1
|
Kimata Y, Yamada M, Murata T, Kuwata K, Sato A, Suzuki T, Kurihara D, Hasebe M, Higashiyama T, Ueda M. Novel inhibitors of microtubule organization and phragmoplast formation in diverse plant species. Life Sci Alliance 2023; 6:e202201657. [PMID: 36849250 PMCID: PMC9971157 DOI: 10.26508/lsa.202201657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Cell division is essential for development and involves spindle assembly, chromosome separation, and cytokinesis. In plants, the genetic tools for controlling the events in cell division at the desired time are limited and ineffective owing to high redundancy and lethality. Therefore, we screened cell division-affecting compounds in Arabidopsis thaliana zygotes, whose cell division is traceable without time-lapse observations. We then determined the target events of the identified compounds using live-cell imaging of tobacco BY-2 cells. Subsequently, we isolated two compounds, PD-180970 and PP2, neither of which caused lethal damage. PD-180970 disrupted microtubule (MT) organization and, thus, nuclear separation, and PP2 blocked phragmoplast formation and impaired cytokinesis. Phosphoproteomic analysis showed that these compounds reduced the phosphorylation of diverse proteins, including MT-associated proteins (MAP70) and class II Kinesin-12. Moreover, these compounds were effective in multiple plant species, such as cucumber (Cucumis sativus) and moss (Physcomitrium patens). These properties make PD-180970 and PP2 useful tools for transiently controlling plant cell division at key manipulation nodes conserved across diverse plant species.
Collapse
Affiliation(s)
- Yusuke Kimata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Moé Yamada
- Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takashi Murata
- Department of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Daisuke Kurihara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Minako Ueda
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto, Japan
| |
Collapse
|
2
|
Stepien A, Dolata J, Gulanicz T, Bielewicz D, Bajczyk M, Smolinski DJ, Szweykowska-Kulinska Z, Jarmolowski A. Chromatin-associated microprocessor assembly is regulated by the U1 snRNP auxiliary protein PRP40. THE PLANT CELL 2022; 34:4920-4935. [PMID: 36087009 PMCID: PMC9709975 DOI: 10.1093/plcell/koac278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/05/2022] [Indexed: 06/01/2023]
Abstract
In plants, microRNA (miRNA) biogenesis involves cotranscriptional processing of RNA polymerase II (RNAPII)-generated primary transcripts by a multi-protein complex termed the microprocessor. Here, we report that Arabidopsis (Arabidopsis thaliana) PRE-MRNA PROCESSING PROTEIN 40 (PRP40), the U1 snRNP auxiliary protein, positively regulates the recruitment of SERRATE, a core component of the plant microprocessor, to miRNA genes. The association of DICER-LIKE1 (DCL1), the microprocessor endoribonuclease, with chromatin was altered in prp40ab mutant plants. Impaired cotranscriptional microprocessor assembly was accompanied by RNAPII accumulation at miRNA genes and retention of miRNA precursors at their transcription sites in the prp40ab mutant plants. We show that cotranscriptional microprocessor assembly, regulated by AtPRP40, positively affects RNAPII transcription of miRNA genes and is important to reach the correct levels of produced miRNAs.
Collapse
Affiliation(s)
| | | | | | | | - Mateusz Bajczyk
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan 61-614, Poland
| | - Dariusz J Smolinski
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | | | | |
Collapse
|
3
|
Fukudome A, Ishiga Y, Nagashima Y, Davidson KH, Chou HA, Mysore KS, Koiwa H. Functional diversity of Medicago truncatula RNA polymerase II CTD phosphatase isoforms produced in the Arabidopsis thaliana superexpression platform. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111309. [PMID: 35696909 DOI: 10.1016/j.plantsci.2022.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Medicago truncatula is a model system for legume plants, which has substantially expanded the genome relative to the prototypical model dicot plant, Arabidopsis thaliana. An essential transcriptional regulator, FCP1 (transcription factor IIF-interacting RNA polymerase II carboxyl-terminal phosphatase 1) ortholog, is encoded by a single essential gene CPL4 (CTD-phosphatase-like 4), whereas M. truncatula genome contains four genes homologous to FCP1/AtCPL4, and splicing variants of MtCPL4 are observed. Functional diversification of MtCPL4 family proteins was analyzed using recombinant proteins (MtCPL4a1, MtCPL4a2, and MtCPL4b) produced in Arabidopsis cell culture system developed for plant protein overexpression. In vitro CTD phosphatase assay using highly purified MtCPL4 preparations revealed a potent CTD phosphatase activity in MtCPL4b, but not two splicing variants of MtCPL4a. On the other hand, in planta binding assay to RNA polymerase II (pol II) revealed a greater pol II-binding activity of both MtCPL4a variants. Our results indicate functional diversification of MtCPL4 isoforms and suggest the presence of a large number of functionally specialized CTD-phosphatase-like proteins in plants.
Collapse
Affiliation(s)
- Akihito Fukudome
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Yasuhiro Ishiga
- Noble Research Institute, LLC., Ardmore, OK 73401, USA; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukihiro Nagashima
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Katherine H Davidson
- Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Hsiu-An Chou
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC., Ardmore, OK 73401, USA; Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA; Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74044, USA
| | - Hisashi Koiwa
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA; Vegetable and Fruit Development Center, Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Allen JR, Wilkinson EG, Strader LC. Creativity comes from interactions: modules of protein interactions in plants. FEBS J 2022; 289:1492-1514. [PMID: 33774929 PMCID: PMC8476656 DOI: 10.1111/febs.15847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/06/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
Protein interactions are the foundation of cell biology. For robust signal transduction to occur, proteins interact selectively and modulate their behavior to direct specific biological outcomes. Frequently, modular protein interaction domains are central to these processes. Some of these domains bind proteins bearing post-translational modifications, such as phosphorylation, whereas other domains recognize and bind to specific amino acid motifs. Other modules act as diverse protein interaction scaffolds or can be multifunctional, forming head-to-head homodimers and binding specific peptide sequences or membrane phospholipids. Additionally, the so-called head-to-tail oligomerization domains (SAM, DIX, and PB1) can form extended polymers to regulate diverse aspects of biology. Although the mechanism and structures of these domains are diverse, they are united by their modularity. Together, these domains are versatile and facilitate the evolution of complex protein interaction networks. In this review, we will highlight the role of select modular protein interaction domains in various aspects of plant biology.
Collapse
Affiliation(s)
- Jeffrey R. Allen
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Edward G. Wilkinson
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| | - Lucia C. Strader
- Department of Biology, Washington University in St. Louis, MO, USA,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, MO, USA,Center for Engineering Mechanobiology (CEMB), Washington University in St. Louis, MO, USA,Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Tognacca RS, Kubaczka MG, Servi L, Rodríguez FS, Godoy Herz MA, Petrillo E. Light in the transcription landscape: chromatin, RNA polymerase II and splicing throughout Arabidopsis thaliana's life cycle. Transcription 2020; 11:117-133. [PMID: 32748694 DOI: 10.1080/21541264.2020.1796473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants have a high level of developmental plasticity that allows them to respond and adapt to changes in the environment. Among the environmental cues, light controls almost every aspect of A. thaliana's life cycle, including seed maturation, seed germination, seedling de-etiolation and flowering time. Light signals induce massive reprogramming of gene expression, producing changes in RNA polymerase II transcription, alternative splicing, and chromatin state. Since splicing reactions occur mainly while transcription takes place, the regulation of RNAPII transcription has repercussions in the splicing outcomes. This cotranscriptional nature allows a functional coupling between transcription and splicing, in which properties of the splicing reactions are affected by the transcriptional process. Chromatin landscapes influence both transcription and splicing. In this review, we highlight, summarize and discuss recent progress in the field to gain a comprehensive insight on the cross-regulation between chromatin state, RNAPII transcription and splicing decisions in plants, with a special focus on light-triggered responses. We also introduce several examples of transcription and splicing factors that could be acting as coupling factors in plants. Unravelling how these connected regulatory networks operate, can help in the design of better crops with higher productivity and tolerance.
Collapse
Affiliation(s)
- Rocío S Tognacca
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - M Guillermina Kubaczka
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Lucas Servi
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Florencia S Rodríguez
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina.,Departamento De Biodiversidad Y Biología Experimental, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Micaela A Godoy Herz
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| | - Ezequiel Petrillo
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.,Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
6
|
Hernando CE, García Hourquet M, de Leone MJ, Careno D, Iserte J, Mora Garcia S, Yanovsky MJ. A Role for Pre-mRNA-PROCESSING PROTEIN 40C in the Control of Growth, Development, and Stress Tolerance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1019. [PMID: 31456814 PMCID: PMC6700278 DOI: 10.3389/fpls.2019.01019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 05/08/2023]
Abstract
Because of their sessile nature, plants have adopted varied strategies for growing and reproducing in an ever-changing environment. Control of mRNA levels and pre-mRNA alternative splicing are key regulatory layers that contribute to adjust and synchronize plant growth and development with environmental changes. Transcription and alternative splicing are thought to be tightly linked and coordinated, at least in part, through a network of transcriptional and splicing regulatory factors that interact with the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. One of the proteins that has been shown to play such a role in yeast and mammals is pre-mRNA-PROCESSING PROTEIN 40 (PRP40, also known as CA150, or TCERG1). In plants, members of the PRP40 family have been identified and shown to interact with the CTD of RNA Pol II, but their biological functions remain unknown. Here, we studied the role of AtPRP40C, in Arabidopsis thaliana growth, development and stress tolerance, as well as its impact on the global regulation of gene expression programs. We found that the prp40c knockout mutants display a late-flowering phenotype under long day conditions, associated with minor alterations in red light signaling. An RNA-seq based transcriptome analysis revealed differentially expressed genes related to biotic stress responses and also differentially expressed as well as differentially spliced genes associated with abiotic stress responses. Indeed, the characterization of stress responses in prp40c mutants revealed an increased sensitivity to salt stress and an enhanced tolerance to Pseudomonas syringae pv. maculicola (Psm) infections. This constitutes the most thorough analysis of the transcriptome of a prp40 mutant in any organism, as well as the first characterization of the molecular and physiological roles of a member of the PRP40 protein family in plants. Our results suggest that PRP40C is an important factor linking the regulation of gene expression programs to the modulation of plant growth, development, and stress responses.
Collapse
|
7
|
A Genetic Screen Identifies PRP18a, a Putative Second Step Splicing Factor Important for Alternative Splicing and a Normal Phenotype in Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2018; 8:1367-1377. [PMID: 29487188 PMCID: PMC5873924 DOI: 10.1534/g3.118.200022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Splicing of pre-mRNA involves two consecutive trans-esterification steps that take place in the spliceosome, a large dynamic ribonucleoprotein complex situated in the nucleus. In addition to core spliceosomal proteins, each catalytic step requires step-specific factors. Although the Arabidopsis thaliana genome encodes around 430 predicted splicing factors, functional information about these proteins is limited. In a forward genetic screen based on an alternatively-spliced GFP reporter gene in Arabidopsis thaliana, we identified a mutant impaired in putative step II factor PRP18a, which has not yet been investigated for its role in pre-mRNA splicing in plants. Step II entails cleavage at the 3' splice site accompanied by ligation of the 5' and 3' exons and intron removal. In the prp18 mutant, splicing of a U2-type intron with non-canonical AT-AC splice sites in GFP pre-mRNA is reduced while splicing of a canonical GT-AG intron is enhanced, resulting in decreased levels of translatable GFP mRNA and GFP protein. These findings suggest that wild-type PRP18a may in some cases promote splicing at weak, non-canonical splice sites. Analysis of genome-wide changes in alternative splicing in the prp18a mutant identified numerous cases of intron retention and a preponderance of altered 3' splice sites, suggesting an influence of PRP18a on 3' splice site selection. The prp18a mutant featured short roots on synthetic medium and small siliques, illustrating that wild-type PRP18a function is needed for a normal phenotype. Our study expands knowledge of plant splicing factors and provides foundational information and resources for further functional studies of PRP18 proteins in plants.
Collapse
|
8
|
Fornero C, Suo B, Zahde M, Juveland K, Kirik V. Papillae formation on trichome cell walls requires the function of the mediator complex subunit Med25. PLANT MOLECULAR BIOLOGY 2017; 95:389-398. [PMID: 28889249 PMCID: PMC6082409 DOI: 10.1007/s11103-017-0657-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Glassy Hair 1 (GLH1) gene that promotes papillae formation on trichome cell walls was identified as a subunit of the transcriptional mediator complex MED25. The MED25 gene is shown to be expressed in trichomes. The expression of the trichome development marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) is not affected in the glh1 mutant. Presented data suggest that Arabidopsis MED25 mediator component is likely involved in the transcription of genes promoting papillae deposition in trichomes. The plant cell wall plays an important role in communication, defense, organization and support. The importance of each of these functions varies by cell type. Specialized cells, such as Arabidopsis trichomes, exhibit distinct cell wall characteristics including papillae. To better understand the molecular processes important for papillae deposition on the cell wall surface, we identified the GLASSY HAIR 1 (GLH1) gene, which is necessary for papillae formation. We found that a splice-site mutation in the component of the transcriptional mediator complex MED25 gene is responsible for the near papillae-less phenotype of the glh1 mutant. The MED25 gene is expressed in trichomes. Reporters for trichome developmental marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) were not affected in the glh1 mutant. Collectively, the presented results show that MED25 is necessary for papillae formation on the cell wall surface of leaf trichomes and suggest that the Arabidopsis MED25 mediator component is likely involved in the transcription of a subset of genes that promote papillae deposition in trichomes.
Collapse
Affiliation(s)
- Christy Fornero
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Bangxia Suo
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Mais Zahde
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Katelyn Juveland
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Viktor Kirik
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
9
|
A Genetic Screen for Pre-mRNA Splicing Mutants of Arabidopsis thaliana Identifies Putative U1 snRNP Components RBM25 and PRP39a. Genetics 2017; 207:1347-1359. [PMID: 28971960 PMCID: PMC5714452 DOI: 10.1534/genetics.117.300149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023] Open
Abstract
In a genetic screen for mutants showing modified splicing of an alternatively spliced GFP reporter gene in Arabidopsis thaliana, we identified mutations in genes encoding the putative U1 small nuclear ribonucleoprotein (snRNP) factors RBM25 and PRP39a. The latter has not yet been studied for its role in pre-messenger RNA (pre-mRNA) splicing in plants. Both proteins contain predicted RNA-binding domains and have been implicated in 5′ splice site selection in yeast and metazoan cells. In rbm25 mutants, splicing efficiency of GFP pre-mRNA was reduced and GFP protein levels lowered relative to wild-type plants. By contrast, prp39a mutants exhibited preferential splicing of a U2-type AT-AC intron in GFP pre-mRNA and elevated levels of GFP protein. These opposing findings indicate that impaired function of either RBM25 or PRP39a can differentially affect the same pre-mRNA substrate. Given a prior genome-wide analysis of alternative splicing in rbm25 mutants, we focused on examining the alternative splicing landscape in prp39a mutants. RNA-seq experiments performed using two independent prp39a alleles revealed hundreds of common genes undergoing changes in alternative splicing, including PRP39a itself, a second putative U1 snRNP component PRP40b, and genes encoding a number of general transcription-related proteins. The prp39a mutants displayed somewhat delayed flowering, shorter stature, and reduced seed set but no other obvious common defects under normal conditions. Mutations in PRP39b, the paralog of PRP39a, did not visibly alter GFP expression, indicating the paralogs are not functionally equivalent in this system. Our study provides new information on the contribution of PRP39a to alternative splicing and expands knowledge of plant splicing factors.
Collapse
|
10
|
Lin J, Xu R, Wu X, Shen Y, Li QQ. Role of cleavage and polyadenylation specificity factor 100: anchoring poly(A) sites and modulating transcription termination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:829-839. [PMID: 28621907 DOI: 10.1111/tpj.13611] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 05/28/2023]
Abstract
CPSF100 is a core component of the cleavage and polyadenylation specificity factor (CPSF) complex for 3'-end formation of mRNA, but it still has no clear functional assignment. CPSF100 was reported to play a role in RNA silencing and promote flowering in Arabidopsis. However, the molecular mechanisms underlying these phenomena are not fully understood. Our genetics analyses indicate that plants with a hypomorphic mutant of CPSF100 (esp5) show defects in embryogenesis, reduced seed production or altered root morphology. To unravel this puzzle, we employed a poly(A) tag sequencing protocol and uncovered a different poly(A) profile in esp5. This transcriptome-wide analysis revealed alternative polyadenylation of thousands of genes, most of which result in transcriptional read-through in protein-coding genes. AtCPSF100 also affects poly(A) signal recognition on the far-upstream elements; in particular it prefers less U-rich sequences. Importantly, AtCPSF100 was found to exert its functions through the change of poly(A) sites on genes encoding binding proteins, such as nucleotide-binding, RNA-binding and poly(U)-binding proteins. In addition, through its interaction with RNA Polymerase II C-terminal domain (CTD) and affecting the expression level of CTD phosphatase-like 3 (CPL3), AtCPSF100 is shown to potentially ensure transcriptional termination by dephosphorylation of Ser2 on the CTD. These data suggest a key role for CPSF100 in locating poly(A) sites and affecting transcription termination.
Collapse
Affiliation(s)
- Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Ruqiang Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
11
|
Knop K, Stepien A, Barciszewska-Pacak M, Taube M, Bielewicz D, Michalak M, Borst JW, Jarmolowski A, Szweykowska-Kulinska Z. Active 5' splice sites regulate the biogenesis efficiency of Arabidopsis microRNAs derived from intron-containing genes. Nucleic Acids Res 2017; 45:2757-2775. [PMID: 27907902 PMCID: PMC5389571 DOI: 10.1093/nar/gkw895] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
Arabidopsis, miR402 that is encoded within the first intron of a protein-coding gene At1g77230, is induced by heat stress. Its upregulation correlates with splicing inhibition and intronic proximal polyA site selection. It suggests that miR402 is not processed from an intron, but rather from a shorter transcript after selection of the proximal polyA site within this intron. Recently, introns and active 5΄ splice sites (5΄ss’) have been shown to stimulate the accumulation of miRNAs encoded within the first exons of intron-containing MIR genes. In contrast, we have observed the opposite effect of splicing inhibition on intronic miR402 production. Transient expression experiments performed in tobacco leaves revealed a significant accumulation of the intronic mature miR402 when the 5΄ss of the miR402-hosting intron was inactivated. In contrast, when the miR402 stem-loop structure was moved into the first exon, mutation of the first-intron 5΄ss resulted in a decrease in the miRNA level. Thus, the 5΄ss controls the efficiency of miRNA biogenesis. We also show that the SERRATE protein (a key component of the plant microprocessor) colocalizes and interacts with several U1 snRNP auxiliary proteins. We postulate that SERRATE-spliceosome connections have a direct effect on miRNA maturation.
Collapse
Affiliation(s)
- Katarzyna Knop
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland
| | - Agata Stepien
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland
| | - Maria Barciszewska-Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland
| | - Michal Taube
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland
| | - Michal Michalak
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland
| | - Jan W Borst
- Laboratory of Biochemistry and Microspectroscopy Centre, Wageningen University, Stippeneng 4 Wageningen 6708, The Netherlands
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, Poznan 61-614, Poland
| |
Collapse
|
12
|
Buendía-Monreal M, Gillmor CS. Mediator: A key regulator of plant development. Dev Biol 2016; 419:7-18. [PMID: 27287881 DOI: 10.1016/j.ydbio.2016.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
13
|
Yang Y, Li L, Qu LJ. Plant Mediator complex and its critical functions in transcription regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:106-18. [PMID: 26172375 DOI: 10.1111/jipb.12377] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/07/2015] [Indexed: 05/08/2023]
Abstract
The Mediator complex is an important component of the eukaryotic transcriptional machinery. As an essential link between transcription factors and RNA polymerase II, the Mediator complex transduces diverse signals to genes involved in different pathways. The plant Mediator complex was recently purified and comprises conserved and specific subunits. It functions in concert with transcription factors to modulate various responses. In this review, we summarize the recent advances in understanding the plant Mediator complex and its diverse roles in plant growth, development, defense, non-coding RNA production, response to abiotic stresses, flowering, genomic stability and metabolic homeostasis. In addition, the transcription factors interacting with the Mediator complex are also highlighted.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ling Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China
- The National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
14
|
Wan Y, Tang K, Zhang D, Xie S, Zhu X, Wang Z, Lang Z. Transcriptome-wide high-throughput deep m(6)A-seq reveals unique differential m(6)A methylation patterns between three organs in Arabidopsis thaliana. Genome Biol 2015; 16:272. [PMID: 26667818 PMCID: PMC4714525 DOI: 10.1186/s13059-015-0839-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Background m6A is a ubiquitous RNA modification in eukaryotes. Transcriptome-wide m6A patterns in Arabidopsis have been assayed recently. However, differential m6A patterns between organs have not been well characterized. Results Over two-third of the transcripts in Arabidopsis are modified by m6A. In contrast to a recent observation of m6A enrichment in 5′ mRNA, we find that m6A is distributed predominantly near stop codons. Interestingly, 85 % of the modified transcripts show high m6A methylation extent compared to their transcript level. The 290 highly methylated transcripts are mainly associated with transporters, stress responses, redox, regulation factors, and some non-coding RNAs. On average, the proportion of transcripts showing differential methylation between two plant organs is higher than that showing differential transcript levels. The transcripts with extensively higher m6A methylation in an organ are associated with the unique biological processes of this organ, suggesting that m6A may be another important contributor to organ differentiation in Arabidopsis. Highly expressed genes are relatively less methylated and vice versa, and different RNAs have distinct m6A patterns, which hint at mRNA fate. Intriguingly, most of the transposable element transcripts maintained a fragmented form with a relatively low transcript level and high m6A methylation in the cells. Conclusions This is the first study to comprehensively analyze m6A patterns in a variety of RNAs, the relationship between transcript level and m6A methylation extent, and differential m6A patterns across organs in Arabidopsis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0839-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yizhen Wan
- State Key Lab Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China. .,Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Dayong Zhang
- Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shaojun Xie
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaohong Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zegang Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Zhaobo Lang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA. .,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
15
|
Samanta S, Thakur JK. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:757. [PMID: 26442070 PMCID: PMC4584954 DOI: 10.3389/fpls.2015.00757] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.
Collapse
Affiliation(s)
| | - Jitendra K. Thakur
- *Correspondence: Jitendra K. Thakur, Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
16
|
Jali SS, Rosloski SM, Janakirama P, Steffen JG, Zhurov V, Berleth T, Clark RM, Grbic V. A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:242-54. [PMID: 25070081 PMCID: PMC4283595 DOI: 10.1111/tpj.12629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana, the HUA2 gene is required for proper expression of FLOWERING LOCUS C (FLC) and AGAMOUS, key regulators of flowering time and reproductive development, respectively. Although HUA2 is broadly expressed, plants lacking HUA2 function have only moderately reduced plant stature, leaf initiation rate and flowering time. To better understand HUA2 activity, and to test whether redundancy with similar genes underlies the absence of strong phenotypes in HUA2 mutant plants, we identified and subsequently characterized three additional HUA2-LIKE (HULK) genes in Arabidopsis. These genes form two clades (HUA2/HULK1 and HULK2/HULK3), with members broadly conserved in both vascular and non-vascular plants, but not present outside the plant kingdom. Plants with progressively reduced HULK activity had increasingly severe developmental defects, and plants homozygous for loss-of-function mutations in all four HULK genes were not recovered. Multiple mutants displayed reproductive, embryonic and post-embryonic abnormalities, and provide detailed insights into the overlapping and unique functions of individual HULK genes. With regard to flowering time, opposing influences were apparent: hua2 hulk1 plants were early-flowering, while hulk2 hulk3 mutants were late-flowering, and hua2 acted epistatically to cause early flowering in all combinations. Genome-wide expression profiling of mutant combinations using RNA-Seq revealed complex transcriptional changes in seedlings, with FLC, a known target of HUA2, among the most affected. Our studies, which include characterization of HULK expression patterns and subcellular localization, suggest that the HULK genes encode conserved nuclear factors with partially redundant but essential functions associated with diverse genetic pathways in plants.
Collapse
Affiliation(s)
- Sathya S Jali
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | - Sarah M Rosloski
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | | | - Joshua G Steffen
- Department of Biology, University of UtahSalt Lake City, UT, 84112, USA
- Center for Cell and Genome Science, University of UtahSalt Lake City, UT, 84112, USA
| | - Vladimir Zhurov
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
| | - Richard M Clark
- Department of Biology, University of UtahSalt Lake City, UT, 84112, USA
- Center for Cell and Genome Science, University of UtahSalt Lake City, UT, 84112, USA
| | - Vojislava Grbic
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| |
Collapse
|
17
|
Hajheidari M, Koncz C, Eick D. Emerging roles for RNA polymerase II CTD in Arabidopsis. TRENDS IN PLANT SCIENCE 2013; 18:633-43. [PMID: 23910452 DOI: 10.1016/j.tplants.2013.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/12/2013] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Post-translational modifications of the carboxy-terminal domain of the largest subunit of RNA polymerase II (RNAPII CTD) provide recognition marks to coordinate recruitment of numerous nuclear factors controlling transcription, cotranscriptional RNA processing, chromatin remodeling, and RNA export. Compared with the progress in yeast and mammals, deciphering the regulatory roles of position-specific combinatorial CTD modifications, the so-called CTD code, is still at an early stage in plants. In this review, we discuss some of the recent advances in understanding of the molecular mechanisms controlling the deposition and recognition of RNAPII CTD marks in plants during the transcriptional cycle and highlight some intriguing differences between regulatory components characterized in yeast, mammals, and plants.
Collapse
Affiliation(s)
- Mohsen Hajheidari
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany.
| | | | | |
Collapse
|
18
|
Xing D, Wang Y, Xu R, Ye X, Yang D, Li QQ. The regulatory role of Pcf11-similar-4 (PCFS4) in Arabidopsis development by genome-wide physical interactions with target loci. BMC Genomics 2013; 14:598. [PMID: 24004414 PMCID: PMC3844406 DOI: 10.1186/1471-2164-14-598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022] Open
Abstract
Background The yeast and human Pcf11 functions in both constitutive and regulated transcription and pre-mRNA processing. The constitutive roles of PCF11 are largely mediated by its direct interaction with RNA Polymerase II C-terminal domain and a polyadenylation factor, Clp1. However, little is known about the mechanism of the regulatory roles of Pcf11. Though similar to Pcf11 in multiple aspects, Arabidopsis Pcf11-similar-4 protein (PCFS4) plays only a regulatory role in Arabidopsis gene expression. Towards understanding how PCFS4 regulates the expression of its direct target genes in a genome level, ChIP-Seq approach was employed in this study to identify PCFS4 enrichment sites (ES) and the ES-linked genes within the Arabidopsis genome. Results A total of 892 PCFS4 ES sites linked to 839 genes were identified. Distribution analysis of the ES sites along the gene bodies suggested that PCFS4 is preferentially located on the coding sequences of the genes, consistent with its regulatory role in transcription and pre-mRNA processing. Gene ontology (GO) analysis revealed that the ES-linked genes were specifically enriched in a few GO terms, including those categories of known PCFS4 functions in Arabidopsis development. More interestingly, GO analysis suggested novel roles of PCFS4. An example is its role in circadian rhythm, which was experimentally verified herein. ES site sequences analysis identified some over-represented sequence motifs shared by subsets of ES sites. The motifs may explain the specificity of PCFS4 on its target genes and the PCFS4's functions in multiple aspects of Arabidopsis development and behavior. Conclusions Arabidopsis PCFS4 has been shown to specifically target on, and physically interact with, the subsets of genes. Its targeting specificity is likely mediated by cis-elements shared by the genes of each subset. The potential regulation on both transcription and mRNA processing levels of each subset of the genes may explain the functions of PCFS4 in multiple aspects of Arabidopsis development and behavior.
Collapse
Affiliation(s)
- Denghui Xing
- Department of Botany, Miami University, Oxford, OH 45056, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
20
|
Koncz C, deJong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. FRONTIERS IN PLANT SCIENCE 2012; 3:9. [PMID: 22639636 PMCID: PMC3355604 DOI: 10.3389/fpls.2012.00009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Correct interpretation of the coding capacity of RNA polymerase II transcribed eukaryotic genes is determined by the recognition and removal of intronic sequences of pre-mRNAs by the spliceosome. Our current knowledge on dynamic assembly and subunit interactions of the spliceosome mostly derived from the characterization of yeast, Drosophila, and human spliceosomal complexes formed on model pre-mRNA templates in cell extracts. In addition to sequential structural rearrangements catalyzed by ATP-dependent DExH/D-box RNA helicases, catalytic activation of the spliceosome is critically dependent on its association with the NineTeen Complex (NTC) named after its core E3 ubiquitin ligase subunit PRP19. NTC, isolated recently from Arabidopsis, occurs in a complex with the essential RNA helicase and GTPase subunits of the U5 small nuclear RNA particle that are required for both transesterification reactions of splicing. A compilation of mass spectrometry data available on the composition of NTC and spliceosome complexes purified from different organisms indicates that about half of their conserved homologs are encoded by duplicated genes in Arabidopsis. Thus, while mutations of single genes encoding essential spliceosome and NTC components lead to cell death in other organisms, differential regulation of some of their functionally redundant Arabidopsis homologs permits the isolation of partial loss of function mutations. Non-lethal pleiotropic defects of these mutations provide a unique means for studying the roles of NTC in co-transcriptional assembly of the spliceosome and its crosstalk with DNA repair and cell death signaling pathways.
Collapse
Affiliation(s)
- Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of SciencesSzeged, Hungary
- *Correspondence: Csaba Koncz, Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-59829 Cologne, Germany. e-mail:
| | - Femke deJong
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Nicolas Villacorta
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Dóra Szakonyi
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
21
|
Görnemann J, Barrandon C, Hujer K, Rutz B, Rigaut G, Kotovic KM, Faux C, Neugebauer KM, Séraphin B. Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain. RNA (NEW YORK, N.Y.) 2011; 17:2119-29. [PMID: 22020974 PMCID: PMC3222125 DOI: 10.1261/rna.02646811] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Complex cellular functions involve large networks of interactions. Pre-mRNA splicing and transcription are thought to be coupled by the C-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II). In yeast, the U1 snRNP subunit Prp40 was proposed to mediate cotranscriptional recruitment of early splicing factors through binding of its WW domains to the Pol II CTD. Here we investigate the role of Prp40 in splicing with an emphasis on the role of the WW domains, which might confer protein-protein interactions among the splicing and transcriptional machineries. Affinity purification revealed that Prp40 and Snu71 form a stable heterodimer that stably associates with the U1 snRNP only in the presence of Nam8, a known regulator of 5' splice site recognition. However, the Prp40 WW domains were dispensable for yeast viability. In their absence, no defect in splicing in vivo, U1 or U2 snRNP recruitment in vivo, or early splicing complex assembly in vitro was detected. We conclude that the WW domains of Prp40 do not mediate essential coupling between U1 snRNP and Pol II. Instead, delays in cotranscriptional U5 snRNP and Prp19 recruitment and altered spliceosome formation in vitro suggest that Prp40 WW domains assist in late steps of spliceosome assembly.
Collapse
Affiliation(s)
- Janina Görnemann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Katja Hujer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | - Kimberly M. Kotovic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Céline Faux
- CGM, CNRS, 91198 Gif sur Yvette Cedex, France
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, 67404 Illkirch, France
| | - Karla M. Neugebauer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Corresponding authors.E-mail E-mail .
| | - Bertrand Séraphin
- CGM, CNRS, 91198 Gif sur Yvette Cedex, France
- EMBL, D-69117 Heidelberg, Germany
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de Santé et de Recherche Médicale (INSERM) U964/Centre National de Recherche Scientifique (CNRS) UMR 7104/Université de Strasbourg, 67404 Illkirch, France
- Corresponding authors.E-mail E-mail .
| |
Collapse
|
22
|
Kidd BN, Cahill DM, Manners JM, Schenk PM, Kazan K. Diverse roles of the Mediator complex in plants. Semin Cell Dev Biol 2011; 22:741-8. [DOI: 10.1016/j.semcdb.2011.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
|