1
|
Uddin M, Coombe D. A Coarse-Grained Simulation Approach for Protein Molecular Conformation Dynamics. J Phys Chem A 2025; 129:607-622. [PMID: 39754120 DOI: 10.1021/acs.jpca.4c06977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.2). The atomic structure is used as a parent template to set up the coarse model, which naturally gives a better representation of the initial conditions. We have formulated a computational algorithm to set up protein coarse-grained coordinates and force field topology (such as bonds, angles, and dihedrals). The model was validated by a systematic all atom and coarse-grained simulation of a system containing protein human serum albumin and the drug paclitaxel in a water bath. The bonded force constants were optimized locally by neighboring residue-free energy data and globally by history matching against all atom simulation. The coarse-grained model was then applied for several other proteins and justified its general reliability for modeling protein conformations dynamics. We arrived at such a conclusion with great satisfaction because it describes the initial conditions accurately, applies only standard bonded force constants, and provides a significant backbone flexibility.
Collapse
Affiliation(s)
- Mafiz Uddin
- Alberta Computational Biochemistry Lab, 208, 8909-100 Street, Edmonton, Alberta T6E 6T4, Canada
| | - Dennis Coombe
- Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada
| |
Collapse
|
2
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 PMCID: PMC11549934 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
3
|
Pedroni L, Louisse J, Dorne JLCM, Dall'Asta C, Dellafiora L. A computational study on the biotransformation of alkenylbenzenes by a selection of CYPs: Reflections on their possible bioactivation. Toxicology 2023; 488:153471. [PMID: 36863505 DOI: 10.1016/j.tox.2023.153471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
Alkenylbenzenes are aromatic compounds found in several vegetable foods that can cause genotoxicity upon bioactivation by members of the cytochrome P450 (CYP) family, forming 1'-hydroxy metabolites. These intermediates act as proximate carcinogens and can be further converted into reactive 1'-sulfooxy metabolites, which are the ultimate carcinogens responsible for genotoxicity. Safrole, a member of this class, has been banned as a food or feed additive in many countries based on its genotoxicity and carcinogenicity. However, it can still enter the food and feed chain. There is limited information about the toxicity of other alkenylbenzenes that may be present in safrole-containing foods, such as myristicin, apiole, and dillapiole. In vitro studies showed safrole as mainly bioactivated by CYP2A6 to form its proximate carcinogen, while for myristicin this is mainly done by CYP1A1. However, it is not known whether CYP1A1 and CYP2A6 can activate apiole and dillapiole. The present study uses an in silico pipeline to investigate this knowledge gap and determine whether CYP1A1 and CYP2A6 may play a role in the bioactivation of these alkenylbenzenes. The study found that the bioactivation of apiole and dillapiole by CYP1A1 and CYP2A6 is limited, possibly indicating that these compounds may have limited toxicity, while describing a possible role of CYP1A1 in the bioactivation of safrole. The study expands the current understanding of safrole toxicity and bioactivation and helps understand the mechanisms of CYPs involved in the bioactivation of alkenylbenzenes. This information is essential for a more informed analysis of alkenylbenzenes toxicity and risk assessment.
Collapse
Affiliation(s)
- Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Jochem Louisse
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, the Netherlands
| | | | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parma 43124, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma 43124, Italy.
| |
Collapse
|
4
|
Yamaguchi Y, Nishizono N, Kobayashi D, Yoshimura T, Wada K, Kobayashi K, Oda K. Synthesis and biological evaluation of coumarin derivatives as selective CYP2A6 inhibitors. Bioorg Med Chem Lett 2023; 86:129206. [PMID: 36889653 DOI: 10.1016/j.bmcl.2023.129206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Cytochrome P450 2A6 (CYP2A6) inhibitors are expected to be suitable as smoking cessation aids and for cancer prevention. Because the typical coumarin-based CYP2A6 inhibitor methoxsalen also inhibits CYP3A4, unintended drug-drug interactions are still a concern. Therefore, the development of selective CYP2A6 inhibitors is desirable. In this study, we synthesized coumarin-based molecules, determined the IC50 values for CYP2A6 inhibition, verified the possibility of mechanism-based inhibition, and compared the selectivity for CYP2A6 versus CYP3A4. The results demonstrated that we developed CYP2A6 inhibitors that were more potent and selective than methoxsalen.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan.
| | - Naozumi Nishizono
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Daisuke Kobayashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Keiji Wada
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Kenichi Kobayashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| | - Kazuaki Oda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Tobetsu-cho, Ishikari-gun, Hokkaido 061-0293, Japan
| |
Collapse
|
5
|
Pedroni L, Louisse J, Punt A, Dorne JLCM, Dall’Asta C, Dellafiora L. A Computational Inter-Species Study on Safrole Phase I Metabolism-Dependent Bioactivation: A Mechanistic Insight into the Study of Possible Differences among Species. Toxins (Basel) 2023; 15:toxins15020094. [PMID: 36828409 PMCID: PMC9962551 DOI: 10.3390/toxins15020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Safrole, a 162.2 Da natural compound belonging to the alkenylbenzenes class, is classified as a possible carcinogen to humans by IARC (group IIB) and has proven to be genotoxic and carcinogenic to rodents. Despite its use as a food or feed additive, it is forbidden in many countries due to its documented toxicity; yet, it is still broadly present within food and feed and is particularly abundant in spices, herbs and essential oils. Specifically, safrole may exert its toxicity upon bioactivation to its proximate carcinogen 1'-hydroxy-safrole via specific members of the cytochrome P450 protein family with a certain inter/intra-species variability. To investigate this variability, an in-silico workflow based on molecular modelling, docking and molecular dynamics has been successfully applied. This work highlighted the mechanistic basis underpinning differences among humans, cats, chickens, goats, sheep, dogs, mice, pigs, rats and rabbits. The chosen metric to estimate the likeliness of formation of 1'-hydroxy-safrole by the species-specific cytochrome P450 under investigation allowed for the provision of a knowledge-based ground to rationally design and prioritise further experiments and deepen the current understanding of alkenylbenzenes bioactivation and CYPs mechanics. Both are crucial for a more informed framework of analysis for safrole toxicity.
Collapse
Affiliation(s)
- Lorenzo Pedroni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Jochem Louisse
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Ans Punt
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Jean Lou C. M. Dorne
- Methodology and Scientific Support Unit (MESE), European Food Safety Authority, 43126 Parma, Italy
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-0521-906079
| |
Collapse
|
6
|
da Rocha JEB, Othman H, Botha G, Cottino L, Twesigomwe D, Ahmed S, Drögemöller BI, Fadlelmola FM, Machanick P, Mbiyavanga M, Panji S, Wright GEB, Adebamowo C, Matshaba M, Ramsay M, Simo G, Simuunza MC, Tiemessen CT, Baldwin S, Chiano M, Cox C, Gross AS, Thomas P, Gamo FJ, Hazelhurst S. The Extent and Impact of Variation in ADME Genes in Sub-Saharan African Populations. Front Pharmacol 2021; 12:634016. [PMID: 34721006 PMCID: PMC8549571 DOI: 10.3389/fphar.2021.634016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 01/13/2023] Open
Abstract
Introduction: Investigating variation in genes involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs are key to characterizing pharmacogenomic (PGx) relationships. ADME gene variation is relatively well characterized in European and Asian populations, but data from African populations are under-studied-which has implications for drug safety and effective use in Africa. Results: We identified significant ADME gene variation in African populations using data from 458 high-coverage whole genome sequences, 412 of which are novel, and from previously available African sequences from the 1,000 Genomes Project. ADME variation was not uniform across African populations, particularly within high impact coding variation. Copy number variation was detected in 116 ADME genes, with equal ratios of duplications/deletions. We identified 930 potential high impact coding variants, of which most are discrete to a single African population cluster. Large frequency differences (i.e., >10%) were seen in common high impact variants between clusters. Several novel variants are predicted to have a significant impact on protein structure, but additional functional work is needed to confirm the outcome of these for PGx use. Most variants of known clinical outcome are rare in Africa compared to European populations, potentially reflecting a clinical PGx research bias to European populations. Discussion: The genetic diversity of ADME genes across sub-Saharan African populations is large. The Southern African population cluster is most distinct from that of far West Africa. PGx strategies based on European variants will be of limited use in African populations. Although established variants are important, PGx must take into account the full range of African variation. This work urges further characterization of variants in African populations including in vitro and in silico studies, and to consider the unique African ADME landscape when developing precision medicine guidelines and tools for African populations.
Collapse
Affiliation(s)
- Jorge E. B. da Rocha
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gerrit Botha
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura Cottino
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Samah Ahmed
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Britt I. Drögemöller
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Faisal M. Fadlelmola
- Centre for Bioinformatics and Systems Biology, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Philip Machanick
- Department of Computer Science, Rhodes University, Makhanda, South Africa
| | - Mamana Mbiyavanga
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Sumir Panji
- Computational Biology Division and H3ABioNet, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Galen E. B. Wright
- Neuroscience Research Program, Winnipeg Health Sciences Centre and Max Rady College of Medicine, Kleysen for Advanced Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Clement Adebamowo
- Institute for Human Virology, Abuja, Nigeria
- Institute of Human Virology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Center of Excellence, Gaborone, Botswana
- Baylor College of Medicine, Houston, TX, United States
| | - Michéle Ramsay
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Martin C. Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Caroline T. Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sandra Baldwin
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline R&D, Ware, United Kingdom
| | - Mathias Chiano
- Human Genetics, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Charles Cox
- Human Genetics, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | - Annette S. Gross
- Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline R&D, Sydney, NSW, Australia
| | - Pamela Thomas
- Data and Computational Sciences, GlaxoSmithKline R&D, Stevenage, United Kingdom
| | | | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Paudel S, Kim Y, Choi SM, Kim JH, Bae JS, Lee T, Lee S. Identification of suberosin metabolites in human liver microsomes by high-performance liquid chromatography combined with high-resolution quadrupole-orbitrap mass spectrometer. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4623. [PMID: 32734675 DOI: 10.1002/jms.4623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Suberosin is a natural prenylated coumarin derivative isolated from Citropsis articulata. It has various pharmacological properties, especially as an anticoagulant, for which it has been used since antiquity. However, its metabolic pathway and metabolites have not yet been studied. Therefore, this study characterizes its metabolic pathway and metabolites in human liver microsomes (HLMs) using high-resolution quadrupole-orbitrap mass spectrometry (HRMS/MS). Eight metabolites (M1-M8) were found, including three monohydroxylated (M1-M3), one hydrated (M4), three dihydroxylated (M5-M7), and one glucuronide conjugate (M8). Furthermore, forms of cytochrome P450 (CYPs) responsible for suberosin metabolism in HLMs were characterized. CYP1A2 was identified as a major enzyme for the production of M1 and M5 metabolites. The M2, M3, and M7 metabolites were predominantly generated by CYP2B6. M8 was the only phase II metabolite, identified as a glucuronide conjugate from either M1 or M2. This glucuronide conjugate may be the only promising metabolite from phase II metabolism. Phase I metabolism, especially hydroxylation, was found to provide a predominant metabolic pathway of suberosin in HLMs. Further studies should be conducted to explore the metabolites, examining their efficacy and their toxicity in an in vivo system.
Collapse
Affiliation(s)
- Sanjita Paudel
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Younah Kim
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su Min Choi
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong-Sup Bae
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Taeho Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
8
|
Chuo SW, Liou SH, Wang LP, Britt RD, Poulos TL, Sevrioukova IF, Goodin DB. Conformational Response of N-Terminally Truncated Cytochrome P450 3A4 to Ligand Binding in Solution. Biochemistry 2019; 58:3903-3910. [PMID: 31456404 DOI: 10.1021/acs.biochem.9b00620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human cytochrome P450 3A4 (CYP3A4) is a membrane-associated monooxygenase that is responsible for metabolizing >50% of the pharmaceuticals in the current market, so studying its chemical mechanism and structural changes upon ligand binding will help provide deeper insights into drug metabolism and further drug development. The best-characterized cytochrome P450 is a bacterial form, P450cam, which undergoes significant conformational changes upon binding substrate and its redox partner, putidaredoxin. In contrast, most crystal structures of CYP3A4 with or without ligands have shown few changes, although allosteric effects and multiple-substrate binding in solution are well-documented. In this study, we use double electron-electron resonance (DEER) to measure distances between spatially separated spin-labels on CYP3A4 and molecular dynamics to interpret the DEER data. These methods were applied to a soluble N-terminally truncated CYP3A4 form, and the results show that there are few changes in the average structure upon binding ketoconazole, ritonavir, or midazolam. However, binding of midazolam, but not ketoconazole or ritonavir, resulted in a significant change in the motion and/or disorder in the F/G helix region near the substrate binding pocket. These results suggest that soluble CYP3A4 behaves in a unique way in response to inhibitor and substrate binding.
Collapse
Affiliation(s)
- Shih-Wei Chuo
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Shu-Hao Liou
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States.,Department of Anatomy and Structural Biology , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | - Lee-Ping Wang
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - R David Britt
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3900 , United States.,Department of Chemistry , University of California , Irvine , California 92697-3900 , United States.,Department of Pharmaceutical Sciences , University of California , Irvine , California 92697-3900 , United States
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3900 , United States
| | - David B Goodin
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| |
Collapse
|
9
|
Kammoonah S, Prasad B, Balaraman P, Mundhada H, Schwaneberg U, Plettner E. Selecting of a cytochrome P450 cam SeSaM library with 3-chloroindole and endosulfan - Identification of mutants that dehalogenate 3-chloroindole. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:68-79. [PMID: 28923662 DOI: 10.1016/j.bbapap.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
Cytochrome P450cam (a camphor hydroxylase) from the soil bacterium Pseudomonas putida shows potential importance in environmental applications such as the degradation of chlorinated organic pollutants. Seven P450cam mutants generated from Sequence Saturation Mutagenesis (SeSaM) and isolated by selection on minimal media with either 3-chloroindole or the insecticide endosulfan were studied for their ability to oxidize of 3-chloroindole to isatin. The wild-type enzyme did not accept 3-chloroindole as a substrate. Mutant (E156G/V247F/V253G/F256S) had the highest maximal velocity in the conversion of 3-chloroindole to isatin, whereas mutants (T56A/N116H/D297N) and (G60S/Y75H) had highest kcat/KM values. Six of the mutants had more than one mutation, and within this set, mutation of residues 297 and 179 was observed twice. Docking simulations were performed on models of the mutant enzymes; the wild-type did not accommodate 3-chloroindole in the active site, whereas all the mutants did. We propose two potential reaction pathways for dechlorination of 3-chloroindole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Shaima Kammoonah
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Brinda Prasad
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Priyadarshini Balaraman
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Hemanshu Mundhada
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Erika Plettner
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
10
|
Shimada T. Inhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity. Toxicol Res 2017; 33:79-96. [PMID: 28443179 PMCID: PMC5402866 DOI: 10.5487/tr.2017.33.2.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/27/2022] Open
Abstract
A variety of xenobiotic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), aryl- and heterocyclic amines and tobacco related nitrosamines, are ubiquitous environmental carcinogens and are required to be activated to chemically reactive metabolites by xenobiotic-metabolizing enzymes, including cytochrome P450 (P450 or CYP), in order to initiate cell transformation. Of various human P450 enzymes determined to date, CYP1A1, 1A2, 1B1, 2A13, 2A6, 2E1, and 3A4 are reported to play critical roles in the bioactivation of these carcinogenic chemicals. In vivo studies have shown that disruption of Cyp1b1 and Cyp2a5 genes in mice resulted in suppression of tumor formation caused by 7,12-dimethylbenz[a]anthracene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, respectively. In addition, specific inhibitors for CYP1 and 2A enzymes are able to suppress tumor formation caused by several carcinogens in experimental animals in vivo, when these inhibitors are applied before or just after the administration of carcinogens. In this review, we describe recent progress, including our own studies done during past decade, on the nature of inhibitors of human CYP1 and CYP2A enzymes that have been shown to activate carcinogenic PAHs and tobacco-related nitrosamines, respectively, in humans. The inhibitors considered here include a variety of carcinogenic and/or non-carcinogenic PAHs and acethylenic PAHs, many flavonoid derivatives, derivatives of naphthalene, phenanthrene, biphenyl, and pyrene and chemopreventive organoselenium compounds, such as benzyl selenocyanate and benzyl selenocyanate; o-XSC, 1,2-, 1,3-, and 1,4-phenylenebis( methylene)selenocyanate.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Veterinary Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
11
|
Shimada T, Kakimoto K, Takenaka S, Koga N, Uehara S, Murayama N, Yamazaki H, Kim D, Guengerich FP, Komori M. Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2',5'-Tetrachlorobiphenyl. Drug Metab Dispos 2016; 44:1899-1909. [PMID: 27625140 PMCID: PMC6047209 DOI: 10.1124/dmd.116.072991] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
2,5,2',5'-Tetrachlorobiphenyl (TCB) induced type I binding spectra with cytochrome P450 (P450) 2A6 and 2A13, with Ks values of 9.4 and 0.51 µM, respectively. However, CYP2A6 oxidized 2,5,2',5'-TCB to form 4-hydroxylated products at a much higher rate (∼1.0 minute-1) than CYP2A13 (∼0.02 minute-1) based on analysis by liquid chromatography-tandem mass spectrometry. Formation of 4-hydroxy-2,5,2',5'-TCB by CYP2A6 was greater than that of 3-hydroxy-2,5,2',5'-TCB and three other hydroxylated products. Several human P450 enzymes, including CYP1A1, 1A2, 1B1, 2B6, 2D6, 2E1, 2C9, and 3A4, did not show any detectable activities in oxidizing 2,5,2',5'-TCB. Cynomolgus monkey CYP2A24, which shows 95% amino acid identity to human CYP2A6, catalyzed 4-hydroxylation of 2,5,2',5'-TCB at a higher rate (∼0.3 minute-1) than CYP2A26 (93% identity to CYP2A6, ∼0.13 minute-1) and CYP2A23 (94% identity to CYP2A13, ∼0.008 minute-1). None of these human and monkey CYP2A enzymes were catalytically active in oxidizing other TCB congeners, such as 2,4,3',4'-, 3,4,3',4'-, and 3,5,3',5'-TCB. Molecular docking analysis suggested that there are different orientations of interaction of 2,5,2',5'-TCB with the active sites (over the heme) of human and monkey CYP2A enzymes, and that ligand interaction energies (U values) of bound protein-ligand complexes show structural relationships of interaction of TCBs and other ligands with active sites of CYP2A enzymes. Catalytic differences in human and monkey CYP2A enzymes in the oxidation of 2,5,2',5'-TCB are suggested to be due to amino acid changes at substrate recognition sites, i.e., V110L, I209S, I300F, V365M, S369G, and R372H, based on the comparison of primary sequences.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Kensaku Kakimoto
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Nobuyuki Koga
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Shotaro Uehara
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Norie Murayama
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Hiroshi Yamazaki
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Donghak Kim
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - F Peter Guengerich
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Osaka Prefecture University, Izumisano, Osaka, Japan (T.S., S.T., M.K.); Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, Japan (K.K.); Faculty of Nutritional Sciences, Nakamura Gakuen University, Johnan-ku, Fukuoka, Japan (N.K.); Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., N.M., H.Y.); Department of Biological Sciences, Konkuk University, Seoul, South Korea (D.K.); and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee (F.P.G.)
| |
Collapse
|
12
|
Scheler U, Brandt W, Porzel A, Rothe K, Manzano D, Božić D, Papaefthimiou D, Balcke GU, Henning A, Lohse S, Marillonnet S, Kanellis AK, Ferrer A, Tissier A. Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nat Commun 2016; 7:12942. [PMID: 27703160 PMCID: PMC5059481 DOI: 10.1038/ncomms12942] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/11/2016] [Indexed: 12/03/2022] Open
Abstract
Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities. Diterpenes are plant products with high antioxidant properties and potential application as food additives and therapeutics. Here, the authors describe the complete biosynthetic pathway of carnosic acid and reconstruct it in yeast, opening the way to metabolic engineering of phenolic diterpenes.
Collapse
Affiliation(s)
- Ulschan Scheler
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Kathleen Rothe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - David Manzano
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics, Campus UAB, 08193 Bellaterra, Spain.,Faculty of Pharmacy, Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Dragana Božić
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Papaefthimiou
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Anja Henning
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Swanhild Lohse
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Angelos K Kanellis
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Albert Ferrer
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics, Campus UAB, 08193 Bellaterra, Spain.,Faculty of Pharmacy, Department of Biochemistry and Molecular Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| |
Collapse
|
13
|
Shimada T, Takenaka S, Murayama N, Yamazaki H, Kim JH, Kim D, Yoshimoto FK, Guengerich FP, Komori M. Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes. Chem Res Toxicol 2016; 28:268-78. [PMID: 25642975 DOI: 10.1021/tx500505y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Acenaphthene and acenaphthylene, two known environmental polycyclic aromatic hydrocarbon (PAH)pollutants, were incubated at 50 μM concentrations in a standard reaction mixture with human P450s 2A6, 2A13, 1B1,1A2, 2C9, and 3A4, and the oxidation products were determined using HPLC and LC-MS. HPLC analysis showed that P450 2A6 converted acenaphthene and acenaphthylene to several mono- and dioxygenated products. LC-MS analysis of acenaphthene oxidation by P450s indicated the formation of1-acenaphthenol as a major product, with turnover rates of 6.7,4.5, and 3.6 nmol product formed/min/nmol P450 for P4502A6, 2A13, and 1B1, respectively. Acenaphthylene oxidation by P450 2A6 showed the formation of 1,2-epoxyacenaphthene as a major product (4.4 nmol epoxide formed/min/nmol P450) and also several mono- and dioxygenated products.P450 2A13, 1B1, 1A2, 2C9, and 3A4 formed 1,2-epoxyacenaphthene at rates of 0.18, 5.3 2.4, 0.16, and 3.8 nmol/min/nmol P450, respectively. 1-Acenaphthenol, which induced Type I binding spectra with P450 2A13, was further oxidized by P450 2A13 but not P450 2A6. 1,2-Epoxyacenaphthene induced Type I binding spectra with P450 2A6 and 2A13 (K(s) 1.8 and 0.16 μM,respectively) and was also oxidized to several oxidation products by these P450s. Molecular docking analysis suggested different orientations of acenaphthene, acenaphthylene, 1-acenaphthenol, and 1,2-epoxyacenaphthene in their interactions with P450 2A6a nd 2A13. Neither of these four PAHs induced umu gene expression in a Salmonella typhimurium NM tester strain. These results suggest, for the first time, that acenaphthene and acenaphthylene are oxidized by human P450s 2A6 and 2A13 and other P450s to form several mono- and dioxygenated products. The results are of use in considering the biological and toxicological significance of these environmental PAHs in humans.
Collapse
|
14
|
Uno T, Ogura C, Izumi C, Nakamura M, Yanase T, Yamazaki H, Ashida H, Kanamaru K, Yamagata H, Imaishi H. Point mutation of cytochrome P450 2A6 (a polymorphic variant CYP2A6.25) confers new substrate specificity towards flavonoids. Biopharm Drug Dispos 2015. [DOI: 10.1002/bdd.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomohide Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Chika Ogura
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Chiho Izumi
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Masahiko Nakamura
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science; Kyoto Gakuen University; 1-1 Nanjo, Sogabe Kameoka Kyoto 621-8555 Japan
| | - Takeshi Yanase
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Hitoshi Ashida
- Laboratory of Biochemistry Frontiers, Graduate School of Agricultural Science; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Kengo Kanamaru
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiroshi Yamagata
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| | - Hiromasa Imaishi
- Functional Analysis of Environmental Genes, Research Center for Environmental Genomics; Kobe University; Nada-ku Kobe Hyogo 657-8501 Japan
| |
Collapse
|
15
|
Shimada T, Takenaka S, Murayama N, Kramlinger VM, Kim JH, Kim D, Liu J, Foroozesh MK, Yamazaki H, Guengerich FP, Komori M. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica 2015; 46:211-24. [PMID: 26247835 PMCID: PMC5270756 DOI: 10.3109/00498254.2015.1069419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The polycyclic hydrocarbons (PAHs), pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene, were found to induce Type I binding spectra with human cytochrome P450 (P450) 2A13 and were converted to various mono- and di-oxygenated products by this enzyme. 2. Pyrene was first oxidized by P450 2A13 to 1-hydroxypyrene which was further oxidized to di-oxygenated products, i.e. 1,8- and 1,6-dihydroxypyrene. Of five other human P450s examined, P450 1B1 catalyzed pyrene oxidation to 1-hydroxypyrene at a similar rate to P450 2A13 but was less efficient in forming dihydroxypyrenes. P450 2A6, a related human P450 enzyme, which did not show any spectral changes with these four PAHs, showed lower activities in oxidation of these compounds than P450 2A13. 3. 1-Nitropyrene and 1-acetylpyrene were also found to be efficiently oxidized by P450 2A13 to several oxygenated products, based on mass spectrometry analysis. 4. Molecular docking analysis supported preferred orientations of pyrene and its derivatives in the active site of P450 2A13, with lower interaction energies (U values) than observed for P450 2A6 and that several amino acid residues (including Ala-301, Asn-297 and Ala-117) play important roles in directing the orientation of these PAHs in the P450 2A13 active site. In addition, Phe-231 and Gly-329 were found to interact with pyrene to orient this compound in the active site of P450 1B1. 5. These results suggest that P450 2A13 is one of the important enzymes that oxidizes these PAH compounds and may determine how these chemicals are detoxicated and bioactivated in humans.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Valerie M. Kramlinger
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Joo-Hwan Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Maryam K. Foroozesh
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
16
|
Yu X, Cojocaru V, Wade RC. Conformational diversity and ligand tunnels of mammalian cytochrome P450s. Biotechnol Appl Biochem 2013; 60:134-45. [DOI: 10.1002/bab.1074] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/04/2012] [Indexed: 01/31/2023]
Affiliation(s)
- Xiaofeng Yu
- Molecular and Cellular Modeling Group; Heidelberg Institute for Theoretical Studies; Heidelberg; Germany
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology; Max Planck Institute for Molecular Biomedicine; Münster; Germany
| | | |
Collapse
|
17
|
Shah MB, Jang HH, Zhang Q, David Stout C, Halpert JR. X-ray crystal structure of the cytochrome P450 2B4 active site mutant F297A in complex with clopidogrel: insights into compensatory rearrangements of the binding pocket. Arch Biochem Biophys 2013; 530:64-72. [PMID: 23296089 DOI: 10.1016/j.abb.2012.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/22/2012] [Accepted: 12/23/2012] [Indexed: 12/22/2022]
Abstract
Prior X-ray crystal structures of cytochrome P450 2B4 revealed the pivotal role of rearrangement of the side chains of residues F206 and F297 in the active site in accommodating various inhibitors or substrates. To explore the role of these residues, 2B4 F206A and F297A were created by site-directed mutagenesis and characterized functionally. The structure of F297A with clopidogrel demonstrated the reorientation of the ligand such that the methyl ester group is oriented toward the heme, whereas the thiophene moiety now extends to the additional void in the F297A mutant. Most interestingly, movement of the I helix and several amino acid side chains within the active site was observed in apparent response to the altered binding orientation. Results of flexible docking using the 2B4 wild type or the F297A-virtual mutant positioned either the thiophene or chlorophenyl group closer to heme. However, docking of clopidogrel using the real F297A mutant or a virtual mutant with the I-helix re-positioned oriented clopidogrel preferentially with either the methyl ester or the chlorophenyl group closest to heme. The study provides insight into how the altered active site adapts to accommodate and interact with the substrate in a distinct orientation while maintaining the overall closed protein conformation.
Collapse
Affiliation(s)
- Manish B Shah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, United States
| | | | | | | | | |
Collapse
|
18
|
Leach AG. Tactics to Avoid Inhibition of Cytochrome P450s. TOPICS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1007/7355_2013_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
19
|
Behrendorff JBYH, Moore CD, Kim KH, Kim DH, Smith CA, Johnston WA, Yun CH, Yost GS, Gillam EMJ. Directed evolution reveals requisite sequence elements in the functional expression of P450 2F1 in Escherichia coli. Chem Res Toxicol 2012; 25:1964-74. [PMID: 22901340 DOI: 10.1021/tx300281g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 2F1 (P450 2F1) is expressed exclusively in the human respiratory tract and is implicated in 3-methylindole (3MI)-induced pneumotoxicity via dehydrogenation of 3MI to a reactive electrophilic intermediate, 3-methyleneindolenine (3-MEI). Studies of P450 2F1 to date have been limited by the failure to express this enzyme in Escherichia coli. By contrast, P450 2F3, a caprine homologue that shares 84% sequence identity with P450 2F1 (86 amino acid differences), has been expressed in E. coli at yields greater than 250 nmol/L culture. We hypothesized that a limited number of sequence differences between P450s 2F1 and 2F3 could limit P450 2F1 expression in E. coli and that problematic P450 2F1 sequence elements could be identified by directed evolution. A library of P450 2F1/2F3 mutants was created by DNA family shuffling and screened for expression in E. coli. Three generations of DNA shuffling revealed a mutant (named JH_2F_F3_1_007) with 96.5% nucleotide sequence identity to P450 2F1 and which expressed 119 ± 40 pmol (n = 3, mean ± SD) hemoprotein in 1 mL microaerobic cultures. Across all three generations, two regions were observed where P450 2F3-derived sequence was consistently substituted for P450 2F1 sequence in expressing mutants, encoding nine amino acid differences between P450s 2F1 and 2F3: nucleotides 191-278 (amino acids 65-92) and 794-924 (amino acids 265-305). Chimeras constructed to specifically test the importance of these two regions confirmed that P450 2F3 sequence is essential in both regions for expression in E. coli but that other non-P450 2F1 sequence elements outside of these regions also improved the expression of mutant JH_2F_F3_1_007. Mutant JH_2F_F3_1_007 catalyzed the dehydrogenation of 3MI to 3-MEI as indicated by the observation of glutathione adducts after incubation in the presence of glutathione. The JH_2F_F3_1_007 protein differs from P450 2F1 at only 20 amino acids and should facilitate further studies of the structure-activity relationships of P450s of the 2F subfamily.
Collapse
Affiliation(s)
- James B Y H Behrendorff
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shimada T, Murayama N, Tanaka K, Takenaka S, Guengerich FP, Yamazaki H, Komori M. Spectral modification and catalytic inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2A6, and 2A13 by four chemopreventive organoselenium compounds. Chem Res Toxicol 2011; 24:1327-37. [PMID: 21732699 DOI: 10.1021/tx200218u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several organoselenium compounds including benzyl selenocyanate (BSC), 1,2-phenylenebis(methylene)selenocyanate (o-XSC), 1,3-phenylenebis(methylene)selenocyanate (m-XSC), and 1,4-phenylenebis(methylene)selenocyanate (p-XSC) have been shown to prevent cancers caused by polycyclic aromatic hydrocarbons (PAHs) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in experimental animals; these chemical carcinogens are activated by human P450 1 and 2A family enzymes, respectively, to carcinogenic metabolites. In this study, we examined whether these selenium compounds interact with and inhibit human P450 1 and 2A enzymes in vitro. Four organoselenium compounds induced reverse Type I binding spectra with P450 1A1, 1A2, and 1B1 and Type I binding spectra with P450 2A6 and 2A13. The spectral dissociation constants (K(s)) for the interaction of P450 1B1 with these chemicals were 3.6-5.7 μM; the values were lower than those with seen with P450 1A1 (19-30 μM) or 1A2 (6.3-13 μM). The K(s) values for Type I binding of P450 2A13 with m-XSC and BSC were both 0.20 μM; the values were very low compared to those for the interaction of P450 2A6 with m-XSC (5.7 μM) and BSC (2.0 μM). Four selenium compounds directly inhibited 7-ethoxyresorufin O-deethylation activities catalyzed by P450 1A1, 1A2, and 1B1 with IC(50) values <1.0 μM, except for the inhibition of P450 1A2 by BSC (1.3 μM). Coumarin 7-hydroxylation activities of P450 2A13 were more inhibited by four selenium compounds than those of P450 2A6, with IC(50) values of 0.22-1.4 μM for P450 2A13 and 2.4-6.2 μM for P450 2A6. Molecular docking studies of the interaction of four organoselenium compounds with human P450 enzymes suggest that these chemicals can be docked into the active sites of these human P450 enzymes and that the sites of the selenocyanate functional groups of these chemicals differ between the P450 1 and 2A family enzymes.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University , 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Structural features of cytochromes P450 and ligands that affect drug metabolism as revealed by X-ray crystallography and NMR. Future Med Chem 2011; 2:1451-68. [PMID: 21103389 DOI: 10.4155/fmc.10.229] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cytochromes P450 (P450s) play a major role in the clearance of drugs, toxins, and environmental pollutants. Additionally, metabolism by P450s can result in toxic or carcinogenic products. The metabolism of pharmaceuticals by P450s is a major concern during the design of new drug candidates. Determining the interactions between P450s and compounds of very diverse structures is complicated by the variability in P450-ligand interactions. Understanding the protein structural elements and the chemical attributes of ligands that dictate their orientation in the P450 active site will aid in the development of effective and safe therapeutic agents. The goal of this review is to describe P450-ligand interactions from two perspectives. The first is the various structural elements that microsomal P450s have at their disposal to assume the different conformations observed in X-ray crystal structures. The second is P450-ligand dynamics analyzed by NMR relaxation studies.
Collapse
|
22
|
Li Y, Ren G, Wang YX, Kong WJ, Yang P, Wang YM, Li YH, Yi H, Li ZR, Song DQ, Jiang JD. Bioactivities of berberine metabolites after transformation through CYP450 isoenzymes. J Transl Med 2011; 9:62. [PMID: 21569619 PMCID: PMC3103436 DOI: 10.1186/1479-5876-9-62] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 05/15/2011] [Indexed: 12/02/2022] Open
Abstract
Background Berberine (BBR) is a drug with multiple effects on cellular energy metabolism. The present study explored answers to the question of which CYP450 (Cytochrome P450) isoenzymes execute the phase-I transformation for BBR, and what are the bioactivities of its metabolites on energy pathways. Methods BBR metabolites were detected using LC-MS/MS. Computer-assistant docking technology as well as bioassays with recombinant CYP450s were employed to identify CYP450 isoenzymes responsible for BBR phase-I transformation. Bioactivities of BBR metabolites in liver cells were examined with real time RT-PCR and kinase phosphorylation assay. Results In rat experiments, 4 major metabolites of BBR, berberrubine (M1), thalifendine (M2), demethyleneberberine (M3) and jatrorrhizine (M4) were identified in rat's livers using LC-MS/MS (liquid chromatography-tandem mass spectrometry). In the cell-free transformation reactions, M2 and M3 were detectable after incubating BBR with rCYP450s or human liver microsomes; however, M1 and M4 were below detective level. CYP2D6 and CYP1A2 played a major role in transforming BBR into M2; CYP2D6, CYP1A2 and CYP3A4 were for M3 production. The hepatocyte culture showed that BBR was active in enhancing the expression of insulin receptor (InsR) and low-density-lipoprotein receptor (LDLR) mRNA, as well as in activating AMP-activated protein kinase (AMPK). BBR's metabolites, M1-M4, remained to be active in up-regulating InsR expression with a potency reduced by 50-70%; LDLR mRNA was increased only by M1 or M2 (but not M3 and M4) with an activity level 35% or 26% of that of BBR, respectively. Similarly, AMPK-α phosphorylation was enhanced by M1 and M2 only, with a degree less than that of BBR. Conclusions Four major BBR metabolites (M1-M4) were identified after phase-I transformation in rat liver. Cell-free reactions showed that CYP2D6, CYP1A2 and CYP3A4 seemed to be the dominant CYP450 isoenzymes transforming BBR into its metabolites M2 and M3. BBR's metabolites remained to be active on BBR's targets (InsR, LDLR, and AMPK) but with reduced potency.
Collapse
Affiliation(s)
- Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zocher G, Richter MEA, Mueller U, Hertweck C. Structural fine-tuning of a multifunctional cytochrome P450 monooxygenase. J Am Chem Soc 2011; 133:2292-302. [PMID: 21280577 DOI: 10.1021/ja110146z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AurH is a unique cytochrome P450 monooxygenase catalyzing the stepwise formation of a homochiral oxygen heterocycle, a key structural and pharmacophoric component of the antibiotic aureothin. The exceptional enzymatic reaction involves a tandem oxygenation process including a regio- and stereospecific hydroxylation, followed by heterocyclization. For the structural and biochemical basis of this unparalleled sequence, four crystal structures of AurH variants in different conformational states and in complex with the P450 inhibitor ancymidol were solved, which represent the first structures of the CYP151A group. Structural data in conjunction with computational docking, site-directed mutagenesis, and chemical analyses unveiled a switch function when recognizing the two substrates, deoxyaureothin and the hydroxylated intermediate, thus allowing the second oxygenation-heterocyclization step. Furthermore, we were able to modify the chemo- and regioselectivity of AurH, yielding mutants that catalyze the regioselective six-electron transfer of a nonactivated methyl group to a carboxylic acid via hydroxyl and aldehyde intermediates.
Collapse
Affiliation(s)
- Georg Zocher
- Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, Hoppe-Seyler-Str. 4, 72074 Tübingen, Germany.
| | | | | | | |
Collapse
|
24
|
Flexibility of human cytochrome P450 enzymes: Molecular dynamics and spectroscopy reveal important function-related variations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:58-68. [DOI: 10.1016/j.bbapap.2010.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Revised: 07/11/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022]
|
25
|
Oezguen N, Kumar S. Analysis of Cytochrome P450 Conserved Sequence Motifs between Helices E and H: Prediction of Critical Motifs and Residues in Enzyme Functions. ACTA ACUST UNITED AC 2011; 2:1000110. [PMID: 25426333 PMCID: PMC4241269 DOI: 10.4172/2157-7609.1000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational approaches have been extensively used to investigate the role of active site residues in cytochrome P450 (CYP) functions. However, recent studies using random mutagenesis suggest an important role for non-active site residues in CYP functions. Meta-analysis of the random mutants showed that 75% of the functionally important non-active site residues are present in 20% of the entire protein between helices E and H (E-H) and conserved sequence motif (CSM) between 7 and 11. The CSM approach was developed recently to investigate the functional role of non-active site residues in CYP2B4. Furthermore, we identified and analyzed the CSM in multiple CYP families and subfamilies in the E-H region. Results from CSM analysis showed that CSM 7, 8, 10, and 11 are conserved in CYP1, CYP2, and CYP3 families, while CSM 9 is conserved only in CYP2 family. Analysis of different CYP2 subfamilies showed that CYP2B and CYP2C have similar characteristics in the CSM, while the characteristics of CYP2A and CYP2D subfamilies are different. Finally, we analyzed CSM 7, 8, 10, and 11, which are common in all the CYP families/subfamilies analyzed, in fifteen important drug-metabolizing CYPs. The results showed that while CSM 8 is most conserved among these CYPs, CSM 7, 9, and 10 have significant variations. We suggest that CSM8 has a common role in all the CYPs that have been analyzed, while CSM 7, 10, and 11 may have relatively specific role within the subfamily. We further suggest that these CSM play important role in opening and closing of the substrate access/egress channel by modulating the flexible/plastic region of the protein. Thus, site-directed mutagenesis of these CSM can be used to study structure-function and dynamic/plasticity-function relationships and to design CYP biocatalysts.
Collapse
Affiliation(s)
- Numan Oezguen
- Internal Medicine-Endocrinology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA
| | - Santosh Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte St., Kansas City, MO, USA
| |
Collapse
|
26
|
Park SH, Kim DH, Kim D, Kim DH, Jung HC, Pan JG, Ahn T, Kim D, Yun CH. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation. Drug Metab Dispos 2010; 38:732-9. [PMID: 20100815 DOI: 10.1124/dmd.109.030759] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human cytochrome P450 (P450) enzymes metabolize a variety of endogenous and xenobiotic compounds, including steroids, drugs, and environmental chemicals. In this study, we examine the possibility that bacterial P450 BM3 (CYP102A1) mutants with indole oxidation activity have the catalytic activities of human P450 enzymes. Error-prone polymerase chain reaction was carried out on the heme domain-coding region of the wild-type gene to generate a CYP102A1 DNA library. The library was transformed into Escherichia coli for expression of the P450 mutants. A colorimetric colony-based method was adopted for primary screening of the mutants. When the P450 activities were measured at the whole-cell level, some of the blue colonies, but not the white colonies, possessed apparent oxidation activity toward coumarin and 7-ethoxycoumarin, which are typical human P450 substrates that produce fluorescent products. Coumarin is oxidized by the CYP102A1 mutants to produce two metabolites, 7-hydroxycoumarin and 3-hydroxycoumarin. In addition, 7-ethoxycoumarin is simultaneously oxidized to 7-hydroxycoumarin by O-deethylation reaction and to 3-hydroxy,7-ethoxycoumarin by 3-hydroxylation reactions. Highly active mutants are also able to metabolize several other human P450 substrates, including phenacetin, ethoxyresorufin, and chlorzoxazone. These results indicate that indigo formation provides a simple assay for identifying CYP102A1 mutants with a greater potential for human P450 activity. Furthermore, our computational findings suggest a correlation between the stabilization of the binding site and the catalytic efficiency of CYP102A1 mutants toward coumarin: the more stable the structure in the binding site, the lower the energy barrier and the higher the catalytic efficiency.
Collapse
Affiliation(s)
- Sun-Ha Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tang Z, Martin MV, Guengerich FP. Elucidation of functions of human cytochrome P450 enzymes: identification of endogenous substrates in tissue extracts using metabolomic and isotopic labeling approaches. Anal Chem 2009; 81:3071-8. [PMID: 19301915 DOI: 10.1021/ac900021a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One of the central problems in biochemistry in the postgenomic era is the elucidation of functions of proteins, including "orphan" human cytochromes P450 (P450s), when the substrates are unknown. A general strategy for identification of endogenous substrates of P450s in tissue extracts using metabolomic and isotopic labeling approaches is described, involving four main steps: (1) In vitro incubation of a P450 enzyme system with cofactor and tissue extract is done under a mixture of (18)O(2)/(16)O(2) (1:1). (2) Liquid chromatography/mass spectrometry (LC/MS) assay of an organic extract of the reaction mixture is performed. (3) The isotopic labeling products appearing as M/M + 2 doublets can be directly identified using the program DoGEX (Sanchez-Ponce, R. and Guengerich, F. P. Anal. Chem. 2007, 79, 3355-3362). (4) Characterization of potential candidates is done. Validation of the strategy was established using human P450 7A1 as an initial model to identify its known product, 7alpha-hydroxycholesterol, in liver extracts. The strategy was then applied to human P450s 1A2, 2C8, and 2C9 in untargeted substrate searches with human liver extracts. A total of seven fatty acids were identified and verified as substrates of these three hepatic P450s. The products were subsequently characterized as hydroxylation and epoxidation derivatives of fatty acids, using gas chromatography/mass spectrometry (GC/MS) analysis. Finally, kinetic studies were performed to confirm that the fatty acids are oxidized by P450s 1A2, 2C8, and 2C9. Thus, this strategy has been demonstrated to be useful in identifying reactions in tissue extracts with orphan human P450s.
Collapse
Affiliation(s)
- Zhongmei Tang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|
28
|
Li W, Ode H, Hoshino T, Liu H, Tang Y, Jiang H. Reduced Catalytic Activity of P450 2A6 Mutants with Coumarin: A Computational Investigation. J Chem Theory Comput 2009; 5:1411-20. [DOI: 10.1021/ct900018t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weihua Li
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hirotaka Ode
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Tang
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
29
|
Schlicht KE, Berg JZ, Murphy SE. Effect of CYP2A13 active site mutation N297A on metabolism of coumarin and tobacco-specific nitrosamines. Drug Metab Dispos 2009; 37:665-71. [PMID: 19074523 PMCID: PMC2680511 DOI: 10.1124/dmd.108.025072] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/10/2008] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 2A13-catalyzed alpha-hydroxylation is a critical step in the activation of the tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and (S)-N'-nitrosonornicotine [(S)-NNN]. In the enzyme's active site, a single polar residue, Asn297, can influence substrate binding, orientation, and metabolism. We determined the effects of N297A mutation on enzyme kinetics and specificity for NNK, NNN, and coumarin metabolism. [5-(3)H]-NNK, [5-(3)H]-(S)-NNN, [(14)C]coumarin, and radioflow high-performance liquid chromatography analysis were used to quantify metabolites. Cytochrome P450 (P450) 2A13 N297A catalyzed NNK alpha-hydroxylation, with a 3-fold preference for methylene versus methyl hydroxylation, similar to wild type. Docking studies using the P450 2A13 crystal structure predicted that when the pyridine ring of NNK cannot hydrogen bond to residue 297 it tilts and orients NNK in positions unfavorable for alpha-hydroxylation. The N297A mutation resulted in a 5- and 4-fold decrease in catalytic efficiency of NNK and NNN metabolism, respectively, primarily because of increased K(m) values. The N297A mutation strikingly affected coumarin metabolism. The ratio of coumarin 7-hydroxylation to coumarin 3,4-epoxidation is approximately equal for wild-type enzyme, whereas the ratio was 1:9 for the N297A mutant. Coumarin 3,4-epoxidation was significantly underestimated unless the epoxide was trapped and quantified as its glutathione conjugate. The K(m) value for this reaction was 4-fold greater for the mutant enzyme; the V(max) value increased nearly 40-fold. The observed shift toward coumarin 3,4-epoxidation is consistent with docking studies. In summary, Asn297 in P450 2A13 is important for orienting NNK and coumarin in the active site, changing this residue to Ala results in altered enzyme kinetics for NNK, NNN, and coumarin.
Collapse
Affiliation(s)
- Kari E Schlicht
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota,Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
30
|
Ghosh D, Griswold J, Erman M, Pangborn W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature 2009; 457:219-23. [PMID: 19129847 DOI: 10.1038/nature07614] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 11/06/2008] [Indexed: 11/09/2022]
Abstract
Aromatase cytochrome P450 is the only enzyme in vertebrates known to catalyse the biosynthesis of all oestrogens from androgens. Aromatase inhibitors therefore constitute a frontline therapy for oestrogen-dependent breast cancer. In a three-step process, each step requiring 1 mol of O(2), 1 mol of NADPH, and coupling with its redox partner cytochrome P450 reductase, aromatase converts androstenedione, testosterone and 16alpha-hydroxytestosterone to oestrone, 17beta-oestradiol and 17beta,16alpha-oestriol, respectively. The first two steps are C19-methyl hydroxylation steps, and the third involves the aromatization of the steroid A-ring, unique to aromatase. Whereas most P450s are not highly substrate selective, it is the hallmark androgenic specificity that sets aromatase apart. The structure of this enzyme of the endoplasmic reticulum membrane has remained unknown for decades, hindering elucidation of the biochemical mechanism. Here we present the crystal structure of human placental aromatase, the only natural mammalian, full-length P450 and P450 in hormone biosynthetic pathways to be crystallized so far. Unlike the active sites of many microsomal P450s that metabolize drugs and xenobiotics, aromatase has an androgen-specific cleft that binds the androstenedione molecule snugly. Hydrophobic and polar residues exquisitely complement the steroid backbone. The locations of catalytically important residues shed light on the reaction mechanism. The relative juxtaposition of the hydrophobic amino-terminal region and the opening to the catalytic cleft shows why membrane anchoring is necessary for the lipophilic substrates to gain access to the active site. The molecular basis for the enzyme's androgenic specificity and unique catalytic mechanism can be used for developing next-generation aromatase inhibitors.
Collapse
Affiliation(s)
- Debashis Ghosh
- Structural Biology, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA.
| | | | | | | |
Collapse
|
31
|
Zhang ZG, Liu Y, Guengerich FP, Matse JH, Chen J, Wu ZL. Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries. J Biotechnol 2009; 139:12-8. [PMID: 18984015 PMCID: PMC4755720 DOI: 10.1016/j.jbiotec.2008.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (P450) 2A6 is able to catalyze indole hydroxylation to form the blue dye indigo. The wild-type P450 2A6 enzyme was randomly mutated throughout the whole open reading frame and screened using 4-chloroindole hydroxylation, a substituted indole selected from 30 indole compounds for enhanced color development. Mutants with up to 5-fold increases of catalytic efficiency (k(cat)/K(m)) and 2-fold increases in k(cat) were selected after two rounds of screening. Important residues located both in (e.g., Thr305) and outside the active site (e.g., Ser224) were identified. The study utilized a better substrate for "indigo assay" to obtain new information on the structure-functional relationship of P450 2A6 that was not revealed by previous mutagenesis studies with this enzyme.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Yan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Johannes H. Matse
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Jun Chen
- Institute of Burns, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Zhong-Liu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
32
|
Development of a New Predictive Model for Interactions with Human Cytochrome P450 2A6 Using Pharmacophore Ensemble/Support Vector Machine (PhE/SVM) Approach. Pharm Res 2008; 26:987-1000. [DOI: 10.1007/s11095-008-9807-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 12/08/2008] [Indexed: 02/06/2023]
|
33
|
DeVore NM, Smith BD, Urban MJ, Scott EE. Key residues controlling phenacetin metabolism by human cytochrome P450 2A enzymes. Drug Metab Dispos 2008; 36:2582-90. [PMID: 18779312 PMCID: PMC2718693 DOI: 10.1124/dmd.108.023770] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450s (P450s) metabolize a large number of diverse substrates with specific regio- and stereospecificity. A number of compounds, including nicotine, cotinine, and aflatoxin B(1), are metabolites of the 94% identical CYP2A13 and CYP2A6 enzymes but at different rates. Phenacetin and 4-aminobiphenyl were identified as substrates of human cytochromes P450 1A2 and 2A13 but not of CYP2A6. The purpose of this study was to identify active site amino acids that are responsible for CYP2A substrate specificity using phenacetin as a structural probe. Ten amino acid residues that differ in the CYP2A13 and CYP2A6 active sites were exchanged between the two enzymes. Phenacetin binding revealed that the six substitution, CYP2A13 S208I, A213S, F300I, A301G, M365V, and G369S decreased phenacetin affinity. Although incorporation of individual CYP2A13 residues into CYP2A6 had little effect on this enzyme's very low levels of phenacetin metabolism, the combination of double, triple, and quadruple substitutions at positions 208, 300, 301, and 369 increasingly endowed CYP2A6 with the ability to metabolize phenacetin. Enzyme kinetics revealed that the CYP2A6 I208S/I300F/G301A/S369G mutant protein O-deethylated phenacetin with a K(m) of 10.3 muM and a k(cat) of 2.9 min(-1), which compare very favorably with those of CYP2A13 (K(m) of 10.7 muM and k(cat) of 3.8 min(-1)). A 2.15 A crystal structure of the mutant CYP2A6 I208S/I300F/G301A/S369G protein with phenacetin in the active site provided a structural rationale for the differences in phenacetin metabolism between CYP2A6 and CYP2A13.
Collapse
Affiliation(s)
- Natasha M. DeVore
- From the Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045
| | - Brian D. Smith
- From the Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045
| | - Michael J. Urban
- From the Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045
| | - Emily E. Scott
- From the Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045
| |
Collapse
|
34
|
Characterization of the biochemical and structural phenotypes of four CYP1B1 mutations observed in individuals with primary congenital glaucoma. Pharmacogenet Genomics 2008; 18:665-76. [PMID: 18622259 DOI: 10.1097/fpc.0b013e3282ff5a36] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study was to examine the biochemical and physical properties of cytochrome P450 1B1 (CYP1B1) mutants, test our hypothesis that primary congenital glaucoma (PCG)-causing mutants have altered metabolic activity, and correlate these to structural changes in the molecule. METHODS CYP1B1.1 cDNA was mutated to four forms found in individuals with the PCG phenotype, Y81N, E229K, A330F, and R368H. Expression and stability of the mutant hemoproteins and their ability to metabolize beta-estradiol, arachidonic acid, and retinoids, were determined. Alterations in mutant properties were related to structural changes by in silico examination, on the basis of the CYP1A2 crystal structure. RESULTS CYP1B1 mutations strongly affected the stability, ease of heterologous expression, and enzymatic properties of the protein. These were related to the location of the amino acid substitutions in the CYP1B1 structure. Three of the mutations involve residues located on the surface of CYP1B1, Y81N, and E229K near the distal surface, and R368H near the proximal surface. The former two substitutions, Y81N and E229K, caused greatly reduced stability at 4 degrees C. Y81N severely inhibited all substrate turnover, but E229K only inhibited arachidonate turnover and exhibited minimal effect on efficiency of retinoid metabolism and estradiol metabolism. The R368H mutation is relatively conservative, affecting charge-pairing with the deeper-located D374, but it severely inhibited metabolism of all substrates tested, and, like Y81N, expression of the enzyme is less facile than CYP1B1wt. The A330F mutation replaces a small alanine by a bulky phenylalanine in the enzyme active site and had major impact on substrate binding, turnover, uncoupling, and metabolite pattern. CONCLUSION Consistent with the hypothesis, these PCG-related mutations cause identifiable structural changes negatively impacting CYP1B1 biochemistry and stability.
Collapse
|
35
|
Stjernschantz E, Vermeulen NPE, Oostenbrink C. Computational prediction of drug binding and rationalisation of selectivity towards cytochromes P450. Expert Opin Drug Metab Toxicol 2008; 4:513-27. [PMID: 18484912 DOI: 10.1517/17425255.4.5.513] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Early in-vitro consideration of metabolism and inhibition of cytochrome P450 has proven its merits over the last 15 years. Simultaneously, many computational drug-design methods have been developed, and are being applied to study the interactions between drug candidates and cytochrome P450 enzymes (P450s). OBJECTIVE This review discusses the recent advances of these methods and the implications that are specific for P450s. METHODS Mainly focusing on the prediction of binding affinity and ligand selectivity, we outline the applicability of the different methods to answer specific questions. Special emphasis is put on the different levels of theory that are being used in recent computational descriptions of ligand-P450 interactions. CONCLUSION P450s offer an additional challenge for computational methods, considering the ambiguities of the catalytic cycle and the significant flexibility of the active site. Different computational methods display different limitations, which is crucial to take into account when choosing the method appropriate to each application.
Collapse
Affiliation(s)
- Eva Stjernschantz
- Vrije Universiteit Amsterdam, Leiden/Amsterdam Centre for Drug Research, Division of Molecular Toxicology, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Isin EM, Guengerich FP. Substrate binding to cytochromes P450. Anal Bioanal Chem 2008; 392:1019-30. [PMID: 18622598 DOI: 10.1007/s00216-008-2244-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 01/08/2023]
Abstract
P450s have attracted tremendous attention owing to not only their involvement in the metabolism of drug molecules and endogenous substrates but also the unusual nature of the reaction they catalyze, namely, the oxidation of unactivated C-H bonds. The binding of substrates to P450s, which is usually viewed as the first step in the catalytic cycle, has been studied extensively via a variety of biochemical and biophysical approaches. These studies were directed towards answering different questions related to P450s, including mechanism of oxidation, substrate properties, unusual substrate oxidation kinetics, function, and active-site features. Some of the substrate binding studies extending over a period of more than 40 years of dedicated work have been summarized in this review and categorized by the techniques employed in the binding studies.
Collapse
Affiliation(s)
- Emre M Isin
- Biotransformation Section, Department of Discovery DMPK & Bioanalytical Chemistry, AstraZeneca R & D Mölndal, 431 83, Mölndal, Sweden.
| | | |
Collapse
|
37
|
Skopalík J, Anzenbacher P, Otyepka M. Flexibility of human cytochromes P450: molecular dynamics reveals differences between CYPs 3A4, 2C9, and 2A6, which correlate with their substrate preferences. J Phys Chem B 2008; 112:8165-73. [PMID: 18598011 DOI: 10.1021/jp800311c] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations at normal and high temperature were used to study the flexibility and malleability of three microsomal cytochromes P450 (CYPs): CYP3A4, CYP2C9, and CYP2A6. Comparison of B-factors (describing the atomic fluctuations) between X-ray and MD data shows that the X-ray B-factors are significantly lower in the regions where the crystal contacts occur than for other regions. Consequently, the conclusions about CYP flexibility based solely on the X-ray data might be misleading. Comparison of flexibility patterns of the three CYPs enabled common features and variations in flexibility and malleability of the studied CYPs to be identified. The previously described pattern of flexibility in topological elements of microsomal CYPs (a rigid heme binding core, a malleable distal side and intermediately flexible proximal side) was confirmed. These topological features provide an important combination of high stereo- and regio-specificity (mediated by the relative rigidity in the neighborhood of the heme), together with high substrate promiscuity due to the more flexible active site and the malleability of the distal side. The data acquired here show that the malleability of the three studied CYPs correlates with their substrate specificity: CYP2A6 has a narrow substrate range and is the most rigid, CYP3A4 is the most promiscuous CYP known and is the most malleable, and CYP2C9 is intermediate in terms of both its substrate specificity and malleability. Thus, the malleability of CYPs is probably a major determinant of their substrate specificity.
Collapse
Affiliation(s)
- Josef Skopalík
- Department of Physical Chemistry and Center for Biomolecules and Complex Molecular Systems, Palacky University, Trida Svobody 26, 771 46, Olomouc, Czech Republic
| | | | | |
Collapse
|