Saavedra MT, Taylor-Cousar JL, Geraci MW, Burnham EL, Fessler MB, Suratt BT, Abraham E, Moss M, Malcolm KC. Extremes of Interferon-Stimulated Gene Expression Associate with Worse Outcomes in the Acute Respiratory Distress Syndrome. PLoS One 2016; 11:e0162490. [PMID: 27606687 PMCID: PMC5015849 DOI: 10.1371/journal.pone.0162490] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/01/2016] [Indexed: 01/11/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) severity may be influenced by heterogeneity of neutrophil activation. Interferon-stimulated genes (ISG) are a broad gene family induced by Type I interferons, often as a response to viral infections, which evokes extensive immunomodulation. We tested the hypothesis that over- or under-expression of immunomodulatory ISG by neutrophils is associated with worse clinical outcomes in patients with ARDS. Genome-wide transcriptional profiles of circulating neutrophils isolated from patients with sepsis-induced ARDS (n = 31) and healthy controls (n = 19) were used to characterize ISG expression. Hierarchical clustering of expression identified 3 distinct subject groups with Low, Mid and High ISG expression. ISG accounting for the greatest variability in expression were identified (MX1, IFIT1, and ISG15) and used to analyze a prospective cohort at the Colorado ARDS Network site. One hundred twenty ARDS patients from four urban hospitals were enrolled within 72 hours of initiation of mechanical ventilation. Circulating neutrophils were isolated from patients and expression of ISG determined by PCR. Samples were stratified by standard deviation from the mean into High (n = 21), Mid, (n = 82) or Low (n = 17) ISG expression. Clinical outcomes were compared between patients with High or Low ISG expression to those with Mid-range expression. At enrollment, there were no differences in age, gender, co-existing medical conditions, or type of physiologic injury between cohorts. After adjusting for age, race, gender and BMI, patients with either High or Low ISG expression had significantly worse clinical outcomes than those in the Mid for number of 28-day ventilator- and ICU-free days (P = 0.0006 and 0.0004), as well as 90-day mortality and 90-day home with unassisted breathing (P = 0.02 and 0.004). These findings suggest extremes of ISG expression by circulating neutrophils from ARDS patients recovered early in the syndrome are associated with poorer clinical outcomes.
Collapse
Affiliation(s)
- Jerry A. Nick
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Silvia M. Caceres
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Jennifer E. Kret
- St Louis County Department of Public Health, Berkeley, Missouri, United States of America
| | - Katie R. Poch
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Matthew Strand
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, United States of America
| | - Anna V. Faino
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, United States of America
| | - David P. Nichols
- Department of Pediatrics, National Jewish Health, Denver, Colorado, United States of America
| | - Milene T. Saavedra
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Jennifer L. Taylor-Cousar
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Mark W. Geraci
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Ellen L. Burnham
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Michael B. Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Benjamin T. Suratt
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Edward Abraham
- Office of the Dean, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Marc Moss
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Kenneth C. Malcolm
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Division of Pulmonary Science and Critical Care Medicine, Department of Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
5
|
Esmail MA, Hassuna NA, Amr KS, Ghazawy ER, Abdel-Hamid M. Polymorphisms at IL28B gene as predictors of viral relapse in genotype 4 Egyptian hepatitis C patients. J Med Virol 2016; 88:481-6. [PMID: 26280154 DOI: 10.1002/jmv.24354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 12/23/2022]
Abstract
Chronic HCV is one of the commonest causes of chronic liver disease worldwide with about 15% of population infected in Egypt. Certain single nucleotide polymorphisms (SNPs) lying near the IL28B gene were found to affect the spontaneous clearance as well as treatment outcome of HCV. To examine the association between different IL28B variants and the relapse of HCV infection after combined therapy with ribavirin and pegylated interferon (pegIFN). Hundered HCV genotype four patients received 1.5 mg/kg/week peginterferon alfa-2b plus 800-1400 mg/d ribavirin (weight-adjusted) for 48 weeks. IL28B polymorphisms (rs12980275, rs12979860, and 1 rs8099917) were studied in responders and relapsers at week 72. Out of 69 patients receiving treatment, 13 (18.8%) were relapsers. By stratifying patients on the basis of the IL-28/60 genotype (CC vs. CT/TT), CC patients showed lower relapse rates (2.3%) compared with CT/TT patients (46.2%) (P < 0.001). On the basis of the IL-28/75 genotype (GG vs. GA/AA), the GG patients achieved higher relapse rates (62.5%) compared with GA/AA patients (13.1%) (P = 0.004). Moreover, no statistical significant difference was observed between the TT patients compared with GG/GT patients on the basis of the IL-28/17 genotype. SNPs at IL-28/60 and IL-28/75 are possible predictors of relapse in patients receiving dual treatment.
Collapse
Affiliation(s)
| | - Noha A Hassuna
- Microbiology and Immunology Department, Faculty of Medicine, Minia University, Egypt
| | | | | | - Mohamed Abdel-Hamid
- Microbiology and Immunology Department, Faculty of Medicine, Minia University, Egypt
| |
Collapse
|
6
|
Zhou Y, Zhang Y, Moorman JP, Yao ZQ, Jia ZS. Viral (hepatitis C virus, hepatitis B virus, HIV) persistence and immune homeostasis. Immunology 2014; 143:319-30. [PMID: 24965611 DOI: 10.1111/imm.12349] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
Immune homeostasis is a host characteristic that maintains biological balance within a host. Humans have evolved many host defence mechanisms that ensure the survival of individuals upon encountering a pathogenic infection, with recovery or persistence from a viral infection being determined by both viral factors and host immunity. Chronic viral infections, such as hepatitis B virus, hepatitis C virus and HIV, often result in chronic fluctuating viraemia in the face of host cellular and humoral immune responses, which are dysregulated by multi-faceted mechanisms that are incompletely understood. This review attempts to illuminate the mechanisms involved in this process, focusing on immune homeostasis in the setting of persistent viral infection from the aspects of host defence mechanism, including interferon-stimulated genes, apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3), autophagy and interactions of various immune cells, cytokines and regulatory molecules.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; Center for Inflammation, Infectious Diseases, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | | | | | | | | |
Collapse
|
7
|
The role of chemokines in hepatitis C virus-mediated liver disease. Int J Mol Sci 2014; 15:4747-79. [PMID: 24646914 PMCID: PMC3975423 DOI: 10.3390/ijms15034747] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 12/21/2022] Open
Abstract
The hepatitis C virus (HCV) is a global health problem affecting more than 170 million people. A chronic HCV infection is associated with liver fibrosis, liver cirrhosis and hepatocellular carcinoma. To enable viral persistence, HCV has developed mechanisms to modulate both innate and adaptive immunity. The recruitment of antiviral immune cells in the liver is mainly dependent on the release of specific chemokines. Thus, the modulation of their expression could represent an efficient viral escape mechanism to hamper specific immune cell migration to the liver during the acute phase of the infection. HCV-mediated changes in hepatic immune cell chemotaxis during the chronic phase of the infection are significantly affecting antiviral immunity and tissue damage and thus influence survival of both the host and the virus. This review summarizes our current understanding of the HCV-mediated modulation of chemokine expression and of its impact on the development of liver disease. A profound knowledge of the strategies used by HCV to interfere with the host's immune response and the pro-fibrotic and pro-carcinogenic activities of HCV is essential to be able to design effective immunotherapies against HCV and HCV-mediated liver diseases.
Collapse
|
8
|
Kirschberg TA, Squires NH, Yang H, Corsa AC, Tian Y, Tirunagari N, Sheng XC, Kim CU. Novel, sulfonamide linked inhibitors of the hepatitis C virus NS3 protease. Bioorg Med Chem Lett 2014; 24:969-72. [DOI: 10.1016/j.bmcl.2013.12.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022]
|
9
|
Amador-Cañizares Y, Martínez-Donato G, Álvarez-Lajonchere L, Vasallo C, Dausá M, Aguilar-Noriega D, Valenzuela C, Raíces I, Dubuisson J, Wychowski C, Cinza-Estévez Z, Castellanos M, Núñez M, Armas A, González Y, Revé I, Guerra I, Pérez Aguiar &A, Dueñas-Carrera S. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin. World J Gastroenterol 2014; 20:148-162. [PMID: 24415868 PMCID: PMC3886004 DOI: 10.3748/wjg.v20.i1.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/14/2013] [Accepted: 07/13/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230.
METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided.
RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response.
CONCLUSION: CIGB-230, combined with IFN-α-based therapy, modifies the immune response in chronic patients. The study provides evidence for the design of more effective therapeutic vaccine interventions against HCV.
Collapse
MESH Headings
- Adult
- Antiviral Agents/administration & dosage
- Antiviral Agents/adverse effects
- Biomarkers/blood
- Cells, Cultured
- Cuba
- Double-Blind Method
- Drug Administration Schedule
- Drug Therapy, Combination
- Female
- Hepacivirus/drug effects
- Hepacivirus/genetics
- Hepacivirus/immunology
- Hepatitis C Antibodies/blood
- Hepatitis C, Chronic/diagnosis
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunization Schedule
- Interferon alpha-2
- Interferon-alpha/administration & dosage
- Interferon-alpha/adverse effects
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/virology
- Male
- Middle Aged
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Ribavirin/administration & dosage
- Ribavirin/adverse effects
- Time Factors
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/adverse effects
- Viral Hepatitis Vaccines/administration & dosage
- Viral Hepatitis Vaccines/adverse effects
Collapse
|
10
|
Kalkeri G, Lin C, Gopilan J, Sloan K, Rijnbrand R, Kwong AD. Restoration of the activated Rig-I pathway in hepatitis C virus (HCV) replicon cells by HCV protease, polymerase, and NS5A inhibitors in vitro at clinically relevant concentrations. Antimicrob Agents Chemother 2013; 57:4417-26. [PMID: 23836176 PMCID: PMC3754339 DOI: 10.1128/aac.00399-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023] Open
Abstract
Development of persistent hepatitis C virus (HCV) infection may be mediated by HCV NS3 · 4A protease-dependent inhibition of host innate immunity. When double-stranded RNA (dsRNA) is detected in virus-infected cells, host innate immunity mounts an antiviral response by upregulating production of type I interferons (α/β interferon [IFN-α/β]); HCV counters by cleaving the IFN-β stimulator 1 (IPS-1) adaptor protein, decreasing synthesis of IFN-α/β. We evaluated HCV protease (telaprevir, boceprevir, and TMC435350), polymerase (HCV-796 and VX-222), and NS5A (BMS-790052) inhibitors for the ability to restore IPS-1-mediated Rig-I signaling by measuring Sendai virus-induced IFN-β promoter activation in HCV replicon cells after various exposure durations. All direct-acting HCV antivirals tested restored mitochondrial localization of IPS-1 and rescued Sendai virus-induced IRF3 signaling after 7 days by inhibiting HCV replication, thereby reducing the abundance of HCV NS3 · 4A protease. With 4-day treatment, HCV protease inhibitors, but not polymerase inhibitors, restored mitochondrial localization of IPS-1 and rescued IFN-β promoter activation in the presence of equivalent levels of NS3 protein in protease or polymerase inhibitor-treated cells. The concentrations of HCV protease and polymerase inhibitors needed to rescue IRF3-mediated signaling in vitro were in the range of those observed in vivo in the plasma of treated HCV patients. These findings suggest that (i) HCV protease, polymerase, and NS5A inhibitors can restore virus-induced IRF3 signaling by inhibiting viral replication, thereby reducing NS3 protease levels, and (ii) HCV protease inhibitors can restore innate immunity by directly inhibiting NS3 protease-mediated cleavage of IPS-1 at clinically achievable concentrations.
Collapse
Affiliation(s)
- Gururaj Kalkeri
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Zhu Z, Mathahs MM, Schmidt WN. Restoration of type I interferon expression by heme and related tetrapyrroles through inhibition of NS3/4A protease. J Infect Dis 2013; 208:1653-63. [PMID: 23901085 DOI: 10.1093/infdis/jit338] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Tetrapyrrole substrates and products of heme oxygenase are potent inhibitors of hepatitis C virus (HCV) replication. It is not clear whether this occurs through primary induction of type I interferon (IFN), inhibition of viral NS3/4A protease, or a combination of these mechanisms. We studied the antiviral actions of tetrapyrroles and their potential influence on type I IFN induction. METHODS The effects of tetrapyrrole on NS3/4A protease activity and type I IFN induction were assessed in HCV-permissive cells, replicons, or human embryonic kidney (HEK) 293 cells transfected with NS3/4A protease. Activation of innate immune signaling was determined after transfection of double-strand surrogate nucleic acid antigens or infection with defined sequence HCV cell culture (HCVcc) RNA. RESULTS Tetrapyrroles failed to directly induce IFN expression at concentrations that inhibited HCV replication and NS3/4A protease activity. However, they potently restored IFN induction after attenuation with NS3/4A protease, a process accompanied by preservation of the adapter protein, mitochondrial antiviral signaling protein, nuclear localization of IFN regulatory factor 3, and augmentation of IFN-stimulated gene products. CONCLUSIONS Tetrapyrroles do not directly induce IFN, but they dramatically restore type I IFN signaling pathway after attenuation with NS3/4A protease. They show immunomodulatory as well as antiprotease activity and may be useful for treatment of HCV infection.
Collapse
Affiliation(s)
- Zhaowen Zhu
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center
| | | | | |
Collapse
|
12
|
Schmidt WN, Mathahs MM, Zhu Z. Heme and HO-1 Inhibition of HCV, HBV, and HIV. Front Pharmacol 2012; 3:129. [PMID: 23060790 PMCID: PMC3463857 DOI: 10.3389/fphar.2012.00129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system inhibit replication of all 3 viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.
Collapse
Affiliation(s)
- Warren N Schmidt
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center, University of Iowa Iowa City, IA, USA ; Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | | | |
Collapse
|
13
|
Li K, Lemon SM. Innate immune responses in hepatitis C virus infection. Semin Immunopathol 2012; 35:53-72. [PMID: 22868377 DOI: 10.1007/s00281-012-0332-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) is a major causative agent of chronic hepatitis and hepatocellular carcinoma worldwide and thus poses a significant public health threat. A hallmark of HCV infection is the extraordinary ability of the virus to persist in a majority of infected people. Innate immune responses represent the front line of defense of the human body against HCV immediately after infection. They also play a crucial role in orchestrating subsequent HCV-specific adaptive immunity that is pivotal for viral clearance. Accumulating evidence suggests that the host has evolved multifaceted innate immune mechanisms to sense HCV infection and elicit defense responses, while HCV has developed elaborate strategies to circumvent many of these. Defining the interplay of HCV with host innate immunity reveals mechanistic insights into hepatitis C pathogenesis and informs approaches to therapy. In this review, we summarize recent advances in understanding innate immune responses to HCV infection, focusing on induction and effector mechanisms of the interferon antiviral response as well as the evasion strategies of HCV.
Collapse
Affiliation(s)
- Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
14
|
Patel MV, Ghosh M, Fahey JV, Wira CR. Uterine epithelial cells specifically induce interferon-stimulated genes in response to polyinosinic-polycytidylic acid independently of estradiol. PLoS One 2012; 7:e35654. [PMID: 22558189 PMCID: PMC3338446 DOI: 10.1371/journal.pone.0035654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/22/2012] [Indexed: 12/24/2022] Open
Abstract
Interferon β (IFNβ) is an antiviral cytokine secreted in response to pathogenic exposure that creates a restrictive intracellular environment through the action of downstream interferon-stimulated genes (ISG). The objective of this study was to examine the expression of IFNβ and ISG in both human uterine epithelial cells (UEC) and the ECC-1 uterine epithelial cell line and determine if expression changes with TLR stimulation and hormone exposure. Stimulation of primary uterine epithelial cells and ECC-1 cells with the TLR3 agonist poly (I:C) induced the mRNA expression of IFNβ, MxA, OAS2 and PKR. Other TLR agonists including imiquimod and CpG had no effect on either IFNβ or ISG expression. In contrast to ECC-1 cell responses which were slower, maximal IFNβ upregulation in UEC occurred 3 hours post-stimulation and preceded the ISG response which peaked approximately 12 hours after poly (I:C) exposure. Unexpectedly, estradiol, either alone or prior to treatment with poly (I:C), had no effect on IFNβ or ISG expression. Blockade of the IFN receptor abrogated the upregulation of MxA, OAS2 and PKR. Furthermore, neutralizing antibodies against IFNβ partially inhibited the upregulation of all three ISG. Estradiol, directly and in the presence of poly (I:C) had no effect on IFNβ and ISG expression. These results indicate that uterine epithelial cells are important sentinels of the innate immune system and demonstrate that uterine epithelial cells are capable of mounting a rapid IFN-mediated antiviral response that is independent of estradiol and is therefore potentially sustained throughout the menstrual cycle to aid in the defense of the uterus against potential pathogens.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Physiology and Neurobiology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America.
| | | | | | | |
Collapse
|
15
|
Ezelle HJ, Hassel BA. Pathologic effects of RNase-L dysregulation in immunity and proliferative control. Front Biosci (Schol Ed) 2012; 4:767-86. [PMID: 22202089 DOI: 10.2741/s298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endoribonuclease RNase-L is the terminal component of an RNA cleavage pathway that mediates antiviral, antiproliferative and immunomodulatory activities. Inactivation or dysregulation of RNase-L is associated with a compromised immune response and increased risk of cancer, accordingly its activity is tightly controlled and requires an allosteric activator, 2',5'-linked oligoadenylates, for enzymatic activity. The biological activities of RNase-L are a result of direct and indirect effects of RNA cleavage and microarray analyses have revealed that RNase-L impacts the gene expression program at multiple levels. The identification of RNase-L-regulated RNAs has provided insights into potential mechanisms by which it exerts antiproliferative, proapoptotic, senescence-inducing and innate immune activities. RNase-L protein interactors have been identified that serve regulatory functions and are implicated as alternate mechanisms of its biologic functions. Thus, while the molecular details are understood for only a subset of RNase-L activities, its regulation by small molecules and critical roles in host defense and as a candidate tumor suppressor make it a promising therapeutic target.
Collapse
Affiliation(s)
- Heather J Ezelle
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
16
|
Clarke MO, Byun D, Chen X, Doerffler E, Leavitt SA, Sheng XC, Yang CY, Kim CU. Novel, potent and orally bioavailable indolizidinone-derived inhibitors of the hepatitis C virus NS3 protease. Bioorg Med Chem Lett 2012; 22:1095-8. [DOI: 10.1016/j.bmcl.2011.11.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 11/25/2022]
|
17
|
Clarke MO, Chen X, Cho A, Delaney WE, Doerffler E, Fardis M, Ji M, Mertzman M, Pakdaman R, Pyun HJ, Rowe T, Yang CY, Sheng XC, Kim CU. Novel, potent, and orally bioavailable phosphinic acid inhibitors of the hepatitis C virus NS3 protease. Bioorg Med Chem Lett 2011; 21:3568-72. [DOI: 10.1016/j.bmcl.2011.04.125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 11/30/2022]
|
18
|
Weng PJ, Fu YM, Ding SX, Xu DP, Lin A, Yan WH. Elevation of plasma soluble human leukocyte antigen-G in patients with chronic hepatitis C virus infection. Hum Immunol 2011; 72:406-11. [PMID: 21377504 DOI: 10.1016/j.humimm.2011.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 01/25/2011] [Accepted: 02/22/2011] [Indexed: 02/07/2023]
Abstract
The subversion of immune responses that hepatitis C virus (HCV) uses to escape immune surveillance and to establish persistent infection has been poorly understood. The immune-suppressive molecule human leukocyte antigen-G (HLA-G) has been supposed to play important roles in viral infection. In the current study, HCV genotype was analyzed in 67 chronic HCV-infected (CHC) patients. Plasma soluble sHLA-G (including sHLA-G1 and HLA-G5), interleukin-10 (IL-10), and interferon-γ (IFN-γ) levels were determined in these CHC patients and in healthy subjects by enzyme-linked immunosorbent assay, and the sHLA-G isoforms present in plasma were determined by Western blot. Data showed that HCV 1b was the predominant genotype, with a prevalence of 64.2%. sHLA-G was dramatically increased in CHC patients (median: 85.54 U/ml, range: 19.40-204.07) over that in normal controls (median: 9.13 U/ml, range: 5.07-69.56) (p < 0.001). Western blotting revealed that plasma sHLA-G was derived from sHLA-G1 and HLA-G5. IL-10 and IFN-γ levels were also significant higher in CHC patients than in normal controls (median: 16.3 pg/ml vs 1.8 pg/ml, p < 0.001, and 1025.3 pg/ml vs 858.3 pg/ml, p = 0.03, respectively). No significant association was observed for the HCV genotype and viral RNA load with the levels of sHLA-G, IL-10, and IFN-γ in CHC patients. These results indicate that elevation of sHLA-G expression in HCV patients was independent of viral genotype and viral RNA load. Given its immunotolerant property, an increase in sHLA-G may play a role in the persistency of HCV infection.
Collapse
Affiliation(s)
- Peng-Jian Weng
- Department of Laboratory Medicine, Ningbo Liver Diseases Hospital, Ningbo, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Over the past decade, a family of host proteins known as suppressors of cytokine signaling (SOCS) have emerged as frequent targets of viral exploitation. Under physiologic circumstances, SOCS proteins negatively regulate inflammatory signaling pathways by facilitating ubiquitination and proteosomal degradation of pathway machinery. Their expression is tightly regulated to prevent excessive inflammation while maintaining protective antipathogenic responses. Numerous viruses, however, have developed mechanisms to induce robust host SOCS protein expression following infection, essentially "hijacking" SOCS function to promote virus survival. To date, SOCS proteins have been shown to inhibit protective antiviral signaling pathways, allowing viruses to evade the host immune response, and to ubiquitinate viral proteins, facilitating intracellular viral trafficking and progeny virus assembly. Importantly, manipulation of SOCS proteins not only facilitates progression of the viral life cycle but also powerfully shapes the presentation of viral disease. SOCS proteins can define host susceptibility to infection, contribute to peripheral disease manifestations such as immune dysfunction and cancer, and even modify the efficacy of therapeutic interventions. Looking toward the future, it is clear that a better understanding of the role of SOCS proteins in viral diseases will be essential in our struggle to modulate and even eliminate the pathogenic effects of viruses on the host.
Collapse
|
20
|
Abstract
Over the past decade, a family of host proteins known as suppressors of cytokine signaling (SOCS) have emerged as frequent targets of viral exploitation. Under physiologic circumstances, SOCS proteins negatively regulate inflammatory signaling pathways by facilitating ubiquitination and proteosomal degradation of pathway machinery. Their expression is tightly regulated to prevent excessive inflammation while maintaining protective antipathogenic responses. Numerous viruses, however, have developed mechanisms to induce robust host SOCS protein expression following infection, essentially "hijacking" SOCS function to promote virus survival. To date, SOCS proteins have been shown to inhibit protective antiviral signaling pathways, allowing viruses to evade the host immune response, and to ubiquitinate viral proteins, facilitating intracellular viral trafficking and progeny virus assembly. Importantly, manipulation of SOCS proteins not only facilitates progression of the viral life cycle but also powerfully shapes the presentation of viral disease. SOCS proteins can define host susceptibility to infection, contribute to peripheral disease manifestations such as immune dysfunction and cancer, and even modify the efficacy of therapeutic interventions. Looking toward the future, it is clear that a better understanding of the role of SOCS proteins in viral diseases will be essential in our struggle to modulate and even eliminate the pathogenic effects of viruses on the host.
Collapse
|
21
|
Amador-Cañizares Y, Dueñas-Carrera S. Early interferon-based treatment after detection of persistent hepatitis C virus infection: a critical decision. J Interferon Cytokine Res 2010; 30:817-24. [PMID: 20836713 DOI: 10.1089/jir.2010.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Approximately 170 million people are infected with the hepatitis C virus (HCV) worldwide. Infection with this pathogen is persistent in more than 80% of cases, frequently developing severe forms of liver damage such as cirrhosis and hepatocellular carcinoma. No preventive vaccine is available against HCV, and current treatment based on the combination of pegylated interferon and ribavirin is effective in ∼55% of patients infected with genotype 1, the most prevalent genotype. This review analyzes several factors influencing the achievement of a sustained virological response, namely undetectable HCV RNA at 6 months after conclusion of therapy. Particularly, the relevant issue of age and duration of infection is discussed in detail. Indeed, the final decision for starting treatment should be a case-by-case point. However, the cost-benefit analysis seems to indicate that in patients who are motivated and without contraindications, starting the treatment as early as possible is probably the best choice for success.
Collapse
Affiliation(s)
- Yalena Amador-Cañizares
- Center for Genetic Engineering and Biotechnology , Hepatitis C Department, Vaccines Division, Havana, Cuba
| | | |
Collapse
|
22
|
Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins. PLoS One 2010; 5:e11756. [PMID: 20668695 PMCID: PMC2909252 DOI: 10.1371/journal.pone.0011756] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 06/30/2010] [Indexed: 12/25/2022] Open
Abstract
Background Generating autologous pluripotent stem cells for therapeutic applications will require the development of efficient DNA-free reprogramming techniques. Transfecting cells with in vitro-transcribed, protein-encoding RNA is a straightforward method of directly expressing high levels of reprogramming proteins without genetic modification. However, long-RNA transfection triggers a potent innate immune response characterized by growth inhibition and the production of inflammatory cytokines. As a result, repeated transfection with protein-encoding RNA causes cell death. Methodology/Principal Findings RNA viruses have evolved methods of disrupting innate immune signaling by destroying or inhibiting specific proteins to enable persistent infection. Starting from a list of known viral targets, we performed a combinatorial screen to identify siRNA cocktails that could desensitize cells to exogenous RNA. We show that combined knockdown of interferon-β (Ifnb1), Eif2ak2, and Stat2 rescues cells from the innate immune response triggered by frequent long-RNA transfection. Using this technique, we were able to transfect primary human fibroblasts every 24 hours with RNA encoding the reprogramming proteins Oct4, Sox2, Klf4, and Utf1. We provide evidence that the encoded protein is active, and we show that expression can be maintained for many days, through multiple rounds of cell division. Conclusions/Significance Our results demonstrate that suppressing innate immunity enables frequent transfection with protein-encoding RNA. This technique represents a versatile tool for investigating expression dynamics and protein interactions by enabling precise control over levels and timing of protein expression. Our finding also opens the door for the development of reprogramming and directed-differentiation methods based on long-RNA transfection.
Collapse
|
23
|
Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol Ther 2009; 124:1-22. [PMID: 19555718 DOI: 10.1016/j.pharmthera.2009.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.
Collapse
|
24
|
Affiliation(s)
- Mathis Heydtmann
- Liver Research Laboratories, Institute for Biomedical Research, Birmingham University, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
25
|
Rowan AG, Fletcher JM, Ryan EJ, Moran B, Hegarty JE, O'Farrelly C, Mills KHG. Hepatitis C virus-specific Th17 cells are suppressed by virus-induced TGF-beta. THE JOURNAL OF IMMUNOLOGY 2008; 181:4485-94. [PMID: 18802051 DOI: 10.4049/jimmunol.181.7.4485] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
IL-17-secreting T (Th17) cells play a protective role in certain bacterial infections, but they are major mediators of inflammation and are pathogenic in organ-specific autoimmune diseases. However, human Th17 cells appear to be resistant to suppression by CD4(+)CD25(+)FoxP3(+) regulatory T cells, suggesting that they may be regulated by alternative mechanisms. Herein we show that IL-10 and TGF-beta suppressed IL-17 production by anti-CD3-stimulated PBMC from normal individuals. TGF-beta also suppressed IL-17 production by purified CD4(+) T cells, whereas the inhibitory effect of IL-10 on IL-17 production appears to be mediated predominantly by its effect on APC. An examination of patients infected with hepatitis C virus (HCV) demonstrated that Ag-specific Th17 cells are induced during infection and that these cells are regulated by IL-10 and TGF-beta. PBMC from HCV Ab-positive donors secreted IL-17, IFN-gamma, IL-10, and TGF-beta in response to stimulation with the HCV nonstructural protein 4 (NS4). Furthermore, NS4 induced innate TGF-beta and IL-10 expression by monocytes from normal donors and at higher levels from HCV-infected patients. Neutralization of TGF-beta, and to a lesser extent IL-10, significantly enhanced NS4-specific IL-17 and IFN-gamma production by T cells from HCV-infected donors. Our findings suggest that both HCV-specific Th1 and Th17 cells are suppressed by NS4-induced production of the innate anti-inflammatory cytokines IL-10 and TGF-beta. This may represent a novel immune subversion mechanism by the virus to evade host-protective immune responses. Our findings also suggest that TGF-beta and IL-10 play important roles in constraining the function of Th17 cells in general.
Collapse
Affiliation(s)
- Aileen G Rowan
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
26
|
Ishii S, Koziel MJ. Immune responses during acute and chronic infection with hepatitis C virus. Clin Immunol 2008; 128:133-47. [PMID: 18514579 DOI: 10.1016/j.clim.2008.03.525] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 03/27/2008] [Accepted: 03/27/2008] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) induces persistent infection and causes chronic liver disease in most infected patients. Vigorous HCV-specific CD4+ and CD8+ T cell responses against HCV multiple epitopes are necessary for spontaneous viral clearance during the acute phase, but the virus appears to have multiple strategies to evade these defenses. There are relatively few studies on the role of immune responses during the chronic phase of infection. CD4+ T cell responses appear to protect against liver injury and may be important to clearance during interferon and ribavirin based therapy. Classic cytotoxic T cells (CTL) may primarily damage the liver in chronic HCV, but there may be subpopulations of T cells that protect against liver inflammation. Resolution of these outstanding questions is important to the development of a prophylactic vaccine as well as improving therapeutic options for those with chronic infection.
Collapse
Affiliation(s)
- Shigeaki Ishii
- Infectious Disease Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
27
|
HCV core protein interacts with Dicer to antagonize RNA silencing. Virus Res 2008; 133:250-8. [PMID: 18325616 DOI: 10.1016/j.virusres.2008.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/16/2008] [Accepted: 01/21/2008] [Indexed: 01/03/2023]
Abstract
RNA silencing is a form of nucleic acid-based immunity against viruses in plants and invertebrate animals. Successful viral infection requires evasion or suppression of gene silencing. Here, we report that the core protein of Hepatitis C virus (HCV) acts as a potent suppressor of RNA silencing (SRS). We have found that the HCV core protein inhibits RNA silencing induced by short hairpin RNAs (shRNAs) but not by synthetic small interfering RNAs (siRNAs) in various mammalian cells. We have further demonstrated that HCV core protein directly interacts with Dicer, an RNase enzyme that generates siRNA in host cells. The HCV core protein has been shown to inhibit the function of Dicer to process double-stranded RNAs (dsRNAs) into siRNAs. Through deletion analysis, we have found that the N-terminal domain is required for core protein to antagonize RNA silencing activity of Dicer enzyme. Thus, our results suggest that HCV core protein may abrogate host cell RNA silencing defense by suppressing the ability of Dicer to process precursor dsRNAs into siRNAs. This anti-Dicer ability of core protein may contribute to the persistent viral infection and pathogenesis of HCV.
Collapse
|
28
|
Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 2008; 82:4471-9. [PMID: 18305050 DOI: 10.1128/jvi.02472-07] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.
Collapse
|
29
|
Schulze-Osthoff K, Häussinger D. Apoptosis in the liver: a matter of ion fluxes and oxidative stress: Third International Conference of the Collaborative Research Center 'Experimental Hepatology' (SFB-575), Düsseldorf, Germany, 13-14 October 2006. Liver Int 2007; 27:1039-44. [PMID: 17845531 DOI: 10.1111/j.1478-3231.2007.01525.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cell death of hepatocytes is a characteristic feature of liver damage triggered by viral infection, drug abuse, fat overload or autoimmunity. Apoptosis is currently the best-understood form of cell death; however, the precise mechanisms leading to apoptosis in liver disease are largely unknown. Several cellular processes including alterations in cell hydration and ion homeostasis, osmotic and oxidative stress, lysosomal permeabilization as well as alternate forms of cell death may contribute to liver damage. The intriguing complexity and relevance of these processes for liver failure were addressed at the Third International Conference of the Collaborative Research Center 'Experimental Hepatology' (SFB-575),which was held in Düsseldorf, Germany, in 13-14 October 2006. The aim of this symposium was to bring together leading researchers studying cell death pathways in the liver and other systems and to share ideas and recent research findings. This report covers some of the salient and stimulating contributions of the meeting and gives an updated survey of the advances in this burgeoning field of translational medicine.
Collapse
Affiliation(s)
- Klaus Schulze-Osthoff
- Sonderforschungsbereich 575 (Experimental Hepatology), Heinrich Heine University, Düsseldorf, Germany.
| | | |
Collapse
|